1
|
Macher GZ, Torma A, Beke D. Examining the Environmental Ramifications of Asbestos Fiber Movement Through the Water-Soil Continuum: A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2025; 22:505. [PMID: 40283732 PMCID: PMC12026592 DOI: 10.3390/ijerph22040505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 03/24/2025] [Accepted: 03/25/2025] [Indexed: 04/29/2025]
Abstract
The environmental pollution potential of asbestos products is a worldwide health issue, but their dissemination through the water-soil continuum is often an overlooked aspect. Similarly, the behavior of asbestos fibers released from the products is still not fully understood, although our knowledge is based on studies concerning their mineralogical characteristics, health effects, and waste disposal. It has been claimed and contradicted that asbestos harm is only found in air and humans. Asbestos fibers are found not only in industrial settings but also through the industrial use of asbestos cement products, which has contributed to asbestos emissions and its movement in water and soil. Asbestos fibers are diverse in their physicochemical properties, and this diversity has a significant influence on their behavior in the environment. Recent research has confirmed that asbestos can be transported by water and spread to other parts of the environment. However, the mechanisms underlying this, such as the settling of fibers, their attachment to soil particles, or their movement in groundwater, as well as the environmental and health implications, require further investigation. This paper examines the process and impact of asbestos contamination in the interconnected water, soil, and plant environmental sectors, providing a systematic review of the latest literature.
Collapse
Affiliation(s)
- Gergely Zoltán Macher
- Department of Applied Sustainability, Albert Kázmér Mosonmagyaróvár Faculty of Agricultural and Food Sciences, Széchenyi István University, 9026 Győr, Hungary;
- Wittmann Antal Crop-, Animal- and Food Sciences Multidisciplinary Doctoral School, Albert Kázmér Mosonmagyaróvár Faculty of Agricultural and Food Sciences, Széchenyi István University, 9200 Mosonmagyaróvár, Hungary
| | - András Torma
- Department of Applied Sustainability, Albert Kázmér Mosonmagyaróvár Faculty of Agricultural and Food Sciences, Széchenyi István University, 9026 Győr, Hungary;
| | - Dóra Beke
- Department of Plant Sciences, Albert Kázmér Mosonmagyaróvár Faculty of Agricultural and Food Sciences, Széchenyi István University, 9200 Mosonmagyaróvár, Hungary;
| |
Collapse
|
2
|
Lv L, Zhao B. Shape-dependent aerosol dynamics in indoor environments: Penetration, deposition, and dispersion. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136305. [PMID: 39471618 DOI: 10.1016/j.jhazmat.2024.136305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/24/2024] [Accepted: 10/24/2024] [Indexed: 11/01/2024]
Abstract
Particle shape exerts a significant influence on their dynamic behavior, and it is imperative to elucidate these effects given the potential for severe environmental toxicity associated with shaped particles. Despite extensive research on the dynamical processes of spherical particles, the behaviors of non-spherical particles have been insufficiently investigated. In this study, we have developed a suite of computation-based models that account for particle shape and have reported on the typical dynamical behaviors of non-spherical particles within indoor environments. We have explored three typical scenarios, i.e., particle penetration into indoor spaces through building cracks, indoor particle deposition, and indoor particle dispersion. The shape-induced deviations are associated with dynamical processes, showing a decrease trend among penetration, deposition, and dispersion of the non-spherical particles. The maximum discrepancy due to particle shape during the penetration process exceeds 1000 %, observed with particles of approximately 0.02 μm in diameter interacting with straight cracks 4.5 cm in length and 0.25 mm in height. Moreover, there is a discrepancy of more than 70 % in the deposition of particles with a diameter of approximately 10 μm on side walls when using side air supply ventilation. Similarly, a discrepancy of nearly 11 % is noted for particles around 0.02 μm in diameter during dispersion under displacement ventilation within indoor settings. The interaction between shape-related particle dynamics, particularly their diffusion characteristics, and the properties of the flow field leads to these shape-dependent dynamical discrepancies. These findings offer a comprehensive understanding of how the shape of particles affects their indoor dynamic behavior, thereby supporting the control of hazardous particles in indoor environments.
Collapse
Affiliation(s)
- Lipeng Lv
- Department of Building Science, School of Architecture, Tsinghua University, Beijing 100084, China
| | - Bin Zhao
- Department of Building Science, School of Architecture, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
3
|
Holmgren SD, Boyles RR, Cronk RD, Duncan CG, Kwok RK, Lunn RM, Osborn KC, Thessen AE, Schmitt CP. Catalyzing Knowledge-Driven Discovery in Environmental Health Sciences through a Community-Driven Harmonized Language. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:8985. [PMID: 34501574 PMCID: PMC8430534 DOI: 10.3390/ijerph18178985] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/13/2021] [Accepted: 08/19/2021] [Indexed: 01/10/2023]
Abstract
Harmonized language is critical for helping researchers to find data, collecting scientific data to facilitate comparison, and performing pooled and meta-analyses. Using standard terms to link data to knowledge systems facilitates knowledge-driven analysis, allows for the use of biomedical knowledge bases for scientific interpretation and hypothesis generation, and increasingly supports artificial intelligence (AI) and machine learning. Due to the breadth of environmental health sciences (EHS) research and the continuous evolution in scientific methods, the gaps in standard terminologies, vocabularies, ontologies, and related tools hamper the capabilities to address large-scale, complex EHS research questions that require the integration of disparate data and knowledge sources. The results of prior workshops to advance a harmonized environmental health language demonstrate that future efforts should be sustained and grounded in scientific need. We describe a community initiative whose mission was to advance integrative environmental health sciences research via the development and adoption of a harmonized language. The products, outcomes, and recommendations developed and endorsed by this community are expected to enhance data collection and management efforts for NIEHS and the EHS community, making data more findable and interoperable. This initiative will provide a community of practice space to exchange information and expertise, be a coordination hub for identifying and prioritizing activities, and a collaboration platform for the development and adoption of semantic solutions. We encourage anyone interested in advancing this mission to engage in this community.
Collapse
Affiliation(s)
- Stephanie D. Holmgren
- Office of Data Science, National Institute of Environmental Health Sciences (NIEHS), Durham, NC 27709, USA;
| | | | | | - Christopher G. Duncan
- Genes, Environment, and Health Branch, Division of Extramural Research and Training, NIEHS, Durham, NC 27709, USA;
| | - Richard K. Kwok
- Epidemiology Branch, Division of Intramural Research, NIEHS, Durham, NC 27709, USA;
- Office of the Director, NIEHS, Bethesda, MD 20892, USA
| | - Ruth M. Lunn
- Integrative Health Assessment Branch, Division of the National Toxicology Program, NIEHS, Durham, NC 27709, USA;
| | | | - Anne E. Thessen
- Environmental and Molecular Toxicology Department, Oregon State University, Corvallis, OR 97331, USA;
| | - Charles P. Schmitt
- Office of Data Science, National Institute of Environmental Health Sciences (NIEHS), Durham, NC 27709, USA;
| |
Collapse
|
4
|
Thessen AE, Grondin CJ, Kulkarni RD, Brander S, Truong L, Vasilevsky NA, Callahan TJ, Chan LE, Westra B, Willis M, Rothenberg SE, Jarabek AM, Burgoon L, Korrick SA, Haendel MA. Community Approaches for Integrating Environmental Exposures into Human Models of Disease. ENVIRONMENTAL HEALTH PERSPECTIVES 2020; 128:125002. [PMID: 33369481 PMCID: PMC7769179 DOI: 10.1289/ehp7215] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 11/30/2020] [Accepted: 12/04/2020] [Indexed: 05/03/2023]
Abstract
BACKGROUND A critical challenge in genomic medicine is identifying the genetic and environmental risk factors for disease. Currently, the available data links a majority of known coding human genes to phenotypes, but the environmental component of human disease is extremely underrepresented in these linked data sets. Without environmental exposure information, our ability to realize precision health is limited, even with the promise of modern genomics. Achieving integration of gene, phenotype, and environment will require extensive translation of data into a standard, computable form and the extension of the existing gene/phenotype data model. The data standards and models needed to achieve this integration do not currently exist. OBJECTIVES Our objective is to foster development of community-driven data-reporting standards and a computational model that will facilitate the inclusion of exposure data in computational analysis of human disease. To this end, we present a preliminary semantic data model and use cases and competency questions for further community-driven model development and refinement. DISCUSSION There is a real desire by the exposure science, epidemiology, and toxicology communities to use informatics approaches to improve their research workflow, gain new insights, and increase data reuse. Critical to success is the development of a community-driven data model for describing environmental exposures and linking them to existing models of human disease. https://doi.org/10.1289/EHP7215.
Collapse
Affiliation(s)
- Anne E. Thessen
- Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon, USA
- Ronin Institute for Independent Scholarship, Montclair, New Jersey, USA
| | - Cynthia J. Grondin
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Resham D. Kulkarni
- Biomedical Informatics and Data Science, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Susanne Brander
- Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon, USA
| | - Lisa Truong
- Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon, USA
| | - Nicole A. Vasilevsky
- Oregon Clinical & Translational Research Institute, Oregon Health & Science University, Portland, Oregon, USA
- Department of Medical Informatics and Clinical Epidemiology, School of Medicine, Oregon Health & Science University, Portland, Oregon, USA
| | - Tiffany J. Callahan
- Computational Bioscience Program, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado, USA
- Department of Pharmacology, School of Medicine, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado, USA
| | - Lauren E. Chan
- Nutrition, Oregon State University, Corvallis, Oregon, USA
| | - Brian Westra
- University Libraries, University of Iowa, Iowa City, Iowa, USA
| | - Mary Willis
- School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, Corvallis, Oregon, USA
| | - Sarah E. Rothenberg
- School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, Corvallis, Oregon, USA
| | - Annie M. Jarabek
- Center for Public Health and Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Lyle Burgoon
- U.S. Army Engineering Research and Development Center, Vicksburg, Mississippi, USA
| | - Susan A. Korrick
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Melissa A. Haendel
- Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon, USA
| |
Collapse
|
5
|
Terry C, Yan Z, Corvaro M, Gehen SC. A retrospective study on EU harmonised classifications for carcinogenicity to guide future research. Regul Toxicol Pharmacol 2020; 119:104800. [PMID: 33129916 DOI: 10.1016/j.yrtph.2020.104800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 08/05/2020] [Accepted: 10/05/2020] [Indexed: 12/26/2022]
Abstract
Under European Regulation (EC) No 1272/2008 on the classification, labelling and packaging of substances and mixtures (CLP), chemicals can be classified as carcinogenic if they are considered to induce tumours, increase tumour incidence and/or malignancy, or shorten the time to tumour occurrence. Cancer classifications are divided into different hazard categories: Carc. 1A (known human carcinogen), Carc. 1B (presumed human carcinogen), Carc. 2 (suspected human carcinogen), and chemicals not classified for carcinogenicity. Selecting which classification is appropriate can be challenging, as judgements need to be made both on the existing hazard data and on its relevance to humans. One aspect to be considered in defining human relevance is a chemical's mode of action (MoA); the series of necessary key events that lead from an exposure to the adverse effect (in this case, tumours). This work aims to identify and discuss some of the features that have led ECHA's Committee for Risk Assessment (RAC) to decide upon harmonised cancer classifications for chemicals, and to prioritise future research on MoA and/or human relevance. RAC bases its decisions on cancer classification on both the weight-of-evidence (WoE) and strength-of-evidence (SoE) of this particular activity. Multiple factors contribute, including the species in which tumours are seen, and the relevance of the MoA to human health.
Collapse
Affiliation(s)
- Claire Terry
- Corteva Agriscience, 9330 Zionsville Road, Indianapolis, IN, USA.
| | - Zhongyu Yan
- Corteva Agriscience, 9330 Zionsville Road, Indianapolis, IN, USA.
| | - Marco Corvaro
- Corteva Agriscience, 3B Milton Park Square, OX14 4RN, Abingdon, UK.
| | - Sean C Gehen
- Corteva Agriscience, 9330 Zionsville Road, Indianapolis, IN, USA.
| |
Collapse
|
6
|
Micolucci L, Akhtar MM, Olivieri F, Rippo MR, Procopio AD. Diagnostic value of microRNAs in asbestos exposure and malignant mesothelioma: systematic review and qualitative meta-analysis. Oncotarget 2018; 7:58606-58637. [PMID: 27259231 PMCID: PMC5295457 DOI: 10.18632/oncotarget.9686] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 04/28/2016] [Indexed: 12/13/2022] Open
Abstract
Background Asbestos is a harmful and exceptionally persistent natural material. Malignant mesothelioma (MM), an asbestos-related disease, is an insidious, lethal cancer that is poorly responsive to current treatments. Minimally invasive, specific, and sensitive biomarkers providing early and effective diagnosis in high-risk patients are urgently needed. MicroRNAs (miRNAs, miRs) are endogenous, non-coding, small RNAs with established diagnostic value in cancer and pollution exposure. A systematic review and a qualitative meta-analysis were conducted to identify high-confidence miRNAs that can serve as biomarkers of asbestos exposure and MM. Methods The major biomedical databases were systematically searched for miRNA expression signatures related to asbestos exposure and MM. The qualitative meta-analysis applied a novel vote-counting method that takes into account multiple parameters. The most significant miRNAs thus identified were then subjected to functional and bioinformatic analysis to assess their biomarker potential. Results A pool of deregulated circulating and tissue miRNAs with biomarker potential for MM was identified and designated as “mesomiRs” (MM-associated miRNAs). Comparison of data from asbestos-exposed and MM subjects found that the most promising candidates for a multimarker signature were circulating miR-126-3p, miR-103a-3p, and miR-625-3p in combination with mesothelin. The most consistently described tissue miRNAs, miR-16-5p, miR-126-3p, miR-143-3p, miR-145-5p, miR-192-5p, miR-193a-3p, miR-200b-3p, miR-203a-3p, and miR-652-3p, were also found to provide a diagnostic signature and should be further investigated as possible therapeutic targets. Conclusion The qualitative meta-analysis and functional investigation confirmed the early diagnostic value of two miRNA signatures for MM. Large-scale, standardized validation studies are needed to assess their clinical relevance, so as to move from the workbench to the clinic.
Collapse
Affiliation(s)
- Luigina Micolucci
- Computational Pathology Unit, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy.,Laboratory of Experimental Pathology, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Most Mauluda Akhtar
- Computational Pathology Unit, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy.,Laboratory of Experimental Pathology, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Fabiola Olivieri
- Laboratory of Experimental Pathology, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy.,Center of Clinical Pathology and Innovative Therapy, Italian National Research Center on Aging (INRCA-IRCCS), Ancona, Italy
| | - Maria Rita Rippo
- Laboratory of Experimental Pathology, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Antonio Domenico Procopio
- Laboratory of Experimental Pathology, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy.,Center of Clinical Pathology and Innovative Therapy, Italian National Research Center on Aging (INRCA-IRCCS), Ancona, Italy
| |
Collapse
|
7
|
Abstract
BACKGROUND Regulation of asbestos fibers in the workplace is partly determined by which fibers can be visually counted. However, a majority of fibers are too short and thin to count this way and are, consequently, not subject to regulation. METHODS We estimate lung cancer risk associated with asbestos fibers of varying length and width. We apply an order-constrained prior both to leverage external information from toxicological studies of asbestos health effects. This prior assumes that risk from asbestos fibers increases with increasing length and decreases with increasing width. RESULTS When we apply a shared mean for the effect of all asbestos fiber exposure groups, the rate ratios for each fiber group per unit exposure appear mostly equal. Rate ratio estimates for fibers of diameter <0.25 μm and length <1.5 and 1.5-5.0 μm are the most precise. When applying an order-constrained prior, we find that estimates of lung cancer rate ratio per unit of exposure to unregulated fibers 20-40 and >40 μm in the thinnest fiber group are similar in magnitude to estimates of risk associated with long fibers in the regulated fraction of airborne asbestos fibers. Rate ratio estimates for longer fibers are larger than those for shorter fibers, but thicker and thinner fibers do not differ as the toxicologically derived prior had expected. CONCLUSION Credible intervals for fiber size-specific risk estimates overlap; thus, we cannot conclude that there are substantial differences in effect by fiber size. Nonetheless, our results suggest that some unregulated asbestos fibers may be associated with increased incidence of lung cancer.
Collapse
|
8
|
Sayeed MA, Bracci M, Lucarini G, Lazzarini R, Di Primio R, Santarelli L. Regulation of microRNA using promising dietary phytochemicals: Possible preventive and treatment option of malignant mesothelioma. Biomed Pharmacother 2017; 94:1197-1224. [PMID: 28841784 DOI: 10.1016/j.biopha.2017.07.075] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 07/10/2017] [Accepted: 07/18/2017] [Indexed: 12/21/2022] Open
Abstract
Malignant mesothelioma (MM) is a very aggressive, lethal cancer, and its incidence is increasing worldwide. Development of multi-drug resistance, therapy related side-effects, and disease recurrence after therapy are the major problems for the successful treatment of MM. Emerging evidence indicates that dietary phytochemicals can exert anti-cancer activities by regulating microRNA expression. Until now, only one dietary phytochemical (ursolic acid) has been reported to have MM microRNA regulatory ability. A large number of dietary phytochemicals still remain to be tested. In this paper, we have introduced some dietary phytochemicals (curcumin, epigallocatechin gallate, quercetin, genistein, pterostilbene, resveratrol, capsaicin, ellagic acid, benzyl isothiocyanate, phenethyl isothiocyanate, sulforaphane, indole-3-carbinol, 3,3'-diindolylmethane, diallyl disulphide, betulinic acid, and oleanolic acid) which have shown microRNA regulatory activities in various cancers and could regulate MM microRNAs. In addition to microRNA regulatory activities, curcumin, epigallocatechin gallate, quercetin, genistein, resveratrol, phenethyl isothiocyanate, and sulforaphane have anti-mesothelioma potentials, and pterostilbene, capsaicin, ellagic acid, benzyl isothiocyanate, indole-3-carbinol, 3,3'-diindolylmethane, diallyl disulphide, betulinic acid, and oleanolic acid have potentials to inhibit cancer by regulating the expression of various genes which are also known to be aberrant in MM.
Collapse
Affiliation(s)
- Md Abu Sayeed
- Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona 60126, Italy.
| | - Massimo Bracci
- Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona 60126, Italy
| | - Guendalina Lucarini
- Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona 60126, Italy
| | - Raffaella Lazzarini
- Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona 60126, Italy
| | - Roberto Di Primio
- Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona 60126, Italy
| | - Lory Santarelli
- Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona 60126, Italy
| |
Collapse
|
9
|
Feder IS, Tischoff I, Theile A, Schmitz I, Merget R, Tannapfel A. The asbestos fibre burden in human lungs: new insights into the chrysotile debate. Eur Respir J 2017; 49:49/6/1602534. [PMID: 28663314 PMCID: PMC5898940 DOI: 10.1183/13993003.02534-2016] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 02/26/2017] [Indexed: 11/27/2022]
Abstract
The traceability of asbestos fibres in human lungs is a matter of discussion especially for chrysotile. This issue is of high significance for differential diagnosis, risk assessment and occupational compensation. At present no intra-individual longitudinal information is available. This study addresses the question whether the asbestos fibre burden in human lungs decreases with time after exposure cessation. The database of the German Mesothelioma Register was screened for patients with asbestos body counts of at least 500 fibres per gram of wet lung, which had been analysed twice from different tissue excisions at minimum intervals of 4 years. Twelve datasets with individual longitudinal information were discovered with a median interval of about 8 years (range 4–21 years). Both examinations were performed after exposure cessation (median: surgery, 9.5 years; autopsy, 22 years). Pulmonary asbestos fibre burden was stable between both examinations (median 1623/4269 asbestos bodies per gram wet lung). Electron microscopy demonstrated a preponderance of chrysotile (median 80%). This study is the first to present longitudinal intra-individual data about the asbestos fibre burden in living human lungs. The high biopersistence of amphiboles, but also of chrysotile, offers mechanistic explanations for fibre toxicity, especially the long latency period of asbestos-related diseases. Intra-individual longitudinal data display: the asbestos fibre burden in living human lungs is stable over many yearshttp://ow.ly/VtPF30bRETz
Collapse
Affiliation(s)
- Inke Sabine Feder
- Institute for Pathology of the Ruhr-University Bochum, Bochum, Germany
| | - Iris Tischoff
- Institute for Pathology of the Ruhr-University Bochum, Bochum, Germany
| | - Anja Theile
- Institute for Pathology of the Ruhr-University Bochum, Bochum, Germany
| | - Inge Schmitz
- Institute for Pathology of the Ruhr-University Bochum, Bochum, Germany
| | - Rolf Merget
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University (IPA), Bochum, Germany
| | - Andrea Tannapfel
- Institute for Pathology of the Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
10
|
Carlin DJ, Larson TC, Pfau JC, Gavett SH, Shukla A, Miller A, Hines R. Current Research and Opportunities to Address Environmental Asbestos Exposures. ENVIRONMENTAL HEALTH PERSPECTIVES 2015; 123:A194-7. [PMID: 26230287 PMCID: PMC4529018 DOI: 10.1289/ehp.1409662] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Asbestos-related diseases continue to result in approximately 120,000 deaths every year in the United States and worldwide. Although extensive research has been conducted on health effects of occupational exposures to asbestos, many issues related to environmental asbestos exposures remain unresolved. For example, environmental asbestos exposures associated with a former mine in Libby, Montana, have resulted in high rates of nonoccupational asbestos-related disease. Additionally, other areas with naturally occurring asbestos deposits near communities in the United States and overseas are undergoing investigations to assess exposures and potential health risks. Some of the latest public health, epidemiological, and basic research findings were presented at a workshop on asbestos at the 2014 annual meeting of the Society of Toxicology in Phoenix, Arizona. The following focus areas were discussed: a) mechanisms resulting in fibrosis and/or tumor development; b) relative toxicity of different forms of asbestos and other hazardous elongated mineral particles (EMPs); c) proper dose metrics (e.g., mass, fiber number, or surface area of fibers) when interpreting asbestos toxicity; d) asbestos exposure to susceptible populations; and e) using toxicological findings for risk assessment and remediation efforts. The workshop also featured asbestos research supported by the National Institute of Environmental Health Sciences, the Agency for Toxic Substances and Disease Registry, and the U.S. Environmental Protection Agency. Better protection of individuals from asbestos-related health effects will require stimulation of new multidisciplinary research to further our understanding of what constitutes hazardous exposures and risk factors associated with toxicity of asbestos and other hazardous EMPs (e.g., nanomaterials).
Collapse
Affiliation(s)
- Danielle J Carlin
- Division of Extramural Research and Training, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, North Carolina, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Parks CG, Miller FW, Pollard KM, Selmi C, Germolec D, Joyce K, Rose NR, Humble MC. Expert panel workshop consensus statement on the role of the environment in the development of autoimmune disease. Int J Mol Sci 2014; 15:14269-97. [PMID: 25196523 PMCID: PMC4159850 DOI: 10.3390/ijms150814269] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 07/31/2014] [Accepted: 08/04/2014] [Indexed: 12/20/2022] Open
Abstract
Autoimmune diseases include 80 or more complex disorders characterized by self-reactive, pathologic immune responses in which genetic susceptibility is largely insufficient to determine disease onset. In September 2010, the National Institute of Environmental Health Sciences (NIEHS) organized an expert panel workshop to evaluate the role of environmental factors in autoimmune diseases, and the state of the science regarding relevant mechanisms, animal models, and human studies. The objective of the workshop was to analyze the existing data to identify conclusions that could be drawn regarding environmental exposures and autoimmunity and to identify critical knowledge gaps and areas of uncertainty for future study. This consensus document summarizes key findings from published workshop monographs on areas in which “confident” and “likely” assessments were made, with recommendations for further research. Transcribed notes and slides were reviewed to synthesize an overview on exposure assessment and questions addressed by interdisciplinary panels. Critical advances in the field of autoimmune disease research have been made in the past decade. Collaborative translational and interdisciplinary research is needed to elucidate the role of environmental factors in autoimmune diseases. A focus on exposure assessment methodology is needed to improve the effectiveness of human studies, and more experimental studies are needed to focus on causal mechanisms underlying observed associations of environmental factors with autoimmune disease in humans.
Collapse
Affiliation(s)
- Christine G Parks
- Epidemiology Branch, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Research Triangle Park, NC 27709, USA.
| | | | - Kenneth Michael Pollard
- Department of Molecular and Experimental Medicine, the Scripps Research Institute, La Jolla, CA 92037, USA.
| | - Carlo Selmi
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, CA 95616, USA.
| | - Dori Germolec
- National Toxicology Program, NIEHS, NIH, Morrisville, NC 27560, USA.
| | - Kelly Joyce
- Department of History and Politics, Drexel University, Philadelphia, PA 19104, USA.
| | - Noel R Rose
- John Hopkins Center for Autoimmune Disease Research, Bloomberg School of Public Health, Baltimore, MD 21205, USA.
| | - Michael C Humble
- Division of Extramural Research and Training, NIEHS, NIH, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
12
|
Ferro A, Zebedeo CN, Davis C, Ng KW, Pfau JC. Amphibole, but not chrysotile, asbestos induces anti-nuclear autoantibodies and IL-17 in C57BL/6 mice. J Immunotoxicol 2014; 11:283-90. [PMID: 24164284 PMCID: PMC4996640 DOI: 10.3109/1547691x.2013.847510] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract Exposure to amphibole asbestos has been associated with production of autoantibodies in mice and humans, and increases the risk of systemic autoimmune disease. However, epidemiological studies of chrysotile exposure have not indicated a similar induction of autoimmune responses. To demonstrate this difference in controlled exposures in mice, and to explore possible mechanistic explanations for the difference, C57BL/6 mice were exposed intratracheally to amphibole or chrysotile asbestos, or to saline only. Serum antinuclear antibodies (ANA), antibodies to extractable nuclear antigens (ENA), serum cytokines, and immunoglobulin isotypes were evaluated 8 months after the final treatment. The percentages of lymphocyte sub-sets were determined in the spleen and lungs. The results show that amphibole, but not chrysotile, asbestos increases the frequency of ANA/ENA in mice. Amphibole and chrysotile both increased multiple serum cytokines, but only amphibole increased IL-17. Both fibers decreased IgG1, without significant changes in other immunoglobulin isotypes. Although there were no gross changes in overall percentages of T- and B-cells in the spleen or lung, there was a significant increase in the normally rare populations of suppressor B-cells (CD19(+), CD5(+), CD1d(+)) in both the spleen and lungs of chrysotile-exposed mice. Overall, the results suggest that, while there may be an inflammatory response to both forms of asbestos, there is an autoimmune response in only the amphibole-exposed, but not the chrysotile-exposed mice. These data have critical implications in terms of screening and health outcomes of asbestos-exposed populations.
Collapse
Affiliation(s)
- Aaron Ferro
- Pacific Northwest University of Health Sciences, College of Osteopathic Medicine, Yakima, WA, USA
| | | | - Chad Davis
- Idaho State University, Department of Biological Sciences, Pocatello, ID, USA
| | - Kok Whei Ng
- Idaho State University, Department of Biological Sciences, Pocatello, ID, USA
| | - Jean C. Pfau
- Idaho State University, Department of Biological Sciences, Pocatello, ID, USA
| |
Collapse
|
13
|
Abstract
Despite a body of evidence supporting an association between asbestos exposure and autoantibodies indicative of systemic autoimmunity, such as antinuclear antibodies (ANA), a strong epidemiological link has never been made to specific autoimmune diseases. This is in contrast with another silicate dust, crystalline silica, for which there is considerable evidence linking exposure to diseases such as systemic lupus erythematosus, systemic sclerosis, and rheumatoid arthritis. Instead, the asbestos literature is heavily focused on cancer, including mesothelioma and pulmonary carcinoma. Possible contributing factors to the absence of a stronger epidemiological association between asbestos and autoimmune disease include (a) a lack of statistical power due to relatively small or diffuse exposure cohorts, (b) exposure misclassification, (c) latency of clinical disease, (d) mild or subclinical entities that remain undetected or masked by other pathologies, or (e) effects that are specific to certain fiber types, so that analyses on mixed exposures do not reach statistical significance. This review summarizes epidemiological, animal model, and in vitro data related to asbestos exposures and autoimmunity. These combined data help build toward a better understanding of the fiber-associated factors contributing to immune dysfunction that may raise the risk of autoimmunity and the possible contribution to asbestos-related pulmonary disease.
Collapse
|
14
|
Kleinstreuer C, Feng Y. Computational Analysis of Non-Spherical Particle Transport and Deposition in Shear Flow With Application to Lung Aerosol Dynamics—A Review. J Biomech Eng 2013; 135:021008. [DOI: 10.1115/1.4023236] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
All naturally occurring and most man-made solid particles are nonspherical. Examples include air-pollutants in the nano- to micro-meter range as well as blood constituents, drug particles, and industrial fluid-particle streams. Focusing on the modeling and simulation of inhaled aerosols, theories for both spherical and nonspherical particles are reviewed to analyze the contrasting transport and deposition phenomena of spheres and equivalent spheres versus ellipsoids and fibers.
Collapse
Affiliation(s)
- Clement Kleinstreuer
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695-7910; Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and NC State University, Raleigh, NC 27695-7910 e-mail:
| | - Yu Feng
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695-7910
| |
Collapse
|
15
|
Hubaux R, Becker-Santos DD, Enfield KSS, Lam S, Lam WL, Martinez VD. Arsenic, asbestos and radon: emerging players in lung tumorigenesis. Environ Health 2012; 11:89. [PMID: 23173984 PMCID: PMC3534001 DOI: 10.1186/1476-069x-11-89] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 11/05/2012] [Indexed: 05/02/2023]
Abstract
The cause of lung cancer is generally attributed to tobacco smoking. However lung cancer in never smokers accounts for 10 to 25% of all lung cancer cases. Arsenic, asbestos and radon are three prominent non-tobacco carcinogens strongly associated with lung cancer. Exposure to these agents can lead to genetic and epigenetic alterations in tumor genomes, impacting genes and pathways involved in lung cancer development. Moreover, these agents not only exhibit unique mechanisms in causing genomic alterations, but also exert deleterious effects through common mechanisms, such as oxidative stress, commonly associated with carcinogenesis. This article provides a comprehensive review of arsenic, asbestos, and radon induced molecular mechanisms responsible for the generation of genetic and epigenetic alterations in lung cancer. A better understanding of the mode of action of these carcinogens will facilitate the prevention and management of lung cancer related to such environmental hazards.
Collapse
Affiliation(s)
- Roland Hubaux
- British Columbia Cancer Research Centre, Vancouver, BC, V5Z 1L3, Canada
| | | | - Katey SS Enfield
- British Columbia Cancer Research Centre, Vancouver, BC, V5Z 1L3, Canada
| | - Stephen Lam
- British Columbia Cancer Research Centre, Vancouver, BC, V5Z 1L3, Canada
| | - Wan L Lam
- British Columbia Cancer Research Centre, Vancouver, BC, V5Z 1L3, Canada
| | - Victor D Martinez
- British Columbia Cancer Research Centre, Vancouver, BC, V5Z 1L3, Canada
| |
Collapse
|