1
|
Techaniyom P, Korsirikoon C, Chitta P, Sae-Lee C. Regulatory roles of transposable elements on autism molecular neuropathology. Epigenomics 2025:1-9. [PMID: 40326043 DOI: 10.1080/17501911.2025.2501520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 04/28/2025] [Indexed: 05/07/2025] Open
Abstract
Autism Spectrum Disorder (ASD) is a complex neurodevelopmental condition characterized by challenges in social communication and the presence of repetitive behaviors, typically diagnosed in early childhood. In this review, we searched PubMed and Google Scholar databases for relevant articles. ASD displays considerable heterogeneity in symptomatology and is more common in males, though shifting demographics indicate rising rates among minority populations. Transposable elements (TEs), which constitute approximately 50% of the mammalian genome, are increasingly recognized for their contribution to neurodevelopmental disorders, including ASD. These mobile genetic elements can induce genomic instability and modulate gene expression, thereby influencing ASD pathology. Evidence suggests that specific TEs, such as L1 and Alu elements, can disrupt genes critical for neurodevelopment and contribute to the disorder's genetic complexity. Furthermore, prenatal environmental exposures may activate TEs, potentially contributing to neuroinflammation observed in ASD. While the precise regulatory roles of non-coding TEs in ASD are still under investigation and require careful interpretation, integrating epigenetic aging markers like epigenetic clocks holds promise for advancing the field. Future research focused on the intricate relationship between TEs, environmental factors, epigenetic mechanisms, and neurodevelopmental processes is essential for identifying novel biomarkers and therapeutic targets, ultimately improving early diagnosis and interventions for ASD.
Collapse
Affiliation(s)
- Peerapa Techaniyom
- Research Division, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Department of Clinical Pathology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Chawin Korsirikoon
- Research Division, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Nutrition, Faculty of Medicine Ramathibodi Hospital and Institute of Nutrition, Mahidol University, Bangkok, Thailand
| | - Pitaksin Chitta
- Research Division, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Department of Clinical Pathology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Chanachai Sae-Lee
- Research Division, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Department of Clinical Pathology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
2
|
Zhang Z, Yu J, Li Q, Zhao Y, Tang L, Peng Y, Liu Y, Gan C, Liu K, Wang J, Chen L, Luo Q, Qiu H, Ren H, Jiang C. Unraveling the causal pathways of maternal smoking and breastfeeding in the development of neuropsychiatric disorders: A Mendelian randomization perspective. J Affect Disord 2025; 373:35-43. [PMID: 39716673 DOI: 10.1016/j.jad.2024.12.075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 12/19/2024] [Accepted: 12/20/2024] [Indexed: 12/25/2024]
Abstract
BACKGROUND Maternal smoking around birth (MSAB) and early-life breastfeeding (BAB) represent critical factors that may exert enduring effects on neuropsychiatric health. Although previous research has examined these exposures separately, the combined impact of both on disorders such as ADHD, ASD, BD, MDD, ANX, and SCZ remains unclear. This study aims to evaluate the causal relationships between MSAB and BAB and the risk of developing these neuropsychiatric disorders through Mendelian randomization (MR) analysis. METHODS A two-sample MR analysis was conducted to investigate the potential causal effects of MSAB and BAB on a range of neuropsychiatric disorders. Genetic variants associated with MSAB and BAB were obtained from genome-wide association studies (GWAS), while summary data for neuropsychiatric disorders were gathered from large GWAS consortia. The primary MR analysis was conducted using the inverse-variance weighted (IVW) method, with additional sensitivity analyses performed to confirm the robustness of the findings. A False Discovery Rate (FDR) correction was applied to control for the issue of multiple comparisons and reduce the risk of Type I errors. RESULTS The IVW analysis indicated that there were significant associations between MSAB and an increased risk of the following conditions: The IVW analysis indicated significant associations between MSAB and an increased risk of ADHD (odds ratio [OR] = 5.36, 95 % confidence interval [CI] = 2.58-7.63, p-value for false discovery rate [PFDR] = 0.004) and major depressive disorder (MDD) (OR = 1.92, 95 % CI = 1.29-2.88, PFDR = 0. Furthermore, significant associations were observed between MSAB and an increased risk of bipolar disorder (BD) (OR = 6.33, 95 % CI = 1.56-8.73, PFDR = 0.020), anxiety disorders (ANX) (OR = 1.03, 95 % CI = 1.00-1.05, PFDR = 0.039), and attention deficit hyperactivity disorder (ADHD) (OR = 5.36, 95 % CI = 2.58-7.63, PFDR = 0.004). No significant associations were identified between MSAB and Autism Spectrum Disorder (ASD) or Schizophrenia (SCZ). In contrast, the results indicated that BAB was associated with a protective effect against ADHD (OR = 0.17, 95 % CI = 0.04-0.63, PFDR = 0.025), MDD (OR = 0.26, 95 % CI = 0.12-0.58, PFDR = 0.006), and ANX (OR = 0.96, 95 % CI = 0.49-0.99, PFDR = 0.030). No significant effects of BAB were observed for ASD, BD, or SCZ. CONCLUSIONS This study shows that maternal smoking around the time of birth increases the risk of attention-deficit/hyperactivity disorder (ADHD), major depressive disorder (MDD), bipolar disorder (BD), and anxiety disorders (ANX). In contrast, breastfeeding during infancy offers protective benefits against ADHD, MDD, and ANX. These findings underscore the vital importance of maternal health behaviours during the perinatal and infant feeding periods. They also highlight the need for targeted public health interventions aimed at reducing the risk of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Zheng Zhang
- Department of Sleep and Psychology, Chongqing Health Center for Women and Children, Chongqing 401147, China; Department of Sleep and Psychology, Women and Children's Hospital of Chongqing Medical University, 401147, China
| | - Jiangyou Yu
- Department of Sleep and Psychology, Chongqing Health Center for Women and Children, Chongqing 401147, China; Department of Sleep and Psychology, Women and Children's Hospital of Chongqing Medical University, 401147, China
| | - Qiyin Li
- Department of Sleep and Psychology, Chongqing Health Center for Women and Children, Chongqing 401147, China; Department of Sleep and Psychology, Women and Children's Hospital of Chongqing Medical University, 401147, China
| | - Yuan Zhao
- Department of Sleep and Psychology, Chongqing Health Center for Women and Children, Chongqing 401147, China; Department of Sleep and Psychology, Women and Children's Hospital of Chongqing Medical University, 401147, China
| | - Liwei Tang
- Department of Sleep and Psychology, Chongqing Health Center for Women and Children, Chongqing 401147, China; Department of Sleep and Psychology, Women and Children's Hospital of Chongqing Medical University, 401147, China
| | - Yadong Peng
- Department of Sleep and Psychology, Chongqing Health Center for Women and Children, Chongqing 401147, China; Department of Sleep and Psychology, Women and Children's Hospital of Chongqing Medical University, 401147, China
| | - Ying Liu
- Department of Sleep and Psychology, Chongqing Health Center for Women and Children, Chongqing 401147, China; Department of Sleep and Psychology, Women and Children's Hospital of Chongqing Medical University, 401147, China
| | - Cheng Gan
- Department of Sleep and Psychology, Chongqing Health Center for Women and Children, Chongqing 401147, China; Department of Sleep and Psychology, Women and Children's Hospital of Chongqing Medical University, 401147, China
| | - Keyi Liu
- Department of Sleep and Psychology, Chongqing Health Center for Women and Children, Chongqing 401147, China; Department of Sleep and Psychology, Women and Children's Hospital of Chongqing Medical University, 401147, China
| | - Jing Wang
- Department of Sleep and Psychology, Chongqing Health Center for Women and Children, Chongqing 401147, China; Department of Sleep and Psychology, Women and Children's Hospital of Chongqing Medical University, 401147, China
| | - Lixia Chen
- Department of Sleep and Psychology, Chongqing Health Center for Women and Children, Chongqing 401147, China; Department of Sleep and Psychology, Women and Children's Hospital of Chongqing Medical University, 401147, China
| | - Qinghua Luo
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Haitang Qiu
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Hao Ren
- Chongqing Changshou District, Mental Health Center, Chongqing 401231, China.
| | - Chenggang Jiang
- Department of Sleep and Psychology, Chongqing Health Center for Women and Children, Chongqing 401147, China; Department of Sleep and Psychology, Women and Children's Hospital of Chongqing Medical University, 401147, China.
| |
Collapse
|
3
|
Kilari T, Suresh AS, Begum RF, Singh A, Venkkatesh P, Vellapandian C. Effect of Per and Poly-Fluoroalkyl Substances on Pregnancy and Child Development. Curr Pediatr Rev 2025; 21:142-153. [PMID: 38213179 DOI: 10.2174/0115733963267526231120110100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/18/2023] [Accepted: 11/02/2023] [Indexed: 01/13/2024]
Abstract
BACKGROUND Childhood obesity is significantly influenced by maternal exposure to Per and Poly-Fluoroalkyl Substances (PFAS) during pregnancy. PFAS exposure occurs through the Peroxisome Proliferator-Activated Receptor (PPAR-γ) receptor, leading to increased fat deposition and profound health effects in child growth and development. Despite ongoing investigations, the relationship between maternal serum PFAS concentration and child obesity requires further exploration. OBJECTIVE This study aimed to review the possible effects of Per and poly-fluoroalkyl substances exposure and their mechanism in overweight/obese children from pregnant ladies. METHODS A detailed literature survey was conducted using online databases, including Science Direct, Google Scholar, Scopus, Cochrane, and PubMed. The study focused on the diverse effects of PFAS on maternal and child health, with particular emphasis on neurological complications. RESULTS Child growth development depends upon breastfeeding and placenta health, which is disrupted by PFAS exposure, ultimately destroying the body mass index of the child. Neurotoxicity testing utilized the SH-SY5Y human-derived cell line as an in vitro model, revealing PFAS-induced increases in adipocyte number, reduced cell size, altered lipid conglomeration, increased adiposity, and changes in liver function. in vivo studies in mice and human cell lines indicated PPAR-γ and ER-α activation, leading to adiposity and weight gain through Estrogen signaling and Lipid metabolism. PFAS concentrations positively correlated in maternal sera, analyzed by liquid chromatography/quadrupole mass spectrometry. CONCLUSION PFAS, with a long half-life of 3.5-8.5 years, is commonly found in the serum of pregnant women, crossing the placenta barrier. This exposure disrupts placental homeostasis, negatively impacting mechanisms of action and potentially leading to deterioration in pregnancy and child health. Further research is needed to comprehensively understand the complex interplay between PFAS exposure and its implications for maternal and child well-being.
Collapse
Affiliation(s)
- Thanuja Kilari
- Department of Pharmacology, SRM College of Pharmacy, SRMIST, Kattankulathur-603209, Tamil Nadu, India
| | - Ankul Singh Suresh
- Department of Pharmacology, SRM College of Pharmacy, SRMIST, Kattankulathur-603209, Tamil Nadu, India
| | - Rukaiah F Begum
- Department of Pharmacology, SRM College of Pharmacy, SRMIST, Kattankulathur-603209, Tamil Nadu, India
| | - Anuragh Singh
- Department of Pharmacology, SRM College of Pharmacy, SRMIST, Kattankulathur-603209, Tamil Nadu, India
| | - Pravin Venkkatesh
- Department of Pharmacology, SRM College of Pharmacy, SRMIST, Kattankulathur-603209, Tamil Nadu, India
| | - Chitra Vellapandian
- Department of Pharmacology, SRM College of Pharmacy, SRMIST, Kattankulathur-603209, Tamil Nadu, India
| |
Collapse
|
4
|
Gillespie CA, Chowdhury A, Quinn KA, Jenkins MW, Rollins AM, Watanabe M, Ford SM. Fundamentals of DNA methylation in development. Pediatr Res 2024:10.1038/s41390-024-03674-7. [PMID: 39658604 DOI: 10.1038/s41390-024-03674-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 09/12/2024] [Accepted: 09/30/2024] [Indexed: 12/12/2024]
Abstract
DNA methyation is critical to regulation of gene expression especially during developmentally dynamic changes. A large proportion occurs at CpG (a cytosine followed by a guanine nucleotide) sites and impacts gene expression based on location, timing and level of DNA methylation. The spectrum of effects produced by DNA methylation ranges from inhibition to enhancement of gene expression. Here basic terms and concepts in the study of DNA methylation are introduced. In addition, some of the commonly used techniques to assay DNA methylation are explained. New methods that allow the precise addition and removal of DNA methylation at specific sites will likely enhance our understanding of DNA methylation in development and may even lead to long-lasting therapeutic strategies to cure diseases. IMPACT: Fundamentals of DNA methylation including its significance are made accessible to a broad audience. Common assays for detecting DNA methylation are explained succinctly. Developmental patterns of DNA methylation detected in commonly used animal models are discussed and explained. Novel methodologies to investigate consequences of DNA methylation and demethylation are introduced.
Collapse
Affiliation(s)
- Caitlyn A Gillespie
- Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Amrin Chowdhury
- Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Katie A Quinn
- Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Michael W Jenkins
- Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Andrew M Rollins
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Michiko Watanabe
- Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Stephanie M Ford
- Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.
- Divisions of Neonatology and Pediatric Cardiology, UH Rainbow Babies and Children's Hospital, Cleveland, OH, 44106, USA.
| |
Collapse
|
5
|
Nair S, Khambata K, Warke H, Bansal V, Patil A, Ansari Z, Balasinor NH. Methylation aberrations in partner spermatozoa and impaired expression of imprinted genes in the placentae of early-onset preeclampsia. Placenta 2024; 158:275-284. [PMID: 39527857 DOI: 10.1016/j.placenta.2024.10.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/12/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
INTRODUCTION Disturbed paternal epigenetic status of imprinted genes has been observed in infertility and recurrent spontaneous abortions. Shallow placentation has been associated with early-onset preeclampsia. Hence, the present study aimed to investigate the methylation patterns of imprinted genes involved in placental development, in the spermatozoa of partners of women experiencing preeclampsia. METHODS The study involved recruitment of couples into preeclampsia (n = 14) and control (n = 25) groups. Methylation analysis of imprinted gene differentially methylated regions (DMRs) and LINE1 repetitive element was carried out by pyrosequencing in the spermatozoa and placental villi. Global 5 mC levels in the spermatozoa were measured through ELISA. Expression of imprinted genes was quantified in the placental villi by real time qPCR. Association of birth weight with DNA methylation and gene expression was assessed. RESULTS KvDMR, PEG3 DMR, PEG10 DMR and DLK1-GTL2 IG-DMR were differentially methylated in the spermatozoa and placental villi of preeclampsia group. Global 5 mC content and LINE1 methylation levels did not differ between the spermatozoa of the two groups. Increased transcript levels of PEG3, IGF2, DLK1, PHLDA2 and CDKN1C were observed in the preeclamptic placental villi. Birth weight showed significant association with KvDMR, PEG10 DMR, DLK1-GTL2 IG-DMR and LINE1 methylation levels in the spermatozoa. DLK1 expression levels showed a negative association with birth weight. DISCUSSION The study highlighted the paternal contribution to early-onset preeclampsia, in the form of disrupted sperm DNA methylation patterns at imprinted gene loci. These loci, after further evaluation in future studies, could serve as sperm-based preeclampsia predictive markers, for couples planning pregnancy.
Collapse
Affiliation(s)
- Sweta Nair
- Department of Neuroendocrinology, National Institute for Research in Reproductive and Child Health, Mumbai, 400012, India
| | - Kushaan Khambata
- Department of Gamete Immunobiology, National Institute for Research in Reproductive and Child Health, Mumbai, 400012, India
| | - Himangi Warke
- Seth GS Medical College & KEM Hospital, Mumbai, 400012, India
| | - Vandana Bansal
- Nowrosjee Wadia Maternity Hospital, Mumbai, 400012, India
| | - Anushree Patil
- Department of Clinical Research, National Institute for Research in Reproductive and Child Health, Mumbai, 400012, India
| | - Zakiya Ansari
- Department of Neuroendocrinology, National Institute for Research in Reproductive and Child Health, Mumbai, 400012, India
| | - Nafisa H Balasinor
- Department of Neuroendocrinology, National Institute for Research in Reproductive and Child Health, Mumbai, 400012, India.
| |
Collapse
|
6
|
Fussell JC, Jauniaux E, Smith RB, Burton GJ. Ambient air pollution and adverse birth outcomes: A review of underlying mechanisms. BJOG 2024; 131:538-550. [PMID: 38037459 PMCID: PMC7615717 DOI: 10.1111/1471-0528.17727] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 12/02/2023]
Abstract
Epidemiological data provide varying degrees of evidence for associations between prenatal exposure to ambient air pollutants and adverse birth outcomes (suboptimal measures of fetal growth, preterm birth and stillbirth). To assess further certainty of effects, this review examines the experimental literature base to identify mechanisms by which air pollution (particulate matter, nitrogen dioxide and ozone) could cause adverse effects on the developing fetus. It likely that this environmental insult impacts multiple biological pathways important for sustaining a healthy pregnancy, depending upon the composition of the pollutant mixture and the exposure window owing to changes in physiologic maturity of the placenta, its circulations and the fetus as pregnancy ensues. The current body of evidence indicates that the placenta is a target tissue, impacted by a variety of critical processes including nitrosative/oxidative stress, inflammation, endocrine disruption, epigenetic changes, as well as vascular dysregulation of the maternal-fetal unit. All of the above can disturb placental function and, as a consequence, could contribute to compromised fetal growth as well increasing the risk of stillbirth. Furthermore, given that there is often an increased inflammatory response associated with preterm labour, inflammation is a plausible mechanism mediating the effects of air pollution on premature delivery. In the light of increased urbanisation and an ever-changing climate, both of which increase ambient air pollution and negatively affect vulnerable populations such as pregnant individuals, it is hoped that the collective evidence may contribute to decisions taken to strengthen air quality policies, reductions in exposure to air pollution and subsequent improvements in the health of those not yet born.
Collapse
Affiliation(s)
- Julia C. Fussell
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, United Kingdom
- National Institute for Health and Care Research Health Protection Research Unit in Environmental Exposures and Health, Imperial College London, London, United Kingdom
| | - Eric Jauniaux
- EGA Institute for Women's Health, Faculty of Population Health Sciences, University College London, London, UK
| | - Rachel B. Smith
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, United Kingdom
- National Institute for Health and Care Research Health Protection Research Unit in Environmental Exposures and Health, Imperial College London, London, United Kingdom
- Mohn Centre for Children’s Health and Wellbeing, School of Public Health, Imperial College London, London, UK
| | - Graham J. Burton
- Department of Physiology, Development and Neuroscience, University of Cambridge
| |
Collapse
|
7
|
Williams RP, Lesseur C, Cheng H, Li Q, Deyssenroth M, Molteno CD, Meintjes EM, Jacobson SW, Jacobson JL, Wainwright H, Hao K, Chen J, Carter RC. RNA-seq analysis reveals prenatal alcohol exposure is associated with placental inflammatory cells and gene expression. Gene 2024; 894:147951. [PMID: 37918548 PMCID: PMC11819563 DOI: 10.1016/j.gene.2023.147951] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/21/2023] [Accepted: 10/30/2023] [Indexed: 11/04/2023]
Abstract
BACKGROUND Fetal alcohol spectrum disorders (FASD) are the most common preventable cause of birth defects and neurodevelopmental disorders worldwide. The placenta is the crucial interface between mother and fetus. Prenatal alcohol exposure (PAE) has been shown to alter placental structure and expression of genes in bulk placental tissue samples, but prior studies have not examined effects on placental cell-type composition or taken cell-type into consideration in transcriptome analyses. METHODS We leveraged an existent placenta single-cell RNA-seq dataset to perform cell-type deconvolution of bulk placental RNA-seq data from 35 heavy drinking pregnant women and 33 controls in a prospective birth cohort in Cape Town, South Africa. We used bivariate analyses and multivariable adjusted linear regression models to assess the relation of PAE on inferred placental cell-type proportions. We also examined differential expression of inflammatory response genes and PAE, using multivariable adjusted linear models. RESULTS Deconvolution analyses showed heterogeneous placenta cell-type composition in which stromal (27 %), endothelial (26 %) and cytotrophoblasts (18 %) were the predominant cell-types. PAE around conception was associated with a higher proportion of Hofbauer cells (B = 0.51, p = 0.035) in linear models adjusted for maternal age, infant sex, and gestational age. Among the 652 inflammatory genes examined, 35 were differential expressed in alcohol exposed placentas (FDR p < 0.05). CONCLUSIONS Our findings suggest that heavy alcohol exposure during pregnancy can influence the proportion of fetal placental villi macrophages (Hofbauer cells) and increased expression of inflammatory genes. Future studies are needed to further characterize these effects and to assess the potential functional roles of placental inflammation in FASD.
Collapse
Affiliation(s)
- Randy P Williams
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Corina Lesseur
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Haoxiang Cheng
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Qian Li
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Maya Deyssenroth
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Christopher D Molteno
- Department of Psychiatry and Mental Health, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Ernesta M Meintjes
- Department of Human Biology, University of Cape Town Faculty of Health Sciences, Cape Town, South Africa
| | - Sandra W Jacobson
- Department of Psychiatry and Mental Health, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa; Department of Human Biology, University of Cape Town Faculty of Health Sciences, Cape Town, South Africa; Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, USA
| | - Joseph L Jacobson
- Department of Psychiatry and Mental Health, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa; Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, USA
| | - Helen Wainwright
- Department of Pathology, National Health Laboratory Service, Cape Town, South Africa
| | - Ke Hao
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jia Chen
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - R Colin Carter
- Department of Human Biology, University of Cape Town Faculty of Health Sciences, Cape Town, South Africa; Departments of Emergency Medicine and Pediatrics, Institute of Human Nutrition, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA.
| |
Collapse
|
8
|
Khan A, Inkster AM, Peñaherrera MS, King S, Kildea S, Oberlander TF, Olson DM, Vaillancourt C, Brain U, Beraldo EO, Beristain AG, Clifton VL, Del Gobbo GF, Lam WL, Metz GAS, Ng JWY, Price EM, Schuetz JM, Yuan V, Portales-Casamar É, Robinson WP. The application of epiphenotyping approaches to DNA methylation array studies of the human placenta. Epigenetics Chromatin 2023; 16:37. [PMID: 37794499 PMCID: PMC10548571 DOI: 10.1186/s13072-023-00507-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 09/15/2023] [Indexed: 10/06/2023] Open
Abstract
BACKGROUND Genome-wide DNA methylation (DNAme) profiling of the placenta with Illumina Infinium Methylation bead arrays is often used to explore the connections between in utero exposures, placental pathology, and fetal development. However, many technical and biological factors can lead to signals of DNAme variation between samples and between cohorts, and understanding and accounting for these factors is essential to ensure meaningful and replicable data analysis. Recently, "epiphenotyping" approaches have been developed whereby DNAme data can be used to impute information about phenotypic variables such as gestational age, sex, cell composition, and ancestry. These epiphenotypes offer avenues to compare phenotypic data across cohorts, and to understand how phenotypic variables relate to DNAme variability. However, the relationships between placental epiphenotyping variables and other technical and biological variables, and their application to downstream epigenome analyses, have not been well studied. RESULTS Using DNAme data from 204 placentas across three cohorts, we applied the PlaNET R package to estimate epiphenotypes gestational age, ancestry, and cell composition in these samples. PlaNET ancestry estimates were highly correlated with independent polymorphic ancestry-informative markers, and epigenetic gestational age, on average, was estimated within 4 days of reported gestational age, underscoring the accuracy of these tools. Cell composition estimates varied both within and between cohorts, as well as over very long placental processing times. Interestingly, the ratio of cytotrophoblast to syncytiotrophoblast proportion decreased with increasing gestational age, and differed slightly by both maternal ethnicity (lower in white vs. non-white) and genetic ancestry (lower in higher probability European ancestry). The cohort of origin and cytotrophoblast proportion were the largest drivers of DNAme variation in this dataset, based on their associations with the first principal component. CONCLUSIONS This work confirms that cohort, array (technical) batch, cell type proportion, self-reported ethnicity, genetic ancestry, and biological sex are important variables to consider in any analyses of Illumina DNAme data. We further demonstrate the specific utility of epiphenotyping tools developed for use with placental DNAme data, and show that these variables (i) provide an independent check of clinically obtained data and (ii) provide a robust approach to compare variables across different datasets. Finally, we present a general framework for the processing and analysis of placental DNAme data, integrating the epiphenotype variables discussed here.
Collapse
Affiliation(s)
- A Khan
- BC Children's Hospital Research Institute (BCCHR), 950 W 28th Ave, Vancouver, BC, V5Z 4H4, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, V6H 3N1, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, M5G 1L7, Canada
- Princess Margaret Cancer Center, Toronto, ON, M5G 2C4, Canada
| | - A M Inkster
- BC Children's Hospital Research Institute (BCCHR), 950 W 28th Ave, Vancouver, BC, V5Z 4H4, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, V6H 3N1, Canada
| | - M S Peñaherrera
- BC Children's Hospital Research Institute (BCCHR), 950 W 28th Ave, Vancouver, BC, V5Z 4H4, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, V6H 3N1, Canada
| | - S King
- Department of Psychiatry, McGill University, Montreal, QC, H3A 1A1, Canada
- Psychosocial Research Division, Douglas Hospital Research Centre, Montreal, QC, H4H 1R3, Canada
| | - S Kildea
- Mater Research Institute, University of Queensland, Brisbane, QLD, 4101, Australia
- Molly Wardaguga Research Centre, Charles Darwin University, Brisbane, QLD, 4000, Australia
| | - T F Oberlander
- BC Children's Hospital Research Institute (BCCHR), 950 W 28th Ave, Vancouver, BC, V5Z 4H4, Canada
- School of Population and Public Health, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
- Department of Pediatrics, University of British Columbia, Vancouver, BC, V6H 3V4, Canada
| | - D M Olson
- Department of Obstetrics and Gynecology, University of Alberta, 220 HMRC, Edmonton, AB, T6G 2S2, Canada
| | - C Vaillancourt
- Centre Armand Frappier Santé Biotechnologie - INRS and University of Quebec Intersectorial Health Research Network, Laval, QC, H7V 1B7, Canada
| | - U Brain
- BC Children's Hospital Research Institute (BCCHR), 950 W 28th Ave, Vancouver, BC, V5Z 4H4, Canada
- School of Population and Public Health, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
- Department of Pediatrics, University of British Columbia, Vancouver, BC, V6H 3V4, Canada
| | - E O Beraldo
- BC Children's Hospital Research Institute (BCCHR), 950 W 28th Ave, Vancouver, BC, V5Z 4H4, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, V6H 3N1, Canada
| | - A G Beristain
- BC Children's Hospital Research Institute (BCCHR), 950 W 28th Ave, Vancouver, BC, V5Z 4H4, Canada
- Department of Obstetrics & Gynecology, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - V L Clifton
- Mater Research Institute, University of Queensland, Brisbane, QLD, 4101, Australia
- Faculty of Medicine, The University of Queensland, Herston, QLD, 4006, Australia
| | - G F Del Gobbo
- BC Children's Hospital Research Institute (BCCHR), 950 W 28th Ave, Vancouver, BC, V5Z 4H4, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, V6H 3N1, Canada
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON, K1H 5B2, Canada
| | - W L Lam
- British Columbia Cancer Research Centre, Vancouver, BC, V5Z 1L3, Canada
| | - G A S Metz
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, AB, T1K 3M4, Canada
| | - J W Y Ng
- Faculty of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - E M Price
- BC Children's Hospital Research Institute (BCCHR), 950 W 28th Ave, Vancouver, BC, V5Z 4H4, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, V6H 3N1, Canada
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON, K1H 5B2, Canada
| | - J M Schuetz
- BC Children's Hospital Research Institute (BCCHR), 950 W 28th Ave, Vancouver, BC, V5Z 4H4, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, V6H 3N1, Canada
| | - V Yuan
- BC Children's Hospital Research Institute (BCCHR), 950 W 28th Ave, Vancouver, BC, V5Z 4H4, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, V6H 3N1, Canada
| | - É Portales-Casamar
- BC Children's Hospital Research Institute (BCCHR), 950 W 28th Ave, Vancouver, BC, V5Z 4H4, Canada.
- Centre de Recherche du CHU Sainte-Justine, 3175 Côte-Sainte-Catherine Road, Montréal, QC, H3T 1C5, Canada.
| | - W P Robinson
- BC Children's Hospital Research Institute (BCCHR), 950 W 28th Ave, Vancouver, BC, V5Z 4H4, Canada.
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, V6H 3N1, Canada.
| |
Collapse
|
9
|
Lin M, Chen Y, Xia S, He Z, Yu X, Huang L, Lin S, Liang B, Huang Z, Mei S, Liu D, Zheng L, Luo Y. Integrative profiling of extrachromosomal circular DNA in placenta and maternal plasma provides insights into the biology of fetal growth restriction and reveals potential biomarkers. Front Genet 2023; 14:1128082. [PMID: 37476414 PMCID: PMC10354665 DOI: 10.3389/fgene.2023.1128082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/24/2023] [Indexed: 07/22/2023] Open
Abstract
Introduction: Fetal growth restriction (FGR) is a placenta-mediated pregnancy complication that predisposes fetuses to perinatal complications. Maternal plasma cell-free DNA harbors DNA originating from placental trophoblasts, which is promising for the prenatal diagnosis and prediction of pregnancy complications. Extrachromosomal circular DNA (eccDNA) is emerging as an ideal biomarker and target for several diseases. Methods: We utilized eccDNA sequencing and bioinformatic pipeline to investigate the characteristics and associations of eccDNA in placenta and maternal plasma, the role of placental eccDNA in the pathogenesis of FGR, and potential plasma eccDNA biomarkers of FGR. Results: Using our bioinformatics pipelines, we identified multi-chromosomal-fragment and single-fragment eccDNA in placenta, but almost exclusively single-fragment eccDNA in maternal plasma. Relative to that in plasma, eccDNA in placenta was larger and substantially more abundant in exons, untranslated regions, promoters, repetitive elements [short interspersed nuclear elements (SINEs)/Alu, SINEs/mammalian-wide interspersed repeats, long terminal repeats/endogenous retrovirus-like elements, and single recognition particle RNA], and transcription factor binding motifs. Placental multi-chromosomal-fragment eccDNA was enriched in confident enhancer regions predicted to pertain to genes in apoptosis, energy, cell growth, and autophagy pathways. Placental eccDNA-associated genes whose abundance differed between the FGR and control groups were associated with immunity-related gene ontology (GO) terms. The combined analysis of plasma and placental eccDNA-associated genes in the FGR and control groups led to the identification of potential biomarkers that were assigned to the GO terms of the epigenetic regulation of gene expression and nutrient-related processes, respectively. Conclusion: Together, our results highlight links between placenta functions and multi-chromosomal-fragment and single-fragment eccDNA. The integrative analysis of placental and plasma eccDNA confirmed the potential of these molecules as disease-specific biomarkers of FGR.
Collapse
Affiliation(s)
- Minhuan Lin
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yiqing Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Shuting Xia
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhiming He
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xuegao Yu
- Clinical Laboratory, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Linhuan Huang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Shaobin Lin
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Binrun Liang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Ziliang Huang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shiqiang Mei
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Dong Liu
- Clinical Laboratory, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Lingling Zheng
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yanmin Luo
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
10
|
Khan A, Inkster AM, Peñaherrera MS, King S, Kildea S, Oberlander TF, Olson DM, Vaillancourt C, Brain U, Beraldo EO, Beristain AG, Clifton VL, Del Gobbo GF, Lam WL, Metz GA, Ng JW, Price EM, Schuetz JM, Yuan V, Portales-Casamar É, Robinson WP. The application of epiphenotyping approaches to DNA methylation array studies of the human placenta. RESEARCH SQUARE 2023:rs.3.rs-3069705. [PMID: 37461679 PMCID: PMC10350117 DOI: 10.21203/rs.3.rs-3069705/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Background : Genome-wide DNA methylation (DNAme) profiling of the placenta with Illumina Infinium Methylation bead arrays is often used to explore the connections between in utero exposures, placental pathology, and fetal development. However, many technical and biological factors can lead to signals of DNAme variation between samples and between cohorts, and understanding and accounting for these factors is essential to ensure meaningful and replicable data analysis. Recently, "epiphenotyping" approaches have been developed whereby DNAme data can be used to impute information about phenotypic variables such as gestational age, sex, cell composition, and ancestry. These epiphenotypes offer avenues to compare phenotypic data across cohorts, and to understand how phenotypic variables relate to DNAme variability. However, the relationships between placental epiphenotyping variables and other technical and biological variables, and their application to downstream epigenome analyses, have not been well studied. Results : Using DNAme data from 204 placentas across three cohorts, we applied the PlaNET R package to estimate epiphenotypes gestational age, ancestry, and cell composition in these samples. PlaNET ancestry estimates were highly correlated with independent polymorphic ancestry informative markers, and epigenetic gestational age, on average, was estimated within 4 days of reported gestational age, underscoring the accuracy of these tools. Cell composition estimates varied both within and between cohorts, but reassuringly were robust to placental processing time. Interestingly, the ratio of cytotrophoblast to syncytiotrophoblast proportion decreased with increasing gestational age, and differed slightly by both maternal ethnicity (lower in white vs. non-white) and genetic ancestry (lower in higher probability European ancestry). The cohort of origin and cytotrophoblast proportion were the largest drivers of DNAme variation in this dataset, based on their associations with the first principal component. Conclusions : This work confirms that cohort, array (technical) batch, cell type proportion, self-reported ethnicity, genetic ancestry, and biological sex are important variables to consider in any analyses of Illumina DNAme data. Further, we demonstrate that estimating epiphenotype variables from the DNAme data itself, when possible, provides both an independent check of clinically-obtained data and can provide a robust approach to compare variables across different datasets.
Collapse
Affiliation(s)
- Almas Khan
- BC Children's Hospital Research Institute (BCCHR)
| | | | | | | | | | | | | | - Cathy Vaillancourt
- Centre Armand Frappier Santé Biotechnologie - INRS and University of Quebec Intersectorial Health Research Network
| | - Ursula Brain
- BC Children's Hospital Research Institute (BCCHR)
| | | | | | | | | | - Wan L Lam
- British Columbia Cancer Research Centre
| | | | | | | | | | - Victor Yuan
- BC Children's Hospital Research Institute (BCCHR)
| | | | | |
Collapse
|
11
|
Wu Y, Bao J, Liu Y, Wang X, Qu W. A Review on Per- and Polyfluoroalkyl Substances in Pregnant Women: Maternal Exposure, Placental Transfer, and Relevant Model Simulation. TOXICS 2023; 11:430. [PMID: 37235245 PMCID: PMC10224256 DOI: 10.3390/toxics11050430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 04/26/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023]
Abstract
Per- and polyfluoroalkyl substances (PFASs) are important and ubiquitous environmental contaminants worldwide. These novel contaminants can enter human bodies via various pathways, subsequently posing risks to the ecosystem and human health. The exposure of pregnant women to PFASs might pose risks to the health of mothers and the growth and development of fetuses. However, little information is available about the placental transfer of PFASs from mothers to fetuses and the related mechanisms through model simulation. In the present study, based upon a review of previously published literature, we initially summarized the exposure pathways of PFASs in pregnant women, factors affecting the efficiency of placental transfer, and mechanisms associated with placental transfer; outlined simulation analysis approaches using molecular docking and machine learning to reveal the mechanisms of placental transfer; and finally highlighted future research emphases that need to be focused on. Consequently, it was notable that the binding of PFASs to proteins during placental transfer could be simulated by molecular docking and that the placental transfer efficiency of PFASs could also be predicted by machine learning. Therefore, future research on the maternal-fetal transfer mechanisms of PFASs with the benefit of simulation analysis approaches is warranted to provide a scientific basis for the health effects of PFASs on newborns.
Collapse
Affiliation(s)
| | - Jia Bao
- School of Environmental and Chemical Engineering, Shenyang University of Technology, Shenyang 110870, China
| | - Yang Liu
- School of Environmental and Chemical Engineering, Shenyang University of Technology, Shenyang 110870, China
| | | | | |
Collapse
|
12
|
Duko B, Gebremedhin AT, Tessema GA, Alati R, Pereira G. Average treatment effect of maternal prenatal tobacco smoking on offspring developmental vulnerability in early childhood. Ann Epidemiol 2023; 78:35-43. [PMID: 36584811 DOI: 10.1016/j.annepidem.2022.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 12/09/2022] [Accepted: 12/16/2022] [Indexed: 12/29/2022]
Abstract
BACKGROUND Early childhood developmental vulnerability has been closely related to the predictors of relatively good health, social and educational outcomes later in adulthood. However, the impacts of prenatal tobacco exposure on childhood developmental vulnerability have been rarely examined. Further, a few of the studies that have investigated maternal prenatal tobacco smoking and child developmental vulnerability have reported mixed results and there are currently no published estimates derived from causal epidemiological methods. METHODS We conducted a retrospective population-based cohort study on the association between maternal prenatal tobacco smoking and developmental vulnerability in children born in Western Australia (WA). De-identified individual-level maternal, infant and birth records were obtained from the Midwives Notification System (MNS), a statutory record of all births in WA. WA register for Developmental Anomalies (WARDA) were also obtained from the WA Data Linkage. Records on early childhood developmental vulnerability at the median age of 5 years were obtained from the Australian Early Development Census (AEDC). We used a doubly robust estimator to estimate the causal effects. RESULTS Complete data were available for 64,558 mothers-children's pairs. Approximately 16% of children were exposed to maternal prenatal tobacco smoking. Children exposed to maternal prenatal tobacco smoking were more likely to be classified as developmentally vulnerable/at-risk on the physical health and wellbeing (RR = 1.40, 95%CI:1.36-1.45), social competence (RR = 1.42, 95%CI: 1.38-1.47), emotional maturity (RR = 1.34, 95%CI:1.30-1.39), language and cognitive skills (RR = 1.50, 95%CI:1.45-1.54), and communication skills and general knowledge (RR = 1.37, 95%CI:1.33-1.42) domains. CONCLUSION Maternal prenatal exposure to tobacco may influence early childhood developmental vulnerability. Early intervention to quit tobacco smoking before becoming pregnant could potentially reduce later childhood developmental vulnerability on multiple domains.
Collapse
Affiliation(s)
- Bereket Duko
- Curtin School of Population Health, Faculty of Health Sciences, Curtin University, Bentley WA, Australia.
| | - Amanuel Tesfay Gebremedhin
- Curtin School of Population Health, Faculty of Health Sciences, Curtin University, Bentley WA, Australia
| | - Gizachew Assefa Tessema
- Curtin School of Population Health, Faculty of Health Sciences, Curtin University, Bentley WA, Australia; enAble Institute, Curtin University, Bentley, Western Australia, Australia
| | - Rosa Alati
- Curtin School of Population Health, Faculty of Health Sciences, Curtin University, Bentley WA, Australia; Institute for Social Sciences Research, The University of Queensland, Indooroopilly, Queensland, Australia
| | - Gavin Pereira
- Curtin School of Population Health, Faculty of Health Sciences, Curtin University, Bentley WA, Australia; enAble Institute, Curtin University, Bentley, Western Australia, Australia; Centre for Fertility and Health (CeFH), Norwegian Institute of Public Health, Oslo, Norway
| |
Collapse
|
13
|
Wang H, Li W, Yang J, Wang Y, Du H, Han M, Xu L, Liu S, Yi J, Chen Y, Jiang Q, He G. Gestational exposure to perfluoroalkyl substances is associated with placental DNA methylation and birth size. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159747. [PMID: 36309289 DOI: 10.1016/j.scitotenv.2022.159747] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 10/20/2022] [Accepted: 10/22/2022] [Indexed: 06/16/2023]
Abstract
DNA methylation is one potential mechanism for the effects of gestational exposure to perfluoroalkyl substances (PFASs) on fetal growth. We investigated 180 pregnant women who participated in a cohort study conducted in Tangshan City, Northern China, and determined the concentrations of 11 PFASs and the methylation of two genes related to fetal growth [insulin-like growth factor 2 (IGF2) and nuclear receptor subfamily 3 group C member 1 (NR3C1)] and one surrogate marker for global methylation [long interspersed nuclear element-1 (LINE-1)] in placenta tissue. Multiple linear regression analysis was performed to examine the associations of log transformed PFASs with the DNA methylation and birth size. Weighted quantile sum regression was used to determine the mixture effect of PFASs. After adjusting for potential confounders, perfluorooctane sulfonate (PFOS) was negatively associated with the overall methylation of LINE-1. PFASs mixture was negatively associated with the methylation of all CpG loci of LINE-1 and overall methylation of NR3C1. Perfluorootanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA), and the PFASs mixture showed negative associations with head circumference. After stratified by newborns' sex, PFOA, PFNA and the PFASs mixture was negatively associated with overall methylation of LINE-1 only in the male subgroup and the methylation of all CpG loci of LINE-1 was negatively associated with ponderal index only in the female subgroup. The interaction of newborns' sex with PFOS and PFOA on overall methylation of IGF2 was statistically significant and so was the interaction of sex with PFOS on overall methylation of LINE-1. These findings suggested that intrauterine exposure to PFASs affected placental DNA methylation and reduced fetal growth, which might be modified by sex.
Collapse
Affiliation(s)
- Hexing Wang
- School of Public Health/Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, China
| | - Wenyun Li
- School of Public Health/Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, China
| | - Jiaqi Yang
- School of Public Health/Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, China
| | - Yuanping Wang
- School of Public Health/Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, China
| | - Hongyi Du
- Healthy Lifestyle Medical Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Minghui Han
- Healthy Lifestyle Medical Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Linji Xu
- Maternal and Child Health Care Hospital, Tangshan, Hebei province, China
| | - Shuping Liu
- Maternal and Child Health Care Hospital, Tangshan, Hebei province, China
| | - Jianping Yi
- Maternal and Child Health Care Hospital, Tangshan, Hebei province, China
| | - Yue Chen
- School of Epidemiology and Public Health, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Qingwu Jiang
- School of Public Health/Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, China
| | - Gengsheng He
- School of Public Health/Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, China.
| |
Collapse
|
14
|
Greeson KW, Crow KMS, Edenfield RC, Easley CA. Inheritance of paternal lifestyles and exposures through sperm DNA methylation. Nat Rev Urol 2023:10.1038/s41585-022-00708-9. [PMID: 36653672 DOI: 10.1038/s41585-022-00708-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2022] [Indexed: 01/19/2023]
Abstract
Many different lifestyle factors and chemicals present in the environment are a threat to the reproductive tracts of humans. The potential for parental preconception exposure to alter gametes and for these alterations to be passed on to offspring and negatively affect embryo growth and development is of concern. The connection between maternal exposures and offspring health is a frequent focus in epidemiological studies, but paternal preconception exposures are much less frequently considered and are also very important determinants of offspring health. Several environmental and lifestyle factors in men have been found to alter sperm epigenetics, which can regulate gene expression during early embryonic development. Epigenetic information is thought to be a mechanism that evolved for organisms to pass on information about their lived experiences to offspring. DNA methylation is a well-studied epigenetic regulator that is sensitive to environmental exposures in somatic cells and sperm. The continuous production of sperm from spermatogonial stem cells throughout a man's adult life and the presence of spermatogonial stem cells outside of the blood-testis barrier makes them susceptible to environmental insults. Furthermore, altered sperm DNA methylation patterns can be maintained throughout development and ultimately result in impairments, which could predispose offspring to disease. Innovations in human stem cell-based spermatogenic models can be used to elucidate the paternal origins of health and disease.
Collapse
Affiliation(s)
- Katherine W Greeson
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA, USA.,Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
| | - Krista M S Crow
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA, USA.,Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
| | - R Clayton Edenfield
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA, USA.,Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
| | - Charles A Easley
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA, USA. .,Regenerative Bioscience Center, University of Georgia, Athens, GA, USA.
| |
Collapse
|
15
|
Appleton AA, Lin B, Kennedy EM, Holdsworth EA. Maternal depression and adverse neighbourhood conditions during pregnancy are associated with gestational epigenetic age deceleration. Epigenetics 2022; 17:1905-1919. [PMID: 35770941 PMCID: PMC9665127 DOI: 10.1080/15592294.2022.2090657] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Gestational epigenetic age (GEA) acceleration and deceleration can indicate developmental risk and may help elucidate how prenatal exposures lead to offspring outcomes. Depression and neighbourhood conditions during pregnancy are well-established determinants of birth and child outcomes. Emerging research suggests that maternal depression may contribute to GEA deceleration. It is unknown whether prenatal neighbourhood adversity would likewise influence GEA deceleration. This study examined whether maternal depression and neighbourhood conditions independently or jointly contributed to GEA deceleration, and which social and environmental neighbourhood conditions were associated with GEA. Participants were from the Albany Infant and Mother Study (n = 204), a prospective non-probability sampled cohort of higher risk racial/ethnic diverse mother/infant dyads. GEA was estimated from cord blood. Depressive symptoms and census-tract level neighbourhood conditions were assessed during pregnancy. Maternal depression (β = -0.03, SE = 0.01, p = 0.008) and neighbourhood adversity (β = -0.32, SE = 0.14, p = 0.02) were independently associated with GEA deceleration, controlling for all covariates including antidepressant use and cell type proportions. Neighbourhood adversity did not modify the association of maternal depression and GEA (β = 0.003, SE = 0.03, p = 0.92). igher levels of neighbourhood poverty, public assistance, and lack of healthy food access were each associated with GEA deceleration; higher elementary school test scores (an indicator of community tax base) were associated with GEA acceleration (all p < 0.001). The results of this study indicated that maternal depression and neighbourhood conditions were independently and cumulatively associated GEA in this diverse population.
Collapse
Affiliation(s)
- Allison A. Appleton
- Department of Epidemiology and Biostatistics, University at Albany School of Public Health, Rensselaer, NY, USA,CONTACT Allison A. Appleton Department of Epidemiology and Biostatistics, University at Albany School of Public Health, 1 University Place, Rensselaer12144
| | - Betty Lin
- Department of Psychology, University at Albany College of Arts and Sciences, Albany, NY, USA
| | - Elizabeth M. Kennedy
- Gangarosa Department of Environmental Health, Emory University Rollins School of Public Health, Atlanta, GA, USA
| | | |
Collapse
|
16
|
Durbagula S, Korlimarla A, Ravikumar G, Valiya Parambath S, Kaku SM, Visweswariah AM. Prenatal epigenetic factors are predisposing for neurodevelopmental disorders—Considering placenta as a model. Birth Defects Res 2022; 114:1324-1342. [DOI: 10.1002/bdr2.2119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 09/29/2022] [Accepted: 10/03/2022] [Indexed: 11/16/2022]
Affiliation(s)
- Srividhya Durbagula
- St. John's Medical College Bangalore India
- St. John's Research Institute Bangalore India
| | - Aruna Korlimarla
- St. John's Research Institute Bangalore India
- Department of Research Sri Shankara Cancer Hospital and Research Center Bangalore India
| | | | - Snijesh Valiya Parambath
- St. John's Medical College Bangalore India
- Department of Molecular Medicine St. John's Research Institute Bangalore India
| | - Sowmyashree Mayur Kaku
- St. John's Medical College Bangalore India
- Centre for Advanced Research and Excellence in Autism and Developmental Disorders (CARE ADD) St. John's Research Institute Bangalore India
| | - Ashok Mysore Visweswariah
- St. John's Medical College Bangalore India
- Centre for Advanced Research and Excellence in Autism and Developmental Disorders (CARE ADD) St. John's Research Institute Bangalore India
| |
Collapse
|
17
|
Salmeri N, Carbone IF, Cavoretto PI, Farina A, Morano D. Epigenetics Beyond Fetal Growth Restriction: A Comprehensive Overview. Mol Diagn Ther 2022; 26:607-626. [PMID: 36028645 DOI: 10.1007/s40291-022-00611-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2022] [Indexed: 12/30/2022]
Abstract
Fetal growth restriction is a pathological condition occurring when the fetus does not reach the genetically determined growth potential. The etiology of fetal growth restriction is expected to be multifactorial and include fetal, maternal, and placental factors, the latter being the most frequent cause of isolated fetal growth restriction. Severe fetal growth restriction has been related to both an increased risk of perinatal morbidity and mortality, and also a greater susceptibility to developing diseases (especially cardio-metabolic and neurological disorders) later in life. In the last decade, emerging evidence has supported the hypothesis of the Developmental Origin of Health and Disease, which states that individual developmental 'programming' takes place via a delicate fine tuning of fetal genetic and epigenetic marks in response to a large variety of 'stressor' exposures during pregnancy. As the placenta is the maternal-fetal interface, it has a crucial role in fetal programming, such that any perturbation altering placental function interferes with both in-utero fetal growth and also with the adult life phenotype. Several epigenetic mechanisms have been highlighted in modulating the dynamic placental epigenome, including alterations in DNA methylation status, post-translational modification of histones, and non-coding RNAs. This review aims to provide a comprehensive and critical overview of the available literature on the epigenetic background of fetal growth restriction. A targeted research strategy was performed using PubMed, MEDLINE, Embase, and The Cochrane Library up to January 2022. A detailed and fully referenced synthesis of available literature following the Scale for the Assessment of Narrative Review Articles guidelines is provided. A variety of epigenetic marks predominantly interfering with placental development, function, and metabolism were found to be potentially associated with fetal growth restriction. Available evidence on the role of environmental exposures in shaping the placental epigenome and the fetal phenotype were also critically discussed. Because of the highly dynamic crosstalk between epigenetic mechanisms and the extra level of complexity in interpreting the final placental transcriptome, a full comprehension of these phenomenon is still lacking and advances in multi-omics approaches are urgently needed. Elucidating the role of epigenetics in the developmental origins of health and disease represents a new challenge for the coming years, with the goal of providing early interventions and prevention strategies and, hopefully, new treatment opportunities.
Collapse
Affiliation(s)
- Noemi Salmeri
- Gynecology/Obstetrics Unit, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Ilma Floriana Carbone
- Unit of Obstetrics, Department of Woman, Child and Neonate, Mangiagalli Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Paolo Ivo Cavoretto
- Gynecology/Obstetrics Unit, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Antonio Farina
- Division of Obstetrics and Prenatal Medicine, Department of Medicine and Surgery (DIMEC), IRCCS Sant'Orsola-Malpighi Hospital, University of Bologna, 40138, Bologna, Italy.
| | - Danila Morano
- Department of Morphology, Surgery and Experimental Medicine, Section of Obstetrics and Gynecology, Azienda Ospedaliero-Universitaria S. Anna, University of Ferrara, Cona, Ferrara, Italy
| |
Collapse
|
18
|
He B, Zhang Q, Guo Y, Ao Y, Tie K, Xiao H, Chen L, Xu D, Wang H. Prenatal smoke (Nicotine) exposure and offspring's metabolic disease susceptibility in adulthood. Food Chem Toxicol 2022; 168:113384. [PMID: 36041661 DOI: 10.1016/j.fct.2022.113384] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 08/06/2022] [Accepted: 08/17/2022] [Indexed: 11/17/2022]
Abstract
Exposure to smoking (nicotine) during pregnancy not only directly affects fetal development, but also increases susceptibility to metabolic diseases in adulthood, but the mechanism of action remains unclear. Here, we review epidemiological and laboratory studies linking these relationships. In addition to the direct effect of nicotine on the fetus, intrauterine neuroendocrine-metabolic programming mediated by maternal glucocorticoid overexposure also plays an important role, involving glucocorticoid-insulin-like growth factor 1 (GC-IGF1) axis, hypothalamic-pituitary-adrenal (HPA) axis, renin-angiotensin system (RAS) and other endocrine systems. Epigenetics is involved in intrauterine neuroendocrine-metabolic programming, metabolic disease susceptibility and multigenerational inheritance. There are "two programming" and "two strikes" mechanisms for the occurrence of fetal-originated metabolic diseases in adulthood. These innovative research summaries and academic viewpoints provide experimental and theoretical basis for systematically elucidating the occurrence and development of fetal-originated metabolic diseases.
Collapse
Affiliation(s)
- Bo He
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, 430071, China; School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, 650500, China
| | - Qi Zhang
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Yu Guo
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Ying Ao
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Kai Tie
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Hao Xiao
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Liaobin Chen
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Dan Xu
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China; Department of Pharmacy, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China.
| | - Hui Wang
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China.
| |
Collapse
|
19
|
Moon RY, Carlin RF, Hand I. Evidence Base for 2022 Updated Recommendations for a Safe Infant Sleeping Environment to Reduce the Risk of Sleep-Related Infant Deaths. Pediatrics 2022; 150:188305. [PMID: 35921639 DOI: 10.1542/peds.2022-057991] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Every year in the United States, approximately 3500 infants die of sleep-related infant deaths, including sudden infant death syndrome (SIDS) (International Statistical Classification of Diseases and Related Health Problems 10th Revision [ICD-10] R95), ill-defined deaths (ICD-10 R99), and accidental suffocation and strangulation in bed (ICD-10 W75). After a substantial decline in sleep-related deaths in the 1990s, the overall death rate attributable to sleep-related infant deaths have remained stagnant since 2000, and disparities persist. The triple risk model proposes that SIDS occurs when an infant with intrinsic vulnerability (often manifested by impaired arousal, cardiorespiratory, and/or autonomic responses) undergoes an exogenous trigger event (eg, exposure to an unsafe sleeping environment) during a critical developmental period. The American Academy of Pediatrics recommends a safe sleep environment to reduce the risk of all sleep-related deaths. This includes supine positioning; use of a firm, noninclined sleep surface; room sharing without bed sharing; and avoidance of soft bedding and overheating. Additional recommendations for SIDS risk reduction include human milk feeding; avoidance of exposure to nicotine, alcohol, marijuana, opioids, and illicit drugs; routine immunization; and use of a pacifier. New recommendations are presented regarding noninclined sleep surfaces, short-term emergency sleep locations, use of cardboard boxes as a sleep location, bed sharing, substance use, home cardiorespiratory monitors, and tummy time. In addition, additional information to assist parents, physicians, and nonphysician clinicians in assessing the risk of specific bed-sharing situations is included. The recommendations and strength of evidence for each recommendation are published in the accompanying policy statement, which is included in this issue.
Collapse
Affiliation(s)
- Rachel Y Moon
- Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Rebecca F Carlin
- Division of Pediatric Critical Care and Hospital Medicine, Department of Pediatrics, Columbia University Irving Medical Center, NewYork-Presbyterian Hospital, New York City, New York
| | - Ivan Hand
- Department of Pediatrics, SUNY-Downstate College of Medicine, NYC Health + Hospitals, Kings County, Brooklyn, New York
| | | |
Collapse
|
20
|
Padbury JF, Do BT, Bann CM, Marsit C, Hintz SR, Vohr BR, Lowe J, Newman JE, Granger DA, Payne A, Watterberg K. DNA methylation in former extremely low birth weight newborns: association with cardiovascular and endocrine function. Pediatr Res 2022; 91:1469-1477. [PMID: 33953357 PMCID: PMC8568736 DOI: 10.1038/s41390-021-01531-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 03/29/2021] [Indexed: 02/03/2023]
Abstract
BACKGROUND There is increased risk of cardiovascular, metabolic, and hypertensive disorders in later life in the preterm population. We studied school-age children who had been born extremely premature who had undergone endocrine, cardiovascular, and anthropometric evaluations. METHODS School age measurements of salivary cortisol, adrenal androgens, blood pressure, and anthropometric markers were correlated with DNA methylation of 11-betahydroxysteroid dehydrogenase type 2 (11BHSD2), leptin, and the LINE1 repetitive DNA element. RESULTS We observed a modest correlation between log AUC for salivary cortisol and methylation of leptin in preterm infants and a negative correlation between methylation of region 1 of the glucocorticoid receptor (GR in term-born infants. There was an association between LINE1 methylation and cortisol response to awakening and a negative correlation between LINE1 and systolic blood pressure at 6-7 years. Methylation of the GR promoter region showed a positive association with systolic blood pressure at 6-7 years of age. CONCLUSIONS These results show that extremely preterm birth, followed by complex patterns of endocrine, cardiovascular, and metabolic exposures during early postnatal life, is associated with lasting changes in DNA methylation patterns in genes involved in hypothalamic pituitary adrenal axis function, adrenal hormonal regulation, and cardiometabolic risk. IMPACT Preterm infants have significant environmental and physiological exposures during early life that may have lasting impact on later function. Alterations in hypothalamic pituitary adrenal axis (HPA) function have been associated with these exposures. We examined the associated changes in DNA methylation of important genes involved in HPA function, metabolism, and global DNA methylation. The changes we saw in DNA methylation may help to explain associated cardiovascular, metabolic, and growth disturbance in these children in later life.
Collapse
Affiliation(s)
- James F. Padbury
- Department of Pediatrics, Women & Infants Hospital, Brown University, Providence, RI
| | - Barbara T. Do
- Social, Statistical and Environmental Sciences Unit, RTI International, Research Triangle Park, NC
| | - Carla M. Bann
- Social, Statistical and Environmental Sciences Unit, RTI International, Research Triangle Park, NC
| | - Carmen Marsit
- Department of Environmental Health, Emory University Rollins School of Public Health, Atlanta, GA
| | - Susan R. Hintz
- Department of Pediatrics, Division of Neonatal and Developmental Medicine, Stanford University School of Medicine and Lucile Packard Children's Hospital, Palo Alto, CA
| | - Betty R. Vohr
- Department of Pediatrics, Women & Infants Hospital, Brown University, Providence, RI
| | - Jean Lowe
- University of New Mexico Health Sciences Center, Albuquerque, NM
| | - Jamie E. Newman
- Social, Statistical and Environmental Sciences Unit, RTI International, Research Triangle Park, NC
| | - Douglas A. Granger
- Institute for Interdisciplinary Salivary Bioscience Research, University of California at Irvine, Irvine, CA, Johns Hopkins University School of Medicine, Johns Hopkins University Bloomberg School of Public Health and Johns Hopkins University School of Nursing, Baltimore, MD
| | - Allison Payne
- Department of Pediatrics, Rainbow Babies and Children’s Hospital, Case Western Reserve University, Cleveland, OH
| | | | | |
Collapse
|
21
|
Vrooman LA, Rhon-Calderon EA, Suri KV, Dahiya AK, Lan Y, Schultz RM, Bartolomei MS. Placental Abnormalities are Associated With Specific Windows of Embryo Culture in a Mouse Model. Front Cell Dev Biol 2022; 10:884088. [PMID: 35547813 PMCID: PMC9081528 DOI: 10.3389/fcell.2022.884088] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/07/2022] [Indexed: 11/20/2022] Open
Abstract
Assisted Reproductive Technologies (ART) employ gamete/embryo handling and culture in vitro to produce offspring. ART pregnancies have an increased risk of low birth weight, abnormal placentation, pregnancy complications, and imprinting disorders. Embryo culture induces low birth weight, abnormal placental morphology, and lower levels of DNA methylation in placentas in a mouse model of ART. Whether preimplantation embryos at specific stages of development are more susceptible to these perturbations remains unresolved. Accordingly, we performed embryo culture for several discrete periods of preimplantation development and following embryo transfer, assessed fetal and placental outcomes at term. We observed a reduction in fetal:placental ratio associated with two distinct windows of preimplantation embryo development, one prior to the morula stage and the other from the morula to blastocyst stage, whereas placental morphological abnormalities and reduced imprinting control region methylation were only associated with culture prior to the morula stage. Extended culture to the blastocyst stage also induces additional placental DNA methylation changes compared to embryos transferred at the morula stage, and female concepti exhibited a higher loss of DNA methylation than males. By identifying specific developmental windows of susceptibility, this study provides a framework to optimize further culture conditions to minimize risks associated with ART pregnancies.
Collapse
Affiliation(s)
- Lisa A. Vrooman
- Department of Cell and Developmental Biology, Perelman School of Medicine, Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, United States
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, United States
| | - Eric A. Rhon-Calderon
- Department of Cell and Developmental Biology, Perelman School of Medicine, Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, United States
| | - Kashviya V. Suri
- Department of Cell and Developmental Biology, Perelman School of Medicine, Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, United States
| | - Asha K. Dahiya
- Department of Cell and Developmental Biology, Perelman School of Medicine, Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, United States
| | - Yemin Lan
- Department of Cell and Developmental Biology, Perelman School of Medicine, Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, United States
| | - Richard M. Schultz
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, United States
| | - Marisa S. Bartolomei
- Department of Cell and Developmental Biology, Perelman School of Medicine, Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
22
|
Cleal JK, Poore KR, Lewis RM. The placental exposome, placental epigenetic adaptations and lifelong cardio-metabolic health. Mol Aspects Med 2022; 87:101095. [DOI: 10.1016/j.mam.2022.101095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 03/04/2022] [Accepted: 03/12/2022] [Indexed: 12/15/2022]
|
23
|
Association between placental global DNA methylation and blood pressure during human pregnancy. J Hypertens 2022; 40:1002-1009. [DOI: 10.1097/hjh.0000000000003103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
24
|
Feng F, Huang L, Zhou G, Wang J, Zhang R, Li Z, Zhang Y, Ba Y. GPR61 methylation in cord blood: a potential target of prenatal exposure to air pollutants. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2022; 32:463-472. [PMID: 32478566 DOI: 10.1080/09603123.2020.1773414] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 05/19/2020] [Indexed: 06/11/2023]
Abstract
To explore the impact of air pollutants exposure during pregnancy on infant DNA methylation, we identified correlated methylated genes in maternal and cord blood samples using the Illumina Human Methylation 27 k BeadChip. Quantitative methylation-specific PCR (QMS-PCR) was performed to validate the target gene methylation pattern in 568 participants. Then the association between air pollutants exposure and DNA methylation level in the target gene was investigated. The GPR61 gene with a higher methylation level both in mothers and newborns was identified as the target gene, and we found a positive mother-infant DNA methylation correlation in the promoter region of GPR61. Air pollutants exposure during entire pregnancy was associated with maternal and infant GPR61 DNA methylation. After adjusting confounding variables, maternal air pollutants exposure was still associated with infant GPR61 DNA methylation. In summary, GPR61 methylation in cord blood may be a potential target of prenatal exposure to air pollutants.
Collapse
Affiliation(s)
- Feifei Feng
- Department of Toxicology, Zhengzhou University School of Public Health, Zhengzhou, China
| | - Li Huang
- Department of Toxicology, Zhengzhou University School of Public Health, Zhengzhou, China
| | - Guoyu Zhou
- Department of Environmental Health, Zhengzhou University School of Public Health, Zhengzhou, China
| | - Jia Wang
- Department of Environmental Health, Zhengzhou University School of Public Health, Zhengzhou, China
| | - Ruiqin Zhang
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, China
| | - Zhiyuan Li
- Department of Toxicology, Zhengzhou University School of Public Health, Zhengzhou, China
| | - Yawei Zhang
- Department of Surgery, Yale School of Medicine, New Haven, CT, USA
- Department of Environmental Health Science, Yale School of Public Health, New Haven, CT, USA
| | - Yue Ba
- Department of Environmental Health, Zhengzhou University School of Public Health, Zhengzhou, China
| |
Collapse
|
25
|
Liu C, Sun Y, Mustieles V, Chen YJ, Huang LL, Deng YL, Wang YX, Lu WQ, Messerlian C. Prenatal Exposure to Disinfection Byproducts and Intrauterine Growth in a Chinese Cohort. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:16011-16022. [PMID: 34813313 DOI: 10.1021/acs.est.1c04926] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Disinfection byproduct (DBP) exposure has been associated with birth size, pregnancy oxidative stress, and other adverse perinatal outcomes. However, little is known about the potential effect of prenatal DBP exposure on intrauterine growth. The present study included 1516 pregnant women from the Xiaogan Disinfection By-Products (XGDBP) birth cohort who were measured for four blood trihalomethanes [i.e., chloroform (TCM), bromodichloromethane (BDCM), dibromochloromethane (DBCM), and bromoform (TBM)] and two urinary haloacetic acids [i.e., dichloroacetic acid (DCAA) and trichloroacetic acid (TCAA)] across pregnancy trimesters. Second- and third-trimester fetal ultrasound measures of the abdominal circumference (AC), head circumference, biparietal diameter, femur length, and estimated fetal weight and birth weight were converted into z-scores. After adjusting for potential confounders, linear mixed models showed a decreasing AC z-score across tertiles of blood brominated THM (Br-THMs, the sum of BDCM, DBCM, and TBM) and total THM (THM4, the sum of Br-THMs and TCM) concentrations (both p for trend <0.01). We also observed a decreasing AC z-score across categories of blood TBM during pregnancy trimesters (p for trend = 0.03). Urinary haloacetic acids were unrelated to fetal growth parameters. In summary, prenatal exposure to THMs, particularly during the first trimester, was associated with reduced fetal abdominal circumference.
Collapse
Affiliation(s)
- Chong Liu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Yang Sun
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, United States
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, United States
| | - Vicente Mustieles
- Center for Biomedical Research (CIBM), University of Granada, Granada 18016, Spain
- Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), Madrid 28029, Spain
| | - Ying-Jun Chen
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Li-Li Huang
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Yan-Ling Deng
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Yi-Xin Wang
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, United States
| | - Wen-Qing Lu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Carmen Messerlian
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, United States
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, United States
| |
Collapse
|
26
|
Steane SE, Young SL, Clifton VL, Gallo LA, Akison LK, Moritz KM. Prenatal alcohol consumption and placental outcomes: a systematic review and meta-analysis of clinical studies. Am J Obstet Gynecol 2021; 225:607.e1-607.e22. [PMID: 34181895 DOI: 10.1016/j.ajog.2021.06.078] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 12/19/2022]
Abstract
OBJECTIVE A systematic review was conducted to determine placental outcomes following prenatal alcohol exposure in women. DATA SOURCES The search terms "maternal OR prenatal OR pregnant OR periconception" AND "placenta" AND "alcohol OR ethanol" were used across 5 databases (PubMed, Embase, Cochrane Library, Web of Science, and CINAHL) from inception until November 2020. STUDY ELIGIBILITY CRITERIA Articles were included if they reported placental outcomes in an alcohol exposure group compared with a control group. Studies were excluded if placentas were from elective termination before 20 weeks' gestation, animal studies, in vitro studies, case studies, or coexposure studies. METHODS Study quality was assessed by 2 reviewers using the Newcastle-Ottawa Quality Assessment Scale. Title and abstract screening was conducted by 2 reviewers to remove duplicates and irrelevant studies. Remaining full text articles were screened by 2 reviewers against inclusion and exclusion criteria. Placental outcome data were extracted and tabulated separately for studies of placentation, placental weight, placental morphology, and placental molecular studies. Meta-analyses were conducted for outcomes reported by >3 studies. RESULTS Database searching retrieved 640 unique records. Screening against inclusion and exclusion criteria resulted in 33 included studies. The quality assessment identified that 61% of studies were high quality, 30% were average quality, and 9% were low quality. Meta-analyses indicated that prenatal alcohol exposure increased the likelihood of placental abruption (odds ratio, 1.48; 95% confidence interval, 1.37-1.60) but not placenta previa (odds ratio, 1.14; 95% confidence interval, 0.84-1.34) and resulted in a reduction in placental weight of 51 g (95% confidence interval, -82.8 to -19.3). Reports of altered placental vasculature, placental DNA methylation, and gene expression following prenatal alcohol exposure were identified. A single study examined placentas from male and female infants separately and found sex-specific placental outcomes. CONCLUSION Prenatal alcohol exposure increases the likelihood of placental abruption and is associated with decreased placental weight, altered placental vasculature, DNA methylation, and molecular pathways. Given the critical role of the placenta in determining pregnancy outcomes, further studies investigating the molecular mechanisms underlying alcohol-induced placental dysfunction are required. Sex-specific placental adaptations to adverse conditions in utero have been well documented; thus, future studies should examine prenatal alcohol exposure-associated placental outcomes separately by sex.
Collapse
|
27
|
Prenatal Lead and Depression Exposures Jointly Influence Birth Outcomes and NR3C1 DNA Methylation. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182212169. [PMID: 34831923 PMCID: PMC8620070 DOI: 10.3390/ijerph182212169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/12/2021] [Accepted: 11/16/2021] [Indexed: 01/01/2023]
Abstract
Many gestational exposures influence birth outcomes, yet the joint contribution of toxicant and psychosocial factors is understudied. Moreover, associated gestational epigenetic mechanisms are unknown. Lead (Pb) and depression independently influence birth outcomes and offspring NR3C1 (glucocorticoid receptor) DNA methylation. We hypothesized that gestational Pb and depression would jointly influence birth outcomes and NR3C1 methylation. Pregnancy exposure information, DNA methylation, and birth outcome data were collected prospectively from n = 272 mother–infant pairs. Factor analysis was used to reduce the dimensionality of NR3C1. Multivariable linear regressions tested for interaction effects between gestational Pb and depression exposures with birth outcomes and NR3C1. Interaction effects indicated that higher levels of Pb and depression jointly contributed to earlier gestations, smaller infant size at birth, and asymmetric fetal growth. Pb and depression were also jointly associated with the two primary factor scores explaining the most variability in NR3C1 methylation; NR3C1 scores were associated with some infant outcomes, including gestational age and asymmetric fetal growth. Pb and depression can cumulatively influence birth outcomes and epigenetic mechanisms, which may lay the foundation for later health risk. As toxicants and social adversities commonly co-occur, research should consider the life course consequences of these interconnected exposures.
Collapse
|
28
|
Lokeswara AW, Hiksas R, Irwinda R, Wibowo N. Preeclampsia: From Cellular Wellness to Inappropriate Cell Death, and the Roles of Nutrition. Front Cell Dev Biol 2021; 9:726513. [PMID: 34805141 PMCID: PMC8602860 DOI: 10.3389/fcell.2021.726513] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 10/07/2021] [Indexed: 12/27/2022] Open
Abstract
Preeclampsia is one of the most common obstetrical complications worldwide. The pathomechanism of this disease begins with abnormal placentation in early pregnancy, which is associated with inappropriate decidualization, vasculogenesis, angiogenesis, and spiral artery remodeling, leading to endothelial dysfunction. In these processes, appropriate cellular deaths have been proposed to play a pivotal role, including apoptosis and autophagy. The proper functioning of these physiological cell deaths for placentation depends on the wellbeing of the trophoblasts, affected by the structural and functional integrity of each cellular component including the cell membrane, mitochondria, endoplasmic reticulum, genetics, and epigenetics. This cellular wellness, which includes optimal cellular integrity and function, is heavily influenced by nutritional adequacy. In contrast, nutritional deficiencies may result in the alteration of plasma membrane, mitochondrial dysfunction, endoplasmic reticulum stress, and changes in gene expression, DNA methylation, and miRNA expression, as well as weakened defense against environmental contaminants, hence inducing a series of inappropriate cellular deaths such as abnormal apoptosis and necrosis, and autophagy dysfunction and resulting in abnormal trophoblast invasion. Despite their inherent connection, the currently available studies examined the functions of each organelle, the cellular death mechanisms and the nutrition involved, both physiologically in the placenta and in preeclampsia, separately. Therefore, this review aims to comprehensively discuss the relationship between each organelle in maintaining the physiological cell death mechanisms and the nutrition involved, and the interconnection between the disruptions in the cellular organelles and inappropriate cell death mechanisms, resulting in poor trophoblast invasion and differentiation, as seen in preeclampsia.
Collapse
Affiliation(s)
- Angga Wiratama Lokeswara
- Faculty of Medicine, Dr. Cipto Mangunkusumo Hospital, University of Indonesia, Jakarta, Indonesia
| | - Rabbania Hiksas
- Faculty of Medicine, Dr. Cipto Mangunkusumo Hospital, University of Indonesia, Jakarta, Indonesia
| | - Rima Irwinda
- Maternal Fetal Division, Department of Obstetrics and Gynaecology, Faculty of Medicine, Dr. Cipto Mangunkusumo Hospital, University of Indonesia, Jakarta, Indonesia
| | - Noroyono Wibowo
- Maternal Fetal Division, Department of Obstetrics and Gynaecology, Faculty of Medicine, Dr. Cipto Mangunkusumo Hospital, University of Indonesia, Jakarta, Indonesia
| |
Collapse
|
29
|
Gill WD, Burgess KC, Vied C, Brown RW. Transgenerational evidence of increases in dopamine D2 receptor sensitivity in rodents: Impact on sensorimotor gating, the behavioral response to nicotine and BDNF. J Psychopharmacol 2021; 35:1188-1203. [PMID: 34291671 PMCID: PMC9169618 DOI: 10.1177/02698811211033927] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND/AIMS Neonatal quinpirole (NQ) treatment to rats increases dopamine D2 (DAD2) receptor sensitivity in adult animals. We investigated if increased DAD2 sensitivity would be passed to the next (F1) generation, and if these animals demonstrated sensorimotor gating deficits and enhanced behavioral responses to nicotine. METHODS Male and female rats were intraperitoneal (IP) administered quinpirole (1 mg/kg) or saline (NS) from postnatal day (P)1-21. Animals were either behaviorally tested (F0) or raised to P60 and mated, creating F1 offspring. RESULTS Experiment 1 revealed that F1 generation animals that were the offspring of at least one NQ-treated founder increased yawning behavior, a DAD2-mediated behavioral event, in response to acute quinpirole (0.1 mg/kg). F1 generation rats also demonstrated increased striatal β arrestin-2 and decreased phospho-AKT signaling, consistent with increased G-protein independent DAD2 signaling, which was equal to F0 NQ-treated founders, although this was not observed in all groups. RNA-Seq analysis revealed significant gene expression changes in the F1 generation that were offspring of both NQ-treated founders compared to F0 NQ founders and controls, with enrichment in sensitivity to stress hormones and cell signaling pathways. In Experiment 2, all F1 generation offspring demonstrated sensorimotor gating deficits compared to controls, which were equivalent to F0 NQ-treated founders. In Experiment 3, all F1 generation animals demonstrated enhanced nicotine behavioral sensitization and nucleus accumbens (NAcc) brain-derived neurotrophic factor (BDNF) protein. Further, F1 generation rats demonstrated enhanced adolescent nicotine conditioned place preference equivalent to NQ-treated founders conditioned with nicotine. CONCLUSIONS This represents the first demonstration of transgenerational effects of increased DAD2 sensitivity in a rodent model.
Collapse
Affiliation(s)
- Wesley Drew Gill
- James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | - Katherine C Burgess
- James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | - Cynthia Vied
- Translational Science Laboratory, Florida State University College of Medicine, Tallahassee, FL, USA
| | - Russell W Brown
- James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| |
Collapse
|
30
|
Lecorguillé M, Charles MA, Lepeule J, Lioret S, de Lauzon-Guillain B, Forhan A, Tost J, Suderman M, Heude B. Association between dietary patterns reflecting one-carbon metabolism nutrients intake before pregnancy and placental DNA methylation. Epigenetics 2021; 17:715-730. [PMID: 34461807 DOI: 10.1080/15592294.2021.1957575] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
The preconception period represents an important window for foetal and epigenetic programming. Some micronutrients (B vitamins, choline, betaine, methionine) implicated in one-carbon metabolism (OCM) are essential for major epigenetic processes that take place in early pregnancy. However, few studies have evaluated the implication of the micronutrients in placental DNA methylation. We investigated whether intake of OCM nutrients in the year before pregnancy was associated with placental DNA methylation in the EDEN mother-child cohort. Maternal dietary intake was assessed with a food-frequency questionnaire. Three dietary patterns, 'varied and balanced diet,' 'vegetarian tendency,' and 'bread and starchy food,' were used to characterize maternal OCM dietary intake. The Illumina Infinium HumanMethylation450 BeadChip was used to measure placental DNA methylation of 573 women included in the analyses. We evaluated the association of dietary patterns with global DNA methylation. Then, we conducted an agnostic epigenome-wide association study (EWAS) and investigated differentially methylated regions (DMRs) associated with each dietary pattern. We found no significant association between the three dietary patterns and global DNA methylation or individual CpG sites. DMR analyses highlighted associations between the 'varied and balanced' or 'vegetarian tendency' pattern and DMRs located at genes previously implicated in functions essential for embryonic development, such as neurodevelopment. The 'bread and starchy food' pattern was associated with regions related to genes whose functions involve various metabolic and cell synthesis-related processes. In mainly well-nourished French women without major deficiencies, OCM intake before pregnancy was not associated with major variation in DNA methylation.
Collapse
Affiliation(s)
| | - Marie-Aline Charles
- Université De Paris, Cress, Inserm, Inrae, Paris, France.,Ined, Inserm, EFS, ELFE Joint Unit, 93322, Aubervilliers, France
| | - Johanna Lepeule
- Inserm, CNRS, Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, IAB, Université Grenoble Alpes, Grenoble, France
| | | | | | - Anne Forhan
- Université De Paris, Cress, Inserm, Inrae, Paris, France
| | - Jörg Tost
- Laboratory for Epigenetics and Environment, Centre National De Recherche En Génomique Humaine, CEA - Institut De Biologie François Jacob, Evry, France
| | - Matthew Suderman
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Barbara Heude
- Université De Paris, Cress, Inserm, Inrae, Paris, France
| |
Collapse
|
31
|
Everson TM, Vives-Usano M, Seyve E, Cardenas A, Lacasaña M, Craig JM, Lesseur C, Baker ER, Fernandez-Jimenez N, Heude B, Perron P, Gónzalez-Alzaga B, Halliday J, Deyssenroth MA, Karagas MR, Íñiguez C, Bouchard L, Carmona-Sáez P, Loke YJ, Hao K, Belmonte T, Charles MA, Martorell-Marugán J, Muggli E, Chen J, Fernández MF, Tost J, Gómez-Martín A, London SJ, Sunyer J, Marsit CJ, Lepeule J, Hivert MF, Bustamante M. Placental DNA methylation signatures of maternal smoking during pregnancy and potential impacts on fetal growth. Nat Commun 2021; 12:5095. [PMID: 34429407 PMCID: PMC8384884 DOI: 10.1038/s41467-021-24558-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 06/22/2021] [Indexed: 02/07/2023] Open
Abstract
Maternal smoking during pregnancy (MSDP) contributes to poor birth outcomes, in part through disrupted placental functions, which may be reflected in the placental epigenome. Here we present a meta-analysis of the associations between MSDP and placental DNA methylation (DNAm) and between DNAm and birth outcomes within the Pregnancy And Childhood Epigenetics (PACE) consortium (N = 1700, 344 with MSDP). We identify 443 CpGs that are associated with MSDP, of which 142 associated with birth outcomes, 40 associated with gene expression, and 13 CpGs are associated with all three. Only two CpGs have consistent associations from a prior meta-analysis of cord blood DNAm, demonstrating substantial tissue-specific responses to MSDP. The placental MSDP-associated CpGs are enriched for environmental response genes, growth-factor signaling, and inflammation, which play important roles in placental function. We demonstrate links between placental DNAm, MSDP and poor birth outcomes, which may better inform the mechanisms through which MSDP impacts placental function and fetal growth.
Collapse
Affiliation(s)
- Todd M Everson
- Gangarosa Department of Environmental Health, Rollins School of Public Health at Emory University, Atlanta, GA, USA.
| | - Marta Vives-Usano
- Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Emie Seyve
- University Grenoble Alpes, Inserm, CNRS, IAB, Grenoble, France
| | - Andres Cardenas
- Department of Population Medicine, Harvard Medical School, Harvard Pilgrim Health Care Institute, Boston, MA, USA
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Marina Lacasaña
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Andalusian School of Public Health, Granada, Spain
- Instituto de Investigación Biosantaria (ibs.GRANADA), Granada, Spain
| | - Jeffrey M Craig
- Epigenetics Group, Murdoch Children's Research Institute, Parkville, VIC, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
- IMPACT - the Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, VIC, Australia
| | - Corina Lesseur
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Emily R Baker
- Department of Obstetrics & Gynecology, Geisel School of Medicine at Dartmouth College, Lebanon, NH, USA
| | - Nora Fernandez-Jimenez
- University of the Basque Country (UPV/EHU), Leioa, Spain
- Biocruces-Bizkaia Health Research Institute, Barakaldo, Spain
- Public Health Division of Gipuzkoa, Basque Government, San Sebastian, Spain
| | - Barbara Heude
- Université de Paris, CRESS, INSERM, INRAE, Paris, France
| | - Patrice Perron
- Department of Medicine, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Beatriz Gónzalez-Alzaga
- Andalusian School of Public Health, Granada, Spain
- Instituto de Investigación Biosantaria (ibs.GRANADA), Granada, Spain
| | - Jane Halliday
- Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
- Reproductive Epidemiology, Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Maya A Deyssenroth
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Margaret R Karagas
- Department of Epidemiology, Geisel School of Medicine at Dartmouth College, Hanover, NH, USA
| | - Carmen Íñiguez
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Department of Statistics and Computational Research, Universitat de València, València, Spain
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, València, Spain
| | - Luigi Bouchard
- Department of Biochemistry and Functional Genomics, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Pedro Carmona-Sáez
- Bioinformatics Unit, GENYO. Centre for Genomics and Oncological Research, Pfizer, University of Granada, Andalusian Regional Government, Granada, Spain
- Department of Statistics, Faculty of Sciences, University of Granada, Granada, Spain
| | - Yuk J Loke
- Epigenetics Group, Murdoch Children's Research Institute, Parkville, VIC, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
| | - Ke Hao
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | | | - Jordi Martorell-Marugán
- Bioinformatics Unit, GENYO. Centre for Genomics and Oncological Research, Pfizer, University of Granada, Andalusian Regional Government, Granada, Spain
- Atrys Health S.A., Barcelona, Spain
| | - Evelyne Muggli
- Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
- Reproductive Epidemiology, Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Jia Chen
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mariana F Fernández
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Instituto de Investigación Biosantaria (ibs.GRANADA), Granada, Spain
- Biomedical Research Centre (CIBM) and School of Medicine, University of Granada, Granada, Spain
| | - Jorg Tost
- Laboratory for Epigenetics and Environment, Centre National de Recherche en Génomique Humaine, CEA - Institut de Biologie François Jacob, Evry, France
| | - Antonio Gómez-Martín
- Genomics Unit, GENYO. Centre for Genomics and Oncological Research, Pfizer, University of Granada, Andalusian Regional Government, Granada, Spain
| | - Stephanie J London
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Durham, NC, USA
| | - Jordi Sunyer
- Universitat Pompeu Fabra, Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- ISGlobal, Barcelona Institute for Global Health, Barcelona, Spain
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Carmen J Marsit
- Gangarosa Department of Environmental Health, Rollins School of Public Health at Emory University, Atlanta, GA, USA
- Department of Epidemiology, Rollins School of Public health at Emory University, Atlanta, GA, USA
| | - Johanna Lepeule
- University Grenoble Alpes, Inserm, CNRS, IAB, Grenoble, France
| | - Marie-France Hivert
- Department of Population Medicine, Harvard Medical School, Harvard Pilgrim Health Care Institute, Boston, MA, USA
- Diabetes Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Mariona Bustamante
- Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain.
- Universitat Pompeu Fabra, Barcelona, Spain.
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.
- ISGlobal, Barcelona Institute for Global Health, Barcelona, Spain.
| |
Collapse
|
32
|
Genetic and epigenetic modifications of F1 offspring's sperm cells following in utero and lactational combined exposure to nicotine and ethanol. Sci Rep 2021; 11:12311. [PMID: 34112894 PMCID: PMC8192516 DOI: 10.1038/s41598-021-91739-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 05/18/2021] [Indexed: 02/05/2023] Open
Abstract
It is well established that maternal lifestyle during pregnancy and lactation affects the intrauterine programming of F1 offspring. However, despite the co-use of alcohol and nicotine is a common habit, the effects of exposure to both substances on the reproductive system of F1 male offspring and the underlying mechanisms of developmental programming have not been investigated. The present study aimed to examine pre- and postnatal concurrent exposure to these substances on genetic and epigenetic alterations of sperm cells as well as testis properties of F1 offspring compared with exposure to each substance alone. Pregnant dams in the F0 generation randomly received normal saline, nicotine, ethanol, and combinations throughout full gestation and lactation periods. Sperm cells and testes of F1 male offspring were collected at postnatal day 90 for further experiments. High levels of sperm DNA fragmentation were observed in all exposed offspring. Regarding epigenetic alterations, there was a significant increase in the relative transcript abundance of histone deacetylase 1 and 2 in all exposed sperm cells. Moreover, despite a decrease in the expression level of DNA methyltransferase (DNMT) 3A, no marked differences were found in the expression levels of DNMT1 and 3B in any of the exposed sperm cells compared to non-exposed ones. Interestingly, combined exposure had less prominent effects relative to exposure to each substance alone. The changes in the testicular and sperm parameters were compatible with genetic and epigenetic alterations. However, MDA level as an oxidative stress indicator increased in all exposed pups, which may be responsible for such outputs. In conclusion, maternal co-exposure to these substances exhibited epigenotoxicity effects on germline cells of F1 male offspring, although these effects were less marked relative to exposure to each substance alone. These counteracting effects may be explained by cross-tolerance and probably less impairment of the antioxidant defense system.
Collapse
|
33
|
Hung JH, Cheng HY, Tsai YC, Pan HA, Omar HA, Chiu CC, Su YM, Lin YM, Teng YN. LRWD1 expression is regulated through DNA methylation in human testicular embryonal carcinoma cells. Basic Clin Androl 2021; 31:12. [PMID: 34011267 PMCID: PMC8136200 DOI: 10.1186/s12610-021-00130-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 03/30/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Sperm growth and maturation are correlated with the expression levels of Leucine-rich repeat and WD repeat-containing protein 1 (LRWD1), a widely expressed protein in the human testicles. The decrease in LRWD1 cellular level was linked to the reduction in cell growth and mitosis and the rise in cell microtubule atrophy rates. Since DNA methylation has a major regulatory role in gene expression, this study aimed at exploring the effect of the modulation of DNA methylation on LRWD1 expression levels. RESULTS The results revealed the presence of a CpG island up of 298 bps (- 253 ~ + 45) upon LRWD1 promoter in NT2/D1 cells. The hypermethylation of the LRWD1 promoter was linked to a reduction in the transcription activity in NT2/D1 cells, as indicated by luciferase reporter assay. The methylation activator, floxuridine, confirmed the decrease in the LRWD1 promoter transcriptional activity. On the other hand, 5-Aza-2'-deoxycytidine (5-Aza-dc, methylation inhibitor), significantly augmented LRWD1 promoter activity and the expression levels of mRNA and proteins. Furthermore, DNA methylation status of LRWD1 promoter in human sperm genomic DNA samples was analyzed. The results indicated that methylation of LRWD1 promoter was correlated to sperm activity. CONCLUSIONS Thus, the regulation of LRWD1 expression is correlated with the methylation status of LRWD1 promoter, which played a significant role in the modulation of spermatogenesis, sperm motility, and vitality. Based on these results, the methylation status of LRWD1 promoter may serve as a novel molecular diagnostic marker or a therapeutic target in males' infertility.
Collapse
Affiliation(s)
- Jui-Hsiang Hung
- Department of Biotechnology, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Han-Yi Cheng
- Department of Biological Sciences and Technology, National University of Tainan, No.33, Sec. 2, Shulin St., West Central District, Tainan City, 700, Taiwan
| | - Yung-Chieh Tsai
- Department of Obstetrics and Gynecology, Chi-Mei Medical Center; Department of Sport Management, and Department of Biotechnology, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| | | | - Hany A Omar
- Sharjah Institute for Medical Research and College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates
- Department of Pharmacology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Chien-Chih Chiu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yin-Mei Su
- Department of Biological Sciences and Technology, National University of Tainan, No.33, Sec. 2, Shulin St., West Central District, Tainan City, 700, Taiwan
| | - Yung-Ming Lin
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Yen-Ni Teng
- Department of Biological Sciences and Technology, National University of Tainan, No.33, Sec. 2, Shulin St., West Central District, Tainan City, 700, Taiwan.
| |
Collapse
|
34
|
Liu X, Huo W, Zhang R, Wei D, Tu R, Luo Z, Wang Y, Dong X, Qiao D, Liu P, Zhang L, Fan K, Nie L, Liu X, Li L, Wang C, Mao Z. Androgen receptor DNA methylation is an independent determinant of glucose metabolic disorders in women; testosterone plays a moderating effect. J Diabetes 2021; 13:282-291. [PMID: 32979029 DOI: 10.1111/1753-0407.13117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 09/12/2020] [Accepted: 09/22/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND We have previously shown that serum testosterone was associated with impaired fasting glucose (IFG) and type 2 diabetes (T2D). Testosterone can be acting through binding the androgen receptor (AR). Therefore, we aimed to explore the independent associations of AR DNA methylation (ARm) with IFG and T2D and the moderation effects of serum testosterone on the associations. METHODS A case-control study with 1065 participants including 461 men and 604 women was performed. ARm in peripheral blood sample and serum testosterone were measured using pyrosequeuncing and liquid chromatography-tandem mass, respectively. Multivariable logistic regression was performed to estimate the associations of ARm (including 2 cytosine-phosphoguanine [CpG] islands and average methylation levels) with different glucose status. Serum testosterone was used as a moderator to estimate the moderation effect. RESULTS After multivariate adjustment, CpG 1, 2 and CpG average methylation were all significantly associated with IFG (CpG 1: Odds ratio (OR) = 4.80, 95% confidence interval (CI): 2.24-10.27; CpG 2: OR = 4.35, 95% CI: 2.50-7.58; CpG average: OR = 11.73, 95% CI: 5.36-25.67) in women. In addition, testosterone played negative moderation effects in above associations. Moreover, no significant independent associations of methylation levels with T2D was observed both in men and women. CONCLUSION Our findings demonstrate that ARm was positively associated with IFG in women and the associations would be weakened by testosterone. The individuals experiencing low testosterone and ARm levels reported a lower state of IFG than those who experienced high levels of testosterone and ARm in women.
Collapse
Affiliation(s)
- Xue Liu
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, PR China
| | - Wenqian Huo
- Department of Occupational and Environmental Health Sciences, College of Public Health, Zhengzhou University, Zhengzhou, PR China
| | - Rui Zhang
- Zhengzhou Customs, Zhengzhou, PR China
| | - Dandan Wei
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, PR China
| | - Runqi Tu
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, PR China
| | - Zhicheng Luo
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, PR China
| | - Yan Wang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, PR China
| | - Xiaokang Dong
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, PR China
| | - Dou Qiao
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, PR China
| | - Pengling Liu
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, PR China
| | - Li Zhang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, PR China
| | - Keliang Fan
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, PR China
| | - Luting Nie
- Department of Occupational and Environmental Health Sciences, College of Public Health, Zhengzhou University, Zhengzhou, PR China
| | - Xiaotian Liu
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, PR China
| | - Linlin Li
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, PR China
| | - Chongjian Wang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, PR China
| | - Zhenxing Mao
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, PR China
| |
Collapse
|
35
|
Rousseaux S, Seyve E, Chuffart F, Bourova-Flin E, Benmerad M, Charles MA, Forhan A, Heude B, Siroux V, Slama R, Tost J, Vaiman D, Khochbin S, Lepeule J. Immediate and durable effects of maternal tobacco consumption alter placental DNA methylation in enhancer and imprinted gene-containing regions. BMC Med 2020; 18:306. [PMID: 33023569 PMCID: PMC7542140 DOI: 10.1186/s12916-020-01736-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 08/06/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Although exposure to cigarette smoking during pregnancy has been associated with alterations of DNA methylation in the cord blood or placental cells, whether such exposure before pregnancy could induce epigenetic alterations in the placenta of former smokers has never been investigated. METHODS Our approach combined the analysis of placenta epigenomic (ENCODE) data with newly generated DNA methylation data obtained from 568 pregnant women, the largest cohort to date, either actively smoking during their pregnancy or formerly exposed to tobacco smoking. RESULTS This strategy resulted in several major findings. First, among the 203 differentially methylated regions (DMRs) identified by the epigenome-wide association study, 152 showed "reversible" alterations of DNA methylation, only present in the placenta of current smokers, whereas 26 were also found altered in former smokers, whose placenta had not been exposed directly to cigarette smoking. Although the absolute methylation changes were smaller than those observed in other contexts, such as in some congenital diseases, the observed alterations were consistent within each DMR. This observation was further supported by a demethylation of LINE-1 sequences in the placentas of both current (beta-coefficient (β) (95% confidence interval (CI)), - 0.004 (- 0.008; 0.001)) and former smokers (β (95% CI), - 0.006 (- 0.011; - 0.001)) compared to nonsmokers. Second, the 203 DMRs were enriched in epigenetic marks corresponding to enhancer regions, including monomethylation of lysine 4 and acetylation of lysine 27 of histone H3 (respectively H3K4me1 and H3K27ac). Third, smoking-associated DMRs were also found near and/or overlapping 10 imprinted genes containing regions (corresponding to 16 genes), notably including the NNAT, SGCE/PEG10, and H19/MIR675 loci. CONCLUSIONS Our results pointing towards genomic regions containing the imprinted genes as well as enhancers as preferential targets suggest mechanisms by which tobacco could directly impact the fetus and future child. The persistence of significant DNA methylation changes in the placenta of former smokers supports the hypothesis of an "epigenetic memory" of exposure to cigarette smoking before pregnancy. This observation not only is conceptually revolutionary, but these results also bring crucial information in terms of public health concerning potential long-term detrimental effects of smoking in women.
Collapse
Affiliation(s)
- Sophie Rousseaux
- Université Grenoble Alpes, Inserm, CNRS, IAB, 38000, Grenoble, France
| | - Emie Seyve
- Université Grenoble Alpes, Inserm, CNRS, IAB, 38000, Grenoble, France
| | - Florent Chuffart
- Université Grenoble Alpes, Inserm, CNRS, IAB, 38000, Grenoble, France
| | | | - Meriem Benmerad
- Université Grenoble Alpes, Inserm, CNRS, IAB, 38000, Grenoble, France
| | - Marie-Aline Charles
- Université de Paris, Centre for Research in Epidemiology and Statistics (CRESS), INSERM, INRAE, Paris, France
| | - Anne Forhan
- Université de Paris, Centre for Research in Epidemiology and Statistics (CRESS), INSERM, INRAE, Paris, France
| | - Barbara Heude
- Université de Paris, Centre for Research in Epidemiology and Statistics (CRESS), INSERM, INRAE, Paris, France
| | - Valérie Siroux
- Université Grenoble Alpes, Inserm, CNRS, IAB, 38000, Grenoble, France
| | - Remy Slama
- Université Grenoble Alpes, Inserm, CNRS, IAB, 38000, Grenoble, France
| | - Jorg Tost
- Laboratory for Epigenetics and Environment, Centre National de Recherche en Génomique Humaine, CEA - Institut de Biologie François Jacob, Evry, France
| | - Daniel Vaiman
- Genomics, Epigenetics and Physiopathology of Reproduction, Institut Cochin, U1016 Inserm - UMR 8104 CNRS - Paris-Descartes University, Paris, France
| | - Saadi Khochbin
- Université Grenoble Alpes, Inserm, CNRS, IAB, 38000, Grenoble, France
| | - Johanna Lepeule
- Université Grenoble Alpes, Inserm, CNRS, IAB, 38000, Grenoble, France.
| | | |
Collapse
|
36
|
Brannigan R, Healy C, Cannon M, Leacy FP, Clarke MC. Prenatal tobacco exposure and psychiatric outcomes in adolescence: is the effect mediated through birth weight? Acta Psychiatr Scand 2020; 142:284-293. [PMID: 32627173 DOI: 10.1111/acps.13210] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/27/2020] [Accepted: 06/29/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVE This study aims to examine the associations between prenatal exposure to maternal smoking, birth weight and persistent offspring psychiatric symptoms. Additionally, we aim to examine whether the relationship between prenatal maternal smoking and persistent offspring psychiatric symptoms is mediated by offspring birth weight. METHODS This study used the Growing Up in Ireland (GUI) longitudinal cohort. The GUI is a nationally representative longitudinal study of children which consisted of three data collection waves, at ages 9, 13, and 17 years. Logistic regression analysis was used to examine associations between prenatal tobacco exposure, and offspring psychiatric symptoms. Linear regression was used to examine associations between prenatal tobacco exposure and offspring birth weight. We conducted a mediation analysis examining potential etiological pathways linking maternal smoking during pregnancy, offspring birth weight, and later offspring psychiatric symptoms. All analyses were adjusted for confounders including household income, maternal level of education, and family psychiatric history. Additionally, examination of birth weight and subsequent psychiatric symptoms also was controlled for prematurity. RESULTS We found that the association between prenatal tobacco exposure and later psychiatric symptoms is mediated by birth weight. CONCLUSIONS This work provides further evidence that maternal smoking during pregnancy is an important modifiable lifestyle factor that has an impact not just on the physical health of offspring but also their mental wellbeing. Supporting women with structured smoking cessation programs at the earliest stages of pregnancy should be a public health priority.
Collapse
Affiliation(s)
- R Brannigan
- Department of Psychology, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - C Healy
- Department of Psychiatry, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - M Cannon
- Department of Psychiatry, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - F P Leacy
- Data Science Centre, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - M C Clarke
- Department of Psychology, Royal College of Surgeons in Ireland, Dublin, Ireland
- Department of Psychiatry, Royal College of Surgeons in Ireland, Dublin, Ireland
| |
Collapse
|
37
|
|
38
|
Cai D, Li QQ, Chu C, Wang SZ, Tang YT, Appleton AA, Qiu RL, Yang BY, Hu LW, Dong GH, Zeng XW. High trans-placental transfer of perfluoroalkyl substances alternatives in the matched maternal-cord blood serum: Evidence from a birth cohort study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 705:135885. [PMID: 31841927 DOI: 10.1016/j.scitotenv.2019.135885] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/27/2019] [Accepted: 11/30/2019] [Indexed: 04/15/2023]
Abstract
BACKGROUND Recent studies suggest that perfluoroalkyl substances (PFAS) and PFAS alternatives can cross the placental barrier. However, little is known on the differential patterns of trans-placental transfer (TPT) among conventional PFAS and PFAS alternatives in epidemiological study. OBJECTIVES We aimed to characterize comprehensive TPT patterns in conventional PFAS and PFAS alternatives using matched maternal-cord blood serum from a birth cohort. METHODS A total of 424 mother-fetus pairs were recruited from the Maoming Birth Cohort during 2015-2018. We detected 20 PFAS in cord and maternal serum using an ultraperformance liquid chromatography tandem mass spectrometry (UPLC-MS/MS). TPT of PFAS was calculated via cord to maternal serum concentration ratios. RESULTS Both of PFOS alternatives (chlorinated polyfluorinated ether sulfonates, Cl-PFESAs) and PFOA short-chain alternative (perfluorobutanoic acid, PFBA) were widely detected in the cord and maternal serum. In cord serum, the predominant PFAS was PFOS (1.93 ng/mL), followed by PFBA (1.45 ng/mL), PFOA (0.75 ng/mL) and 6:2 Cl-PFESA (0.32 ng/mL). We found that the PFAS alternatives had higher TPT than PFOS and PFOA, such as PFBA vs. PFOA (median: 1.41 vs. 0.73, P < 0.001) and 8:2 Cl-PFESA vs. PFOS (median: 0.98 vs. 0.42, P < 0.001). Moreover, the TPT of 8:2 Cl-PFESA was higher than the precursor, linear and isomeric PFOS, respectively (P < 0.01). Furthermore, we found a U-shaped pattern for TPT in perfluorocarboxylic acid compounds (PFCAs) across different length of carbon chain. CONCLUSION Our findings suggest that PFAS alternatives may be more easily across the placenta than conventional PFAS. Given the widespread usage of PFAS alternatives, our results indicate that more research is needed to assess the potential health risks of prenatal exposure to PFAS alternatives in children.
Collapse
Affiliation(s)
- Dan Cai
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Qing-Qing Li
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Chu Chu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Shi-Zhong Wang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Ye-Tao Tang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Allison A Appleton
- Department of Epidemiology and Biostatistics, University at Albany, State University of New York, Rensselaer, NY 12144, USA
| | - Rong-Liang Qiu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Bo-Yi Yang
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Li-Wen Hu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Guang-Hui Dong
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiao-Wen Zeng
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
39
|
Dwi Putra SE, Reichetzeder C, Hasan AA, Slowinski T, Chu C, Krämer BK, Kleuser B, Hocher B. Being Born Large for Gestational Age is Associated with Increased Global Placental DNA Methylation. Sci Rep 2020; 10:927. [PMID: 31969597 PMCID: PMC6976643 DOI: 10.1038/s41598-020-57725-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 12/31/2019] [Indexed: 02/01/2023] Open
Abstract
Being born small (SGA) or large for gestational age (LGA) is associated with adverse birth outcomes and metabolic diseases in later life of the offspring. It is known that aberrations in growth during gestation are related to altered placental function. Placental function is regulated by epigenetic mechanisms such as DNA methylation. Several studies in recent years have demonstrated associations between altered patterns of DNA methylation and adverse birth outcomes. However, larger studies that reliably investigated global DNA methylation are lacking. The aim of this study was to characterize global placental DNA methylation in relationship to size for gestational age. Global DNA methylation was assessed in 1023 placental samples by LC-MS/MS. LGA offspring displayed significantly higher global placental DNA methylation compared to appropriate for gestational age (AGA; p < 0.001). ANCOVA analyses adjusted for known factors impacting on DNA methylation demonstrated an independent association between placental global DNA methylation and LGA births (p < 0.001). Tertile stratification according to global placental DNA methylation levels revealed a significantly higher frequency of LGA births in the third tertile. Furthermore, a multiple logistic regression analysis corrected for known factors influencing birth weight highlighted an independent positive association between global placental DNA methylation and the frequency of LGA births (p = 0.001).
Collapse
Affiliation(s)
- S E Dwi Putra
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Centre Mannheim, University of Heidelberg, Heidelberg, Germany.,Department of Nutritional Toxicology, Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany.,Faculty of Biotechnology, University of Surabaya, Surabaya, Indonesia
| | - C Reichetzeder
- Department of Nutritional Toxicology, Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany.
| | - A A Hasan
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Centre Mannheim, University of Heidelberg, Heidelberg, Germany.,Department of Nutritional Toxicology, Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany.,Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt.,UP Transfer GmbH, University of Potsdam, Potsdam, Germany
| | - T Slowinski
- Department of Nephrology, Campus Charité Mitte, University Hospital Charité, Berlin, Germany
| | - C Chu
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Centre Mannheim, University of Heidelberg, Heidelberg, Germany
| | - B K Krämer
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Centre Mannheim, University of Heidelberg, Heidelberg, Germany
| | - B Kleuser
- Department of Nutritional Toxicology, Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| | - B Hocher
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Centre Mannheim, University of Heidelberg, Heidelberg, Germany. .,Department of Basic Medicine, Medical College of Hunan Normal University, Changsha, China. .,Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China.
| |
Collapse
|
40
|
Meler E, Sisterna S, Borrell A. Genetic syndromes associated with isolated fetal growth restriction. Prenat Diagn 2020; 40:432-446. [PMID: 31891188 DOI: 10.1002/pd.5635] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 11/30/2019] [Accepted: 12/02/2019] [Indexed: 12/20/2022]
Abstract
Early onset fetal growth restriction (FGR) may be due to impaired placentation, environmental or toxic exposure, congenital infections or genetic abnormalities. Remarkable research, mainly based on retrospective series, has been published on the diverse genetic causes. Those have become more and more relevant with the improvement in the accuracy of the analysis techniques and the rising of breakthrough genomewide methods such as the whole genome sequencing. However, no publication has presented an integrated view of management of those fetuses with an early and severe affection. In this review, we explored to which extent genetic syndromes can cause FGR fetuses without structural defects. The most common chromosomal abnormalities (Triploidies and Trisomy 18), submicroscopic chromosomal anomalies (22q11.2 microduplication syndrome) and single gene disorders (often associated with mild ultrasound findings) related to early and severe FGR had been analysed. Finally, we addressed the impact of epigenetic marks on fetal growth, a matter of growing importance. At the end of this review, we should be able to provide an adequate counseling to parents in terms of diagnosis, prognosis and management of those pregnancies.
Collapse
Affiliation(s)
- Eva Meler
- BCNatal - Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Deu), Institut Clinic de Ginecologia, Obstetricia i Neonatologia, IDIBAPS, University of Barcelona, Fetal i+D Fetal Medicine Research, and Centre for Biomedical Research on Rare Diseases (CIBER-ER), Barcelona, Catalonia, Spain
| | - Silvina Sisterna
- Clinical Genetics and Prenatal Diagnosis, Hospital Privado de Comunidad - Maternal Fetal Medicine, Clínica Colon - Reproduction and human genetics center CRECER. Mar del Plata, Buenos Aires, Argentina
| | - Antoni Borrell
- BCNatal - Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Deu), Institut Clinic de Ginecologia, Obstetricia i Neonatologia, IDIBAPS, University of Barcelona, Fetal i+D Fetal Medicine Research, and Centre for Biomedical Research on Rare Diseases (CIBER-ER), Barcelona, Catalonia, Spain
| |
Collapse
|
41
|
O’Callaghan JL, Clifton VL, Prentis P, Ewing A, Miller YD, Pelzer ES. Modulation of Placental Gene Expression in Small-for-Gestational-Age Infants. Genes (Basel) 2020; 11:genes11010080. [PMID: 31936801 PMCID: PMC7017208 DOI: 10.3390/genes11010080] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/19/2019] [Accepted: 01/07/2020] [Indexed: 02/08/2023] Open
Abstract
Small-for-gestational-age (SGA) infants are fetuses that have not reached their genetically programmed growth potential. Low birth weight predisposes these infants to an increased risk of developing cardiovascular, metabolic and neurodevelopmental conditions in later life. However, our understanding of how this pathology occurs is currently incomplete. Previous research has focused on understanding the transcriptome, epigenome and bacterial signatures separately. However, we hypothesise that interactions between moderators of gene expression are critical to understanding fetal growth restriction. Through a review of the current literature, we identify that there is evidence of modulated expression/methylation of the placental genome and the presence of bacterial DNA in the placental tissue of SGA infants. We also identify that despite limited evidence of the interactions between the above results, there are promising suggestions of a relationship between bacterial signatures and placental function. This review aims to summarise the current literature concerning fetal growth from multiple avenues and propose a novel relationship between the placental transcriptome, methylome and bacterial signature that, if characterised, may be able to improve our current understanding of the placental response to stress and the aetiology of growth restriction.
Collapse
Affiliation(s)
- Jessica L. O’Callaghan
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane 4001, Queensland, Australia;
- Institute of Health and Biomedical Innovation, Faculty of Health, Queensland University of Technology, Brisbane 4059, Queensland, Australia
- Correspondence:
| | - Vicki L. Clifton
- Mater Medical Research Institute, University of Queensland, Brisbane 4101, Queensland, Australia; (V.L.C.); (A.E.)
| | - Peter Prentis
- School of Earth, Environmental and Biological Sciences, Science and Engineering Faculty, Queensland University of Technology, Brisbane 4001, Queensland, Australia;
| | - Adam Ewing
- Mater Medical Research Institute, University of Queensland, Brisbane 4101, Queensland, Australia; (V.L.C.); (A.E.)
| | - Yvette D. Miller
- School of Public Health and Social Work, Faculty of Health, Queensland University of Technology, Brisbane 4059, Queensland, Australia;
| | - Elise S. Pelzer
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane 4001, Queensland, Australia;
- Institute of Health and Biomedical Innovation, Faculty of Health, Queensland University of Technology, Brisbane 4059, Queensland, Australia
| |
Collapse
|
42
|
Huang KT, Shen YL, Lee CN, Chu KY, Ku WC, Liu CY, Huang RFS. Using Differential Threshold Effects of Individual and Combined Periconceptional Methyl Donor Status on Maternal Genomic LINE-1 and Imprinted H19 DNA Methylation to Predict Birth Weight Variance in the Taiwan Pregnancy-Newborn Epigenetics (TPNE) Cohort Study. J Nutr 2020; 150:108-117. [PMID: 31504733 DOI: 10.1093/jn/nxz204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 07/25/2019] [Accepted: 07/26/2019] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Few studies have comprehensively examined the effect of methyl donor status on maternal DNA methylation and birth outcomes. OBJECTIVES This study examined associations between periconceptional methyl donor status and genome-wide and specific imprinted gene methylation and fetal growth indices in the Taiwan Pregnancy-Newborn Epigenetics cohort. METHODS Plasma folate, choline (free form), and betaine concentrations of the participants enrolled at 7-10 weeks of gestation were analyzed. DNA methylation at regulatory sequences of the imprinted H19 gene and genomic long interspersed nuclear element 1 (LINE-1) were measured in maternal lymphocytes using bisulfite/high-resolution melt polymerase chain reaction. Associations with birth weight (BW) were estimated through multiple regressions from 112 mother-newborn pairs. RESULTS A nonlinear "L-shaped" relation and an inverse association between maternal plasma folate in T1 (mean ± SE: 17.6 ± 5.1 nmol/L) and lymphocytic LINE-1 methylation (β: -0.49, P = 0.027) were characterized. After adjusting for LINE-1 methylation, individual maternal folate concentrations were positively associated with BW variance (β = 0.24, P = 0.035), and the association was more pronounced in mothers with choline in T1 (mean ± SE: 5.4 ± 0.6 μmol/L; β: 0.40, P = 0.039). Choline status of the mothers in T2 (mean ± SE: 7.2 ± 0.6 μmol/L) was inversely associated with LINE-1 methylation (β: -0.43, P = 0.035), and a positive association was evident between T1 choline and H19 methylation (β: 0.48, P = 0.011). After adjusting for epigenetic modification, maternal choline status predicted a positive association with BW (β: 0.56, P = 0.005), but the effect was limited to mothers with high betaine concentrations in T3 (mean ± SE: 36.4 ± 8.8 μmol/L), depending on folate status. CONCLUSIONS Our data highlight the differential threshold effects of periconceptional folate, choline, and betaine status on genomic LINE-1 and H19 DNA methylation and how their interplay has a long-term effect on BW variance.
Collapse
Affiliation(s)
- Kuang-Ta Huang
- PhD Program in Nutrition and Food Science, Fu Jen Catholic University, New Taipei City, Taiwan.,Loving Care Maternity and Children's Health Centers, New Taipei City, Taiwan
| | - Yu-Li Shen
- Department of Nutritional Science, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Chien-Nan Lee
- Department of Gynecology and Obstetrics, National Taiwan University Hospital, Taipei City, Taiwan
| | - Kuan-Yu Chu
- Department of Nutritional Science, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Wei-Chi Ku
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Chieh-Yu Liu
- Biostatistical Consultant Lab, Department of Speech Language Pathology and Audiology, National Taipei University of Nursing and Health Sciences, Taipei City, Taiwan
| | - Rwei-Fen S Huang
- PhD Program in Nutrition and Food Science, Fu Jen Catholic University, New Taipei City, Taiwan.,Department of Nutritional Science, Fu Jen Catholic University, New Taipei City, Taiwan
| |
Collapse
|
43
|
Scarpato R, Testi S, Colosimo V, Garcia Crespo C, Micheli C, Azzarà A, Tozzi MG, Ghirri P. Role of oxidative stress, genome damage and DNA methylation as determinants of pathological conditions in the newborn: an overview from conception to early neonatal stage. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2020; 783:108295. [DOI: 10.1016/j.mrrev.2019.108295] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 11/25/2019] [Accepted: 12/24/2019] [Indexed: 12/15/2022]
|
44
|
Cardenas A, Lutz SM, Everson TM, Perron P, Bouchard L, Hivert MF. Mediation by Placental DNA Methylation of the Association of Prenatal Maternal Smoking and Birth Weight. Am J Epidemiol 2019; 188:1878-1886. [PMID: 31497855 DOI: 10.1093/aje/kwz184] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 04/17/2019] [Accepted: 04/22/2019] [Indexed: 02/06/2023] Open
Abstract
Prenatal maternal smoking is a risk factor for lower birth weight. We performed epigenome-wide association analyses of placental DNA methylation (DNAm) at 720,077 cytosine-phosphate-guanine (CpG) sites and prenatal maternal smoking among 441 mother-infant pairs (2010-2014) and evaluated whether DNAm mediates the association between smoking and birth weight using mediation analysis. Mean birth weight was 3,443 (standard deviation, 423) g, and 38 mothers (8.6%) reported smoking at a mean of 9.4 weeks of gestation. Prenatal maternal smoking was associated with a 175-g lower birth weight (95% confidence interval (CI): -305.5, -44.8) and with differential DNAm of 71 CpGs in placenta, robust to latent-factor adjustment reflecting cell types (Bonferroni-adjusted P < 6.94 × 10-8). Of the 71 CpG sites, 7 mediated the association between prenatal smoking and birth weight (on MDS2, PBX1, CYP1A2, VPRBP, WBP1L, CD28, and CDK6 genes), and prenatal smoking × DNAm interactions on birth weight were observed for 5 CpG sites. The strongest mediator, cg22638236, was annotated to the PBX1 gene body involved in skeletal patterning and programming, with a mediated effect of 301-g lower birth weight (95% CI: -543, -86) among smokers but no mediated effect for nonsmokers (β = -38 g; 95% CI: -88, 9). Prenatal maternal smoking might interact with placental DNAm at specific loci, mediating the association with lower infant birth weight.
Collapse
|
45
|
Konwar C, Del Gobbo G, Yuan V, Robinson WP. Considerations when processing and interpreting genomics data of the placenta. Placenta 2019; 84:57-62. [PMID: 30642669 PMCID: PMC6612459 DOI: 10.1016/j.placenta.2019.01.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/28/2018] [Accepted: 01/04/2019] [Indexed: 12/27/2022]
Abstract
The application of genomic approaches to placental research has opened exciting new avenues to help us understand basic biological properties of the placenta, improve prenatal screening/diagnosis, and measure effects of in utero exposures on child health outcomes. In the last decade, such large-scale genomic data (including epigenomics and transcriptomics) have become more easily accessible to researchers from many disciplines due to the increasing ease of obtaining such data and the rapidly evolving computational tools available for analysis. While the potential of large-scale studies has been widely promoted, less attention has been given to some of the challenges associated with processing and interpreting such data. We hereby share some of our experiences in assessing data quality, reproducibility, and interpretation in the context of genome-wide studies of the placenta, with the aim to improve future studies. There is rarely a single "best" approach, as that can depend on the study question and sample cohort. However, being consistent, thoroughly assessing potential confounders in the data, and communicating key variables in the methods section of the manuscript are critically important to help researchers to collaborate and build on each other's work.
Collapse
Affiliation(s)
- Chaini Konwar
- BC Children's Hospital Research Institute, 950 West 28th Ave, Vancouver, BC V5Z 4H4, Canada; Department of Medical Genetics, University of British Columbia, 4500, Oak Street, Vancouver, BC V6H3N1, Canada.
| | - Giulia Del Gobbo
- BC Children's Hospital Research Institute, 950 West 28th Ave, Vancouver, BC V5Z 4H4, Canada; Department of Medical Genetics, University of British Columbia, 4500, Oak Street, Vancouver, BC V6H3N1, Canada.
| | - Victor Yuan
- BC Children's Hospital Research Institute, 950 West 28th Ave, Vancouver, BC V5Z 4H4, Canada; Department of Medical Genetics, University of British Columbia, 4500, Oak Street, Vancouver, BC V6H3N1, Canada.
| | - Wendy P Robinson
- BC Children's Hospital Research Institute, 950 West 28th Ave, Vancouver, BC V5Z 4H4, Canada; Department of Medical Genetics, University of British Columbia, 4500, Oak Street, Vancouver, BC V6H3N1, Canada.
| |
Collapse
|
46
|
Li S, Chen M, Li Y, Tollefsbol TO. Prenatal epigenetics diets play protective roles against environmental pollution. Clin Epigenetics 2019; 11:82. [PMID: 31097039 PMCID: PMC6524340 DOI: 10.1186/s13148-019-0659-4] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 03/27/2019] [Indexed: 12/12/2022] Open
Abstract
It is thought that germ cells and preimplantation embryos during development are most susceptible to endogenous and exogenous environmental factors because the epigenome in those cells is undergoing dramatic elimination and reconstruction. Exposure to environmental factors such as nutrition, climate, stress, pathogens, toxins, and even social behavior during gametogenesis and early embryogenesis has been shown to influence disease susceptibility in the offspring. Early-life epigenetic modifications, which determine the expression of genetic information stored in the genome, are viewed as one of the general mechanisms linking prenatal exposure and phenotypic changes later in life. From atmospheric pollution, endocrine-disrupting chemicals to heavy metals, research increasingly suggests that environmental pollutions have already produced significant consequences on human health. Moreover, mounting evidence now links such pollution to relevant modification in the epigenome. The epigenetics diet, referring to a class of bioactive dietary compounds such as isothiocyanates in broccoli, genistein in soybean, resveratrol in grape, epigallocatechin-3-gallate in green tea, and ascorbic acid in fruits, has been shown to modify the epigenome leading to beneficial health outcomes. This review will primarily focus on the causes and consequences of prenatal environment pollution exposure on the epigenome, and the potential protective role of the epigenetics diet, which could play a central role in neutralizing epigenomic aberrations against environmental pollutions.
Collapse
Affiliation(s)
- Shizhao Li
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Min Chen
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Yuanyuan Li
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL, USA.
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA.
- Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Trygve O Tollefsbol
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, USA.
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA.
- Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, AL, USA.
- Comprehensive Center for Healthy Aging, University of Alabama at Birmingham, Birmingham, AL, USA.
- Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
47
|
Zakarya R, Adcock I, Oliver BG. Epigenetic impacts of maternal tobacco and e-vapour exposure on the offspring lung. Clin Epigenetics 2019; 11:32. [PMID: 30782202 PMCID: PMC6381655 DOI: 10.1186/s13148-019-0631-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 02/11/2019] [Indexed: 12/15/2022] Open
Abstract
In utero exposure to tobacco products, whether maternal or environmental, have harmful effects on first neonatal and later adult respiratory outcomes. These effects have been shown to persist across subsequent generations, regardless of the offsprings' smoking habits. Established epigenetic modifications induced by in utero exposure are postulated as the mechanism underlying the inherited poor respiratory outcomes. As e-cigarette use is on the rise, their potential to induce similar functional respiratory deficits underpinned by an alteration in the foetal epigenome needs to be explored. This review will focus on the functional and epigenetic impact of in utero exposure to maternal cigarette smoke, maternal environmental tobacco smoke, environmental tobacco smoke and e-cigarette vapour on foetal respiratory outcomes.
Collapse
Affiliation(s)
- Razia Zakarya
- Respiratory Cellular and Molecular Biology, Woolcock Institute of Medical Research, The University of Sydney, Sydney, Australia
- School of Life Sciences, University of Technology Sydney, Sydney, Australia
| | - Ian Adcock
- Airway Diseases Section, National Heart and Lung Institute, Imperial College London, London, UK
- Biomedical Research Unit, Section of Respiratory Diseases, Royal Brompton and Harefield NHS Trust, London, UK
| | - Brian G Oliver
- Respiratory Cellular and Molecular Biology, Woolcock Institute of Medical Research, The University of Sydney, Sydney, Australia.
- School of Life Sciences, University of Technology Sydney, Sydney, Australia.
| |
Collapse
|
48
|
Saxena P, Pradhan D, Verma R, Kumar SN, Deval R, Kumar Jain A. Up-regulation of fibroblast growth factor receptor 1 due to prenatal tobacco exposure can lead to developmental defects in new born. J Matern Fetal Neonatal Med 2018; 33:1732-1743. [PMID: 30428736 DOI: 10.1080/14767058.2018.1529164] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Introduction: Tobacco-smoking is one of the most important risk factor for preterm delivery, pregnancy loss, low birth weight, and fetal growth restriction. It is estimated that approximately 30% of growth-restricted neonates could be independently associated with maternal smoking.Methods: In this study, gene expression profile, GSE11798, was chosen from GEO database with an aim to perceive change in gene expression signature in new born due to maternal smoking. Enrichment analysis was performed to annotate differentially expressed genes (DEGs) through gene ontology and pathway analysis using DAVID. Protein-protein interactions and module detection of these DEGs were carried out using cytoscape v3.6.0. Thirty umbilical cord tissue samples from 15 smokers and 15 non-smokers pregnant women were included in this analysis.Results: Twenty-six differentially expressed genes (DEGs) between two groups were selected using GEO2R tool. The DEGs were observed to be participating in biological processes/pathways related to growth releasing hormone, angiogenesis, embryonic skeletal, and cardiac development. Fibroblast growth factor receptor-1 (FGFR1) was identified to be the hub node with 348 interacting partners, which regulates transcription, cell growth, differentiation, and apoptosis. The up-regulation of FGFR1 in umbilical cord tissue may lead to reproductive and developmental complications such as encephalocraniocutaneous lipomatosis, osteoglophonic dysplasia, and Pfeiffer syndrome in new-borns.Conclusion: The findings manifests the possibility of overcoming these adverse health effects in new born through FGFR1 modulating treatments during pregnancy.
Collapse
Affiliation(s)
- Pallavi Saxena
- Department of Biotechnology, Invertis University, Bareilly, India.,Biomedical Informatics Centre, Indian Council of Medical Research, National Institute of Pathology, New Delhi, India
| | - Dibyabhaba Pradhan
- Biomedical Informatics Centre, Indian Council of Medical Research, National Institute of Pathology, New Delhi, India
| | - Rashi Verma
- Biomedical Informatics Centre, Indian Council of Medical Research, National Institute of Pathology, New Delhi, India
| | - Shashi Nandar Kumar
- Biomedical Informatics Centre, Indian Council of Medical Research, National Institute of Pathology, New Delhi, India
| | - Ravi Deval
- Department of Biotechnology, Invertis University, Bareilly, India
| | - Arun Kumar Jain
- Biomedical Informatics Centre, Indian Council of Medical Research, National Institute of Pathology, New Delhi, India
| |
Collapse
|
49
|
Hu P, Fan L, Ding P, He YH, Xie C, Niu Z, Tian FY, Yuan S, Jia D, Chen WQ. Association between prenatal exposure to cooking oil fumes and full-term low birth weight is mediated by placental weight. ENVIRONMENTAL RESEARCH 2018; 167:622-631. [PMID: 30172195 DOI: 10.1016/j.envres.2018.08.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 08/08/2018] [Accepted: 08/09/2018] [Indexed: 06/08/2023]
Abstract
OBJECTIVE Evidence regarding the association between prenatal exposure to cooking oil fumes (COF) and full-term low birth weight (FTLBW) is still controversial, and the mechanism remains unclear. This study thus aims to explore the association of prenatal COF exposure with off-spring FT-LBW as well as the mediating role of placenta in their association. METHODS A case-control study enrolling 266 pregnant women delivering FTLBW newborns (cases) and 1420 delivering normal birth weight (NBW) newborns (controls) was conducted. Information on prenatal COF exposure, socio-demographics, and obstetric conditions were collected at the Women's and Children's Hospitals of Shenzhen and Foshan in Guangdong, China. Linear and hierarchical logistic regression models were undertaken to explore the associations among COF exposure, placenta and birth weight, as well as the mediation effect of placental weight. RESULTS After controlling for potential confounders, prenatal COF exposure was significantly associated with the higher risk of FT-LBW (OR = 1.31, 95% CI= 1.06-1.63) and the lower placental weight (ß = -0.12, 95% CI= -0.23 ~ -0.005). Compared with mothers who never cooked, those cooking sometimes (OR= 2.99, 95% CI= 1.48-6.04) or often (OR= 3.41, 95% CI= 1.40-8.34) showed a higher risk of FT-LBW, and likewise, those cooking for less than half an hour (OR= 2.08, 95% CI= 1.14-3.79) or cooking between half to an hour (OR= 2.48, 95% CI= 1.44-4.29) were also more likely to exhibit FT-LBW. Different cooking methods including pan-frying (OR= 2.24, 95% CI= 1.30-3.85) or deep-frying (OR= 1.78, 95% CI= 1.12-2.85) during pregnancy were associated with increased FT-LBW risks as well. The further mediation analysis illustrated that placental weight mediated 15.96% (95% CI: 12.81~28.80%) and 15.90% (95% CI= 14.62%~16.66%) of the associations of cooking during pregnancy and frequency of prenatal COF exposure, respectively, with FT-LBW.
Collapse
Affiliation(s)
- Pian Hu
- Department of Medical Statistics and Epidemiology, Guangzhou Key Laboratory of Environmental Pollution and Health Assessment,Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, Guangzhou,China
| | - Lijun Fan
- Department of Medical Statistics and Epidemiology, Guangzhou Key Laboratory of Environmental Pollution and Health Assessment,Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, Guangzhou,China
| | - Peng Ding
- Department of Medical Statistics and Epidemiology, Guangzhou Key Laboratory of Environmental Pollution and Health Assessment,Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, Guangzhou,China
| | - Yan-Hui He
- Department of Medical Statistics and Epidemiology, Guangzhou Key Laboratory of Environmental Pollution and Health Assessment,Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, Guangzhou,China
| | - Chuanbo Xie
- Department of Medical Statistics and Epidemiology, Guangzhou Key Laboratory of Environmental Pollution and Health Assessment,Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, Guangzhou,China
| | - Zhongzheng Niu
- Department of Medical Statistics and Epidemiology, Guangzhou Key Laboratory of Environmental Pollution and Health Assessment,Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, Guangzhou,China
| | - Fu-Ying Tian
- Department of Medical Statistics and Epidemiology, Guangzhou Key Laboratory of Environmental Pollution and Health Assessment,Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, Guangzhou,China
| | - Shixin Yuan
- Shenzhen Women's and Children's Hospital, Shenzhen, China
| | - Deqin Jia
- Foshan Women's and Children's Hospital, Foshan, China
| | - Wei-Qing Chen
- Department of Medical Statistics and Epidemiology, Guangzhou Key Laboratory of Environmental Pollution and Health Assessment,Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, Guangzhou,China; Department of Information Management, Xinhua College, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
50
|
Badon SE, Littman AJ, Chan KCG, Tadesse MG, Stapleton PL, Bammler TK, Sorensen TK, Williams MA, Enquobahrie DA. Physical activity and epigenetic biomarkers in maternal blood during pregnancy. Epigenomics 2018; 10:1383-1395. [PMID: 30324807 PMCID: PMC6275564 DOI: 10.2217/epi-2017-0169] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 06/20/2018] [Indexed: 12/13/2022] Open
Abstract
AIM Investigate associations of leisure time physical activity (LTPA) with DNA methylation and miRNAs during pregnancy. Patients & methods: LTPA, candidate DNA methylation and circulating miRNAs were measured (average 15 weeks gestation) in pregnant women (n = 92). RESULTS Each additional hour of prepregnancy LTPA duration was associated with hypermethylation in C1orf212 (β = 0.137, 95% CI: 0.004-0.270) and higher circulating miR-146b-5p (β = 0.084, 95% CI: 0.017-0.151). Each additional metabolic equivalent hour of early-pregnancy LTPA energy expenditure was associated with higher circulating miR-21-3p (β = 0.431, 95% CI: 0.089-0.772) in women carrying female offspring, and lower circulating miR-146b-5p (β = -0.285, 95% CI: -0.528 to -0.043) and miR-517-5p (β = -0.406, 95% CI: -0.736 to -0.076) in women carrying male offspring. CONCLUSION Our findings suggest that LTPA may influence maternal epigenetic biomarkers, possibly in an offspring sex-specific manner.
Collapse
Affiliation(s)
- Sylvia E Badon
- Department of Epidemiology, University of Washington, Seattle, WA 98185, USA
| | - Alyson J Littman
- Department of Epidemiology, University of Washington, Seattle, WA 98185, USA
- Seattle Epidemiologic Research & Information Center, VA Puget Sound, Seattle, WA 98108, USA
| | | | - Mahlet G Tadesse
- Department of Mathematics & Statistics, Georgetown University, Washington, DC 20057, USA
| | - Patricia L Stapleton
- Department of Occupational & Environmental Health Sciences, University of Washington, Seattle, WA 98195, USA
| | - Theo K Bammler
- Department of Occupational & Environmental Health Sciences, University of Washington, Seattle, WA 98195, USA
| | - Tanya K Sorensen
- Center for Perinatal Studies, Swedish Medical Center, Seattle, WA 98104, USA
| | - Michelle A Williams
- Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, MA 02115, USA
| | | |
Collapse
|