1
|
Li X, Chen S, Wang X, Zhang R, Yang J, Xu H, He W, Lai M, Wu S, Nan A. The pivotal regulatory factor circBRWD1 inhibits arsenic exposure-induced lung cancer occurrence by binding mRNA and regulating its stability. Mol Ther Oncolytics 2022; 26:399-412. [PMID: 36159776 PMCID: PMC9463561 DOI: 10.1016/j.omto.2022.08.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 08/18/2022] [Indexed: 11/28/2022] Open
Abstract
Multiple studies have indicated that circular RNAs (circRNAs) play a regulatory role in different stages of tumors by interacting with various molecules. With continuous in-depth research on the biological functions of circRNAs, increasing evidence has shown that circRNAs play important roles in carcinogenesis caused by environmental pollutants. However, the function and mechanism of circRNAs in arsenic exposure-induced lung cancer occurrence have not been reported. In this study, RNA sequencing and qPCR assays revealed that the expression of circBRWD1 was decreased in BEAS-2B-As cells and multiple lung cancer cell lines. Silencing circBRWD1 promoted cell viability and proliferation, inhibited cell apoptosis, and accelerated the G0/G1 phase transition in BEAS-2B-As cells; however, these functions were abrogated by circBRWD1 overexpression. Mechanistically, under arsenic exposure, expression of decreased circBRWD1 led to enhanced stability of the mRNA to which it directly binds (c-JUN, c-MYC, and CDK6 mRNA), increasing its expression. This mechanism promotes the malignant transformation of lung cells and ultimately leads to lung cancer. Our findings thus reveal the molecular mechanism of arsenic carcinogenesis.
Collapse
Affiliation(s)
- Xiaofei Li
- Department of Toxicology, School of Public Health, Guangxi Medical University, Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Nanning 530021, China.,Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning 530021, China.,Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning 530021, China
| | - Sixian Chen
- Department of Toxicology, School of Public Health, Guangxi Medical University, Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Nanning 530021, China.,Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning 530021, China.,Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning 530021, China
| | - Xin Wang
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Ruirui Zhang
- Department of Toxicology, School of Public Health, Guangxi Medical University, Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Nanning 530021, China.,Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning 530021, China.,Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning 530021, China
| | - Jialei Yang
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning 530021, China
| | - Haotian Xu
- Department of Toxicology, School of Public Health, Guangxi Medical University, Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Nanning 530021, China.,Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning 530021, China.,Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning 530021, China
| | - Wanting He
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning 530021, China
| | - Mingshuang Lai
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning 530021, China
| | - Shuilian Wu
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Aruo Nan
- Department of Toxicology, School of Public Health, Guangxi Medical University, Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Nanning 530021, China.,Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning 530021, China.,Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning 530021, China.,Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| |
Collapse
|
2
|
Stroebe K, Kanis B, Richardson J, Oldersma F, Broer J, Greven F, Postmes T. Chronic disaster impact: the long-term psychological and physical health consequences of housing damage due to induced earthquakes. BMJ Open 2021; 11:e040710. [PMID: 33952531 PMCID: PMC8103378 DOI: 10.1136/bmjopen-2020-040710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 04/07/2021] [Accepted: 04/09/2021] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES To evaluate the long-term (psychosomatic) health consequences of man-made earthquakes compared with a non-exposure control group. Exposure was hypothesised to have an increasingly negative impact on health outcomes over time. SETTING Large-scale gas extraction in the Netherlands causing earthquakes and considerable damage. PARTICIPANTS A representative sample of inhabitants randomly selected from municipal population records; contacted 5 times during 21 months (T1: N=3934; T5: N=2150; mean age: 56.54; 50% men; at T5, N=846 (39.3%) had no, 459 (21.3%) once and 736 (34.2%) repeated damages). MAIN MEASURES (Psychosomatic) health outcomes: self-rated health and Mental Health Inventory (both: validated; Short Form Health Survey); stress related health symptoms (shortened version of previously validated symptoms list). Independent variable: exposure to the consequences of earthquakes assessed via physical (peak ground acceleration) and personal exposure (damage to housing: none, once, repeated). RESULTS Exposure to induced earthquakes has negative health consequences especially for those whose homes were damaged repeatedly. Compared with a no-damage control group, repeated damage was associated with lower self-rated health (OR:1.64), mental health (OR:1.83) and more stress-related health symptoms (OR:2.52). Effects increased over time: in terms of relative risk, by T5, those whose homes had repeated damage were respectively 1.60 and 2.11 times more likely to report poor health and negative mental health and 2.84 times more at risk of elevated stress related health symptoms. Results for physical exposure were comparable. CONCLUSION This is the first study to provide evidence that induced earthquakes can have negative health consequences for inhabitants over time. It identifies the subpopulation particularly at risk: people with repeated damages who have experienced many earthquakes. Findings can have important implications for the prevention of negative health consequences of induced earthquakes.
Collapse
Affiliation(s)
- Katherine Stroebe
- Department of Social Psychology, Rijksuniversiteit Groningen, Groningen, The Netherlands
| | - Babet Kanis
- Department of Social Psychology, Rijksuniversiteit Groningen, Groningen, The Netherlands
| | - Justin Richardson
- Department of Social Psychology, Rijksuniversiteit Groningen, Groningen, The Netherlands
| | - Frans Oldersma
- Department for Statistics and Research, Municipality of Groningen, Groningen, The Netherlands
| | - Jan Broer
- ABPG, Municipal Health Services, Groningen, The Netherlands
| | - Frans Greven
- Department of Environmental Health, Municipal Health Services, Groningen, The Netherlands
| | - Tom Postmes
- Department of Social Psychology, Rijksuniversiteit Groningen, Groningen, The Netherlands
| |
Collapse
|
3
|
Kim K, Heo YK, Chun S, Kim CH, Bian Y, Bae ON, Lee MY, Lim KM, Chung JH. Arsenic May Act as a Pro-Metastatic Carcinogen Through Promoting Tumor Cell-Induced Platelet Aggregation. Toxicol Sci 2018; 168:18-27. [DOI: 10.1093/toxsci/kfy247] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Affiliation(s)
- Keunyoung Kim
- College of Pharmacy, Seoul National University, Seoul 08826, South Korea
| | - Yoon-Kyung Heo
- College of Pharmacy, Seoul National University, Seoul 08826, South Korea
| | - Soyoung Chun
- College of Pharmacy, Seoul National University, Seoul 08826, South Korea
| | - Chang-Hwan Kim
- The 5th R&D Institute, Agency for Defense Development, Daejeon 34186, South Korea
| | - Yiying Bian
- College of Pharmacy, Seoul National University, Seoul 08826, South Korea
| | - Ok-Nam Bae
- College of Pharmacy, Hanyang University, Ansan 15588, Gyeonggido, South Korea
| | - Moo-Yeol Lee
- College of Pharmacy, Dongguk University, Goyang, Gyeonggido 10326, South Korea
| | - Kyung-Min Lim
- College of Pharmacy, Ewha Womans University, Seoul 03760, South Korea
| | - Jin-Ho Chung
- College of Pharmacy, Seoul National University, Seoul 08826, South Korea
| |
Collapse
|
4
|
Werner AK, Watt K, Cameron C, Vink S, Page A, Jagals P. Examination of Child and Adolescent Hospital Admission Rates in Queensland, Australia, 1995-2011: A Comparison of Coal Seam Gas, Coal Mining, and Rural Areas. Matern Child Health J 2018; 22:1306-1318. [PMID: 29500783 PMCID: PMC6096510 DOI: 10.1007/s10995-018-2511-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Objectives At present, coal seam gas (CSG) is the most common form of unconventional natural gas development occurring in Australia. Few studies have been conducted to explore the potential health impacts of CSG development on children and adolescents. This analysis presents age-specific hospitalisation rates for a child and adolescent cohort in three study areas in Queensland. Methods Three geographic areas were selected: a CSG area, a coal mining area, and a rural area with no mining activity. Changes in area-specific hospital admissions were investigated over the period 1995-2011 in a series of negative binomial regression analyses for 19 International Classification of Diseases (ICD) chapters, adjusting for sociodemographic factors. Results The strongest associations were found for respiratory diseases in 0-4 year olds (7% increase [95% CI 4%, 11%] and 6% increase [95% CI 2%, 10%] in the CSG area relative to the coal mining and rural areas, respectively) and 10-14 year olds (9% increase [95% CI 1%, 18%] and 11% increase [95% CI 1%, 21%] in the CSG area compared to the coal mining and rural areas, respectively). The largest effect size was for blood/immune diseases in 5-9 year olds in the CSG area (467% increase [95% CI 139%, 1244%]) compared to the rural area with no mining activity. Conclusions for Practice Higher rates of hospitalisation existed in the CSG area for certain ICD chapters and paediatric age groups, suggesting potential age-specific health impacts. This study provides insights on associations that should be explored further in terms of child and adolescent health.
Collapse
Affiliation(s)
- Angela K Werner
- Sustainable Minerals Institute, The University of Queensland, St. Lucia, QLD, Australia.
- Level 6, CWiMI, University of Queensland, Corner Staffhouse and College Roads, Sir James Foots Bldg (47a), St. Lucia, QLD, 4072, Australia.
| | - Kerrianne Watt
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Australia
| | - Cate Cameron
- Jamieson Trauma Institute, Royal Brisbane & Women's Hospital, Metro North Hospital and Health Services District, Brisbane, Australia
- School of Public Health and Social Work, Queensland University of Technology, Brisbane, Australia
| | - Sue Vink
- Sustainable Minerals Institute, The University of Queensland, St. Lucia, QLD, Australia
| | - Andrew Page
- Centre for Health Research, Western Sydney University, Penrith, NSW, Australia
| | - Paul Jagals
- Children's Health and Environment Programme, Centre for Children's Health Research, University of Queensland, Brisbane, Australia
| |
Collapse
|
5
|
Casey JA, Wilcox HC, Hirsch AG, Pollak J, Schwartz BS. Associations of unconventional natural gas development with depression symptoms and disordered sleep in Pennsylvania. Sci Rep 2018; 8:11375. [PMID: 30054553 PMCID: PMC6063969 DOI: 10.1038/s41598-018-29747-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 07/18/2018] [Indexed: 12/21/2022] Open
Abstract
Environmental and community factors may influence the development or course of depression and sleep problems. We evaluated the association of unconventional natural gas development (UNGD) with depression symptoms and disordered sleep diagnoses using the Patient Health Questionnaire-8 and electronic health record data among Geisinger adult primary care patients in Pennsylvania. Participants received a retrospective metric for UNGD at their residence (very low, low, medium, and high) that incorporated dates and durations of well development, distance from patient homes to wells, and well characteristics. Analyses included 4,762 participants with no (62%), mild (23%), moderate (10%), and moderately severe or severe (5%) depression symptoms in 2014-2015 and 3,868 disordered sleep diagnoses between 2009-2015. We observed associations between living closer to more and bigger wells and depression symptoms, but not disordered sleep diagnoses in models weighted to account for sampling design and participation. High UNGD (vs. very low) was associated with depression symptoms in an adjusted negative binomial model (exponentiated coefficient = 1.18, 95% confidence interval [CI]: 1.04-1.34). High and low UNGD (vs. very low) were associated with depression symptoms (vs. none) in an adjusted multinomial logistic model. Our findings suggest that UNGD may be associated with adverse mental health in Pennsylvania.
Collapse
Affiliation(s)
- Joan A Casey
- Division of Environmental Health Sciences, University of California, Berkeley School of Public Health, Berkeley, USA
| | - Holly C Wilcox
- Department of Mental Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Annemarie G Hirsch
- Department of Epidemiology and Health Services Research, Geisinger, Danville, Pennsylvania, USA
| | - Jonathan Pollak
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Brian S Schwartz
- Department of Epidemiology and Health Services Research, Geisinger, Danville, Pennsylvania, USA.
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA.
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA.
| |
Collapse
|
6
|
Dai X, Chen C, Yang Q, Xue J, Chen X, Sun B, Luo F, Liu X, Xiao T, Xu H, Sun Q, Zhang A, Liu Q. Exosomal circRNA_100284 from arsenite-transformed cells, via microRNA-217 regulation of EZH2, is involved in the malignant transformation of human hepatic cells by accelerating the cell cycle and promoting cell proliferation. Cell Death Dis 2018; 9:454. [PMID: 29674685 PMCID: PMC5908808 DOI: 10.1038/s41419-018-0485-1] [Citation(s) in RCA: 144] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 03/08/2018] [Accepted: 03/12/2018] [Indexed: 12/31/2022]
Abstract
Intercellular communication between malignant cells and neighboring nonmalignant cells is involved in carcinogenesis. In the progression of carcinogenesis, exosomes are messengers for intercellular communication. Circular RNAs (circRNAs) are noncoding RNAs with functions that include regulation of the cell cycle and proliferation. However, the functions of exosomal circRNAs are not clear. The present research aimed to determine whether circRNAs secreted from arsenite-transformed human hepatic epithelial (L-02) cells are transferred into normal L-02 cells and become functionally active in the normal cells. The results showed that circRNA_100284 is involved in the malignant transformation of L-02 cells induced by arsenite. The medium from transformed L-02 cells induced upregulation of circRNA_100284, accelerated the cell cycle, and promoted proliferation of normal L-02 cells. Transformed cells transferred circRNA_100284 into normal L-02 cells via exosomes and led to the malignant transformation of the non-transformed cells. Knockdown of circRNA_100284, which reduced circRNA_100284 levels in exosomes derived from transformed L-02 cells, blocked the accelerated cell cycle and reduced proliferation and malignancy. In addition, in normal L-02 cells, exosomal circRNA_100284 derived from arsenite-transformed L-02 cells induced acceleration of the cell cycle and promoted proliferation via acting as a sponge of microRNA-217. Further, exosomal circRNA_100284 was upregulated in the sera of people exposed to arsenite. Thus, exosomes derived from transformed L-02 cells transferred circRNA_100284 to surrounding cells, which induced an accelerated cell cycle and promoted proliferation of normal liver cells and led to the malignant transformation of the non-transformed cells. The findings support the concept that exosomal circRNAs are involved in cell–cell communication during carcinogenesis induced by arsenite.
Collapse
Affiliation(s)
- Xiangyu Dai
- Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China.,The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Chao Chen
- Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China.,The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Qianlei Yang
- Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China.,The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Junchao Xue
- Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China.,The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Xiong Chen
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, 550025, Guizhou, People's Republic of China
| | - Baofei Sun
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, 550025, Guizhou, People's Republic of China
| | - Fei Luo
- Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China.,The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Xinlu Liu
- Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China.,The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Tian Xiao
- Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China.,The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Hui Xu
- Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China.,The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Qian Sun
- Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China.,The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Aihua Zhang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, 550025, Guizhou, People's Republic of China
| | - Qizhan Liu
- Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China. .,The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China.
| |
Collapse
|
7
|
Bolden AL, Schultz K, Pelch KE, Kwiatkowski CF. Exploring the endocrine activity of air pollutants associated with unconventional oil and gas extraction. Environ Health 2018; 17:26. [PMID: 29558955 PMCID: PMC5861625 DOI: 10.1186/s12940-018-0368-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 02/20/2018] [Indexed: 05/17/2023]
Abstract
BACKGROUND In the last decade unconventional oil and gas (UOG) extraction has rapidly proliferated throughout the United States (US) and the world. This occurred largely because of the development of directional drilling and hydraulic fracturing which allows access to fossil fuels from geologic formations that were previously not cost effective to pursue. This process is known to use greater than 1,000 chemicals such as solvents, surfactants, detergents, and biocides. In addition, a complex mixture of chemicals, including heavy metals, naturally-occurring radioactive chemicals, and organic compounds are released from the formations and can enter air and water. Compounds associated with UOG activity have been linked to adverse reproductive and developmental outcomes in humans and laboratory animal models, which is possibly due to the presence of endocrine active chemicals. METHODS Using systematic methods, electronic searches of PubMed and Web of Science were conducted to identify studies that measured chemicals in air near sites of UOG activity. Records were screened by title and abstract, relevant articles then underwent full text review, and data were extracted from the studies. A list of chemicals detected near UOG sites was generated. Then, the potential endocrine activity of the most frequently detected chemicals was explored via searches of literature from PubMed. RESULTS Evaluation of 48 studies that sampled air near sites of UOG activity identified 106 chemicals detected in two or more studies. Ethane, benzene and n-pentane were the top three most frequently detected. Twenty-one chemicals have been shown to have endocrine activity including estrogenic and androgenic activity and the ability to alter steroidogenesis. Literature also suggested that some of the air pollutants may affect reproduction, development, and neurophysiological function, all endpoints which can be modulated by hormones. These chemicals included aromatics (i.e., benzene, toluene, ethylbenzene, and xylene), several polycyclic aromatic hydrocarbons, and mercury. CONCLUSION These results provide a basis for prioritizing future primary studies regarding the endocrine disrupting properties of UOG air pollutants, including exposure research in wildlife and humans. Further, we recommend systematic reviews of the health impacts of exposure to specific chemicals, and comprehensive environmental sampling of a broader array of chemicals.
Collapse
Affiliation(s)
- Ashley L. Bolden
- The Endocrine Disruption Exchange (TEDX), www.TEDX.org, Eckert, Colorado USA
| | - Kim Schultz
- The Endocrine Disruption Exchange (TEDX), www.TEDX.org, Eckert, Colorado USA
| | - Katherine E. Pelch
- The Endocrine Disruption Exchange (TEDX), www.TEDX.org, Eckert, Colorado USA
| | - Carol F. Kwiatkowski
- The Endocrine Disruption Exchange (TEDX), www.TEDX.org, Eckert, Colorado USA
- Department of Integrative Physiology, University of Colorado, Boulder, Colorado USA
- Biological Sciences, North Carolina State University, Raleigh, North Carolina USA
| |
Collapse
|
8
|
Saunders PJ, McCoy D, Goldstein R, Saunders AT, Munroe A. A review of the public health impacts of unconventional natural gas development. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2018; 40:1-57. [PMID: 27921191 DOI: 10.1007/s10653-016-9898-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 11/13/2016] [Indexed: 06/06/2023]
Abstract
The public health impact of hydraulic fracturing remains a high profile and controversial issue. While there has been a recent surge of published papers, it remains an under-researched area despite being possibly the most substantive change in energy production since the advent of the fossil fuel economy. We review the evidence of effects in five public health domains with a particular focus on the UK: exposure, health, socio-economic, climate change and seismicity. While the latter would seem not to be of significance for the UK, we conclude that serious gaps in our understanding of the other potential impacts persist together with some concerning signals in the literature and legitimate uncertainties derived from first principles. There is a fundamental requirement for high-quality epidemiological research incorporating real exposure measures, improved understanding of methane leakage throughout the process, and a rigorous analysis of the UK social and economic impacts. In the absence of such intelligence, we consider it prudent to incentivise further research and delay any proposed developments in the UK. Recognising the political realities of the planning and permitting process, we make a series of recommendations to protect public health in the event of hydraulic fracturing being approved in the UK.
Collapse
Affiliation(s)
- P J Saunders
- University of Staffordshire, Stoke-on-Trent, UK.
| | - D McCoy
- Queen Mary University of London, London, UK
| | - R Goldstein
- West Midlands Public Health Training Scheme, Birmingham, UK
| | | | | |
Collapse
|
9
|
Abstract
PURPOSE OF REVIEW This review summarizes the recent epidemiologic literature examining health outcomes in communities living close to unconventional natural gas development (UNGD) and identifies areas requiring further study. RECENT FINDINGS To date, these studies have been primarily retrospective in design and used self-report of health symptoms or electronic health databases to obtain outcome information. Proximity to UNGD is often used as a surrogate for exposure. There is preliminary evidence linking respiratory outcomes, including asthma exacerbations, and birth outcomes, such as reduced fetal growth and preterm birth, to UNGD; however, results differ across study populations and regions. SUMMARY Although small, the current body of literature suggests that living near UNGD may have negative health consequences for surrounding communities, but additional work using more granular estimates of exposure or personalized monitoring is urgently needed.
Collapse
Affiliation(s)
- Shaina L. Stacy
- Department of Epidemiology, Brown University School of Public Health, Box G-S121-2, Providence, Rhode Island 02912
| |
Collapse
|
10
|
Malin SA, Mayer A, Shreeve K, Olson-Hazboun SK, Adgate J. Free Market Ideology and Deregulation in Colorado's Oilfields: Evidence for triple movement activism? ENVIRONMENTAL POLITICS 2017; 26:521-545. [PMID: 29225425 PMCID: PMC5720149 DOI: 10.1080/09644016.2017.1287627] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Unconventional oil and gas extraction (UOGE) has spurred an unprecedented boom in on-shore production in the U.S. Despite a surge in related research, a void exists regarding inquiries into policy outcomes and perceptions. To address this, support for federal regulatory exemptions for UOGE is examined using survey data collected in 2015 from two northern Colorado communities. Current regulatory exemptions for UOGE can be understood as components of broader societal processes of neoliberalization. Free market ideology increases public support for federal regulatory exemptions for UOGE. Perceived negative impacts do not necessarily drive people to support increased federal regulation. Utilizing neo-Polanyian theory, interaction between free market ideology and perceived negative impacts is explored. Free market ideology appears to moderate people's views of regulation: increasing the effect of perceived negative impacts while simultaneously increasing support for deregulation. To conclude, the ways in which free market ideology might normalize the impacts of UOGE activity are discussed.
Collapse
Affiliation(s)
- Stephanie A Malin
- B234 Clark Building, Department of Sociology, Colorado State University, Fort Collins, CO 80523
| | - Adam Mayer
- Department of Sociology, Colorado State University, Fort Collins, CO USA
| | - Kelly Shreeve
- Department of Sociology, Colorado State University, Fort Collins, CO, USA
| | - Shawn K Olson-Hazboun
- Department of Sociology, Social Work, and Anthropology, Utah, State University, Logan, UT, USA
| | - John Adgate
- Department of Environmental and Occupational Health, University of Colorado - Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
11
|
Affiliation(s)
- Joan A Casey
- Robert Wood Johnson Foundation Health and Society Scholars Program UC San Francisco and UC Berkeley San Francisco, CA Departments of Environmental Health Sciences and Epidemiology Johns Hopkins Bloomberg School of Public Health Baltimore, MD Department of Medicine Johns Hopkins School of Medicine Baltimore, MD Center for Health Research Geisinger Health System Danville, PA
| | | |
Collapse
|
12
|
Casey JA, Savitz DA, Rasmussen SG, Ogburn EL, Pollak J, Mercer DG, Schwartz BS. Unconventional Natural Gas Development and Birth Outcomes in Pennsylvania, USA. Epidemiology 2016; 27:163-72. [PMID: 26426945 PMCID: PMC4738074 DOI: 10.1097/ede.0000000000000387] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
BACKGROUND Unconventional natural gas development has expanded rapidly. In Pennsylvania, the number of producing wells increased from 0 in 2005 to 3,689 in 2013. Few publications have focused on unconventional natural gas development and birth outcomes. METHODS We performed a retrospective cohort study using electronic health record data on 9,384 mothers linked to 10,946 neonates in the Geisinger Health System from January 2009 to January 2013. We estimated cumulative exposure to unconventional natural gas development activity with an inverse-distance squared model that incorporated distance to the mother's home; dates and durations of well pad development, drilling, and hydraulic fracturing; and production volume during the pregnancy. We used multilevel linear and logistic regression models to examine associations between activity index quartile and term birth weight, preterm birth, low 5-minute Apgar score and small size for gestational age birth, while controlling for potential confounding variables. RESULTS In adjusted models, there was an association between unconventional natural gas development activity and preterm birth that increased across quartiles, with a fourth quartile odds ratio of 1.4 (95% confidence interval = 1.0, 1.9). There were no associations of activity with Apgar score, small for gestational age birth, or term birth weight (after adjustment for year). In a posthoc analysis, there was an association with physician-recorded high-risk pregnancy identified from the problem list (fourth vs. first quartile, 1.3 [95% confidence interval = 1.1, 1.7]). CONCLUSION Prenatal residential exposure to unconventional natural gas development activity was associated with two pregnancy outcomes, adding to evidence that unconventional natural gas development may impact health.See Video Abstract at http://links.lww.com/EDE/B14.
Collapse
Affiliation(s)
- Joan A. Casey
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Robert Wood Johnson Foundation Health and Society Scholars Program, UC San Francisco and UC Berkeley, California, USA
| | - David A. Savitz
- Department of Epidemiology, Brown University School of Public Health, Providence, Rhode Island, USA and Department of Obstetrics and Gynecology, Alpert School of Medicine, Brown University, Providence, Rhode Island, USA
| | - Sara G. Rasmussen
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Elizabeth L. Ogburn
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Jonathan Pollak
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Dione G. Mercer
- Center for Health Research, Geisinger Health System, Danville, Pennsylvania, USA
| | - Brian S. Schwartz
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
- Center for Health Research, Geisinger Health System, Danville, Pennsylvania, USA
| |
Collapse
|
13
|
Werner AK, Watt K, Cameron CM, Vink S, Page A, Jagals P. All-age hospitalization rates in coal seam gas areas in Queensland, Australia, 1995-2011. BMC Public Health 2016; 16:125. [PMID: 26852381 PMCID: PMC4744625 DOI: 10.1186/s12889-016-2787-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 01/27/2016] [Indexed: 02/04/2023] Open
Abstract
Background Unconventional natural gas development (UNGD) is expanding globally, with Australia expanding development in the form of coal seam gas (CSG). Residents and other interest groups have voiced concerns about the potential environmental and health impacts related to CSG. This paper compares objective health outcomes from three study areas in Queensland, Australia to examine potential environmentally-related health impacts. Methods Three study areas were selected in an ecologic study design: a CSG area, a coal mining area, and a rural/agricultural area. Admitted patient data, as well as population data and additional factors, were obtained for each calendar year from 1995 through 2011 to calculate all-age hospitalization rates and age-standardized rates in each of these areas. The three areas were compared using negative binomial regression analyses (unadjusted and adjusted models) to examine increases over time of hospitalization rates grouped by primary diagnosis (19 ICD chapters), with rate ratios serving to compare the within-area regression slopes between the areas. Results The CSG area did not have significant increases in all-cause hospitalization rates over time for all-ages compared to the coal and rural study areas in adjusted models (RR: 1.02, 95 % CI: 1.00–1.04 as compared to the coal mining area; RR: 1.01, 95 % CI: 0.99–1.04 as compared to the rural area). While the CSG area did not show significant increases in specific hospitalization rates compared to both the coal mining and rural areas for any ICD chapters in the adjusted models, the CSG area showed increases in hospitalization rates compared only to the rural area for neoplasms (RR: 1.09, 95 % CI: 1.02–1.16) and blood/immune diseases (RR: 1.14, 95 % CI: 1.02–1.27). Conclusions This exploratory study of all-age hospitalization rates for three study areas in Queensland suggests that certain hospital admissions rates increased more quickly in the CSG study area than in other study areas, particularly the rural area, after adjusting for key sociodemographic factors. These findings are an important first step in identifying potential health impacts of CSG in the Australian context and serve to generate hypotheses for future studies. Electronic supplementary material The online version of this article (doi:10.1186/s12889-016-2787-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Angela K Werner
- Sustainable Minerals Institute, The University of Queensland, Sir James Foots Bldg (47a), Level 6, CWiMI, Corner Staffhouse and College Roads, St. Lucia, QLD, 4072, Australia.
| | - Kerrianne Watt
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, Australia. .,School of Public Health, The University of Queensland, Herston, QLD, Australia.
| | - Cate M Cameron
- CONROD Injury Research Centre, Menzies Health Institute Queensland, Griffith University, Meadowbrook, QLD, Australia.
| | - Sue Vink
- Sustainable Minerals Institute, The University of Queensland, Sir James Foots Bldg (47a), Level 6, CWiMI, Corner Staffhouse and College Roads, St. Lucia, QLD, 4072, Australia.
| | - Andrew Page
- Centre for Health Research, Western Sydney University, Penrith, NSW, Australia.
| | - Paul Jagals
- School of Public Health, The University of Queensland, Herston, QLD, Australia.
| |
Collapse
|
14
|
Rohlman D, Syron L, Hobbie K, Anderson KA, Scaffidi C, Sudakin D, Peterson ES, Waters KM, Haynes E, Arkin L, Feezel P, Kincl L. A Community-Based Approach to Developing a Mobile Device for Measuring Ambient Air Exposure, Location, and Respiratory Health. ENVIRONMENTAL JUSTICE (PRINT) 2015; 8:126-134. [PMID: 34093954 PMCID: PMC8162300 DOI: 10.1089/env.2015.0001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
In west Eugene (Oregon), community research indicates residents are disproportionately exposed to industrial air pollution and exhibit increased asthma incidence. In Carroll County (Ohio), recent increases in unconventional natural gas drilling sparked air quality concerns. These community concerns led to the development of a prototype mobile device to measure personal chemical exposure, location, and respiratory function. Working directly with the environmental justice (EJ) communities, the prototype was developed to 1) meet the needs of the community and 2) evaluate the use in EJ communities. The prototype was evaluated in three community focus groups (n = 25) to obtain feedback on the prototype and feasibility study design to evaluate the efficacy of the device to address community concerns. Focus groups were recorded and qualitatively analyzed with discrete feedback tabulated for further refinement. The prototype was improved by community feedback resulting in eight alterations/additions to software and instructional materials. Overall, focus group participants were supportive of the device and believed it would be a useful environmental health tool. The use of focus groups ensured that community members were engaged in the research design and development of a novel environmental health tool. We found that community-based research strategies resulted in a refined device as well as relevant research questions, specific to the EJ community needs and concerns.
Collapse
|