1
|
Cao Z, Jiang J, Wang Y, Lu Y, Wu M, Zhen X, Cai X, Sun H, Yan G. Role of PRMT5 mediated HOXA10 arginine 337 methylation in endometrial epithelial cell receptivity. Biochem Biophys Res Commun 2024; 739:151004. [PMID: 39550865 DOI: 10.1016/j.bbrc.2024.151004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Accepted: 11/13/2024] [Indexed: 11/19/2024]
Abstract
A successful embryo implantation relies heavily on the receptivity of the endometrial epithelium, a process regulated by various molecular mechanisms. Evaluating endometrial receptivity in infertility patients undergoing assisted reproductive treatment, particularly those with adenomyosis related infertility, poses significant challenges due to limitations associated with conventional assessment methods. In this study, we collected residual endometrial epithelial cells from the tips of embryo transfer catheters in patients with adenomyosis related infertility. High throughput sequencing revealed a marked downregulation of protein arginine methyltransferase 5 (PRMT5) in these cells. Functional assays demonstrated that PRMT5 interacts with and methylates homeobox A10 (HOXA10), a crucial transcription factor for endometrial receptivity and implantation. The methylation of HOXA10 at arginine 337 by PRMT5 enhances its stability and promotes the transcriptional activation of genes essential for endometrial differentiation and adhesion. The downregulation of PRMT5 led to decreased HOXA10 activity, resulting in impaired endometrial receptivity and subsequent implantation failure. These findings elucidate a critical pathway where PRMT5 downregulation negatively impacts HOXA10 function, providing new insights into the molecular mechanisms underlying implantation failure in adenomyosis related infertility. This study not only advances our understanding of the regulatory mechanisms governing endometrial receptivity but also identifies potential therapeutic targets for enhancing endometrial function in affected patients.
Collapse
Affiliation(s)
- Zhiwen Cao
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Jinwen Jiang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
| | - Yiting Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
| | - Yuhang Lu
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Min Wu
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Xin Zhen
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Xinyu Cai
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Haixiang Sun
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China; State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, 210032, Nanjing, China.
| | - Guijun Yan
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China; State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China; State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, 210032, Nanjing, China.
| |
Collapse
|
2
|
Cha J, Hong S, Gwak J, Kim M, Lee J, Kim T, Han GM, Hong SH, Hur J, Giesy JP, Khim JS. Identification of novel polar aryl hydrocarbon receptor agonists accumulated in liver of black-tailed gulls in Korea using advanced effect-directed analysis. JOURNAL OF HAZARDOUS MATERIALS 2022; 429:128305. [PMID: 35077967 DOI: 10.1016/j.jhazmat.2022.128305] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/04/2022] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
Although bioaccumulation of persistent organic pollutants in seabirds has been examined, few studies have been conducted to identify previously unidentified substances. Here, aryl hydrocarbon receptor (AhR) agonists were identified in livers of black-tailed gulls from South Korea using effect-directed analysis combined with full-scan screening analysis. Significant AhR-mediated potencies were observed in the polar fractions of liver extracts using H4IIE-luc bioassay. Eight known polar AhR agonists accounted for 11-20% of the total AhR-mediated potencies in the polar fractions; hydrocortisone and rutaecarpine were the major contributors. Twenty-two AhR agonist candidates in the polar fractions were identified using liquid chromatography-quadrupole time-of-flight mass spectrometry during a six-step selection process. Of these, [10]-gingerol, angelicin, corticosterone, eupatilin, etofenprox, oxadixyl, and tretinoin were identified as novel AhR agonists. The contribution to potencies increased with inclusion of novel AhR agonists (27-52%); corticosterone and [10]-gingerol contributed significantly. Quantitative structure-activity relationship suggested that the novel AhR agonists have other potential toxic effects, including carcinogenicity and mutagenicity. Polar AhR agonists have been used for pharmaceuticals and pesticides. Some novel AhR agonists have log KOW > 2 and log KOA ≥ 6, which indicates that these compounds can be biomagnified in air-breathing organisms, such as seabirds.
Collapse
Affiliation(s)
- Jihyun Cha
- Department of Marine Environmental Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Seongjin Hong
- Department of Marine Environmental Science, Chungnam National University, Daejeon 34134, Republic of Korea.
| | - Jiyun Gwak
- Department of Marine Environmental Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Mungi Kim
- Department of Marine Environmental Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Junghyun Lee
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea
| | - Taewoo Kim
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea
| | - Gi Myung Han
- Oil and POPs Research Group, Korea Institute of Ocean Science and Technology, Geoje 53201, Republic of Korea
| | - Sang Hee Hong
- Oil and POPs Research Group, Korea Institute of Ocean Science and Technology, Geoje 53201, Republic of Korea; Department of Ocean Sciences, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Jin Hur
- Department of Environment and Energy, Sejong University, Seoul 05006, Republic of Korea
| | - John P Giesy
- Department of Veterinary Biomedical Sciences & Toxicology Centre, University of Saskatchewan, Saskatoon, SK S7N5B3, Canada; Department of Environmental Science, Baylor University, Waco, TX 76798-7266, United States
| | - Jong Seong Khim
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
3
|
Cha J, Hong S, Lee J, Gwak J, Kim M, Kim T, Hur J, Giesy JP, Khim JS. Novel polar AhR-active chemicals detected in sediments of an industrial area using effect-directed analysis based on in vitro bioassays with full-scan high resolution mass spectrometric screening. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 779:146566. [PMID: 34030261 DOI: 10.1016/j.scitotenv.2021.146566] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 02/22/2021] [Accepted: 03/14/2021] [Indexed: 06/12/2023]
Abstract
Studies investigating aryl hydrocarbon receptor (AhR)-active compounds in the environment typically focus on non- and mid-polar substances, such as PAHs; while, information on polar AhR agonists remains limited. Here, we identified polar AhR agonists in sediments collected from the inland creeks of an industrialized area (Lake Sihwa, Korea) using effect-directed analysis combined with full-scan screening analysis (FSA; using LC-QTOFMS). Strong AhR-mediated potencies were observed for the polar and latter fractions of RP-HPLC (F3.5-F3.8) from sediment organic extracts in the H4IIE-luc in vitro bioassays. FSA was performed on the corresponding fractions. Twenty-eight tentative AhR agonists were chosen using a five-step process. Toxicological confirmation using bioassay revealed that canrenone, rutaecarpine, ciprofloxacin, mepanipyrim, genistein, protopine, hydrocortisone, and medroxyprogesterone were significantly active. The relative potencies of these AhR-active compounds compared to that of benzo[a]pyrene ranged from 0.00002 to 2.0. Potency balance analysis showed that polar AhR agonists explained, on average, ~6% of total AhR-mediated potencies in samples. Some novel polar AhR agonists also exhibited endocrine-disrupting potentials capable of binding to estrogen and glucocorticoid receptors, as identified by QSAR modeling. In conclusion, the focused studies on distributions, sources, fate, and ecotoxicological effects of novel polar AhR agonists in the environment are necessary.
Collapse
Affiliation(s)
- Jihyun Cha
- Department of Ocean Environmental Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Seongjin Hong
- Department of Ocean Environmental Sciences, Chungnam National University, Daejeon 34134, Republic of Korea.
| | - Junghyun Lee
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea
| | - Jiyun Gwak
- Department of Ocean Environmental Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Mungi Kim
- Department of Ocean Environmental Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Taewoo Kim
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea
| | - Jin Hur
- Department of Environment & Energy, Sejong University, Seoul 05006, Republic of Korea
| | - John P Giesy
- Department of Veterinary Biomedical Sciences & Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan S7N5B3, Canada; Department of Environmental Science, Baylor University, Waco, TX 76798-7266, United States
| | - Jong Seong Khim
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
4
|
Burman A, Garcia-Milian R, Whirledge S. Gene X environment: the cellular environment governs the transcriptional response to environmental chemicals. Hum Genomics 2020; 14:19. [PMID: 32448403 PMCID: PMC7247264 DOI: 10.1186/s40246-020-00269-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 05/13/2020] [Indexed: 12/31/2022] Open
Abstract
Background An individual’s response to environmental exposures varies depending on their genotype, which has been termed the gene-environment interaction. The phenotype of cell exposed can also be a key determinant in the response to physiological cues, indicating that a cell-gene-environment interaction may exist. We investigated whether the cellular environment could alter the transcriptional response to environmental chemicals. Publicly available gene expression array data permitted a targeted comparison of the transcriptional response to a unique subclass of environmental chemicals that alter the activity of the estrogen receptor, xenoestrogens. Results Thirty xenoestrogens were included in the analysis, for which 426 human gene expression studies were identified. Comparisons were made for studies that met the predefined criteria for exposure length, concentration, and experimental replicates. The cellular response to the phytoestrogen genistein resulted in remarkably unique transcriptional profiles in breast, liver, and uterine cell-types. Analysis of gene regulatory networks and molecular pathways revealed that the cellular context mediated the activation or repression of functions important to cellular organization and survival, including opposing effects by genistein in breast vs. liver and uterine cell-types. When controlling for cell-type, xenoestrogens regulate unique gene networks and biological functions, despite belonging to the same class of environmental chemicals. Interestingly, the genetic sex of the cell-type also strongly influenced the transcriptional response to xenoestrogens in the liver, with only 22% of the genes significantly regulated by genistein common between male and female cells. Conclusions Our results demonstrate that the transcriptional response to environmental chemicals depends on a variety of factors, including the cellular context, the genetic sex of a cell, and the individual chemical. These findings highlight the importance of evaluating the impact of exposure across cell-types, as the effect is responsive to the cellular environment. These comparative genetic results support the concept of a cell-gene-environment interaction.
Collapse
Affiliation(s)
- Andreanna Burman
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, 310 Cedar St, PO Box 208063, New Haven, CT, 06520, USA
| | - Rolando Garcia-Milian
- Bioinformatics Support Program, Cushing/Whitney Medical Library, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Shannon Whirledge
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, 310 Cedar St, PO Box 208063, New Haven, CT, 06520, USA.
| |
Collapse
|
5
|
Gao Y, Zhu H, Wang Q, Feng Y, Zhang C. Inhibition of PERK Signaling Prevents Against Glucocorticoid-induced Endotheliocyte Apoptosis and Osteonecrosis of the Femoral Head. Int J Biol Sci 2020; 16:543-552. [PMID: 32025204 PMCID: PMC6990927 DOI: 10.7150/ijbs.35256] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 06/23/2019] [Indexed: 12/25/2022] Open
Abstract
Vascular injury is considered an important pathological process during glucocorticoid (GC)-induced osteonecrosis of the femoral head (ONFH). In this study, we tried to investigate whether the endoplasmic reticulum (ER) stress is triggered in the GC-induced endotheliocyte (EC) apoptosis and ONFH. The results showed that a GC upregulated the expression of ER stress-related proteins, and PERK-CHOP signaling played an important role and induced EC apoptosis. The inhibition of PERK by GSK2656157 significantly decreased the GC-induced EC apoptosis in vitro and in vivo, thus protecting a rat model from vascular injury and significantly preventing GC-induced ONFH.
Collapse
Affiliation(s)
- Yanchun Gao
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
| | - Hongyi Zhu
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
| | - Qiyang Wang
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
| | - Yong Feng
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
| | - Changqing Zhang
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
| |
Collapse
|
6
|
Pinto PIS, Andrade AR, Moreira C, Zapater C, Thorne MAS, Santos S, Estêvão MD, Gomez A, Canario AVM, Power DM. Genistein and estradiol have common and specific impacts on the sea bass (Dicentrarchus labrax) skin-scale barrier. J Steroid Biochem Mol Biol 2019; 195:105448. [PMID: 31421232 DOI: 10.1016/j.jsbmb.2019.105448] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 08/05/2019] [Accepted: 08/13/2019] [Indexed: 10/26/2022]
Abstract
Teleost fish scales play important roles in animal protection and homeostasis. They can be targeted by endogenous estrogens and by environmental estrogenic endocrine disruptors. The phytoestrogen genistein is ubiquitous in the environment and in aquaculture feeds and is a disruptor of estrogenic processes in vertebrates. To test genistein disrupting actions in teleost fish we used a minimally invasive approach by analysing scales plucked from the skin of sea bass (Dicentrarchus labrax). Genistein transactivated all three fish nuclear estrogen receptors and was most potent with the Esr2, had the highest efficacy with Esr1, but reached, in all cases, transactivation levels lower than those of estradiol. RNA-seq revealed 254 responsive genes in the sea bass scales transcriptome with an FDR < 0.05 and more than 2-fold change in expression, 1 or 5 days after acute exposure to estradiol or to genistein. 65 genes were specifically responsive to estradiol and 106 by genistein while 83 genes were responsive to both compounds. Estradiol specifically regulated genes of protein/matrix turnover and genistein affected sterol biosynthesis and regeneration, while innate immune responses were affected by both compounds. This comprehensive study revealed the impact on the fish scale transcriptome of estradiol and genistein, providing a solid background to further develop fish scales as a practical screening tool for endocrine disrupting chemicals in teleosts.
Collapse
Affiliation(s)
- Patricia I S Pinto
- CCMAR - Centro de Ciencias do Mar (CCMAR), Universidade do Algarve, Campus de Gambelas, Edifício 7, 8005-139 Faro, Portugal.
| | - André R Andrade
- CCMAR - Centro de Ciencias do Mar (CCMAR), Universidade do Algarve, Campus de Gambelas, Edifício 7, 8005-139 Faro, Portugal.
| | - Catarina Moreira
- Normandy University, FR CNRS 3730 SCALE, UMR-I 02 INERIS-URCA-ULH Environmental Stress and Aquatic Biomonitoring (SEBIO), Université Le Havre Normandie, F-76600 Le Havre, France.
| | - Cinta Zapater
- IATS - Instituto de Acuicultura Torre la Sal, Ribera de Cabanes, 12595 Castellón, Spain.
| | - Michael A S Thorne
- British Antarctic Survey (BAS), High Cross, Madingley Road, Cambridge, CB3 0ET, UK.
| | - Soraia Santos
- CCMAR - Centro de Ciencias do Mar (CCMAR), Universidade do Algarve, Campus de Gambelas, Edifício 7, 8005-139 Faro, Portugal.
| | - M Dulce Estêvão
- CCMAR - Centro de Ciencias do Mar (CCMAR), Universidade do Algarve, Campus de Gambelas, Edifício 7, 8005-139 Faro, Portugal; Escola Superior de Saúde, Universidade do Algarve, Campus de Gambelas, Edifício 1, 8005-139 Faro, Portugal.
| | - Ana Gomez
- IATS - Instituto de Acuicultura Torre la Sal, Ribera de Cabanes, 12595 Castellón, Spain.
| | - Adelino V M Canario
- CCMAR - Centro de Ciencias do Mar (CCMAR), Universidade do Algarve, Campus de Gambelas, Edifício 7, 8005-139 Faro, Portugal.
| | - Deborah M Power
- CCMAR - Centro de Ciencias do Mar (CCMAR), Universidade do Algarve, Campus de Gambelas, Edifício 7, 8005-139 Faro, Portugal.
| |
Collapse
|
7
|
Alofe O, Kisanga E, Inayat-Hussain SH, Fukumura M, Garcia-Milian R, Perera L, Vasiliou V, Whirledge S. Determining the endocrine disruption potential of industrial chemicals using an integrative approach: Public databases, in vitro exposure, and modeling receptor interactions. ENVIRONMENT INTERNATIONAL 2019; 131:104969. [PMID: 31310931 PMCID: PMC6728168 DOI: 10.1016/j.envint.2019.104969] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 06/25/2019] [Accepted: 06/26/2019] [Indexed: 05/18/2023]
Abstract
Environmental and occupational exposure to industrial chemicals has been linked to toxic and carcinogenic effects in animal models and human studies. However, current toxicology testing does not thoroughly explore the endocrine disrupting effects of industrial chemicals, which may have low dose effects not predicted when determining the limit of toxicity. The objective of this study was to evaluate the endocrine disrupting potential of a broad range of chemicals used in the petrochemical sector. Therefore, 139 chemicals were classified for reproductive toxicity based on the United Nations Globally Harmonized System for hazard classification. These chemicals were evaluated in PubMed for reported endocrine disrupting activity, and their endocrine disrupting potential was estimated by identifying chemicals with active nuclear receptor endpoints publicly available databases. Evaluation of ToxCast data suggested that these chemicals preferentially alter the activity of the estrogen receptor (ER). Four chemicals were prioritized for in vitro testing using the ER-positive, immortalized human uterine Ishikawa cell line and a range of concentrations below the reported limit of toxicity in humans. We found that 2,6-di-tert-butyl-p-cresol (BHT) and diethanolamine (DEA) repressed the basal expression of estrogen-responsive genes PGR, NPPC, and GREB1 in Ishikawa cells, while tetrachloroethylene (PCE) and 2,2'-methyliminodiethanol (MDEA) induced the expression of these genes. Furthermore, low-dose combinations of PCE and MDEA produced additive effects. All four chemicals interfered with estradiol-mediated induction of PGR, NPPC, and GREB1. Molecular docking demonstrated that these chemicals could bind to the ligand binding site of ERα, suggesting the potential for direct stimulatory or inhibitory effects. We found that these chemicals altered rates of proliferation and regulated the expression of cell proliferation associated genes. These findings demonstrate previously unappreciated endocrine disrupting effects and underscore the importance of testing the endocrine disrupting potential of chemicals in the future to better understand their potential to impact public health.
Collapse
Affiliation(s)
- Olubusayo Alofe
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Edwina Kisanga
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Salmaan H Inayat-Hussain
- Department of Product Stewardship and Toxicology, Group Health, Safety, Security and Environment, Petroliam Nasional Berhad, Kuala Lumpur, Malaysia; Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA
| | - Masao Fukumura
- Department of Product Stewardship and Toxicology, Group Health, Safety, Security and Environment, Petroliam Nasional Berhad, Kuala Lumpur, Malaysia
| | - Rolando Garcia-Milian
- Bioinformatics Support Program, Cushing/Whitney Medical Library, Yale School of Medicine, New Haven, CT, USA
| | - Lalith Perera
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| | - Vasilis Vasiliou
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA
| | - Shannon Whirledge
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA; Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA.
| |
Collapse
|
8
|
Whirledge SD, Kisanga EP, Oakley RH, Cidlowski JA. Neonatal Genistein Exposure and Glucocorticoid Signaling in the Adult Mouse Uterus. ENVIRONMENTAL HEALTH PERSPECTIVES 2018; 126:047002. [PMID: 29624291 PMCID: PMC6071733 DOI: 10.1289/ehp1575] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 02/05/2018] [Accepted: 02/13/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Female reproductive tract development is sensitive to the endocrine-disrupting potential of environmental estrogens. Early-life exposure to the dietary phytoestrogen genistein impairs fertility and persistently alters the transcriptome in the oviduct and uterus of rodents. Glucocorticoid signaling, which has recently been shown to be essential for normal fertility in the female mouse uterus, is antagonized by genistein. OBJECTIVE Our goal was to determine whether early-life exposure to genistein disrupts glucocorticoid signaling in the mouse uterus, which may contribute to infertility. METHODS Female C57Bl/6 mice were exposed to either 50 mg/kg per day genistein, 10 μg/kg per day estradiol, or vehicle (corn oil) on postnatal days 1-5 (PND1-5), and then treated with the synthetic glucocorticoid dexamethasone (Dex: 1 mg/kg) or vehicle (saline) on PND5, at weaning on PND21, or as adults on PND56 following adrenalectomy and ovariectomy to evaluate glucocorticoid responsiveness. Uteri were isolated following treatment for gene expression or chromatin immunoprecipitation. RESULTS Neonatal exposure to genistein altered the uterine transcriptome of adult mice and caused substantial changes to the transcriptional response to glucocorticoids. Although expression of the glucocorticoid receptor was not affected, genistein exposure disrupted glucocorticoid receptor recruitment to specific regulatory sites in target genes. Many genes involved in chromatin remodeling were dysregulated in genistein-exposed mice, suggesting that epigenetic reprograming may contribute to the altered glucocorticoid response of the uterus following early-life exposure to genistein. These changes affected the biological activity of glucocorticoids within the uterus, as glucocorticoids antagonized the proliferative effects of estradiol in the uterus of control mice but not genistein-exposed mice. CONCLUSIONS Our findings suggest that disruption of glucocorticoid signaling due to early-life exposure to environmental estrogens may in part render the uterus unable to support implantation. https://doi.org/10.1289/EHP1575.
Collapse
Affiliation(s)
- Shannon D Whirledge
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, USA
| | - Edwina P Kisanga
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, USA
| | - Robert H Oakley
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | - John A Cidlowski
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| |
Collapse
|
9
|
Bilir B, Sharma NV, Lee J, Hammarstrom B, Svindland A, Kucuk O, Moreno CS. Effects of genistein supplementation on genome‑wide DNA methylation and gene expression in patients with localized prostate cancer. Int J Oncol 2017; 51:223-234. [PMID: 28560383 PMCID: PMC5467777 DOI: 10.3892/ijo.2017.4017] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 03/27/2017] [Indexed: 12/28/2022] Open
Abstract
Epidemiological studies have shown that dietary compounds have significant effects on prostate carcinogenesis. Among dietary agents, genistein, the major isoflavone in soybean, is of particular interest because high consumption of soy products has been associated with a low incidence of prostate cancer, suggesting a preventive role of genistein in prostate cancer. In spite of numerous studies to understand the effects of genistein on prostate cancer, the mechanisms of action have not been fully elucidated. We investigated the differences in methylation and gene expression levels of prostate specimens from a clinical trial of genistein supplementation prior to prostatectomy using Illumina HumanMethylation450 and Illumina HumanHT-12 v4 Expression BeadChip Microarrays. The present study was a randomized, placebo-controlled, double-blind clinical trial on Norwegian patients who received 30 mg genistein or placebo capsules daily for 3–6 weeks before prostatectomy. Gene expression changes were validated by quantitative PCR (qPCR). Whole genome methylation and expression profiling identified differentially methylated sites and expressed genes between placebo and genistein groups. Differentially regulated genes were involved in developmental processes, stem cell markers, proliferation and transcriptional regulation. Enrichment analysis suggested overall reduction in MYC activity and increased PTEN activity in genistein-treated patients. These findings highlight the effects of genistein on global changes in gene expression in prostate cancer and its effects on molecular pathways involved in prostate tumorigenesis.
Collapse
Affiliation(s)
- Birdal Bilir
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, USA
| | - Nitya V Sharma
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, USA
| | - Jeongseok Lee
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, USA
| | - Bato Hammarstrom
- Department of Urology, Institute of Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Aud Svindland
- Department of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Omer Kucuk
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA, USA
| | - Carlos S Moreno
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, USA
| |
Collapse
|
10
|
Garg S, Lule VK, Malik RK, Tomar SK. Soy Bioactive Components in Functional Perspective: A Review. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2016. [DOI: 10.1080/10942912.2015.1136936] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Sheenam Garg
- Dairy Microbiology Division, National Dairy Research Institute, Karnal, Haryana, India
| | - Vaibhao Kisanrao Lule
- Dairy Microbiology Division, National Dairy Research Institute, Karnal, Haryana, India
| | - Ravinder Kumar Malik
- Dairy Microbiology Division, National Dairy Research Institute, Karnal, Haryana, India
| | - Sudhir Kumar Tomar
- Dairy Microbiology Division, National Dairy Research Institute, Karnal, Haryana, India
| |
Collapse
|
11
|
Risk assessment for peri- and post-menopausal women taking food supplements containing isolated isoflavones. EFSA J 2015. [DOI: 10.2903/j.efsa.2015.4246] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|