1
|
Ilaghi M, Kafi F, Shafiei M, Zangiabadian M, Nasiri MJ. Dietary supplementations to mitigate the cardiopulmonary effects of air pollution toxicity: A systematic review of clinical trials. PLoS One 2024; 19:e0304402. [PMID: 38870164 PMCID: PMC11175466 DOI: 10.1371/journal.pone.0304402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/09/2024] [Indexed: 06/15/2024] Open
Abstract
BACKGROUND There is a consistent association between exposure to air pollution and elevated rates of cardiopulmonary illnesses. As public health activities emphasize the paramount need to reduce exposure, it is crucial to examine strategies like the antioxidant diet that could potentially protect individuals who are unavoidably exposed. METHODS A systematic search was performed in PubMed/Medline, EMBASE, CENTRAL, and ClinicalTrials.gov up to March 31, 2023, for clinical trials assessing dietary supplements against cardiovascular (blood pressure, heart rate, heart rate variability, brachial artery diameter, flow-mediated dilation, and lipid profile) or pulmonary outcomes (pulmonary function and airway inflammation) attributed to air pollution exposure. RESULTS After reviewing 4681 records, 18 studies were included. There were contradictory findings on the effects of fish oil and olive oil supplementations on cardiovascular outcomes. Although with limited evidence, fish oil offered protection against pulmonary dysfunction induced by pollutants. Most studies on vitamin C did not find protective cardiovascular effects; however, the combination of vitamin C and E offered protective effects against pulmonary dysfunction but showed conflicting results for cardiovascular outcomes. Other supplements like sulforaphane, L-arginine, n-acetylcysteine, and B vitamins showed potential beneficial effects but need further research due to the limited number of existing trials. CONCLUSIONS Although more research is needed to determine the efficacy and optimal dose of anti-inflammatory and antioxidant dietary supplements against air pollution toxicity, this low-cost preventative strategy has the potential to offer protection against outcomes of air pollution exposure.
Collapse
Affiliation(s)
- Mehran Ilaghi
- Institute of Neuropharmacology, Kerman Neuroscience Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Fatemeh Kafi
- School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohadeseh Shafiei
- Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Moein Zangiabadian
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Javad Nasiri
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Rappazzo KM, Egerstrom NM, Wu J, Capone AB, Joodi G, Keen S, Cascio WE, Simpson RJ. Fine particulate matter-sudden death association modified by ventricular hypertrophy and inflammation: a case-crossover study. Front Public Health 2024; 12:1367416. [PMID: 38835616 PMCID: PMC11148389 DOI: 10.3389/fpubh.2024.1367416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/23/2024] [Indexed: 06/06/2024] Open
Abstract
Background Sudden death accounts for approximately 10% of deaths among working-age adults and is associated with poor air quality. Objectives: To identify high-risk groups and potential modifiers and mediators of risk, we explored previously established associations between fine particulate matter (PM2.5) and sudden death stratified by potential risk factors. Methods Sudden death victims in Wake County, NC, from 1 March 2013 to 28 February 2015 were identified by screening Emergency Medical Systems reports and adjudicated (n = 399). Daily PM2.5 concentrations for Wake County from the Air Quality Data Mart were linked to event and control periods. Potential modifiers included greenspace metrics, clinical conditions, left ventricular hypertrophy (LVH), and neutrophil-to-lymphocyte ratio (NLR). Using a case-crossover design, conditional logistic regression estimated the OR (95%CI) for sudden death for a 5 μg/m3 increase in PM2.5 with a 1-day lag, adjusted for temperature and humidity, across risk factor strata. Results Individuals having LVH or an NLR above 2.5 had PM2.5 associations of greater magnitude than those without [with LVH OR: 1.90 (1.04, 3.50); NLR > 2.5: 1.25 (0.89, 1.76)]. PM2.5 was generally less impactful for individuals living in areas with higher levels of greenspace. Conclusion LVH and inflammation may be the final step in the causal pathway whereby poor air quality and traditional risk factors trigger arrhythmia or myocardial ischemia and sudden death. The combination of statistical evidence with clinical knowledge can inform medical providers of underlying risks for their patients generally, while our findings here may help guide interventions to mitigate the incidence of sudden death.
Collapse
Affiliation(s)
- Kristen M. Rappazzo
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Public Health and Environmental Assessment, Research Triangle Park, NC, United States
| | - Nicole M. Egerstrom
- Gillings Global School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Jianyong Wu
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, OH, United States
| | - Alia B. Capone
- Division of Cardiology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Family Medicine, University of Maryland Medical Center, Baltimore, MD, United States
| | - Golsa Joodi
- Division of Cardiology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Susan Keen
- Division of Cardiology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Cardiovascular Medicine, Heart and Vascular Institute, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Wayne E. Cascio
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Public Health and Environmental Assessment, Research Triangle Park, NC, United States
| | - Ross J. Simpson
- Division of Cardiology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
3
|
Jin J, Xu Z, Beevers SD, Huang J, Kelly F, Li G. Long-term ambient ozone, omega-3 fatty acid, genetic susceptibility, and risk of mental disorders among middle-aged and older adults in UK biobank. ENVIRONMENTAL RESEARCH 2024; 243:117825. [PMID: 38081346 DOI: 10.1016/j.envres.2023.117825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/14/2023] [Accepted: 11/29/2023] [Indexed: 12/17/2023]
Abstract
BACKGROUND Evidence linking ozone to depression and anxiety disorders remains sparse and results are heterogeneous. It remains unknown whether omega-3 fatty acid, or genetic susceptibility of mental disorders modify the impacts of ozone. The aim is to assess the associations of ambient ozone with depression and anxiety, and further explore the potential modification effects of omega-3 fatty acid and genetic susceptibility. METHODS In total of 257,534 participants were enrolled from 2006 to 2010 and followed up to 2016. Depression and anxiety were assessed using mental health questionnaires, primary care records and hospital admission records. The annual average concentrations of ozone were calculated and linked to individuals by home address. Dietary intake and plasma concentration were selected to reflect levels of omega-3 fatty acid. Polygenetic risk scores were selected to reflect genetic susceptibility. We examined the associations of ozone and incident mental disorders, and potential modification of omega-3 fatty acid and genetic susceptibility. RESULTS Incidences of depression (N = 6957) and anxiety (N = 6944) was associated with increase of ozone. Higher levels of omega-3 fatty acid might attenuate the ozone related depression risk. However, the modification effects of genetic susceptibility were not found. CONCLUSIONS Long-term exposure to ambient ozone increase the risk of mental disorders among the middle aged and older adults, and omega-3 fatty acid could reduce the adverse effects of ozone on mental health. Higher intake of omega-3 fatty acid is a potential strategy to prevent the risks caused by ozone on public mental health.
Collapse
Affiliation(s)
- Jianbo Jin
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing, China.
| | - Zhihu Xu
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing, China.
| | - Sean D Beevers
- Environmental Research Group, School of Public Health, Imperial College London, London, UK.
| | - Jing Huang
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing, China; Peking University Institute for Global Health and Development, Beijing, China.
| | - Frank Kelly
- Environmental Research Group, School of Public Health, Imperial College London, London, UK.
| | - Guoxing Li
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing, China; Environmental Research Group, School of Public Health, Imperial College London, London, UK.
| |
Collapse
|
4
|
Wang K, Lei L, Li G, Lan Y, Wang W, Zhu J, Liu Q, Ren L, Wu S. Association between Ambient Particulate Air Pollution and Soluble Biomarkers of Endothelial Function: A Meta-Analysis. TOXICS 2024; 12:76. [PMID: 38251031 PMCID: PMC10819696 DOI: 10.3390/toxics12010076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/04/2024] [Accepted: 01/11/2024] [Indexed: 01/23/2024]
Abstract
BACKGROUND The burden of cardiovascular diseases caused by ambient particulate air pollution is universal. An increasing number of studies have investigated the potential effects of exposure to particulate air pollution on endothelial function, which is one of the important mechanisms for the onset and development of cardiovascular disease. However, no previous study has conducted a summary analysis of the potential effects of particulate air pollution on endothelial function. OBJECTIVES To summarize the evidence for the potential effects of short-term exposure to ambient particulate air pollution on endothelial function based on existing studies. METHODS A systematic literature search on the relationship between ambient particulate air pollution and biomarkers of endothelial function including endothelin-1 (ET-1), E-selectin, intercellular cell adhesion molecule-1 (ICAM-1), and vascular cell adhesion molecule-1 (VCAM-1) was conducted in PubMed, Scopus, EMBASE, and Web of Science up to 20 May 2023. Subsequently, a meta-analysis was conducted using a random effects model. RESULTS A total of 18 studies were included in this meta-analysis. A 10 μg/m3 increase in short-term exposure to ambient PM2.5 was associated with a 1.55% (95% CI: 0.89%, 2.22%) increase in ICAM-1 and a 1.97% (95% CI: 0.86%, 3.08%) increase in VCAM-1. The associations of ET-1 (0.22%, 95% CI: -4.94%, 5.65%) and E-selectin (3.21%, 95% CI: -0.90% 7.49%) with short-term exposure to ambient PM2.5 were statistically insignificant. CONCLUSION Short-term exposure to ambient PM2.5 pollution may significantly increase the levels of typical markers of endothelial function, including ICAM-1 and VCAM-1, suggesting potential endothelial dysfunction following ambient air pollution exposure.
Collapse
Affiliation(s)
- Kai Wang
- Department of Occupational and Environmental Health, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (K.W.); (L.L.); (Y.L.); (J.Z.)
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi’an 710061, China
- Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi’an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of Education, Xi’an 710061, China
| | - Lei Lei
- Department of Occupational and Environmental Health, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (K.W.); (L.L.); (Y.L.); (J.Z.)
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi’an 710061, China
- Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi’an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of Education, Xi’an 710061, China
| | - Ge Li
- Department of Occupational and Environmental Health, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (K.W.); (L.L.); (Y.L.); (J.Z.)
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi’an 710061, China
- Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi’an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of Education, Xi’an 710061, China
| | - Yang Lan
- Department of Occupational and Environmental Health, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (K.W.); (L.L.); (Y.L.); (J.Z.)
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi’an 710061, China
- Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi’an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of Education, Xi’an 710061, China
| | - Wanzhou Wang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China;
| | - Jiaqi Zhu
- Department of Occupational and Environmental Health, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (K.W.); (L.L.); (Y.L.); (J.Z.)
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi’an 710061, China
- Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi’an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of Education, Xi’an 710061, China
| | - Qisijing Liu
- Research Institute of Public Health, School of Medicine, Nankai University, Tianjin 300071, China;
| | - Lihua Ren
- School of Nursing, Peking University, Beijing 100191, China;
| | - Shaowei Wu
- Department of Occupational and Environmental Health, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (K.W.); (L.L.); (Y.L.); (J.Z.)
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi’an 710061, China
- Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi’an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of Education, Xi’an 710061, China
| |
Collapse
|
5
|
Zhang H, Xia Y, Zhang X, Chang Q, Zhao Y. Carbohydrate intake quality and gestational diabetes mellitus, and the modifying effect of air pollution. Front Nutr 2023; 9:992472. [PMID: 36687724 PMCID: PMC9849808 DOI: 10.3389/fnut.2022.992472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 12/15/2022] [Indexed: 01/07/2023] Open
Abstract
Background Nutritional management is the cornerstone of gestational diabetes mellitus (GDM) prevention. High quality instead of low quantity of carbohydrate intake has been paying attention in controlling glycemia. Air pollution exposure can be interacted with dietary sourced nutrients, which may modify the associations with GDM. This study aims to explore the associations between overall quality of carbohydrate intake and GDM as well as the modifying effect of prenatal air pollution exposure. Methods Carbohydrate quality index (CQI) was calculated was calculated by summing scores of the four components; Land use regression prediction models were used to assess the air pollution exposure levels. GDM definition was based on 75 g glucose tolerance test results. Associations between pre-pregnancy CQI, pre-natal air pollution as well as the modifying effect on GDM were explored based on a birth cohort in China. Results A total of 3,183 participants were included, of which 784 (24.63%) were diagnosed with GDM. Higher pre-pregnancy CQI was associated with a lower incidence of GDM [odds ratio (OR) = 0.75, 95% confidence interval (CI): 0.56-0.99, P for trend = 0.04], especially for higher fasting blood glucose related GDM (OR = 0.66, 95% CI: 0.47, 0.91). Higher air pollution exposure before and during pregnancy was associated with a greater risk of GDM. Higher exposure to particulate matter with an aerodynamic diameter of < 2.5 μm (P for interaction < 0.01), particulate matter with an aerodynamic diameter of < 10 μm (P for interaction < 0.01), and sulfur dioxide (P for interaction = 0.02) during pregnancy decreased the beneficial effect of high pre-pregnancy CQI on GDM. Conclusion CQI related dietary interventions pre-pregnancy to prevent GDM incidence should be considered. Women who are planning to be pregnant should avoid high exposure to air pollution during pregnancy.
Collapse
Affiliation(s)
- Hehua Zhang
- Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yang Xia
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiangsu Zhang
- International Education School, China Medical University, Shenyang, China
| | - Qing Chang
- Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yuhong Zhao
- Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China,Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China,*Correspondence: Yuhong Zhao, ,
| |
Collapse
|
6
|
Wang K, Wang W, Lei L, Lan Y, Liu Q, Ren L, Wu S. Association between short-term exposure to ambient air pollution and biomarkers of coagulation: A systematic review and meta-analysis. ENVIRONMENTAL RESEARCH 2022; 215:114210. [PMID: 36030918 DOI: 10.1016/j.envres.2022.114210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/17/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
Ambient air pollution is one of the major global risk factors for cardiovascular health, and coagulation changes have been proposed to mediate this risk. Plasminogen activator inhibitor-1 (PAI-1), von Willebrand factor (vWF), soluble P-selectin (sP-selectin) and tissue plasminogen activator (t-PA) are major coagulation biomarkers. However, there has been no systematic meta-analysis to summarize associations of ambient air pollution with these coagulation biomarkers. To assess the overall associations between ambient particulate matter (PM2.5, PM10), ozone (O3), nitrogen dioxide (NO2), carbon monoxide (CO) and major coagulation biomarkers including PAI-1, vWF, sP-selectin and t-PA based on the existing epidemiological research. We performed a systematic literature search of publications reporting the associations of ambient air pollutants (PM2.5, PM10, O3, NO2, and CO) with coagulation biomarkers (PAI-1, vWF, sP-selectin and t-PA) in PubMed, Web of Science, EMBASE, and Scopus databases as of April 5, 2022. Then, we performed a random-effect meta-analysis, which included 27 articles, and then identified the potential sources of heterogeneity. The pooled percent changes of coagulation biomarkers per 10 μg/m3 increase in short-term exposure to ambient PM2.5 were 2.43% (95% CI: 0.59%, 4.29%) in PAI-1, 1.08% (95% CI: 0.21%, 1.96%) in vWF and 1.14% (95% CI: 0.59%, 1.68%) in sP-selectin, respectively. We also found significant associations of short-term exposure to ambient O3 with PAI-1 (1.62%, 95% CI: 0.01%, 3.25%), sP-selectin (9.59%, 95% CI:2.78%, 16.86%) and t-PA (0.45%, 95% CI: 0.02%, 0.88%), respectively. Short-term exposures to ambient PM10, NO2 and CO were not significantly associated with changes in coagulation biomarkers. In conclusion, short-term exposures to PM2.5 and O3 are associated with significant increases in coagulation biomarkers, suggesting an activated coagulation state upon air pollution exposure.
Collapse
Affiliation(s)
- Kai Wang
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, Shaanxi, China; Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi, China
| | - Wanzhou Wang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Lei Lei
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, Shaanxi, China; Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi, China
| | - Yang Lan
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, Shaanxi, China; Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi, China
| | - Qisijing Liu
- Research Institute of Public Health, School of Medicine, Nankai University, Tianjin, China
| | - Lihua Ren
- School of Nursing, Peking University, Beijing, China
| | - Shaowei Wu
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, Shaanxi, China; Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi, China.
| |
Collapse
|
7
|
Zhou L, Jiang Y, Lin Z, Chen R, Niu Y, Kan H. Mechanistic insights into the health benefits of fish-oil supplementation against fine particulate matter air pollution: a randomized controlled trial. Environ Health 2022; 21:104. [PMID: 36309727 PMCID: PMC9617415 DOI: 10.1186/s12940-022-00908-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 09/03/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Dietary fish-oil supplementation might attenuate the associations between fine particulate matter (PM2.5) and subclinical biomarkers. However, the molecular mechanisms remain to be elucidated. This study aimed to explore the molecular mechanisms of fish-oil supplementation against the PM2.5-induced health effects. METHODS We conducted a randomized, double-blinded, and placebo-controlled trial among healthy college students in Shanghai, China, from September 2017 to January 2018. A total of 70 participants from the Fenglin campus of Fudan University were included. We randomly assigned participants to either supplementation of 2.5-gram fish oil (n = 35) or sunflower-seed oil (placebo) (n = 35) per day and conducted four rounds of health measurements in the last two months of the trial. As a post hoc exploratory study, the present untargeted metabolomics analysis used remaining blood samples collected in the previous trial and applied a Metabolome-Wide Association Study framework to compare the effects of PM2.5 on the metabolic profile between the sunflower-seed oil and fish oil groups. RESULTS A total of 65 participants completed the trial (34 of the fish oil group and 31 of the sunflower-seed oil group). On average, ambient PM2.5 concentration on the day of health measurements was 34.9 µg/m3 in the sunflower-seed oil group and 34.5 µg/m3 in the fish oil group, respectively. A total of 3833 metabolites were significantly associated with PM2.5 in the sunflower-seed oil group and 1757 in the fish oil group. Of these, 1752 metabolites showed significant between-group differences. The identified differential metabolites included arachidonic acid derivatives, omega-3 fatty acids, omega-6 fatty acids, and omega-9 fatty acids that were related to unsaturated fatty acid metabolism, which plays a role in the inflammatory responses. CONCLUSION This trial suggests fish-oil supplementation could mitigate the PM2.5-induced inflammatory responses via modulating fatty acid metabolism, providing biological plausibility for the health benefits of fish-oil supplementation against PM2.5 exposure. TRIAL REGISTRATION This study is registered at ClinicalTrails.gov (NCT03255187).
Collapse
Affiliation(s)
- Lu Zhou
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, NHC Key Lab of Health Technology Assessment, Fudan University, 200030, Shanghai, China
| | - Yixuan Jiang
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, NHC Key Lab of Health Technology Assessment, Fudan University, 200030, Shanghai, China
| | - Zhijing Lin
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, NHC Key Lab of Health Technology Assessment, Fudan University, 200030, Shanghai, China
| | - Renjie Chen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, NHC Key Lab of Health Technology Assessment, Fudan University, 200030, Shanghai, China.
- Shanghai Key Laboratory of Meteorology and Health, Shanghai Typhoon Institute/CMA, 200030, Shanghai, China.
- Department of Environmental Health, School of Public Health, Fudan University, 200032, Shanghai, China.
| | - Yue Niu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, NHC Key Lab of Health Technology Assessment, Fudan University, 200030, Shanghai, China.
- Department of Environmental Health, School of Public Health, Fudan University, 200032, Shanghai, China.
| | - Haidong Kan
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, NHC Key Lab of Health Technology Assessment, Fudan University, 200030, Shanghai, China
| |
Collapse
|
8
|
Chen H, Tong H, Shen W, Montilla TS, Case MW, Almond MA, Wells HB, Alexis NE, Peden DB, Rappold AG, Diaz-Sanchez D, Devlin RB, Bromberg PA, Samet JM. Fish oil blunts lung function decrements induced by acute exposure to ozone in young healthy adults: A randomized trial. ENVIRONMENT INTERNATIONAL 2022; 167:107407. [PMID: 35850080 PMCID: PMC9378480 DOI: 10.1016/j.envint.2022.107407] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 07/06/2022] [Accepted: 07/08/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Over one-third of the U.S. population is exposed to unsafe levels of ozone (O3). Dietary supplementation with fish oil (FO) or olive oil (OO) has shown protection against other air pollutants. This study evaluates potential cardiopulmonary benefits of FO or OO supplementation against acute O3 exposure in young healthy adults. METHODS Forty-three participants (26 ± 4 years old; 47% female) were randomized to receive 3 g/day of FO, 3 g/day OO, or no supplementation (CTL) for 4 weeks prior to undergoing 2-hour exposures to filtered air and 300 ppb O3 with intermittent exercise on two consecutive days. Outcome measurements included spirometry, sputum neutrophil percentage, blood markers of inflammation, tissue injury and coagulation, vascular function, and heart rate variability. The effects of dietary supplementation and O3 on these outcomes were evaluated with linear mixed-effect models. RESULTS Compared with filtered air, O3 exposure decreased FVC, FEV1, and FEV1/FVC immediately post exposure regardless of supplementation status. Relative to that in the CTL group, the lung function response to O3 exposure in the FO group was blunted, as evidenced by O3-induced decreases in FEV1 (Normalized CTL -0.40 ± 0.34 L, Normalized FO -0.21 ± 0.27 L) and FEV1/FVC (Normalized CTL -4.67 ± 5.0 %, Normalized FO -1.4 ± 3.18 %) values that were on average 48% and 70% smaller, respectively. Inflammatory responses measured in the sputum immediately post O3 exposure were not different among the three supplementation groups. Systolic blood pressure elevations 20-h post O3 exposure were blunted by OO supplementation. CONCLUSION FO supplementation appears to offer protective effects against lung function decrements caused by acute O3 exposure in healthy adults.
Collapse
Affiliation(s)
- Hao Chen
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, United States
| | - Haiyan Tong
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Chapel Hill, NC, United States
| | - Wan Shen
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, United States; Department of Public and Allied Health, Bowling Green State University, Bowling Green, OH, United States
| | - Tracey S Montilla
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Chapel Hill, NC, United States
| | - Martin W Case
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Chapel Hill, NC, United States
| | - Martha A Almond
- Center for Environmental Medicine, Asthma and Lung Biology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Heather B Wells
- Center for Environmental Medicine, Asthma and Lung Biology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Department of Pediatrics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Neil E Alexis
- Center for Environmental Medicine, Asthma and Lung Biology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Department of Pediatrics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - David B Peden
- Center for Environmental Medicine, Asthma and Lung Biology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Department of Pediatrics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Ana G Rappold
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Chapel Hill, NC, United States
| | - David Diaz-Sanchez
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Chapel Hill, NC, United States
| | - Robert B Devlin
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Chapel Hill, NC, United States
| | - Philip A Bromberg
- Center for Environmental Medicine, Asthma and Lung Biology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Department of Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - James M Samet
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Chapel Hill, NC, United States.
| |
Collapse
|
9
|
Ren J, Liang J, Wang J, Yin B, Zhang F, Li X, Zhu S, Tian H, Cui Q, Song J, Liu G, Ling W, Ma Y. Vascular benefits of vitamin C supplementation against fine particulate air pollution in healthy adults: A double-blind randomised crossover trial. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 241:113735. [PMID: 35689890 DOI: 10.1016/j.ecoenv.2022.113735] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/28/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
Evidence on the health benefits of vitamin C supplementation in highly polluted areas has not been evaluated. We aimed to evaluate whether dietary vitamin C supplementation can improve vascular health linked to particulate matter (PM) exposure. A randomised double-blind crossover trial involving 58 health young adults was performed in Shijiazhuang, China in 2018. All subjects were randomly assigned to the vitamin C supplementation group (2000 mg/d) or placebo group for a week alternating with a 2 week washout period. Fifteen circulating biomarkers were measured. Linear mixed-effect model was applied to evaluate the effect of vitamin C supplementation on health outcomes. The average concentrations of PM2.5 and PM10 were 164.91 and 327.05 μg/m3, respectively. Vitamin C supplementation was significantly associated with a 19.47% decrease in interleukin-6 (IL-6), 17.30% decrease in tumour necrosis factor-a (TNF-α), 34.01% decrease in C-reactive protein (CRP), 3.37% decrease in systolic blood pressure (SBP) and 6.03% decrease in pulse pressure (PP). Furthermore, glutathione peroxidase (GSH-Px) was significantly increased by 7.15%. Sex-subgroup analysis showed that vitamin C significantly reduced TNF-α by 27.85% in male participants and significantly increased APOB by 6.28% and GSH-Px by 14.47% only in female participants. This study indicated that vitamin C supplementation may protect vascular vessels against PM exposure among healthy young adults in China.
Collapse
Affiliation(s)
- Jingyi Ren
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Province Key Laboratory of Environment and Human Health, Shijiazhuang 050017, China
| | - Jufeng Liang
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Province Key Laboratory of Environment and Human Health, Shijiazhuang 050017, China
| | - Jiaqi Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Province Key Laboratory of Environment and Human Health, Shijiazhuang 050017, China
| | - Bowen Yin
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Province Key Laboratory of Environment and Human Health, Shijiazhuang 050017, China
| | - Fan Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Province Key Laboratory of Environment and Human Health, Shijiazhuang 050017, China
| | - Xiang Li
- Undergraduate of College of Public Health, Hebei Medical University, Shijiazhuang 050017, China
| | - Siqi Zhu
- Undergraduate of College of Public Health, Hebei Medical University, Shijiazhuang 050017, China
| | - Hao Tian
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Province Key Laboratory of Environment and Human Health, Shijiazhuang 050017, China
| | - Qiqi Cui
- Undergraduate of College of Basic Medicine, Hebei Medical University, Shijiazhuang 050017, China
| | - Jianshi Song
- Undergraduate of College of Basic Medicine, Hebei Medical University, Shijiazhuang 050017, China
| | - Gang Liu
- Heart Center, The First Hospital of Hebei Medical University, Shijiazhuang 050031, China
| | - Wenhua Ling
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Province Key Laboratory of Environment and Human Health, Shijiazhuang 050017, China; Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | - Yuxia Ma
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Province Key Laboratory of Environment and Human Health, Shijiazhuang 050017, China.
| |
Collapse
|
10
|
de Bont J, Jaganathan S, Dahlquist M, Persson Å, Stafoggia M, Ljungman P. Ambient air pollution and cardiovascular diseases: An umbrella review of systematic reviews and meta-analyses. J Intern Med 2022; 291:779-800. [PMID: 35138681 PMCID: PMC9310863 DOI: 10.1111/joim.13467] [Citation(s) in RCA: 246] [Impact Index Per Article: 82.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The available evidence on the effects of ambient air pollution on cardiovascular diseases (CVDs) has increased substantially. In this umbrella review, we summarized the current epidemiological evidence from systematic reviews and meta-analyses linking ambient air pollution and CVDs, with a focus on geographical differences and vulnerable subpopulations. We performed a search strategy through multiple databases including articles between 2010 and 31 January 2021. We performed a quality assessment and evaluated the strength of evidence. Of the 56 included reviews, the most studied outcomes were stroke (22 reviews), all-cause CVD mortality, and morbidity (19). The strongest evidence was found between higher short- and long-term ambient air pollution exposure and all-cause CVD mortality and morbidity, stroke, blood pressure, and ischemic heart diseases (IHD). Short-term exposures to particulate matter <2.5 μm (PM2.5 ), <10 μm (PM10 ), and nitrogen oxides (NOx ) were consistently associated with increased risks of hypertension and triggering of myocardial infarction (MI), and stroke (fatal and nonfatal). Long-term exposures of PM2.5 were largely associated with increased risk of atherosclerosis, incident MI, hypertension, and incident stroke and stroke mortality. Few reviews evaluated other CVD outcomes including arrhythmias, atrial fibrillation, or heart failure but they generally reported positive statistical associations. Stronger associations were found in Asian countries and vulnerable subpopulations, especially among the elderly, cardiac patients, and people with higher weight status. Consistent with experimental data, this comprehensive umbrella review found strong evidence that higher levels of ambient air pollution increase the risk of CVDs, especially all-cause CVD mortality, stroke, and IHD. These results emphasize the importance of reducing the alarming levels of air pollution across the globe, especially in Asia, and among vulnerable subpopulations.
Collapse
Affiliation(s)
- Jeroen de Bont
- Institute of Environmental MedicineKarolinska InstitutetStockholmSweden
| | - Suganthi Jaganathan
- Institute of Environmental MedicineKarolinska InstitutetStockholmSweden
- Centre for Environmental HealthPublic Health Foundation of IndiaDelhi‐NCRIndia
- Centre for Chronic Disease ControlNew DelhiIndia
| | - Marcus Dahlquist
- Institute of Environmental MedicineKarolinska InstitutetStockholmSweden
| | - Åsa Persson
- Institute of Environmental MedicineKarolinska InstitutetStockholmSweden
| | - Massimo Stafoggia
- Institute of Environmental MedicineKarolinska InstitutetStockholmSweden
- Department of EpidemiologyLazio Region Health ServiceRomeItaly
| | - Petter Ljungman
- Institute of Environmental MedicineKarolinska InstitutetStockholmSweden
- Department of CardiologyDanderyd University HospitalDanderydSweden
| |
Collapse
|
11
|
Wang M, Zhou T, Song Q, Ma H, Hu Y, Heianza Y, Qi L. Ambient air pollution, healthy diet and vegetable intakes, and mortality: a prospective UK Biobank study. Int J Epidemiol 2022; 51:1243-1253. [PMID: 35179602 PMCID: PMC9365625 DOI: 10.1093/ije/dyac022] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 02/03/2022] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Recent studies suggest potential interactions of air pollutants with dietary factors and genetic susceptibility on mortality risk; however, evidence from prospective studies is still lacking. We aimed to assess the association between air pollution and mortality, and investigate the modification effects of a healthy diet and genetic susceptibility. METHODS A total of 386 937 participants were enrolled from 2006 to 2010 and followed up to 2018 in the UK Biobank study. The annual average air pollutant concentrations of particulate matter (PM) with diameters ≤2.5 (PM2.5), ≤10 (PM10) and between 2.5 and 10 µm (PM2.5-10) and nitrogen oxides (NO2 and NOx) were calculated and linked to participants' residential addresses. Healthy dietary patterns were evaluated by a healthy diet score (HDS) based on intakes of vegetables, fruit, fish, unprocessed red meat and processed meat. We also calculated genetic risk score (GRS) of the lifespan. We examined potential interactions by setting variable cross-product terms of air pollutants with diets or GRS in the models. RESULTS We identified 11 881 deaths [2426 from cardiovascular diseases (CVD), 1211 from coronary heart disease (CHD) and 466 from stroke] during a median follow-up of 8.9 years. We found that PM2.5 [hazard ratio (HR), 1.27; 95% CI, 1.05-1.55], PM10 (HR, 1.18; 95% CI, 1.04-1.34), NO2 (HR, 1.05; 95% CI, 1.01-1.08), and NOx (HR, 1.02; 95% CI, 1.01-1.03) were associated with all-cause mortality. PM2.5 was also associated with increased risks of CVD mortality (HR, 1.68; 95% CI, 1.10-2.56) and CHD mortality (HR, 2.08; 95% CI, 1.16-3.75). In addition, we found that adherence to healthy dietary patterns modified associations of PM2.5, NO2 and NOx with all-cause mortality (P-interaction = 0.006, 0.006 and 0.02, respectively). Among the individual dietary components, vegetable intakes showed interactions with PM2.5, NO2 and NOx (P-interaction = 0.007, 0.004 and 0.02, respectively). The associations between air pollutants and increased risks of all-cause mortality were attenuated among participants with higher vegetable intakes. We did not observe interactions between air pollutants and HDS on CVD, CHD or stroke mortality (P-interaction > 0.05). Besides, we did not find interactions between air pollutants and genetic risk for lifespan on mortality risk. CONCLUSION This study provides evidence linking long-term exposure to various air pollutants to the risk of all-cause, CVD and CHD mortality, and the potential attenuation of a healthy diet, especially high vegetable intakes, on such relations. Our findings highlight the importance of adherence to a healthy diet in lowering ambient air-pollution-related mortality risk.
Collapse
Affiliation(s)
- Mengying Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China,Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA
| | - Tao Zhou
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA
| | - Qiying Song
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA,Department of Child Healthcare, Maternal-Fetal Medicine Institute, Bao'an Maternity and Child Health Hospital, Jinan University, Guangzhou, China
| | - Hao Ma
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA
| | - Yonghua Hu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Yoriko Heianza
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA
| | - Lu Qi
- Corresponding author: Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70112, USA. E-mail:
| |
Collapse
|
12
|
Chen H, Zhang S, Shen W, Salazar C, Schneider A, Wyatt L, Rappold AG, Diaz-Sanchez D, Devlin RB, Samet JM, Tong H. The influence of dietary intake of omega-3 polyunsaturated fatty acids on the association between short-term exposure to ambient nitrogen dioxide and respiratory and cardiovascular outcomes among healthy adults. Environ Health 2021; 20:123. [PMID: 34872587 PMCID: PMC8650256 DOI: 10.1186/s12940-021-00809-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 11/16/2021] [Indexed: 05/26/2023]
Abstract
BACKGROUND Short-term exposure to ambient nitrogen dioxide (NO2) is associated with adverse respiratory and cardiovascular outcomes. Supplementation of omega-3 polyunsaturated fatty acids (PUFA) has shown protection against exposure to fine particulate matter. This study aims to investigate whether habitual omega-3 PUFA intake differentially modify the associations between respiratory and cardiovascular responses and short-term exposure to ambient NO2. METHODS Sixty-two healthy participants were enrolled into low or high omega-3 groups based on their habitual omega-3 PUFA intake. Each participant was repeatedly assessed for lung function, blood lipids, markers of coagulation and fibrinolysis, vascular function, and heart rate variability (HRV) in up to five sessions, each separated by at least 7 days. This study was carried out in the Research Triangle area of North Carolina, USA between October 2016 and September 2019. Daily ambient NO2 concentrations were obtained from an area air quality monitoring station on the day of outcome assessment (Lag0), 4 days prior (Lag1-4), as well as 5-day moving average (5dMA). The associations between short-term exposure to NO2 and the measured indices were evaluated using linear mixed-effects models stratified by omega-3 levels and adjusted by covariates including relative humidity and temperature. RESULTS The average concentration of ambient NO2 during the study periods was 5.3±3.8 ppb which was below the National Ambient Air Quality Standards (NAAQS). In the high omega-3 group, an interquartile range (IQR) increase in short-term NO2 concentrations was significantly associated with increased lung function [e.g. 1.2% (95%CI: 0.2%, 2.2%) in FVC at lag1, 2.6% (95%CI: 0.4%, 4.8%) in FEV1 at 5dMA], decreased blood lipids [e.g. -2.6% (95%CI: -4.4%, -0.9%) in total cholesterol at lag2, -3.1% (95%CI: -6.1%, 0.0%) in HDL at 5dMA, and -3.1% (95%CI: -5.5%, -0.7%) in LDL at lag2], improved vascular function [e.g. 8.9% (95%CI: 0.6%, 17.2%) increase in FMD and 43.1% (95%CI: -79.8%, -6.3%) decrease in endothelin-1 at 5dMA], and changed HRV parameters [e.g. -7.2% (95%CI: -13.6%, -0.8%) in HFn and 13.4% (95%CI: 0.2%, 28.3%) in LF/HF ratio at lag3]. In the low omega-3 group, an IQR increase in ambient NO2 was associated with elevations in coagulation markers (von Willebrand Factor, D-dimer) and a decrease in HRV (very-low frequency); however, null associations were observed between short-term NO2 exposure and changes in lung function, blood lipids, and vascular function. CONCLUSIONS The results in this study imply that dietary omega-3 PUFA consumption may offer respiratory and vascular benefits in response to short-term exposure of healthy adults to NO2 levels below the NAAQS. TRIAL REGISTRATION ClinicalTrials.gov ( NCT02921048 ).
Collapse
Affiliation(s)
- Hao Chen
- Oak Ridge Institute for Science and Education, 100 ORAU Way, 37830, Oak Ridge, TN, USA.
| | - Siqi Zhang
- Institute of Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Wan Shen
- Oak Ridge Institute for Science and Education, 100 ORAU Way, 37830, Oak Ridge, TN, USA
- Department of Public and Allied Health, Bowling Green State University, Bowling Green, OH, USA
| | - Claudia Salazar
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, 104 Mason Farm Rd, 27514, Chapel Hill, NC, USA
| | | | - Lauren Wyatt
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, 104 Mason Farm Rd, 27514, Chapel Hill, NC, USA
| | - Ana G Rappold
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, 104 Mason Farm Rd, 27514, Chapel Hill, NC, USA
| | - David Diaz-Sanchez
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, 104 Mason Farm Rd, 27514, Chapel Hill, NC, USA
| | - Robert B Devlin
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, 104 Mason Farm Rd, 27514, Chapel Hill, NC, USA
| | - James M Samet
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, 104 Mason Farm Rd, 27514, Chapel Hill, NC, USA
| | - Haiyan Tong
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, 104 Mason Farm Rd, 27514, Chapel Hill, NC, USA.
| |
Collapse
|
13
|
Lung Function and Short-Term Ambient Air Pollution Exposure: Differential Impacts of Omega-3 and Omega-6 Fatty Acids. Ann Am Thorac Soc 2021; 19:583-593. [PMID: 34797737 DOI: 10.1513/annalsats.202107-767oc] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
RATIONALE Exposure to air pollution is associated with adverse respiratory effects. Omega-3 polyunsaturated fatty acids (n-3 FA) appear to attenuate the health effects to air pollution. OBJECTIVE This panel study evaluated whether n-3 FA intake and blood levels of omega-6 polyunsaturated fatty acids (n-6 FA) can modulate the associations between respiratory effects and short-term exposure to ambient air pollution in healthy adults. METHODS Sixty-two healthy adults were enrolled into either high or low n-3 groups based on n-3 FA intake and erythrocytes n-3 FA concentrations. Low and high n-6 groups were dichotomized on blood n-6 FA levels. Participants underwent 3-5 testing sessions separated by at least seven days. At each session, FVC, FEV1, plasma markers of inflammation (IL-6) and oxidative stress (ox-LDL) were measured. Associations between ambient ozone and fine particulate matter (PM2.5) levels and lung function and blood markers were assessed using mixed-effects models stratified by fatty acids levels. RESULTS Average concentrations of ozone (40.8±11.1 ppb) and PM2.5 (10.2±4.1 µg/m3) were below national ambient air quality standards during the study period. FVC was positively associated with ozone at lag0 in the high n-3 group while the association was null in the low n-3 group [for an IQR increase in ozone, 1.8%(95% CI:0.5-3.2) vs. 0.0%(95% CI:-1.4-1.5)]; however, the association shifted to negative at lag4 [-1.9%(95% CI:-3.2- -0.5) vs. 0.2%(95% CI:-1.2-1.5)] and lag5 [-1.2%(95% CI:-2.4-0.0) vs. 0.9%(-0.4-2.3)]. A similar pattern was observed in the low n-6 group compared to the high n-6 group [lag0:1.7%(95% CI:0.3-3.0) vs. 0.5%(95% CI:-0.9-2.0) and lag4:-1.4%(95% CI:-2.8-0.0) vs. -0.5%(95% CI:-1.8-0.9)]. The associations between FEV1 and ozone and between FVC and PM2.5 also followed a similar pattern. Elevated ozone levels were associated with an immediate decrease in ox-LDL in the high n-3 group atlag0 [-12.3%(95% CI:-24.8-0.1)] while no change in the low n-3 group [-7.5%(95% CI: -21.4-6.5)], and a delayed increase in IL-6 in the high n-3 group compared with the low n-3 group [lag4: 66.9%(95% CI:27.9-106.0) vs. 8.9%(95% CI:-31.8-49.6), lag5: 58.2%(95% CI:22.4-94.1) vs. -7.4%(95% CI:-48.8-34.0), and lag6: 45.8%(95% CI:8.7-82.9) vs. -8.5%(95% CI:-49.7-32.6)]. CONCLUSIONS We observed lag-dependent associations between short-term ambient air pollutants and lung function that were differentially modulated by n-3 and n-6 FAs, suggesting that n-3 and n-6 FAs counteract the respiratory response to low levels of ambient air pollution in healthy adults. Clinical trial registered with ClinicalTrials.gov (NCT02921048).
Collapse
|
14
|
Long-chain monounsaturated fatty acids improve endothelial function with altering microbial flora. Transl Res 2021; 237:16-30. [PMID: 33775867 DOI: 10.1016/j.trsl.2021.03.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 03/18/2021] [Accepted: 03/20/2021] [Indexed: 01/04/2023]
Abstract
Fish oil-derived long-chain monounsaturated fatty acids (LCMUFAs) with a carbon chain length longer than 18 units ameliorate cardiovascular risk in mice. In this study, we investigated whether LCMUFAs could improve endothelial functions in mice and humans. In a double-blind, randomized, placebo-controlled, parallel-group, multi-center study, healthy subjects were randomly assigned to either an LCMUFA oil (saury oil) or a control oil (olive and tuna oils) group. Sixty subjects were enrolled and administrated each oil for 4 weeks. For the animal study, ApoE-/- mice were fed a Western diet supplemented with 3% of either gadoleic acid (C20:1) or cetoleic acid (C22:1) for 12 weeks. Participants from the LCMUFA group showed improvements in endothelial function and a lower trimethylamine-N-oxide level, which is a predictor of coronary artery disease. C20:1 and C22:1 oils significantly improved atherosclerotic lesions and plasma levels of several inflammatory cytokines, including IL-6 and TNF-α. These beneficial effects were consistent with an improvement in the gut microbiota environment, as evident from the decreased ratio of Firmicutes and/ or Bacteroidetes, increase in the abundance of Akkermansia, and upregulation of short-chain fatty acid (SCFA)-induced glucagon-like peptide-1 (GLP-1) expression and serum GLP-1 level. These data suggest that LCMUFAs alter the microbiota environment that stimulate the production of SCFAs, resulting in the induction of GLP-1 secretion. Fish oil-derived long-chain monounsaturated fatty acids might thus help to protect against cardiovascular disease.
Collapse
|
15
|
The cardiovascular effects of air pollution: Prevention and reversal by pharmacological agents. Pharmacol Ther 2021; 232:107996. [PMID: 34571110 PMCID: PMC8941724 DOI: 10.1016/j.pharmthera.2021.107996] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 08/11/2021] [Indexed: 12/15/2022]
Abstract
Air pollution is associated with staggering levels of cardiovascular morbidity and mortality. Airborne particulate matter (PM), in particular, has been associated with a wide range of detrimental cardiovascular effects, including impaired vascular function, raised blood pressure, alterations in cardiac rhythm, blood clotting disorders, coronary artery disease, and stroke. Considerable headway has been made in elucidating the biological processes underlying these associations, revealing a labyrinth of multiple interacting mechanistic pathways. Several studies have used pharmacological agents to prevent or reverse the cardiovascular effects of PM; an approach that not only has the advantages of elucidating mechanisms, but also potentially revealing therapeutic agents that could benefit individuals that are especially susceptible to the effects of air pollution. This review gathers investigations with pharmacological agents, offering insight into the biology of how PM, and other air pollutants, may cause cardiovascular morbidity.
Collapse
|
16
|
Aryal A, Harmon AC, Dugas TR. Particulate matter air pollutants and cardiovascular disease: Strategies for intervention. Pharmacol Ther 2021; 223:107890. [PMID: 33992684 PMCID: PMC8216045 DOI: 10.1016/j.pharmthera.2021.107890] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 04/21/2021] [Accepted: 04/27/2021] [Indexed: 02/07/2023]
Abstract
Air pollution is consistently linked with elevations in cardiovascular disease (CVD) and CVD-related mortality. Particulate matter (PM) is a critical factor in air pollution-associated CVD. PM forms in the air during the combustion of fuels as solid particles and liquid droplets and the sources of airborne PM range from dust and dirt to soot and smoke. The health impacts of PM inhalation are well documented. In the US, where CVD is already the leading cause of death, it is estimated that PM2.5 (PM < 2.5 μm in size) is responsible for nearly 200,000 premature deaths annually. Despite the public health data, definitive mechanisms underlying PM-associated CVD are elusive. However, evidence to-date implicates mechanisms involving oxidative stress, inflammation, metabolic dysfunction and dyslipidemia, contributing to vascular dysfunction and atherosclerosis, along with autonomic dysfunction and hypertension. For the benefit of susceptible individuals and individuals who live in areas where PM levels exceed the National Ambient Air Quality Standard, interventional strategies for mitigating PM-associated CVD are necessary. This review will highlight current state of knowledge with respect to mechanisms for PM-dependent CVD. Based upon these mechanisms, strategies for intervention will be outlined. Citing data from animal models and human subjects, these highlighted strategies include: 1) antioxidants, such as vitamins E and C, carnosine, sulforaphane and resveratrol, to reduce oxidative stress and systemic inflammation; 2) omega-3 fatty acids, to inhibit inflammation and autonomic dysfunction; 3) statins, to decrease cholesterol accumulation and inflammation; 4) melatonin, to regulate the immune-pineal axis and 5) metformin, to address PM-associated metabolic dysfunction. Each of these will be discussed with respect to its potential role in limiting PM-associated CVD.
Collapse
Affiliation(s)
- Ankit Aryal
- Louisiana State University School of Veterinary Medicine, Department of Comparative Biomedical Sciences, Skip Bertman Drive, Baton Rouge, Louisiana 70803, United States of America
| | - Ashlyn C Harmon
- Louisiana State University School of Veterinary Medicine, Department of Comparative Biomedical Sciences, Skip Bertman Drive, Baton Rouge, Louisiana 70803, United States of America
| | - Tammy R Dugas
- Louisiana State University School of Veterinary Medicine, Department of Comparative Biomedical Sciences, Skip Bertman Drive, Baton Rouge, Louisiana 70803, United States of America.
| |
Collapse
|
17
|
Orach J, Rider CF, Carlsten C. Concentration-dependent health effects of air pollution in controlled human exposures. ENVIRONMENT INTERNATIONAL 2021; 150:106424. [PMID: 33596522 DOI: 10.1016/j.envint.2021.106424] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/21/2021] [Accepted: 01/26/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Air pollution is a leading contributor to premature mortality worldwide and is often represented by particulate matter (PM), a key contributor to its harmful health effects. Concentration-response relationships are useful for quantifying the effects of air pollution in relevant populations and in considering potential effect thresholds. Controlled human exposures can provide data on acute effects and concentration-response relationships that complement epidemiological studies. OBJECTIVES We examined PM concentration-responses after controlled human air pollution exposures to examine exposure-response markers, assess effect modifiers, and identify potential effect thresholds. METHODS We reviewed primary research from published controlled human exposure studies where responses were reported at multiple target PM concentrations or summarized per unit change in PM to identify concentration-dependent effects. RESULTS Of the 191 publications identified through PubMed and supplementary searches, 31 were eligible. Eligible studies collectively represented four pollutant models: concentrated ambient particles, engineered carbon nanoparticles, diesel exhaust, and woodsmoke. We identified concentration-dependent effects on oxidative stress markers, inflammation, and cardiovascular function that overlapped across different pollutants. Metabolic syndrome and glutathione s-transferase mu 1 genotype were identified as potential effect modifiers. DISCUSSION Improved understanding of concentration-response relationships is integral to biomonitoring and mitigation of health effects through impact assessment and policy. Although we identified potential concentration-response markers, thresholds, and modifiers, our conclusions on these relationships were limited by a dearth of eligible publications, considerable variability in methodology, and inconsistent reporting standards between studies. More research is required to validate these observations. We recommend that future studies harmonize estimate reporting to facilitate the identification of robust response markers across research and applied settings.
Collapse
Affiliation(s)
- Juma Orach
- Air Pollution Exposure Laboratory, Division of Respiratory Medicine, Department of Medicine, Vancouver Coastal Health Research Institute, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Christopher F Rider
- Air Pollution Exposure Laboratory, Division of Respiratory Medicine, Department of Medicine, Vancouver Coastal Health Research Institute, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Christopher Carlsten
- Air Pollution Exposure Laboratory, Division of Respiratory Medicine, Department of Medicine, Vancouver Coastal Health Research Institute, The University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
18
|
Trushna T, Tripathi AK, Rana S, Tiwari RR. Nutraceuticals with anti-inflammatory and anti-oxidant properties as intervention for reducing the health effects of fine particulate matter: Potential and Prospects. Comb Chem High Throughput Screen 2021; 25:1639-1660. [PMID: 33845731 DOI: 10.2174/1386207324666210412121226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 02/24/2021] [Accepted: 02/28/2021] [Indexed: 11/22/2022]
Abstract
Air pollution, especially particulate matter pollution adversely affects human health. A growing pool of evidence has emerged which underscores the potential of individual-level nutritional interventions in attenuating the adverse health impact of exposure to PM2.5. Although controlling emission and reducing the overall levels of air pollution remains the ultimate objective globally, the sustainable achievement of such a target and thus consequent protection of human health will require a substantial amount of time and concerted efforts worldwide. In the meantime, smaller-scale individual-level interventions that can counter the inflammatory or oxidative stress effects triggered by exposure to particulate matter may be utilized to ameliorate the health effects of PM2.5 pollution. One such intervention is incorporation of nutraceuticals in the diet. Here, we present a review of the evidence generated from various in vitro, in vivo and human studies regarding the effects of different anti-inflammatory and antioxidant nutraceuticals in ameliorating the health effects of particulate matter air pollution. The studies discussed in this review suggest that these nutraceuticals when consumed as a part of the diet, or as additional supplementation, can potentially negate the cellular level adverse effects of exposure to particulate pollution. The potential benefits of adopting a non-pharmacological diet-based approach to air pollution-induced disease management have also been discussed. We argue that before a nutraceuticals-based approach can be used for widespread public adoption, further research, especially human clinical trials, is essential to confirm the beneficial action of relevant nutraceuticals and to explore the safe limits of human supplementation and the risk of side effects. Future research should focus on systematically translating bench-based knowledge regarding nutraceuticals gained from in-vitro and in-vivo studies into clinically usable nutritional guidelines.
Collapse
Affiliation(s)
- Tanwi Trushna
- Department of Environmental Health and Epidemiology, ICMR- National Institute for Research in Environmental Health, Bhopal- 462030. India
| | - Amit K Tripathi
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal- 462030. India
| | - Sindhuprava Rana
- Department of Bioinformatics, ICMR-National Institute for Research in Environmental Health, Bhopal- 462030. India
| | - Rajnarayan R Tiwari
- ICMR- National Institute for Research in Environmental Health (NIREH), Bhopal-462030, Madhya Pradesh. India
| |
Collapse
|
19
|
Tong H, Snow SJ, Chen H, Schladweiler MC, Carswell G, Chorley B, Kodavanti UP. Fish oil and olive oil-enriched diets alleviate acute ozone-induced cardiovascular effects in rats. Toxicol Appl Pharmacol 2020; 409:115296. [PMID: 33091443 DOI: 10.1016/j.taap.2020.115296] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/13/2020] [Accepted: 10/16/2020] [Indexed: 12/13/2022]
Abstract
Fish oil (FO) and olive oil (OO) supplementations attenuate the cardiovascular responses to inhaled concentrated ambient particles in human volunteers. This study was designed to examine the cardiovascular effects of ozone (O3) exposure and the efficacy of FO and OO-enriched diets in attenuating the cardiovascular effects from O3 exposure in rats. Rats were fed either a normal diet (ND), a diet enriched with 6% FO or OO starting at 4 weeks of age. Eight weeks following the start of these diet, animals were exposed to filtered air (FA) or 0.8 ppm O3, 4 h/day for 2 consecutive days. Immediately after exposure, cardiac function was measured as the indices of left-ventricular developed pressure (LVDP) and contractility (dP/dtmax and dP/dtmin) before ischemia. In addition, selective microRNAs (miRNAs) of inflammation, endothelial function, and cardiac function were assessed in cardiac tissues to examine the molecular alterations of diets and O3 exposure. Pre-ischemic LVDP and dP/dtmax were lower after O3 exposure in rats fed ND but not FO and OO. Cardiac miRNAs expressions were altered by both diet and O3 exposure. Specifically, O3-induced up-regulation of miR-150-5p and miR-208a-5p were attenuated by FO and/or OO. miR-21 was up-regulated by both FO and OO after O3 exposure. This study demonstrated that O3-induced cardiovascular responses appear to be blunted by FO and OO diets. O3-induced alterations in miRNAs linked to inflammation, cardiac function, and endothelial dysfunction support these pathways are involved, and dietary supplementation with FO or OO may alleviate these adverse cardiovascular effects in rats.
Collapse
Affiliation(s)
- Haiyan Tong
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Chapel Hill, NC 27514, United States.
| | - Samantha J Snow
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, United States
| | - Hao Chen
- Oak Ridge Institute of Science and Education, Oak Ridge, TN 37830, United States.
| | - Mette C Schladweiler
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, United States.
| | - Gleta Carswell
- Biomolecular and Computational Toxicology Division, Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, United States.
| | - Brian Chorley
- Biomolecular and Computational Toxicology Division, Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, United States.
| | - Urmila P Kodavanti
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, United States.
| |
Collapse
|
20
|
Snow SJ, Henriquez AR, Fenton JI, Goeden T, Fisher A, Vallanat B, Angrish M, Richards JE, Schladweiler MC, Cheng WY, Wood CE, Tong H, Kodavanti UP. Diets enriched with coconut, fish, or olive oil modify peripheral metabolic effects of ozone in rats. Toxicol Appl Pharmacol 2020; 410:115337. [PMID: 33217375 DOI: 10.1016/j.taap.2020.115337] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 10/29/2020] [Accepted: 11/12/2020] [Indexed: 12/17/2022]
Abstract
Dietary factors may modulate metabolic effects of air pollutant exposures. We hypothesized that diets enriched with coconut oil (CO), fish oil (FO), or olive oil (OO) would alter ozone-induced metabolic responses. Male Wistar-Kyoto rats (1-month-old) were fed normal diet (ND), or CO-, FO-, or OO-enriched diets. After eight weeks, animals were exposed to air or 0.8 ppm ozone, 4 h/day for 2 days. Relative to ND, CO- and OO-enriched diet increased body fat, serum triglycerides, cholesterols, and leptin, while all supplements increased liver lipid staining (OO > FO > CO). FO increased n-3, OO increased n-6/n-9, and all supplements increased saturated fatty-acids. Ozone increased total cholesterol, low-density lipoprotein, branched-chain amino acids (BCAA), induced hyperglycemia, glucose intolerance, and changed gene expression involved in energy metabolism in adipose and muscle tissue in rats fed ND. Ozone-induced glucose intolerance was exacerbated by OO-enriched diet. Ozone increased leptin in CO- and FO-enriched groups; however, BCAA increases were blunted by FO and OO. Ozone-induced inhibition of liver cholesterol biosynthesis genes in ND-fed rats was not evident in enriched dietary groups; however, genes involved in energy metabolism and glucose transport were increased in rats fed FO and OO-enriched diet. FO- and OO-enriched diets blunted ozone-induced inhibition of genes involved in adipose tissue glucose uptake and cholesterol synthesis, but exacerbated genes involved in adipose lipolysis. Ozone-induced decreases in muscle energy metabolism genes were similar in all dietary groups. In conclusion, CO-, FO-, and OO-enriched diets modified ozone-induced metabolic changes in a diet-specific manner, which could contribute to altered peripheral energy homeostasis.
Collapse
Affiliation(s)
- Samantha J Snow
- Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States
| | - Andres R Henriquez
- Oak Ridge Institute for Science and Education Research Participation Program, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States
| | - Jenifer I Fenton
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, 48824, United States
| | - Travis Goeden
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, 48824, United States
| | - Anna Fisher
- Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States
| | - Beena Vallanat
- Center for Computational Toxicology and Exposure, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States
| | - Michelle Angrish
- Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States
| | - Judy E Richards
- Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States
| | - Mette C Schladweiler
- Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States
| | - Wan-Yun Cheng
- Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States
| | - Charles E Wood
- Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States
| | - Haiyan Tong
- Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States
| | - Urmila P Kodavanti
- Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States.
| |
Collapse
|
21
|
Wyatt LH, Devlin RB, Rappold AG, Case MW, Diaz-Sanchez D. Low levels of fine particulate matter increase vascular damage and reduce pulmonary function in young healthy adults. Part Fibre Toxicol 2020; 17:58. [PMID: 33198760 PMCID: PMC7670817 DOI: 10.1186/s12989-020-00389-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 11/05/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Fine particulate matter (PM2.5) related mild inflammation, altered autonomic control of cardiovascular function, and changes to cell function have been observed in controlled human exposure studies. METHODS To measure the systemic and cardiopulmonary impacts of low-level PM exposure, we exposed 20 healthy, young volunteers to PM2.5, in the form of concentrated ambient particles (mean: 37.8 μg/m3, SD 6.5), and filtered air (mean: 2.1 μg/m3, SD 2.6). In this double-blind, crossover study the exposure order was randomized. During the 4 h exposure, volunteers (7 females and 13 males) underwent light intensity exercise to regulate ventilation rate. We measured pulmonary, cardiac, and hematologic end points before exposure, 1 h after exposure, and again 20 h after exposure. RESULTS Low-level PM2.5 resulted in both pulmonary and extra-pulmonary changes characterized by alterations in systematic inflammation markers, cardiac repolarization, and decreased pulmonary function. A mean increase in PM2.5 concentration (37.8 μg/m3) significantly increased serum amyloid A (SAA), C-reactive protein (CRP), soluble intercellular adhesion molecule-1 (sICAM-1), and soluble vascular cell adhesion molecule-1 (sVCAM-1), 1 h after exposure by 8.7, 9.1, 10.7, and 6.6%, respectively, relative to the filtered air control. SAA remained significantly elevated (34.6%) 20 h after PM2.5 exposure which was accompanied by a 5.7% decrease in percent neutrophils. Decreased pulmonary function was observed 1 h after exposure through a 0.8 and 1.2% decrease in forced expiratory volume in 1 s (FEV1) and FEV1/ forced vital capacity (FEV1/FVC) respectively. Additionally, sex specific changes were observed in repolarization outcomes following PM2.5 exposure. In males, P-wave and QRS complex were increased by 15.4 and 5.4% 1 h after exposure. CONCLUSIONS This study is the first controlled human exposure study to demonstrate biological effects in response to exposure to concentrated ambient air PM2.5 particles at levels near the PM2.5 US NAAQS standard. CLINICAL TRIAL REGISTRATION INFORMATION clinicaltrials.gov ; Identifier: NCT03232086 . The study was registered retrospectively on July 25, 2017, prior to final data collection on October 25, 2017 and data analysis.
Collapse
Affiliation(s)
- Lauren H Wyatt
- Public Health and Integrated Toxicology Division, Human Studies Facility, United States Environmental Protection Agency (USEPA), Research Triangle Park, 104 Mason Farm Rd, Chapel Hill, NC, 27514, USA.
| | - Robert B Devlin
- Public Health and Integrated Toxicology Division, Human Studies Facility, United States Environmental Protection Agency (USEPA), Research Triangle Park, 104 Mason Farm Rd, Chapel Hill, NC, 27514, USA
| | - Ana G Rappold
- Public Health and Integrated Toxicology Division, Human Studies Facility, United States Environmental Protection Agency (USEPA), Research Triangle Park, 104 Mason Farm Rd, Chapel Hill, NC, 27514, USA
| | - Martin W Case
- Public Health and Integrated Toxicology Division, Human Studies Facility, United States Environmental Protection Agency (USEPA), Research Triangle Park, 104 Mason Farm Rd, Chapel Hill, NC, 27514, USA
| | - David Diaz-Sanchez
- Public Health and Integrated Toxicology Division, Human Studies Facility, United States Environmental Protection Agency (USEPA), Research Triangle Park, 104 Mason Farm Rd, Chapel Hill, NC, 27514, USA
| |
Collapse
|
22
|
[Combined effects of different environmental factors on health: air pollution, temperature, green spaces, pollen, and noise]. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2020; 63:962-971. [PMID: 32661561 DOI: 10.1007/s00103-020-03186-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Environmental factors affect the health and wellbeing of urban residents. However, they do not act individually on humans, but instead show potential synergistic or antagonistic effects. Questions that arise from this are: How does a combination of air pollutants with other environmental factors impact health? How well are these associations evidenced? What methods can we use to look at them? In this article, methodical approaches regarding the effects of a combination of various environmental factors are first described. Environmental factors are then examined, which together with different air pollutants, have an impact on human health such as ambient temperature, noise, and pollen as well as the effect of green spaces. Physical activity and nutrition are addressed regarding the attenuation of health effects from air pollution.While there is often clear evidence of health effects of single environmental stressors, there are still open questions in terms of their interaction. The research methods required for this still need to be further developed. The interrelationship between the different environmental factors make it clear that (intervention) measures for reducing single indicators are also interlinked. Regarding traffic, switching from passive to active transport (e.g., due to safe cycle paths and other measures) leads to less air pollutants, smaller increases in temperature in the long term, and at the same time improved health of the individual. As a result, sensible planning of the built environment has great potential to reduce environmental stressors and improve people's health and wellbeing.
Collapse
|
23
|
Miller MR. Oxidative stress and the cardiovascular effects of air pollution. Free Radic Biol Med 2020; 151:69-87. [PMID: 31923583 PMCID: PMC7322534 DOI: 10.1016/j.freeradbiomed.2020.01.004] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/31/2019] [Accepted: 01/03/2020] [Indexed: 12/11/2022]
Abstract
Cardiovascular causes have been estimated to be responsible for more than two thirds of the considerable mortality attributed to air pollution. There is now a substantial body of research demonstrating that exposure to air pollution has many detrimental effects throughout the cardiovascular system. Multiple biological mechanisms are responsible, however, oxidative stress is a prominent observation at many levels of the cardiovascular impairment induced by pollutant exposure. This review provides an overview of the evidence that oxidative stress is a key pathway for the different cardiovascular actions of air pollution.
Collapse
Affiliation(s)
- Mark R Miller
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH4 3RL, United Kingdom.
| |
Collapse
|
24
|
Lin Z, Chen R, Jiang Y, Xia Y, Niu Y, Wang C, Liu C, Chen C, Ge Y, Wang W, Yin G, Cai J, Clement V, Xu X, Chen B, Chen H, Kan H. Cardiovascular Benefits of Fish-Oil Supplementation Against Fine Particulate Air Pollution in China. J Am Coll Cardiol 2020; 73:2076-2085. [PMID: 31023432 DOI: 10.1016/j.jacc.2018.12.093] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 12/14/2018] [Accepted: 12/18/2018] [Indexed: 01/19/2023]
Abstract
BACKGROUND Few studies have evaluated the health benefits of omega-3 fatty acid supplementation against fine particulate matter (aerodynamic diameter <2.5 μm [PM2.5]) exposure in highly polluted areas. OBJECTIVES The authors sought to evaluate whether dietary fish-oil supplementation protects cardiovascular health against PM2.5 exposure in China. METHODS This is a randomized, double-blinded, and placebo-controlled trial among 65 healthy college students in Shanghai, China. Participants were randomly assigned to either the placebo group or the intervention group with dietary fish-oil supplementation of 2.5 g/day from September 2017 to January 2018, and received 4 rounds of health examinations in the last 2 months of treatments. Fixed-site PM2.5 concentrations on campus were measured in real time. The authors measured blood pressure and 18 biomarkers of systematic inflammation, coagulation, endothelial function, oxidative stress, antioxidant activity, cardiometabolism, and neuroendocrine stress response. Acute effects of PM2.5 on these outcomes were evaluated within each group using linear mixed-effect models. RESULTS The average PM2.5 level was 38 μg/m3 during the study period. Compared with the placebo group, the fish-oil group showed relatively stable levels of most biomarkers in response to changes in PM2.5 exposure. Between-group differences associated with PM2.5 exposure varied by biomarkers and by lags of exposure. The authors observed beneficial effects of fish-oil supplementation on 5 biomarkers of blood inflammation, coagulation, endothelial function, oxidative stress, and neuroendocrine stress response in the fish-oil group at a false discovery rate of <0.05. CONCLUSIONS This trial shows that omega-3 fatty acid supplementation is associated with short-term subclinical cardiovascular benefits against PM2.5 exposure among healthy young adults in China. (Effect of Dietary Supplemental Fish Oil in Alleviating Health Hazards Associated With Air Pollution; NCT03255187).
Collapse
Affiliation(s)
- Zhijing Lin
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai, China
| | - Renjie Chen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai, China
| | - Yixuan Jiang
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai, China
| | - Yongjie Xia
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai, China
| | - Yue Niu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai, China
| | - Cuiping Wang
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai, China
| | - Cong Liu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai, China
| | - Chen Chen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai, China
| | - Yihui Ge
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai, China
| | - Weidong Wang
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai, China
| | - Guanjin Yin
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai, China
| | - Jing Cai
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai, China
| | - Viviane Clement
- Department of Epidemiology and Biostatistics, School of Public Health, Texas A&M University, College Station, Texas
| | - Xiaohui Xu
- Department of Epidemiology and Biostatistics, School of Public Health, Texas A&M University, College Station, Texas
| | - Bo Chen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai, China
| | - Honglei Chen
- Department of Epidemiology and Biostatistics, College of Human Medicine, Michigan State University, East Lansing, Michigan
| | - Haidong Kan
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai, China; Children's Hospital of Fudan University, National Center for Children's Health, Shanghai, China.
| |
Collapse
|
25
|
Rajagopalan S, Brook RD. Fishin' Mission on Emissions. J Am Coll Cardiol 2020; 73:2086-2088. [PMID: 31023433 DOI: 10.1016/j.jacc.2018.12.094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 12/30/2018] [Indexed: 01/07/2023]
Affiliation(s)
- Sanjay Rajagopalan
- Harrington Heart and Vascular Institute, University Hospitals, Cleveland, Ohio; Cardiovascular Research Institute, Case Western Reserve University, Cleveland, Ohio.
| | - Robert D Brook
- Michigan Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
26
|
Barthelemy J, Sanchez K, Miller MR, Khreis H. New Opportunities to Mitigate the Burden of Disease Caused by Traffic Related Air Pollution: Antioxidant-Rich Diets and Supplements. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17020630. [PMID: 31963738 PMCID: PMC7014349 DOI: 10.3390/ijerph17020630] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/08/2020] [Accepted: 01/14/2020] [Indexed: 12/13/2022]
Abstract
Air pollution is associated with premature mortality and a wide spectrum of diseases. Traffic-related air pollution (TRAP) is one of the most concerning sources of air pollution for human exposure and health. Until TRAP levels can be significantly reduced on a global scale, there is a need for effective shorter-term strategies to prevent the adverse health effects of TRAP. A growing number of studies suggest that increasing antioxidant intake, through diet or supplementation, may reduce this burden of disease. In this paper, we conducted a non-systematic literature review to assess the available evidence on antioxidant-rich diets and antioxidant supplements as a strategy to mitigate adverse health effects of TRAP in human subjects. We identified 11 studies that fit our inclusion criteria; 3 of which investigated antioxidant-rich diets and 8 of which investigated antioxidant supplements. Overall, we found consistent evidence that dietary intake of antioxidants from adherence to the Mediterranean diet and increased fruit and vegetable consumption is effective in mitigating adverse health effects associated with TRAP. In contrast, antioxidant supplements, including fish oil, olive oil, and vitamin C and E supplements, presented conflicting evidence. Further research is needed to determine why antioxidant supplementation has limited efficacy and whether this relates to effective dose, supplement formulation, timing of administration, or population being studied. There is also a need to better ascertain if susceptible populations, such as children, the elderly, asthmatics and occupational workers consistently exposed to TRAP, should be recommended to increase their antioxidant intake to reduce their burden of disease. Policymakers should consider increasing populations' antioxidant intake, through antioxidant-rich diets, as a relatively cheap and easy preventive measure to lower the burden of disease associated with TRAP.
Collapse
Affiliation(s)
- Jillian Barthelemy
- Center for Advancing Research in Transportation Emissions, Energy, and Health (CARTEEH), Texas A & M Transportation Institute (TTI), College Station, TX 77843, USA; (J.B.); (K.S.)
| | - Kristen Sanchez
- Center for Advancing Research in Transportation Emissions, Energy, and Health (CARTEEH), Texas A & M Transportation Institute (TTI), College Station, TX 77843, USA; (J.B.); (K.S.)
| | - Mark R. Miller
- Centre for Cardiovascular Science, Queens Medical Research Institute, The University of Edinburgh, Edinburgh EH16 4TJ, UK;
| | - Haneen Khreis
- Center for Advancing Research in Transportation Emissions, Energy, and Health (CARTEEH), Texas A & M Transportation Institute (TTI), College Station, TX 77843, USA; (J.B.); (K.S.)
- Barcelona Institute for Global Health (ISGlobal), Centre for Research in Environmental Epidemiology (CREAL), 08003 Barcelona, Spain
- Correspondence:
| |
Collapse
|
27
|
Feng B, Qi R, Gao J, Wang T, Xu H, Zhao Q, Wu R, Song X, Guo J, Zheng L, Li R, Huang W. Exercise training prevented endothelium dysfunction from particulate matter instillation in Wistar rats. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 694:133674. [PMID: 31756800 DOI: 10.1016/j.scitotenv.2019.133674] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 07/26/2019] [Accepted: 07/29/2019] [Indexed: 06/10/2023]
Abstract
Exposure to fine particulate matter (PM2.5) can result in adverse cardiovascular responses including vascular endothelial dysfunction, whereas exercise training can promote cardiovascular health. However, whether exercise training can mitigate adverse vascular response to PM2.5 has been less studied. In the present study, we aimed to investigate the preventive effect of exercise training on vascular endothelial dysfunction induced by PM2.5 instillation. Six-week old male Wistar rats (n = 32) were divided into four groups (8 rats per group) by exercise status (sedentary vs. exercised) and PM2.5 exposure (instilled vs. non-instilled). Rats received treadmill training with moderate-intensity intervals in week 1 to 6, followed by three repeated PM2.5 instillation on every other day in week 7. Body weight and blood pressure were measured for each rat regularly during exercise training and before sacrifice. At sacrifice, thoracic aortas were isolated for functional response measurement to agonists. Nitric oxide bioavailability and high-density lipoprotein (HDL) function were also assessed. We observed that exercise training significantly reduced the body weight of rats, while PM2.5 instillation had little effect. Neither exercise training nor PM2.5 instillation had significant effects on blood pressure changes. However, exercise training effectively prevented endothelium-dependent vasorelaxation dysfunction and nitric oxide bioavailability reduction from subsequent PM2.5 instillation. In addition, exercise training promoted HDL function which were characterized as increased HDL cholesterol level, cholesterol efflux capacity, and reduced oxidization index; whereas PM2.5 instillation showed limited adverse impact on HDL function. Collectively, our results indicated that exercise training could promote HDL function and protect against endothelium dysfunction from PM2.5 instillation.
Collapse
Affiliation(s)
- Baihuan Feng
- Department of Occupational and Environmental Health, Peking University School of Public Health, and Peking University Institute of Environmental Medicine, Beijing, China; Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, Department of Laboratory Medicine, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Rongzhen Qi
- China Institute of Sport Science, Beijing, China; Department of Physical Education, Gansu Normal University for Nationalities, Hezuo, China
| | - Jianing Gao
- Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, Peking University School of Basic Medical Sciences, Beijing, China; Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Peking University, Beijing, China
| | - Tong Wang
- Department of Occupational and Environmental Health, Peking University School of Public Health, and Peking University Institute of Environmental Medicine, Beijing, China
| | - Hongbing Xu
- Department of Occupational and Environmental Health, Peking University School of Public Health, and Peking University Institute of Environmental Medicine, Beijing, China
| | - Qian Zhao
- Department of Occupational and Environmental Health, Peking University School of Public Health, and Peking University Institute of Environmental Medicine, Beijing, China
| | - Rongshan Wu
- Department of Occupational and Environmental Health, Peking University School of Public Health, and Peking University Institute of Environmental Medicine, Beijing, China
| | - Xiaoming Song
- Department of Occupational and Environmental Health, Peking University School of Public Health, and Peking University Institute of Environmental Medicine, Beijing, China
| | - Jianjun Guo
- China Institute of Sport Science, Beijing, China
| | - Lemin Zheng
- Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, Peking University School of Basic Medical Sciences, Beijing, China; Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Peking University, Beijing, China
| | - Ran Li
- China Institute of Sport Science, Beijing, China.
| | - Wei Huang
- Department of Occupational and Environmental Health, Peking University School of Public Health, and Peking University Institute of Environmental Medicine, Beijing, China; Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Peking University, Beijing, China.
| |
Collapse
|
28
|
Lee HR, Pyo MC, Chae SA, Hong CO, Lee KW. Inhibitory Effect of Chebulic Acid on Alveolar Epithelial to Mesenchymal Transition in Response to Urban Particulate Matter Using Co-treatment and Post-treatment Exposure. Biol Pharm Bull 2019; 42:1322-1331. [DOI: 10.1248/bpb.b19-00061] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Hee-Ra Lee
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University
| | - Min Cheol Pyo
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University
| | - Seung A Chae
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University
| | - Chung-Oui Hong
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University
| | - Kwang-Won Lee
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University
| |
Collapse
|
29
|
Snow SJ, Cheng WY, Henriquez A, Hodge M, Bass V, Nelson GM, Carswell G, Richards JE, Schladweiler MC, Ledbetter AD, Chorley B, Gowdy KM, Tong H, Kodavanti UP. Ozone-Induced Vascular Contractility and Pulmonary Injury Are Differentially Impacted by Diets Enriched With Coconut Oil, Fish Oil, and Olive Oil. Toxicol Sci 2019; 163:57-69. [PMID: 29329427 DOI: 10.1093/toxsci/kfy003] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Fish, olive, and coconut oil dietary supplementation have several cardioprotective benefits, but it is not established if they protect against air pollution-induced adverse effects. We hypothesized that these dietary supplements would attenuate ozone-induced systemic and pulmonary effects. Male Wistar Kyoto rats were fed either a normal diet, or a diet supplemented with fish, olive, or coconut oil for 8 weeks. Animals were then exposed to air or ozone (0.8 ppm), 4 h/day for 2 days. Ozone exposure increased phenylephrine-induced aortic vasocontraction, which was completely abolished in rats fed the fish oil diet. Despite this cardioprotective effect, the fish oil diet increased baseline levels of bronchoalveolar lavage fluid (BALF) markers of lung injury and inflammation. Ozone-induced pulmonary injury/inflammation were comparable in rats on normal, coconut oil, and olive oil diets with altered expression of markers in animals fed the fish oil diet. Fish oil, regardless of exposure, led to enlarged, foamy macrophages in the BALF that coincided with decreased pulmonary mRNA expression of cholesterol transporters, cholesterol receptors, and nuclear receptors. Serum microRNA profile was assessed and demonstrated marked depletion of a variety of microRNAs in animals fed the fish oil diet, several of which were of splenic origin. No ozone-specific changes were noted. Collectively, these data indicate that although fish oil offered vascular protection from ozone exposure, it increased pulmonary injury/inflammation and impaired lipid transport mechanisms resulting in foamy macrophage accumulation, demonstrating the need to be cognizant of potential off-target pulmonary effects that might offset the overall benefit of this vasoprotective supplement.
Collapse
Affiliation(s)
- Samantha J Snow
- Environmental Public Health Division, NHEERL, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711
| | - Wan-Yun Cheng
- Environmental Public Health Division, NHEERL, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711
| | - Andres Henriquez
- Curriculum in Toxicology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514
| | - Myles Hodge
- Department of Pharmacology and Toxicology, East Carolina University, Greenville, North Carolina 27834
| | - Virgina Bass
- School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514
| | - Gail M Nelson
- Integrated Systems Toxicology Division, NHEERL, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711
| | - Gleta Carswell
- Integrated Systems Toxicology Division, NHEERL, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711
| | - Judy E Richards
- Environmental Public Health Division, NHEERL, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711
| | - Mette C Schladweiler
- Environmental Public Health Division, NHEERL, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711
| | - Allen D Ledbetter
- Environmental Public Health Division, NHEERL, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711
| | - Brian Chorley
- Integrated Systems Toxicology Division, NHEERL, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711
| | - Kymberly M Gowdy
- Department of Pharmacology and Toxicology, East Carolina University, Greenville, North Carolina 27834
| | - Haiyan Tong
- Environmental Public Health Division, NHEERL, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711
| | - Urmila P Kodavanti
- Environmental Public Health Division, NHEERL, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711.,Curriculum in Toxicology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514
| |
Collapse
|
30
|
Lim CC, Hayes RB, Ahn J, Shao Y, Silverman DT, Jones RR, Thurston GD. Mediterranean Diet and the Association Between Air Pollution and Cardiovascular Disease Mortality Risk. Circulation 2019; 139:1766-1775. [PMID: 30700142 PMCID: PMC6453737 DOI: 10.1161/circulationaha.118.035742] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 12/13/2018] [Indexed: 01/15/2023]
Abstract
BACKGROUND Recent experimental evidence suggests that nutritional supplementation can blunt adverse cardiopulmonary effects induced by acute air pollution exposure. However, whether usual individual dietary patterns can modify the association between long-term air pollution exposure and health outcomes has not been previously investigated. We assessed, in a large cohort with detailed diet information at the individual level, whether a Mediterranean diet modifies the association between long-term exposure to ambient air pollution and cardiovascular disease mortality risk. METHODS The National Institutes of Health-American Association for Retired Persons Diet and Health Study, a prospective cohort (N=548 845) across 6 states and 2 cities in the United States and with a follow-up period of 17 years (1995-2011), was linked to estimates of annual average exposures to fine particulate matter and nitrogen dioxide at the residential census-tract level. The alternative Mediterranean Diet Index, which uses a 9-point scale to assess conformity with a Mediterranean-style diet, was constructed for each participant from information in cohort baseline dietary questionnaires. We evaluated mortality risks for cardiovascular disease, ischemic heart disease, cerebrovascular disease, or cardiac arrest associated with long-term air pollution exposure. Effect modification of the associations between exposure and the mortality outcomes by alternative Mediterranean Diet Index was examined via interaction terms. RESULTS For fine particulate matter, we observed elevated and significant associations with cardiovascular disease (hazard ratio [HR] per 10 μg/m3, 1.13; 95% CI, 1.08-1.18), ischemic heart disease (HR, 1.16; 95% CI, 1.10-1.23), and cerebrovascular disease (HR, 1.15; 95% CI, 1.03-1.28). For nitrogen dioxide, we found significant associations with cardiovascular disease (HR per 10 ppb, 1.06; 95% CI, 1.04-1.08) and ischemic heart disease (HR, 1.08; 95% CI, 1.05-1.11). Analyses indicated that Mediterranean diet modified these relationships, as those with a higher alternative Mediterranean Diet Index score had significantly lower rates of cardiovascular disease mortality associated with long-term air pollution exposure ( P-interaction<0.05). CONCLUSIONS A Mediterranean diet reduced cardiovascular disease mortality risk related to long-term exposure to air pollutants in a large prospective US cohort. Increased consumption of foods rich in antioxidant compounds may aid in reducing the considerable disease burden associated with ambient air pollution.
Collapse
Affiliation(s)
- Chris C. Lim
- Department of Environmental Medicine, New York University School of Medicine, New York, NY
| | - Richard B. Hayes
- Department of Environmental Medicine, New York University School of Medicine, New York, NY
- Department of Population Health, New York University School of Medicine, New York, NY
| | - Jiyoung Ahn
- Department of Environmental Medicine, New York University School of Medicine, New York, NY
- Department of Population Health, New York University School of Medicine, New York, NY
| | - Yongzhao Shao
- Department of Environmental Medicine, New York University School of Medicine, New York, NY
- Department of Population Health, New York University School of Medicine, New York, NY
| | - Debra T. Silverman
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health,
Rockville, MD
| | - Rena R. Jones
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health,
Rockville, MD
| | - George D. Thurston
- Department of Environmental Medicine, New York University School of Medicine, New York, NY
- Department of Population Health, New York University School of Medicine, New York, NY
| |
Collapse
|
31
|
Lim CC, Hayes RB, Ahn J, Shao Y, Silverman DT, Jones RR, Garcia C, Thurston GD. Association between long-term exposure to ambient air pollution and diabetes mortality in the US. ENVIRONMENTAL RESEARCH 2018; 165:330-336. [PMID: 29778967 PMCID: PMC5999582 DOI: 10.1016/j.envres.2018.04.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 04/12/2018] [Accepted: 04/13/2018] [Indexed: 05/03/2023]
Abstract
OBJECTIVE Recent mechanistic and epidemiological evidence implicates air pollution as a potential risk factor for diabetes; however, mortality risks have not been evaluated in a large US cohort assessing exposures to multiple pollutants with detailed consideration of personal risk factors for diabetes. RESEARCH DESIGN AND METHODS We assessed the effects of long-term ambient air pollution exposures on diabetes mortality in the NIH-AARP Diet and Health Study, a cohort of approximately a half million subjects across the contiguous U.S. The cohort, with a follow-up period between 1995 and 2011, was linked to residential census tract estimates for annual mean concentration levels of PM2.5, NO2, and O3. Associations between the air pollutants and the risk of diabetes mortality (N = 3598) were evaluated using multivariate Cox proportional hazards models adjusted for both individual-level and census-level contextual covariates. RESULTS Diabetes mortality was significantly associated with increasing levels of both PM2.5 (HR = 1.19; 95% CI: 1.03-1.39 per 10 μg/m3) and NO2 (HR = 1.09; 95% CI: 1.01-1.18 per 10 ppb). The strength of the relationship was robust to alternate exposure assessments and model specifications. We also observed significant effect modification, with elevated mortality risks observed among those with higher BMI and lower levels of fruit consumption. CONCLUSIONS We found that long-term exposure to PM2.5 and NO2, but not O3, is related to increased risk of diabetes mortality in the U.S, with attenuation of adverse effects by lower BMI and higher fruit consumption, suggesting that air pollution is involved in the etiology and/or control of diabetes.
Collapse
Affiliation(s)
- Chris C Lim
- Department of Environmental Medicine, New York University School of Medicine, 57 Old Forge Rd, Tuxedo Park, NY 10987, USA.
| | - Richard B Hayes
- Department of Environmental Medicine, New York University School of Medicine, 57 Old Forge Rd, Tuxedo Park, NY 10987, USA; Department of Population Health, New York University School of Medicine, USA.
| | - Jiyoung Ahn
- Department of Environmental Medicine, New York University School of Medicine, 57 Old Forge Rd, Tuxedo Park, NY 10987, USA; Department of Population Health, New York University School of Medicine, USA.
| | - Yongzhao Shao
- Department of Environmental Medicine, New York University School of Medicine, 57 Old Forge Rd, Tuxedo Park, NY 10987, USA; Department of Population Health, New York University School of Medicine, USA.
| | - Debra T Silverman
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, USA.
| | - Rena R Jones
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, USA.
| | | | - George D Thurston
- Department of Environmental Medicine, New York University School of Medicine, 57 Old Forge Rd, Tuxedo Park, NY 10987, USA; Department of Population Health, New York University School of Medicine, USA.
| |
Collapse
|
32
|
Lim CC, Hayes RB, Ahn J, Shao Y, Silverman DT, Jones RR, Garcia C, Thurston GD. Association between long-term exposure to ambient air pollution and diabetes mortality in the US. ENVIRONMENTAL RESEARCH 2018. [PMID: 29778967 DOI: 10.1016/j.envres.2018.04.011.association] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
OBJECTIVE Recent mechanistic and epidemiological evidence implicates air pollution as a potential risk factor for diabetes; however, mortality risks have not been evaluated in a large US cohort assessing exposures to multiple pollutants with detailed consideration of personal risk factors for diabetes. RESEARCH DESIGN AND METHODS We assessed the effects of long-term ambient air pollution exposures on diabetes mortality in the NIH-AARP Diet and Health Study, a cohort of approximately a half million subjects across the contiguous U.S. The cohort, with a follow-up period between 1995 and 2011, was linked to residential census tract estimates for annual mean concentration levels of PM2.5, NO2, and O3. Associations between the air pollutants and the risk of diabetes mortality (N = 3598) were evaluated using multivariate Cox proportional hazards models adjusted for both individual-level and census-level contextual covariates. RESULTS Diabetes mortality was significantly associated with increasing levels of both PM2.5 (HR = 1.19; 95% CI: 1.03-1.39 per 10 μg/m3) and NO2 (HR = 1.09; 95% CI: 1.01-1.18 per 10 ppb). The strength of the relationship was robust to alternate exposure assessments and model specifications. We also observed significant effect modification, with elevated mortality risks observed among those with higher BMI and lower levels of fruit consumption. CONCLUSIONS We found that long-term exposure to PM2.5 and NO2, but not O3, is related to increased risk of diabetes mortality in the U.S, with attenuation of adverse effects by lower BMI and higher fruit consumption, suggesting that air pollution is involved in the etiology and/or control of diabetes.
Collapse
Affiliation(s)
- Chris C Lim
- Department of Environmental Medicine, New York University School of Medicine, 57 Old Forge Rd, Tuxedo Park, NY 10987, USA.
| | - Richard B Hayes
- Department of Environmental Medicine, New York University School of Medicine, 57 Old Forge Rd, Tuxedo Park, NY 10987, USA; Department of Population Health, New York University School of Medicine, USA.
| | - Jiyoung Ahn
- Department of Environmental Medicine, New York University School of Medicine, 57 Old Forge Rd, Tuxedo Park, NY 10987, USA; Department of Population Health, New York University School of Medicine, USA.
| | - Yongzhao Shao
- Department of Environmental Medicine, New York University School of Medicine, 57 Old Forge Rd, Tuxedo Park, NY 10987, USA; Department of Population Health, New York University School of Medicine, USA.
| | - Debra T Silverman
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, USA.
| | - Rena R Jones
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, USA.
| | | | - George D Thurston
- Department of Environmental Medicine, New York University School of Medicine, 57 Old Forge Rd, Tuxedo Park, NY 10987, USA; Department of Population Health, New York University School of Medicine, USA.
| |
Collapse
|
33
|
An Z, Jin Y, Li J, Li W, Wu W. Impact of Particulate Air Pollution on Cardiovascular Health. Curr Allergy Asthma Rep 2018; 18:15. [PMID: 29470659 DOI: 10.1007/s11882-018-0768-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW Air pollution is established as an independent risk factor for cardiovascular diseases (CVDs). Ambient particulate matter (PM), a principal component of air pollutant, has been considered as a main culprit of the adverse effects of air pollution on human health. RECENT FINDINGS Extensive epidemiological and toxicological studies have demonstrated particulate air pollution is positively associated with the development of CVDs. Short-term PM exposure can trigger acute cardiovascular events while long-term exposure over years augments cardiovascular risk to an even greater extent and can reduce life expectancy by a few years. Inhalation of PM affects heart rate variability, blood pressure, vascular tone, blood coagulability, and the progression of atherosclerosis. The potential molecular mechanisms of PM-caused CVDs include direct toxicity to the cardiovascular system or indirect injury by inducing systemic inflammation and oxidative stress in circulation. This review mainly focuses on the acute and chronic effects of ambient PM exposure on the development of cardiovascular diseases and the possible mechanisms for PM-induced increases in cardiovascular morbidity and mortality. Additionally, we summarized some appropriate interventions to attenuate PM air pollution-induced cardiovascular adverse effects, which may promote great benefits to public health.
Collapse
Affiliation(s)
- Zhen An
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, 601 Jinsui Street, Xinxiang, Henan Province, 453003, China
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Public Health, Xinxiang Medical University, Xinxiang, China
| | - Yuefei Jin
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan Province, People's Republic of China
| | - Juan Li
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, 601 Jinsui Street, Xinxiang, Henan Province, 453003, China
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Public Health, Xinxiang Medical University, Xinxiang, China
| | - Wen Li
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, 601 Jinsui Street, Xinxiang, Henan Province, 453003, China
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Public Health, Xinxiang Medical University, Xinxiang, China
| | - Weidong Wu
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, 601 Jinsui Street, Xinxiang, Henan Province, 453003, China.
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Public Health, Xinxiang Medical University, Xinxiang, China.
| |
Collapse
|
34
|
Croft D, Block R, Cameron SJ, Evans K, Lowenstein CJ, Ling F, Zareba W, Hopke PK, Utell MJ, Thurston SW, Thevenet-Morrison K, Rich DQ. Do elevated blood levels of omega-3 fatty acids modify effects of particulate air pollutants on fibrinogen? AIR QUALITY, ATMOSPHERE, & HEALTH 2018; 11:791-799. [PMID: 30147809 PMCID: PMC6097058 DOI: 10.1007/s11869-018-0586-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 05/21/2018] [Indexed: 05/04/2023]
Abstract
Previously, we found short-term increases in ambient particulate matter (PM) air pollutant concentrations were associated with increased serum fibrinogen levels in patients with cardiac disease. We now studied whether high blood levels of omega-3 (ω-3) fatty acids blunted this fibrinogen response to increased PM concentrations in these same patients. Plasma fibrinogen and ω-3 fatty acid levels (% of total identified fatty acids) were measured in blood samples collected from 135 patients treated at the University of Rochester Medical Center for myocardial infarction or stable ischemic heart disease requiring cardiac catheterization. Using ambient measurements of ultrafine, accumulation mode, and fine particles (PM2.5), Delta-C, and black carbon (BC), we regressed serum fibrinogen levels against pollutant concentrations over the previous 1-96 h, using interaction terms to estimate these associations separately for those with HIGH (> 5.12%) and LOWMED serum levels of ω-3 fatty acid (≤ 5.12%). Each 5.6 μg/m3 increase in PM2.5 concentration in the previous hour was associated with a 3.1% increase in fibrinogen (95% CI = 1.5%, 4.7%) in those subjects with LOWMED total ω-3 fatty acid levels, but only a 0.9% increase (95% CI = - 1.5%, 3.2%) in patients with HIGH total ω-3 fatty acid levels. This same pattern was observed with fish oil-derived docosahexaenoic and eicosapentaenoic acids but not alpha-linolenic (from plant oil or seeds). A similar finding was observed with BC in the prior 24 h, but not other PM. Thus, increased blood levels of fish-based ω-3 fatty acids attenuated increases in fibrinogen associated with short-term increases in ambient PM.
Collapse
Affiliation(s)
- Daniel Croft
- Division of Pulmonary and Critical Care, Department of Medicine, University of Rochester Medical Center, 601 Elmwood Avenue, Box 692, Rochester, NY 14642 USA
| | - Robert Block
- Division of Cardiology, Department of Medicine, University of Rochester Medical Center, Rochester, NY USA
| | - Scott J. Cameron
- Division of Cardiology, Department of Medicine, University of Rochester Medical Center, Rochester, NY USA
| | - Kristin Evans
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY USA
| | - Charles J. Lowenstein
- Division of Cardiology, Department of Medicine, University of Rochester Medical Center, Rochester, NY USA
| | - Frederick Ling
- Division of Cardiology, Department of Medicine, University of Rochester Medical Center, Rochester, NY USA
| | - Wojciech Zareba
- Division of Cardiology, Department of Medicine, University of Rochester Medical Center, Rochester, NY USA
| | - Philip K. Hopke
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY USA
- Institute for a Sustainable Environment, and Center for Air Resources Engineering and Science, Clarkson University, Potsdam, NY USA
| | - Mark J. Utell
- Division of Pulmonary and Critical Care, Department of Medicine, University of Rochester Medical Center, 601 Elmwood Avenue, Box 692, Rochester, NY 14642 USA
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY USA
| | - Sally W. Thurston
- Department of Biostatistics and Computational Biology, University of Rochester, Rochester, NY USA
| | - Kelly Thevenet-Morrison
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY USA
| | - David Q. Rich
- Division of Pulmonary and Critical Care, Department of Medicine, University of Rochester Medical Center, 601 Elmwood Avenue, Box 692, Rochester, NY 14642 USA
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY USA
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY USA
| |
Collapse
|
35
|
Lombardo L, Grasso F, Lanciano F, Loria S, Monetti E. Broad-Spectrum Health Protection of Extra Virgin Olive Oil Compounds. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/b978-0-444-64057-4.00002-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
|
36
|
Mirowsky JE, Carraway MS, Dhingra R, Tong H, Neas L, Diaz-Sanchez D, Cascio W, Case M, Crooks J, Hauser ER, Elaine Dowdy Z, Kraus WE, Devlin RB. Ozone exposure is associated with acute changes in inflammation, fibrinolysis, and endothelial cell function in coronary artery disease patients. Environ Health 2017; 16:126. [PMID: 29157250 PMCID: PMC5697214 DOI: 10.1186/s12940-017-0335-0] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 10/23/2017] [Indexed: 05/21/2023]
Abstract
BACKGROUND Air pollution is a major risk factor for cardiovascular disease, of which ozone is a major contributor. Several studies have found associations between ozone and cardiovascular morbidity, but the results have been inconclusive. We investigated associations between ozone and changes across biological pathways associated with cardiovascular disease. METHODS Using a panel study design, 13 participants with coronary artery disease were assessed for markers of systemic inflammation, heart rate variability and repolarization, lipids, blood pressure, and endothelial function. Daily measurements of ozone and particulate matter (PM2.5) were obtained from central monitoring stations. Single (ozone) and two-pollutant (ozone and PM2.5) models were used to assess percent changes in measurements per interquartile ranges of pollutants. RESULTS Per interquartile increase in ozone, changes in tissue plasminogen factor (6.6%, 95% confidence intervals (CI) = 0.4, 13.2), plasminogen activator inhibitor-1 (40.5%, 95% CI = 8.7, 81.6), neutrophils (8.7% 95% CI = 1.5, 16.4), monocytes (10.2%, 95% CI = 1.0, 20.1), interleukin-6 (15.9%, 95% CI = 3.6, 29.6), large-artery elasticity index (-19.5%, 95% CI = -34.0, -1.7), and the baseline diameter of the brachial artery (-2.5%, 95% CI = -5.0, 0.1) were observed. These associations were robust in the two-pollutant model. CONCLUSIONS We observed alterations across several pathways associated with cardiovascular disease in 13 coronary artery disease patients following ozone exposures, independent of PM2.5. The results support the biological plausibility of ozone-induced cardiovascular effects. The effects were found at concentrations below the EPA National Ambient Air Quality Standards for both ozone and PM2.5.
Collapse
Affiliation(s)
- Jaime E. Mirowsky
- Department of Chemistry, SUNY College of Environmental Science and Forestry, 1 Forestry Drive, Syracuse, NY 13210 USA
- Curriculum in Toxicology, University of North Carolina, Chapel Hill, NC USA
| | - Martha Sue Carraway
- Department of Medicine, Pulmonary and Critical Care Medicine, Durham VA Medical Center, Durham, NC USA
| | - Radhika Dhingra
- National Health and Environmental Effects Laboratory, US Environmental Protection Agency, Chapel Hill, NC USA
| | - Haiyan Tong
- National Health and Environmental Effects Laboratory, US Environmental Protection Agency, Chapel Hill, NC USA
| | - Lucas Neas
- National Health and Environmental Effects Laboratory, US Environmental Protection Agency, Chapel Hill, NC USA
| | - David Diaz-Sanchez
- National Health and Environmental Effects Laboratory, US Environmental Protection Agency, Chapel Hill, NC USA
| | - Wayne Cascio
- National Health and Environmental Effects Laboratory, US Environmental Protection Agency, Chapel Hill, NC USA
| | - Martin Case
- National Health and Environmental Effects Laboratory, US Environmental Protection Agency, Chapel Hill, NC USA
| | - James Crooks
- Department of Biomedical Research, National Jewish Health, Denver, CO USA
- Division of Biostatistics and Bioinformatics, National Jewish Health, Denver, CO USA
- Department of Epidemiology, Colorado School of Public Health, Denver, CO USA
| | - Elizabeth R. Hauser
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC USA
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC USA
- Cooperative Studies Program Epidemiology Center, Durham Veterans Affairs Medical Center, Durham, NC USA
| | - Z. Elaine Dowdy
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC USA
| | - William E. Kraus
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC USA
- Division of Cardiology, Department of Medicine, School of Medicine, Duke University, Durham, NC USA
| | - Robert B. Devlin
- National Health and Environmental Effects Laboratory, US Environmental Protection Agency, Chapel Hill, NC USA
| |
Collapse
|
37
|
Niemann B, Rohrbach S, Miller MR, Newby DE, Fuster V, Kovacic JC. Oxidative Stress and Cardiovascular Risk: Obesity, Diabetes, Smoking, and Pollution: Part 3 of a 3-Part Series. J Am Coll Cardiol 2017; 70:230-251. [PMID: 28683970 DOI: 10.1016/j.jacc.2017.05.043] [Citation(s) in RCA: 225] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 04/25/2017] [Accepted: 05/10/2017] [Indexed: 12/16/2022]
Abstract
Oxidative stress occurs whenever the release of reactive oxygen species (ROS) exceeds endogenous antioxidant capacity. In this paper, we review the specific role of several cardiovascular risk factors in promoting oxidative stress: diabetes, obesity, smoking, and excessive pollution. Specifically, the risk of developing heart failure is higher in patients with diabetes or obesity, even with optimal medical treatment, and the increased release of ROS from cardiac mitochondria and other sources likely contributes to the development of cardiac dysfunction in this setting. Here, we explore the role of different ROS sources arising in obesity and diabetes, and the effect of excessive ROS production on the development of cardiac lipotoxicity. In parallel, contaminants in the air that we breathe pose a significant threat to human health. This paper provides an overview of cigarette smoke and urban air pollution, considering how their composition and biological effects have detrimental effects on cardiovascular health.
Collapse
Affiliation(s)
- Bernd Niemann
- Department of Adult and Pediatric Cardiovascular Surgery, University Hospital Giessen, Giessen, Germany
| | - Susanne Rohrbach
- Institute of Physiology, Justus-Liebig University, Giessen, Germany.
| | - Mark R Miller
- BHF/University of Edinburgh Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - David E Newby
- BHF/University of Edinburgh Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom.
| | - Valentin Fuster
- The Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, New York; Marie-Josée and Henry R. Kravis Cardiovascular Health Center, Icahn School of Medicine at Mount Sinai, New York, New York; Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Jason C Kovacic
- The Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, New York.
| |
Collapse
|
38
|
B-vitamin Supplementation Mitigates Effects of Fine Particles on Cardiac Autonomic Dysfunction and Inflammation: A Pilot Human Intervention Trial. Sci Rep 2017; 7:45322. [PMID: 28367952 PMCID: PMC5377246 DOI: 10.1038/srep45322] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 02/21/2017] [Indexed: 12/02/2022] Open
Abstract
Ambient fine particle (PM2.5) pollution triggers acute cardiovascular events. Individual-level preventions are proposed to complement regulation in reducing the global burden of PM2.5–induced cardiovascular diseases. We determine whether B vitamin supplementation mitigates PM2.5 effects on cardiac autonomic dysfunction and inflammation in a single-blind placebo-controlled crossover pilot trial. Ten healthy adults received two-hour controlled-exposure-experiment to sham under placebo, PM2.5 (250 μg/m3) under placebo, and PM2.5 (250 μg/m3) under B-vitamin supplementation (2.5 mg/d folic acid, 50 mg/d vitamin B6, and 1 mg/d vitamin B12), respectively. At pre-, post-, 24 h-post-exposure, we measured resting heart rate (HR) and heart rate variability (HRV) with electrocardiogram, and white blood cell (WBC) counts with hematology analyzer. Compared to sham, PM2.5 exposure increased HR (3.8 bpm, 95% CI: 0.3, 7.4; P = 0.04), total WBC count (11.5%, 95% CI: 0.3%, 24.0%; P = 0.04), lymphocyte count (12.9%, 95% CI: 4.4%, 22.1%; P = 0.005), and reduced low-frequency power (57.5%, 95% CI: 2.5%, 81.5%; P = 0.04). B-vitamin supplementation attenuated PM2.5 effect on HR by 150% (P = 0.003), low-frequency power by 90% (P = 0.01), total WBC count by 139% (P = 0.006), and lymphocyte count by 106% (P = 0.02). In healthy adults, two-hour PM2.5 exposure substantially increases HR, reduces HRV, and increases WBC. These effects are reduced by B vitamin supplementation.
Collapse
|
39
|
Cascio WE. Proposed pathophysiologic framework to explain some excess cardiovascular death associated with ambient air particle pollution: Insights for public health translation. Biochim Biophys Acta Gen Subj 2016; 1860:2869-79. [PMID: 27451957 DOI: 10.1016/j.bbagen.2016.07.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 07/13/2016] [Accepted: 07/18/2016] [Indexed: 02/08/2023]
Abstract
The paper proposes a pathophysiologic framework to explain the well-established epidemiological association between exposure to ambient air particle pollution and premature cardiovascular mortality, and offers insights into public health solutions that extend beyond regulatory environmental protections to actions that can be taken by individuals, public health officials, healthcare professionals, city and regional planners, local and state governmental officials and all those who possess the capacity to improve cardiovascular health within the population. The foundation of the framework rests on the contribution of traditional cardiovascular risk factors acting alone and in concert with long-term exposures to air pollutants to create a conditional susceptibility for clinical vascular events, such as myocardial ischemia and infarction; stroke and lethal ventricular arrhythmias. The conceptual framework focuses on the fact that short-term exposures to ambient air particulate matter (PM) are associated with vascular thrombosis (acute coronary syndrome, stroke, deep venous thrombosis, and pulmonary embolism) and electrical dysfunction (ventricular arrhythmia); and that individuals having prevalent heart disease are at greatest risk. Moreover, exposure is concomitant with changes in autonomic nervous system balance, systemic inflammation, and prothrombotic/anti-thrombotic and profibrinolytic-antifibrinolytic balance. Thus, a comprehensive solution to the problem of premature mortality triggered by air pollutant exposure will require compliance with regulations to control ambient air particle pollution levels, minimize exposures to air pollutants, as well as a concerted effort to decrease the number of people at-risk for serious clinical cardiovascular events triggered by air pollutant exposure by improving the overall state of cardiovascular health in the population. This article is part of a Special Issue entitled Air Pollution, edited by Wenjun Ding, Andrew J. Ghio and Weidong Wu.
Collapse
Affiliation(s)
- Wayne E Cascio
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Chapel Hill, NC, USA.
| |
Collapse
|
40
|
Madden MC. A paler shade of green? The toxicology of biodiesel emissions: Recent findings from studies with this alternative fuel. Biochim Biophys Acta Gen Subj 2016; 1860:2856-62. [PMID: 27261091 DOI: 10.1016/j.bbagen.2016.05.035] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 05/24/2016] [Accepted: 05/25/2016] [Indexed: 12/14/2022]
Abstract
BACKGROUND Biodiesel produced primarily from plants and algal feedstocks is believed to have advantages for production and use compared to petroleum and to some other fuel sources. There is some speculation that exposure to biodiesel combustion emissions may not induce biological responses or health effects or at a minimum reduce the effects relative to other fuels. In evaluating the overall environmental and health effects of biodiesel production to end use scenario, empirical data or modeling data based on such data are needed. SCOPE OF REVIEW This manuscript examines the available toxicology reports examining combustion derived biodiesel emissions since approximately 2007, when our last review of the topic occurred. Toxicity derived from other end uses of biodiesel - e.g., spills, dermal absorption, etc. - are not examined. Findings from biodiesel emissions are roughly divided into three areas: whole non-human animal model exposures; in vitro exposures of mammalian and bacterial cells (used for mutation studies primarily); and human exposures in controlled or other exposure fashions. MAJOR CONCLUSIONS Overall, these more current studies clearly demonstrate that biodiesel combustion emission exposure- to either 100% biodiesel or a blend in petroleum diesel- can induce biological effects. There are reports that show biodiesel exposure generally induces more effects or a greater magnitude of effect than petroleum diesel, however there are also a similar number of reports showing the opposite trend. It is unclear whether effects induced by exposure to a blend are greater than exposure to 100% biodiesel. Taken together, the evidence suggest biodiesel emissions can have some similar effects as diesel emissions on inflammatory, vascular, mutagenic, and other responses. GENERAL SIGNIFICANCE While acute biodiesel exposures can show toxicity with a variety of endpoints, the potential effects on human health need further validation. Additionally there are few or no findings to date on whether biodiesel emissions can induce effects or even a weaker response that petroleum diesel with repeated exposure scenarios such as in an occupational setting. This article is part of a Special Issue entitled Air Pollution, edited by Wenjun Ding, Andrew J. Ghio and Weidong Wu.
Collapse
Affiliation(s)
- Michael C Madden
- National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. EPA, Chapel Hill, NC 27514, United States.
| |
Collapse
|
41
|
Dietary and pharmacological intervention to mitigate the cardiopulmonary effects of air pollution toxicity. Biochim Biophys Acta Gen Subj 2016; 1860:2891-8. [PMID: 27189803 DOI: 10.1016/j.bbagen.2016.05.014] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 05/06/2016] [Accepted: 05/12/2016] [Indexed: 01/08/2023]
Abstract
BACKGROUND Exposure to air pollution contributes importantly to excess morbidity and mortality. And while regulatory actions under the "Clean Air Act" have saved millions of lives by improving air quality, there are still millions of people in the U.S. who live in areas where particulate air pollution (PM) levels exceed the U.S. Environmental Protection Agency's National Ambient Air Quality Standards. Therefore, apart from such localities working to attain such standards the protection of the health of public and in particular those at high risk might benefit from interventional strategies that would ameliorate air pollution's adverse health effects. Because inflammation and oxidative stress appear to mediate the health effects of air pollution, one interventional approach to consider is the use of dietary supplementation or medication with anti-inflammatory or antioxidant properties to block the biological responses that initiate the pathophysiological process that culminates in adverse health effects. SCOPE OF REVIEW This article reviews the capability of dietary supplementation, such as antioxidant vitamins, polyunsaturated fatty acids, and medications as a strategy to mitigate air pollution-induced subclinical cardiopulmonary effects. MAJOR CONCLUSIONS Antioxidant vitamins C and E protect the lungs against short-term ozone and PM exposure. Polyunsaturated fatty acids, such as fish oil and olive oil appear to offer protection against short-term air pollution-induced adverse cardiovascular responses. GENERAL SIGNIFICANCE Taking dietary supplements or medications with antioxidant or anti-inflammatory properties has the potential to provide at least partial protection against air pollution-induced adverse health effects in those individuals who are known to be most susceptible, namely those with pre-existing respiratory and cardiovascular diseases. This article is part of a Special Issue entitled Air Pollution, edited by Wenjun Ding, Andrew J. Ghio and Weidong Wu.
Collapse
|