1
|
Cirovic A, Satarug S. Toxicity Tolerance in the Carcinogenesis of Environmental Cadmium. Int J Mol Sci 2024; 25:1851. [PMID: 38339129 PMCID: PMC10855822 DOI: 10.3390/ijms25031851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024] Open
Abstract
Cadmium (Cd) is an environmental toxicant of worldwide public health significance. Diet is the main non-workplace Cd exposure source other than passive and active smoking. The intestinal absorption of Cd involves transporters for essential metals, notably iron and zinc. These transporters determine the Cd body burden because only a minuscule amount of Cd can be excreted each day. The International Agency for Research on Cancer listed Cd as a human lung carcinogen, but the current evidence suggests that the effects of Cd on cancer risk extend beyond the lung. A two-year bioassay demonstrated that Cd caused neoplasms in multiple tissues of mice. Also, several non-tumorigenic human cells transformed to malignant cells when they were exposed to a sublethal dose of Cd for a prolonged time. Cd does not directly damage DNA, but it influences gene expression through interactions with essential metals and various proteins. The present review highlights the epidemiological studies that connect an enhanced risk of various neoplastic diseases to chronic exposure to environmental Cd. Special emphasis is given to the impact of body iron stores on the absorption of Cd, and its implications for breast cancer prevention in highly susceptible groups of women. Resistance to cell death and other cancer phenotypes acquired during Cd-induced cancer cell transformation, under in vitro conditions, are briefly discussed. The potential role for the ZnT1 efflux transporter in the cellular acquisition of tolerance to Cd cytotoxicity is highlighted.
Collapse
Affiliation(s)
- Aleksandar Cirovic
- Institute of Anatomy, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Soisungwan Satarug
- Kidney Disease Research Collaborative, Translational Research Institute, Woolloongabba, Brisbane, QLD 4102, Australia
| |
Collapse
|
2
|
Schaefer HR, Flannery BM, Crosby L, Jones-Dominic OE, Punzalan C, Middleton K. A systematic review of adverse health effects associated with oral cadmium exposure. Regul Toxicol Pharmacol 2022; 134:105243. [PMID: 35981600 DOI: 10.1016/j.yrtph.2022.105243] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 10/15/2022]
Abstract
Scientific data characterizing the adverse health effects associated with dietary cadmium (Cd) exposure were identified in order to make informed decisions about the most appropriate toxicological reference value (TRV) for use in assessing dietary Cd exposure. Several TRVs are available for Cd and regulatory organizations have used epidemiologic studies to derive these reference values; however, risk of bias (RoB) evaluations were not included in the assessments. We performed a systematic review by conducting a thorough literature search (through January 4, 2020). There were 1714 references identified by the search strings and 328 studies identified in regulatory assessments. After applying the specific inclusion and exclusion criteria, 208 studies (Human: 105, Animal: 103) were considered eligible for further review and data extraction. For the epidemiologic and animal studies, the critical effects identified for oral Cd exposure from the eligible studies were a decrease in bone mineral density (BMD) and renal tubular degeneration. A RoB analysis was completed for 49 studies (30 epidemiological and 19 animal) investigating these endpoints. The studies identified through the SR that were considered high quality and low RoB (2 human and 5 animal) can be used to characterize dose-response relationships and inform the derivation of a Cd TRV.
Collapse
Affiliation(s)
- Heather R Schaefer
- US Food and Drug Administration, Center for Food Safety and Applied Nutrition, College Park, MD, USA.
| | - Brenna M Flannery
- US Food and Drug Administration, Center for Food Safety and Applied Nutrition, College Park, MD, USA
| | - Lynn Crosby
- US Food and Drug Administration, Center for Food Safety and Applied Nutrition, College Park, MD, USA
| | - Olivia E Jones-Dominic
- US Food and Drug Administration, Center for Food Safety and Applied Nutrition, College Park, MD, USA
| | - Cecile Punzalan
- US Food and Drug Administration, Center for Food Safety and Applied Nutrition, College Park, MD, USA
| | - Karlyn Middleton
- US Food and Drug Administration, Center for Food Safety and Applied Nutrition, College Park, MD, USA
| |
Collapse
|
3
|
Kuraeiad S, Kotepui M. Blood Lead Level and Renal Impairment among Adults: A Meta-Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:4174. [PMID: 33920861 PMCID: PMC8071292 DOI: 10.3390/ijerph18084174] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/13/2021] [Accepted: 04/14/2021] [Indexed: 01/04/2023]
Abstract
Background: The adult population in lead-related occupations or environmentally exposed to lead may be at risk for renal impairment and lead nephropathy. This meta-analysis aims to determine the impact of blood lead level (BLL) on renal function among middle-aged participants. Methods: Cross-sectional, longitudinal, or cohort studies that reported BLL and renal function tests among adult participants were retrieved from PubMed, Scopus, and ISI Web of Science. Relevant studies were included and assessed for quality using the Newcastle-Ottawa Scale (NOS). The pooled mean BLL of participants with a high BLL (≥30 µg/dL), moderate BLL (20-30 µg/dL), and low BLL (<20 µg/dL) was estimated using the random effects model. The pooled mean differences in BLL, blood urea nitrogen (BUN), creatinine, uric acid, and creatinine clearance between the exposed and non-exposed participants were estimated using the random effects model. Meta-regression was performed to demonstrate the association between the effect size (ES) of the pooled mean BLL and renal function. Heterogeneity among the included studies was assessed using the Cochrane Q and I2 statistics. Cochrane Q with a p value less than 0.05 and I2 more than 50% demonstrated substantial heterogeneity among the studies included. Publication bias was assessed using the funnel plot between the effect size and standard error of the effect size. Results: Out of 1657 articles, 43 were included in the meta-analysis. The meta-analysis demonstrated that the pooled mean BLL in the participants with a high BLL, moderate BLL, and low BLL was 42.41 µg/dL (95% confidence interval (CI): 42.14-42.67, I2: 99.1%), 22.18 µg/dL (95% CI: 21.68-22.68, I2: 60.4%), and 2.9 µg/dL (95% CI: 2.9-2.9, I2: 100%), respectively. The mean BLL of the exposed participants was higher than that of the non-exposed participants (weighted mean difference (WMD): 25.5, p < 0.0001, 95% CI: 18.59-32.45, I2: 99.8%, 17 studies). The mean BUN (WMD: 1.66, p < 0.0001, 95% CI: 0.76-2.55, I2: 76%, 10 studies) and mean creatinine (WMD: 0.05, p = 0.007, 95% CI: 0.01-0.08, I2: 76.8%, 15 studies) in the exposed participants were higher than those in the non-exposed participants. The mean creatinine clearance in the exposed participants was lower than that in the non-exposed participants (standard mean difference (SMD): -0.544, p = 0.03, 95% CI: -1.035-(-0.054), I2: 96.2%). The meta-regression demonstrated a significant positive effect of BLL on BUN (p = 0.022, coefficient: 0.75, constant: -3.7, 10 studies). Conclusions: BLL was observed to be associated with abnormal renal function test parameters, including high BUN, high creatinine, and low creatinine clearance. Moreover, BUN seemed to be the most valuable prognostic marker for lead-induced renal impairment. Therefore, regular checks for renal function among lead-exposed workers should be a priority and publicly promoted.
Collapse
Affiliation(s)
| | - Manas Kotepui
- Medical Technology, School of Allied Health Sciences, Walailak University, Tha Sala, Nakhon Si Thammarat 80160, Thailand;
| |
Collapse
|
4
|
A. B. Abdul Jabar M, Al-Kamal SKM. Determination of Heavy Elements (Pb, Cd, Cu and Cr) Concentration in some Water Sources. CHEMISTRY & CHEMICAL TECHNOLOGY 2019. [DOI: 10.23939/chcht13.04.471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
5
|
Identification and quantification of the basal and inducible Nrf2-dependent proteomes in mouse liver: biochemical, pharmacological and toxicological implications. J Proteomics 2014; 108:171-87. [PMID: 24859727 PMCID: PMC4115266 DOI: 10.1016/j.jprot.2014.05.007] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 04/30/2014] [Accepted: 05/13/2014] [Indexed: 01/06/2023]
Abstract
The transcription factor Nrf2 is a master regulator of cellular defence: Nrf2 null mice (Nrf2(−/−)) are highly susceptible to chemically induced toxicities. We report a comparative iTRAQ-based study in Nrf2(−/−) mice treated with a potent inducer, methyl-2-cyano-3,12-dioxooleana-1,9(11)dien-28-oate (CDDO-me; bardoxolone -methyl), to define both the Nrf2-dependent basal and inducible hepatoproteomes. One thousand five hundred twenty-one proteins were fully quantified (FDR < 1%). One hundred sixty-one were significantly different (P < 0.05) between WT and Nrf2(−/−) mice, confirming extensive constitutive regulation by Nrf2. Treatment with CDDO-me (3 mg/kg; i.p.) resulted in significantly altered expression of 43 proteins at 24 h in WT animals. Six proteins were regulated at both basal and inducible levels exhibiting the largest dynamic range of Nrf2 regulation: cytochrome P4502A5 (CYP2A5; 17.2-fold), glutathione-S-transferase-Mu 3 (GSTM3; 6.4-fold), glutathione-S-transferase Mu 1 (GSTM1; 5.9-fold), ectonucleoside-triphosphate diphosphohydrolase (ENTPD5; 4.6-fold), UDP-glucose-6-dehydrogenase (UDPGDH; 4.1-fold) and epoxide hydrolase (EPHX1; 3.0-fold). These proteins, or their products, thus provide a potential source of biomarkers for Nrf2 activity. ENTPD5 is of interest due to its emerging role in AKT signalling and, to our knowledge, this protein has not been previously shown to be Nrf2-dependent. Only two proteins altered by CDDO-me in WT animals were similarly affected in Nrf2(−/−) mice, demonstrating the high degree of selectivity of CDDO-me for the Nrf2:Keap1 signalling pathway. Biological significance The Nrf2:Keap1 signalling pathway is attracting considerable interest as a therapeutic target for different disease conditions. For example, CDDO-me (bardoxolone methyl) was investigated in clinical trials for the treatment of acute kidney disease, and dimethyl fumarate, recently approved for reducing relapse rate in multiple sclerosis, is a potent Nrf2 inducer. Such compounds have been suggested to act through multiple mechanisms; therefore, it is important to define the selectivity of Nrf2 inducers to assess the potential for off-target effects that may lead to adverse drug reactions, and to provide biomarkers with which to assess therapeutic efficacy. Whilst there is considerable information on the global action of such inducers at the mRNA level, this is the first study to catalogue the hepatic protein expression profile following acute exposure to CDDO-me in mice. At a dose shown to evoke maximal Nrf2 induction in the liver, CDDO-me appeared highly selective for known Nrf2-regulated proteins. Using the transgenic Nrf2(−/−) mouse model, it could be shown that 97% of proteins induced in wild type mice were associated with a functioning Nrf2 signalling pathway. This analysis allowed us to identify a panel of proteins that were regulated both basally and following Nrf2 induction. Identification of these proteins, which display a large magnitude of variation in their expression, provides a rich source of potential biomarkers for Nrf2 activity for use in experimental animals, and which may be translatable to man to define individual susceptibility to chemical stress, including that associated with drugs, and also to monitor the pharmacological response to Nrf2 inducers. Liver proteomes from WT, Nrf2-null and Nrf2-induced mice were compared by iTRAQ Of 1521 proteins quantified, 161 were regulated basally and 43 following induction Six proteins were both basally and inducibly regulated, with high dynamic ranges In order of fold change, these proteins were CYP2A5, GSTM3, GSTM1, ENTPD5, G6PD, EPHX1 These proteins may yield translatable biomarkers for clinical development
Collapse
|
6
|
Cui Y, Wang Q, Li X, Zhang X. Experimental nonalcoholic fatty liver disease in mice leads to cytochrome p450 2a5 upregulation through nuclear factor erythroid 2-like 2 translocation. Redox Biol 2013; 1:433-40. [PMID: 24191237 PMCID: PMC3814957 DOI: 10.1016/j.redox.2013.08.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 08/15/2013] [Accepted: 08/16/2013] [Indexed: 02/06/2023] Open
Abstract
Mouse cytochrome P450 2A5 (CYP2A5) is upregulated in various liver diseases and a putative common feature for all of these conditions is altered cellular redox status. Nuclear factor erythroid 2-like 2 (Nrf2) is a transcription factor that is post-translationally regulated by oxidative stress and controls the transcription of protective target genes. In the present study, we have characterized the regulation of CYP2A5 by Nrf2 and evaluated gene expression, protein content and activity of anti-oxidant enzymes in the Nrf2+/+ and Nrf2−/− mice model of non-alcoholic fatty liver (NAFLD). After eight weeks of feeding on a high-fat diet, livers from Nrf2−/− mice showed a substantial increase in macro and microvesicular steatosis and a massive increase in the number of neutrophil polymorphs, compared to livers from wild-type mice treated similarly. Livers of Nrf2−/− mice on the high-fat diet exhibited more oxidative stress than their wild-type counterparts as assessed by a significant depletion of reduced glutathione that was coupled with increases in malondialdehyde. Furthermore, results in Nrf2-deficient mice showed that CYP2A5 expression was significantly attenuated in the absence of Nrf2, as was found with the conventional target genes of Nrf2. The treatment of wild-type mice with high-fat diet leaded to nuclear accumulation of Nrf2, and co-immunoprecipitation experiments showed that Nrf2 was bound to Cyp2a5. These findings suggest that the high-fat diet induced alteration in cellular redox status and induction of CYP2A5 was modulated through the redox-sensitive transcription Nrf2. CYP2A5 up-regulation in response to NAFLD was Nrf2 dependent. NAFLD induces oxidant stress. A protective role for Nrf2 against hepatic damage by NAFLD was demonstrated. NAFLD induces translocation of Nrf2 from the cytoplasm to the nucleus. Nrf2 binding to CYP2a5 was shown.
Collapse
Affiliation(s)
- Yizhe Cui
- College of Veterinary Medicine, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin 150030, Heilongjiang, China ; College of Animal Sciences and Technology, Heilongjiang Bayi Agricultural University, 2# Xinyang Road, New Development District, Daqing 163319, Heilongjiang, China
| | | | | | | |
Collapse
|
7
|
Satarug S, Moore MR. Emerging roles of cadmium and heme oxygenase in type-2 diabetes and cancer susceptibility. TOHOKU J EXP MED 2012; 228:267-88. [PMID: 23117262 DOI: 10.1620/tjem.228.267] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Many decades after an outbreak of severe cadmium poisoning, known as Itai-itai disease, cadmium continues to pose a significant threat to human health worldwide. This review provides an update on the effects of this environmental toxicant cadmium, observed in numerous populations despite modest exposure levels. In addition, it describes the current knowledge on the link between heme catabolism and glycolysis. It examines novel functions of heme oxygenase-2 (HO-2) that protect against type 2-diabetes and obesity, which have emerged from diabetic/obese phenotypes of the HO-2 knockout mouse model. Increased cancer susceptibility in type-2 diabetes has been noted in several large cohorts. This is a cause for concern, given the high prevalence of type-2 diabetes worldwide. A lifetime exposure to cadmium is associated with pre-diabetes, diabetes, and overall cancer mortality with sex-related differences in specific types of cancer. Liver and kidney are target organs for the toxic effects of cadmium. These two organs are central to the maintenance of blood glucose levels. Further, inhibition of gluconeogenesis is a known effect of heme, while cadmium has the propensity to alter heme catabolism. This raises the possibility that cadmium may mimic certain HO-2 deficiency conditions, resulting in diabetic symptoms. Intriguingly, evidence has emerged from a recent study to suggest the potential interaction and co-regulation of HO-2 with the key regulator of glycolysis: 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 4 (PFKFB4). HO-2 could thus be critical to a metabolic switch to cancer-prone cells because the enzyme PFKFB and glycolysis are metabolic requirements for cell proliferation and resistance to apoptosis.
Collapse
Affiliation(s)
- Soisungwan Satarug
- Center for Kidney Disease Research, University of Queensland School of Medicine, Brisbane, Australia.
| | | |
Collapse
|
8
|
Mitchell E, Frisbie S, Sarkar B. Exposure to multiple metals from groundwater-a global crisis: geology, climate change, health effects, testing, and mitigation. Metallomics 2011; 3:874-908. [PMID: 21766119 DOI: 10.1039/c1mt00052g] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
This paper presents an overview of the global extent of naturally occurring toxic metals in groundwater. Adverse health effects attributed to the toxic metals most commonly found in groundwater are reviewed, as well as chemical, biochemical, and physiological interactions between these metals. Synergistic and antagonistic effects that have been reported between the toxic metals found in groundwater and the dietary trace elements are highlighted, and common behavioural, cultural, and dietary practices that are likely to significantly modify health risks due to use of metal-contaminated groundwater are reviewed. Methods for analytical testing of samples containing multiple metals are discussed, with special attention to analytical interferences between metals and reagents. An overview is presented of approaches to providing safe water when groundwater contains multiple metallic toxins.
Collapse
|
9
|
Soliman AR, Helmy S. Status epilepticus induced by putrid salted gray mullet fish intoxication in patients with chronic kidney disease. Hemodial Int 2010; 14:523-5. [PMID: 20955287 DOI: 10.1111/j.1542-4758.2010.00467.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Neurological and psychiatric symptoms are common presentations, but are often ignored in fresh salted gray Mullet fish intoxication. We report 2 patients with chronic renal failure at a predialyzed stage who developed refractory status epilepticus after ingestion of putrid salted gray Mullet. We warn consultant neurologists that fresh salted gray Mullet fish intoxication must be considered when patients with chronic kidney disease present with seizures or other unexplained neurological or psychiatric symptoms.
Collapse
Affiliation(s)
- Amin R Soliman
- School of Medicine Department of Neurology, Cairo University, Cairo, Egypt
| | | |
Collapse
|
10
|
Tangpong J, Satarug S. Alleviation of lead poisoning in the brain with aqueous leaf extract of the Thunbergia laurifolia (Linn.). Toxicol Lett 2010; 198:83-8. [DOI: 10.1016/j.toxlet.2010.04.031] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Revised: 04/29/2010] [Accepted: 04/30/2010] [Indexed: 10/19/2022]
|
11
|
Cadmium induced renal dysfunction among residents of rice farming area downstream from a zinc-mineralized belt in Thailand. Toxicol Lett 2010; 198:26-32. [DOI: 10.1016/j.toxlet.2010.04.023] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2010] [Revised: 04/17/2010] [Accepted: 04/20/2010] [Indexed: 11/23/2022]
|
12
|
Lämsä V, Levonen AL, Leinonen H, Ylä-Herttuala S, Yamamoto M, Hakkola J. Cytochrome P450 2A5 constitutive expression and induction by heavy metals is dependent on redox-sensitive transcription factor Nrf2 in liver. Chem Res Toxicol 2010; 23:977-85. [PMID: 20402460 DOI: 10.1021/tx100084c] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Mouse cytochrome P450 2A5 (CYP2A5) is upregulated in various pathophysiological liver diseases and induced by structurally variable hepatotoxic chemicals. A putative common feature for all of these conditions is altered cellular redox status. Nuclear factor erythroid 2-like 2 (Nrf2) is a transcription factor that is post-translationally regulated by oxidative stress and controls the transcription of numerous protective target genes. In the present study, we have extensively characterized the regulation of Cyp2a5 by Nrf2 and compared it to a well-characterized target gene Hmox1. The treatment of mouse primary hepatocytes with lead chloride, methylmercury chloride, or phenethyl isothiocyanate all leads to nuclear accumulation of Nrf2. Both CYP2A5 and HMOX1 were induced by all three compounds; however, HMOX1 responded more rapidly and transiently as compared to CYP2A5. Experiments in Nrf2(-/-) primary hepatocytes showed that Nrf2 is crucial for CYP2A5 induction but not for elevation of HMOX1. Both CYP2A5 and HMOX1 were upregulated by Nrf2 overexpression and downregulated by Keap1 or Bach1 overexpression. However, in all cases, CYP2A5 responded much more potently. Results in Nrf2-deficient animals showed that CYP2A5 expression is significantly attenuated in the absence of Nrf2, while expression of HMOX1 was unaffected. Therefore, Cyp2a5 joins the group of genes constitutively regulated by Nrf2. Our current results unequivocally show that expression of CYP2A5 is tightly controlled by Nrf2 in liver. Nrf2 is needed for constitutive expression of CYP2A5, and CYP2A5 is also sensitively upregulated by an increased level of Nrf2 protein. Therefore, CYP2A5 upregulation could be a useful indicator for hepatic activation of the Nrf2 pathway.
Collapse
Affiliation(s)
- Virpi Lämsä
- Department of Pharmacology and Toxicology, University of Oulu, Oulu, Finland
| | | | | | | | | | | |
Collapse
|
13
|
Sasso AF, Isukapalli SS, Georgopoulos PG. A generalized physiologically-based toxicokinetic modeling system for chemical mixtures containing metals. Theor Biol Med Model 2010; 7:17. [PMID: 20525215 PMCID: PMC2903511 DOI: 10.1186/1742-4682-7-17] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Accepted: 06/02/2010] [Indexed: 12/30/2022] Open
Abstract
Background Humans are routinely and concurrently exposed to multiple toxic chemicals, including various metals and organics, often at levels that can cause adverse and potentially synergistic effects. However, toxicokinetic modeling studies of exposures to these chemicals are typically performed on a single chemical basis. Furthermore, the attributes of available models for individual chemicals are commonly estimated specifically for the compound studied. As a result, the available models usually have parameters and even structures that are not consistent or compatible across the range of chemicals of concern. This fact precludes the systematic consideration of synergistic effects, and may also lead to inconsistencies in calculations of co-occurring exposures and corresponding risks. There is a need, therefore, for a consistent modeling framework that would allow the systematic study of cumulative risks from complex mixtures of contaminants. Methods A Generalized Toxicokinetic Modeling system for Mixtures (GTMM) was developed and evaluated with case studies. The GTMM is physiologically-based and uses a consistent, chemical-independent physiological description for integrating widely varying toxicokinetic models. It is modular and can be directly "mapped" to individual toxicokinetic models, while maintaining physiological consistency across different chemicals. Interaction effects of complex mixtures can be directly incorporated into the GTMM. Conclusions The application of GTMM to different individual metals and metal compounds showed that it explains available observational data as well as replicates the results from models that have been optimized for individual chemicals. The GTMM also made it feasible to model toxicokinetics of complex, interacting mixtures of multiple metals and nonmetals in humans, based on available literature information. The GTMM provides a central component in the development of a "source-to-dose-to-effect" framework for modeling population health risks from environmental contaminants. As new data become available on interactions of multiple chemicals, the GTMM can be iteratively parameterized to improve mechanistic understanding of human health risks from exposures to complex mixtures of chemicals.
Collapse
Affiliation(s)
- Alan F Sasso
- Environmental and Occupational Health Sciences Institute, A joint institute of UMDNJ-Robert Wood Johnson Medical School and Rutgers University, Piscataway, New Jersey, USA
| | | | | |
Collapse
|
14
|
Rendic S, Guengerich FP. Update information on drug metabolism systems--2009, part II: summary of information on the effects of diseases and environmental factors on human cytochrome P450 (CYP) enzymes and transporters. Curr Drug Metab 2010; 11:4-84. [PMID: 20302566 PMCID: PMC4167379 DOI: 10.2174/138920010791110917] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Accepted: 02/22/2010] [Indexed: 12/14/2022]
Abstract
The present paper is an update of the data on the effects of diseases and environmental factors on the expression and/or activity of human cytochrome P450 (CYP) enzymes and transporters. The data are presented in tabular form (Tables 1 and 2) and are a continuation of previously published summaries on the effects of drugs and other chemicals on CYP enzymes (Rendic, S.; Di Carlo, F. Drug Metab. Rev., 1997, 29(1-2), 413-580., Rendic, S. Drug Metab. Rev., 2002, 34(1-2), 83-448.). The collected information presented here is as stated by the cited author(s), and in cases when several references are cited the latest published information is included. Inconsistent results and conclusions obtained by different authors are highlighted, followed by discussion of the major findings. The searchable database is available as an Excel file, for information about file availability contact the corresponding author.
Collapse
Affiliation(s)
- S Rendic
- University of Zagreb, Zagreb, Croatia.
| | | |
Collapse
|
15
|
|
16
|
|
17
|
Dabak J, Gazuwa S, Ubom G. Hepatoprotective Potential of Calcium and Magnesium Against Cadmium and Lead Induced Hepatotoxicity in Wistar Rats. ACTA ACUST UNITED AC 2008. [DOI: 10.3923/ajbkr.2009.12.19] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
18
|
Peamkrasatam S, Sriwatanakul K, Kiyotani K, Fujieda M, Yamazaki H, Kamataki T, Yoovathaworn K. In vivo evaluation of coumarin and nicotine as probe drugs to predict the metabolic capacity of CYP2A6 due to genetic polymorphism in Thais. Drug Metab Pharmacokinet 2007; 21:475-84. [PMID: 17220563 DOI: 10.2133/dmpk.21.475] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The association between the distribution characteristics of CYP2A6 catalytic activities toward nicotine and coumarin, and the frequency distribution of CYP2A6 variant alleles reported was estimated in 120 healthy Thais. The distributions of the subjects as classified by the amounts of 7-hydroxycoumarin (7-OHC) excreted in the urine and by cotinine/nicotine ratio in the plasma were clearly bimodal. However, the numbers of apparently poor metabolizers for coumarin and nicotine were different. The inter-individual variability in the in vivo dispositions of coumarin and nicotine closely related to the CYP2A6 genetic polymorphism. There was a close correlation between the rate of 7-OHC excretion in the urine and cotinine/nicotine ratio in the plasma among subjects (R=0.92, p<0.001). The frequency of CYP2A6 allele found in the present study was: CYP2A6*1A=32% (95% CI, 22.1-39.4%), CYP2A6*1B=27% (95% CI, 19.4-33.5%), CYP2A6*9=20% (95% CI, 17.6-23.3%), CYP2A6*4=14% (95% CI, 9.6-17.8%), CYP2A6*7=5% (95% CI, 3.7-9.4%), CYP2A6*10=2% (95% CI, 0.8-5.1%). Subjects having CYP2A6*1A/*1B were found to have a higher rate of 7-OHC excretion, as well as a higher cotinine/nicotine ratio in the plasma compared with those of the other genotypes. In contrast, subjects with CYP2A6*4/*7 and CYP2A6*7/*7 almost lacked any cotinine formation, whereas urinary 7-OHC was still detectable. CYP2A6*9 allele clearly resulted in reduced enzyme activities. Despite the absence of the homozygote for CYP2A6*10 allele, the presence of CYP2A6*10 allele significantly decreased the enzyme activities. The results of the present study demonstrate that in vivo phenotyping of CYP2A6 using nicotine and coumarin are not metabolically equivalent. Nicotine is a better probe according to its specificity, while coumarin is still valuable to be used for a routine CYP2A6 phenotyping since the test employs a non-invasive method.
Collapse
Affiliation(s)
- Sompop Peamkrasatam
- Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | | | | | | | | | | | | |
Collapse
|
19
|
Ekong EB, Jaar BG, Weaver VM. Lead-related nephrotoxicity: a review of the epidemiologic evidence. Kidney Int 2006; 70:2074-84. [PMID: 17063179 DOI: 10.1038/sj.ki.5001809] [Citation(s) in RCA: 218] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Chronic kidney disease (CKD) represents a major global public health concern. Efforts to prevent and/or slow progression of CKD are essential. Lead nephropathy, characterized by chronic tubulointerstitial nephritis, is a well-known risk of chronic, high-level lead exposure. However, in recent years, lead exposure has declined sharply, particularly in developed countries. We reviewed epidemiologic research in general, occupational, and patient populations to assess whether lead, at current exposure levels, still contributes to nephrotoxicity. Other pertinent topics, such as risk in children, genetic susceptibility, and co-exposure to cadmium, are also considered. The data reviewed indicate that lead contributes to nephrotoxicity, even at blood lead levels below 5 microg/dl. This is particularly true in susceptible populations, such as those with hypertension (HTN), diabetes, and/or CKD. Low socioeconomic status is a risk factor for both lead exposure and diseases that increase susceptibility. Future public health risk for lead-related nephrotoxicity may be most significant in those rapidly developing countries where risk factors for CKD, including obesity and secondary HTN and diabetes mellitus, are increasing more rapidly than lead exposure is declining. Global efforts to reduce lead exposure remain important. Research is also needed to determine whether specific therapies, such as chelation, are beneficial in susceptible populations.
Collapse
Affiliation(s)
- E B Ekong
- Division of Occupational and Environmental Health, Department of Environmental Health Sciences, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland 21205, USA
| | | | | |
Collapse
|
20
|
Satarug S, Nishijo M, Lasker JM, Edwards RJ, Moore MR. Kidney Dysfunction and Hypertension: Role for Cadmium, P450 and Heme Oxygenases? TOHOKU J EXP MED 2006; 208:179-202. [PMID: 16498227 DOI: 10.1620/tjem.208.179] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Cadmium (Cd) is a metal toxin of continuing worldwide concern. Daily intake of Cd, albeit in small quantities, is associated with a number of adverse health effects which are attributable to distinct pathological changes in a variety of tissues and organs. In the present review, we focus on its renal tubular effects in people who have been exposed environmentally to Cd at levels below the provisional tolerable intake level set for the toxin. We highlight the data linking such low-level Cd intake with tubular injury, altered abundance of cytochromes P450 (CYPs) in the kidney and an expression of a hypertensive phenotype. We provide updated knowledge on renal and vascular effects of the eicosanoids 20-hydroxyeicosatetraenoic acid (20-HETE) and eicosatrienoic acids (EETs), which are biologically active metabolites from arachidonate metabolism mediated by certain CYPs in the kidney. We note the ability of Cd to elicit "oxidative stress" and to alter metal homeostasis notably of zinc which may lead to augmentation of the defense mechanisms involving induction of the antioxidant enzyme heme oxygenase-1 (HO-1) and the metal binding protein metallothionein (MT) in the kidney. We hypothesize that renal Cd accumulation triggers the host responses mediated by HO-1 and MT in an attempt to protect the kidney against injurious oxidative stress and to resist a rise in blood pressure levels. This hypothesis predicts that individuals with less active HO-1 (caused by the HO-1 genetic polymorphisms) are more likely to have renal injury and express a hypertensive phenotype following chronic ingestion of low-level Cd, compared with those having more active HO-1. Future analytical and molecular epidemiologic research should pave the way to the utility of induction of heme oxygenases together with dietary antioxidants in reducing the risk of kidney injury and hypertension in susceptible people.
Collapse
Affiliation(s)
- Soisungwan Satarug
- National Research Center for Environmental Toxicology, University of Queensland, Brisbane, Australia.
| | | | | | | | | |
Collapse
|
21
|
Baker JR, Edwards RJ, Lasker JM, Moore MR, Satarug S. Renal and hepatic accumulation of cadmium and lead in the expression of CYP4F2 and CYP2E1. Toxicol Lett 2005; 159:182-91. [PMID: 15994032 DOI: 10.1016/j.toxlet.2005.05.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2005] [Revised: 05/20/2005] [Accepted: 05/20/2005] [Indexed: 12/31/2022]
Abstract
The present study examined accumulation of the metal toxins cadmium (Cd) and lead (Pb) in relation to the abundance of cytochrome P450 4F2 (CYP4F2), CYP2E1 and concentrations of zinc and copper in liver and kidney samples using immunoblotting coupled with metal analysis. The post mortem liver and kidney cortex samples were from 23 males and 8 females aged 3-89 years. All were Caucasians who had not been exposed to metals in the workplace. Average kidney cortex Cd load of 17.4 microg/g w.w. was 17 times greater than average liver Cd load (1.1 microg/g w.w.). In contrast, average kidney cortex Pb load of 0.09 microg/g w.w. was two times lower than liver Pb load of 0.19 microg/g w.w. Average Zn and Cu concentrations in the kidney cortex samples were 67% and 33% lower than those in the liver. Liver and kidney Cd loads, but not liver or kidney Pb loads, correlated positively with donors' age. After controlling for liver Cd load, an inverse correlation was seen between Zn and age (partial r=-0.39, P=0.02), suggesting reduction in liver Zn levels in old age. Liver CYP2E1 protein abundance correlated with age-adjusted Cd load (partial r=0.37, P=0.02) whereas kidney CYP4F2 protein abundance showed a positive correlation with age-adjusted Cd loads (partial r=0.40, P=0.02). These findings suggest that Cd may be an inducer of renal CYP4F2 and hepatic CYP2E1 and that increased renal CYP4F2 expression may implicate in Cd-linked renal tubular dysfunction and high blood pressure, involving CYP4F2-dependent arachidonic acid metabolism.
Collapse
Affiliation(s)
- Jason R Baker
- National Research Centre for Environmental Toxicology (EnTox), The University of Queensland, 39 Kessels Road, Coopers Plains, Brisbane, Qld 4108, Australia
| | | | | | | | | |
Collapse
|