1
|
Soleimani Z, Haghshenas R, Farzi Y, Yunesian M, Khalaji A, Behnoush AH, Karami A, Mehrabi M, Ghasemi E, Ashkani F, Naddafi K, Djazayeri A, Pouraram H, Mesdaghinia A, Farzadfar F. Human biomonitoring and reference values of urinary 1-hydroxypyrene among Iranian adults population. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:103130-103140. [PMID: 37682435 DOI: 10.1007/s11356-023-29208-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 08/03/2023] [Indexed: 09/09/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are one of the most important environmental pollutants. Urinary concentrations of 1-hydropyren metabolites of PAHs have been used as biomarkers of these chemicals' exposure in humans. This cross-sectional study was conducted on 468 healthy Iranian adults over 25 years old and non-smokers in six provinces who were selected based on the clustering method. Fasting urine sampling and body composition and demographic measurements were performed. Urine samples were analyzed by GC-MS. The analysis included descriptive statistics and analytical statistics using multiple linear regression by Python software. 1-Hydroxypyrene was found in 100% of samples, and the mean (Reference Value 95%) concentration of 1-hydroxypyrene was 6.12 (RV 95%: 20) μg/L and 5.95 (21) μg/gcrt. There was a direct relationship between the amount of body composition (body fat, visceral fat), BMI, and age with the urinary concentrations of 1-hydropyren metabolites, and this relationship was significant for BMI with urinary concentrations of 1-hydropyren metabolites (P = 0.045). The amount of 1-hydroxypyrene in healthy Iranian adults has been higher than in similar studies in other countries. These results provide helpful information regarding the exposure of Iranian adults to 1-hydroxypyrene, and these data can be used to supplement the national reference values of human biomonitoring for the interpretation of biomonitoring results.
Collapse
Affiliation(s)
- Zahra Soleimani
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Research Methodology and Data Analysis, Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
| | - Rosa Haghshenas
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Yousef Farzi
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Masud Yunesian
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Department of Research Methodology and Data Analysis, Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
| | - Amirmohammad Khalaji
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Hossein Behnoush
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Karami
- Environmental and Occupational Health,Department of Health Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mahia Mehrabi
- Environmental Health Group,Department of Health Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Erfan Ghasemi
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Ashkani
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Kazem Naddafi
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Center for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
| | - Abolghasem Djazayeri
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamed Pouraram
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Mesdaghinia
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| | - Farshad Farzadfar
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Biomonitoring of Exposure to Metals in a Population Residing in an Industrial Area in Brazil: A Feasibility Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182312455. [PMID: 34886190 PMCID: PMC8656667 DOI: 10.3390/ijerph182312455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/20/2021] [Accepted: 11/22/2021] [Indexed: 12/19/2022]
Abstract
Background: Industries are sources of environmental pollutants. However, there are few human biomonitoring (HBM) studies in the vicinity of industrial areas. Thus, we evaluate the feasibility of conducting an HBM study to assess exposure to metals in an industrial area in Rio de Janeiro, Brazil. Methodology: A cross-sectional survey was conducted near a steel factory. Adults (exposed = 775; controls = 775) were randomly selected and sex-matched. Subjects were interviewed using a questionnaire and a 24 h dietary recall. Blood samples were collected to analyze metal concentrations, blood count, biochemical parameters, and thyroid hormones. The feasibility of the survey was assessed following guidelines. The descriptive analysis was performed for the first 250 participants (pilot study). Results: Adjustments were made to the survey execution, including age-matching, fieldwork team, questionnaire, blood collection, and research awareness. The complete questionnaire was answered by ≥97% of participants; metals were measured in ≥98% and clinical parameters in ≥89%, except thyroid hormones (13–44%). The average age and family income were of 50 years and USD 575/month, respectively. The participants had equal distribution among sexes: 50% had a medium education level, and 59% were nonwhite. Conclusion: This preliminary HBM study demonstrates feasibility for the total population, with results indicating representativeness of the target population.
Collapse
|
3
|
Campo L, Bechtold P, Borsari L, Fustinoni S. A systematic review on biomonitoring of individuals living near or working at solid waste incinerator plants. Crit Rev Toxicol 2019; 49:479-519. [DOI: 10.1080/10408444.2019.1630362] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Laura Campo
- Environmental and Industrial Toxicology Unit, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Petra Bechtold
- Department of Public Health, Local Health Unit, Modena, Italy
| | - Lucia Borsari
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Silvia Fustinoni
- Environmental and Industrial Toxicology Unit, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Milan, Italy
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
4
|
Campos ÉDA, Silva IFD, Warden CF. [Exposure to metals in the adult population living in industrial areas: a systematic review of the literature]. CIENCIA & SAUDE COLETIVA 2019; 26:2253-2270. [PMID: 34231736 DOI: 10.1590/1413-81232021266.07612019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 08/09/2019] [Indexed: 11/22/2022] Open
Abstract
This study aimed to review studies of human biomonitoring (HBM) that evaluated exposure to lead (Pb), cadmium (Cd), mercury (Hg), nickel (Ni), arsenic (As) and manganese (Mn) in adults living close to industrial areas. A systematic review of studies was selected, without initial date limit through to December 2017, from the MEDLINE and BVS databases. Original studies in English, Portuguese or Spanish conducted among the adult population using blood and/or urine as biomarkers were included. The articles were evaluated according to methodological criteria, including studies with comparison groups and/or probabilistic sampling. Of the 28 studies selected, 54% were conducted in Europe, 36% in Asia, 7% in North America and 4% in Africa. Foundries, metal works and steel mills were the most frequently studied. Urine and blood were used in 82% and 50% of studies, respectively. The elements most investigated were Cd, Pb and As. Despite using heterogeneous methodologies, the results revealed higher metal concentrations, especially from As and Hg in general, than in the comparison group. This review highlights the need for more rigorous methodological studies of HBM, stressing the importance of public health vigilance among populations exposed to toxic metals, especially in developing countries.
Collapse
Affiliation(s)
- Élida de Albuquerque Campos
- Escola Nacional de Saúde Pública Sergio Arouca, Fundação Oswaldo Cruz. Rua Leopoldo Bulhões 1480, Manguinhos. 21041-210 Rio de Janeiro RJ Brasil
| | - Ilce Ferreira da Silva
- Pós-Graduação em Pesquisa Aplicada à Saúde da Mulher e da Criança, Instituto Fernandes Figueira, Fundação Oswaldo Cruz. Rio de Janeiro RJ Brasil
| | | |
Collapse
|
5
|
Levels of 1-hydroxypyrene in urine of people living in an oil producing region of the Andean Amazon (Ecuador and Peru). Int Arch Occup Environ Health 2017; 91:105-115. [PMID: 28939924 DOI: 10.1007/s00420-017-1258-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 09/11/2017] [Indexed: 10/18/2022]
Abstract
PURPOSE Polycyclic aromatic hydrocarbons (PAHs) are contaminants with carcinogenic effects but little is known about their presence in environments surrounding oil drilling operations and spills or exposure levels in nearby communities. The objective of this study was to characterize PAH levels in people living near oil drilling operations in relation to fish consumption, occupation, source of water and other socio-demographic characteristics. METHODS This pilot study examined PAH exposure by measuring 1-hydroxypyrene (1-OHP) in urine samples using high-performance liquid chromatography and fluorescence detection from 75 women and men in the Ecuadorian and Peruvian Amazon living near oil drilling operations and who answered a questionnaire collecting socio-demographic, occupational and dietary information. Data were analyzed using multiple linear regression models. RESULTS The mean value of 1-OHP was 0.40 μmol/mol creatinine, 95% CI 0.32-0.46 μmol/mol creatinine. Women who used water from a surface source (for washing clothes or bathing) had almost twice the amount of 1-OHP in their urine (mean 1-OHP = 0.41 μmol/mol creatinine, 95% CI 0.28-0.54 μmol/mol creatinine, n = 23) as women who used water from either a well, a spring or rain (mean 1-OHP = 0.22 μmol/mol creatinine, 95% CI 0.11-0.34 μmol/mol creatinine, n = 6). Men who reported eating a bottom-dwelling species as their most commonly consumed fish (mean 1-OHP = 0.50 μmol/mol creatinine, 95% CI 0.36-0.64 μmol/mol creatinine, n = 31) had twice as much 1-OHP in their urine as men who reported a pelagic fish (mean 1-OHP = 0.25 μmol/mol creatinine, 95% CI 0.15-0.35 μmol/mol creatinine, n = 15), signaling either oral (fish consumption) or dermal (while standing in water fishing benthic species) exposure. CONCLUSIONS More contact with surface water and benthic fish may result in higher levels of 1-OHP in human urine among the study population. Reducing the amount of oil and wastes entering the waterways in Andean Amazonia would be one way to reduce exposure.
Collapse
|
6
|
The added value of a surveillance human biomonitoring program: The case of FLEHS in Flanders (Belgium). Int J Hyg Environ Health 2017; 220:46-54. [DOI: 10.1016/j.ijheh.2016.09.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 09/16/2016] [Accepted: 09/16/2016] [Indexed: 01/21/2023]
|
7
|
HPLC-fast scanning fluorimetric detection determination of risk exposure to polycyclic aromatics hydrocarbons biomarkers in human urine. Bioanalysis 2017; 9:265-278. [DOI: 10.4155/bio-2016-0125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Aim: An HPLC method for the determination of 2-hydroxyfluorene (2-OHF), various hydroxyphenanthrene metabolites (1-, 2-, 3-, 4- and 9-hydroxyphenanthrene, OHPhs), 1-hydroxypyrene (1-OHPy) and 3-hydroxybenzo[a]pyrene (3-OHB[a]Py) in human urine, has been developed using fast scanning fluorimetric detection and gradient elution mode. Materials & methods: All reagents were of analytical grade. Standard solutions were prepared separately, by exact weighing or dilution with ultrapure acetonitrile, and were stored at 4 ºC in darkness. The standard addition method was used for the analysis of urine samples. Results: In the optimized conditions, 2- and 3-hydroxyphenanthrene, and 1- and 9-hydroxyphenanthrene metabolites eluted at the same retention time; however, all other hydroxy-polycyclic aromatic hydrocarbons were well resolved. Multi-emission detection allows us to monitor each metabolite at its most sensitivity emission wavelength. Detection limits ranged between 0.9 and 4.26 ng ml-1. Conclusion: Fortified urine samples of nonexposure and nonsmoker volunteers, previous precipitation step with acetonitrile, were used to test the proposed method. The obtained results confirm the goodness of the method.
Collapse
|
8
|
Abstract
There has been increasing demand for simple, rapid, highly sensitive, inexpensive yet reliable method for detecting predisposition to cancer. Human biomonitoring of exposure to the largest class of chemical carcinogen, polycyclic aromatic hydrocarbons (PAHs) that are rapidly transformed into detectable metabolites (eg, 1-hydroxypyrene), can serve as strong pointers to early detection of predisposition to cancer. Given that any exposure to PAH is assumed to pose a certain risk of cancer, several biomarkers have been employed in biomonitoring these ninth most threatening ranked compounds. They include metabolites in urine, urinary thioethers, urinary mutagenicity, genetoxic end points in lymphocytes, hemoglobin adducts of benzo(a)pyrene, PAH-protein adducts, and PAH-DNA adducts among others. In this chapter, the main focus will be on the urine metabolites since urine samples are easily collected and there is a robust analytical instrument for the determination of their metabolites.
Collapse
|
9
|
Ifegwu OC, Anyakora C, Chigome S, Torto N. Electrospun nanofiber sorbents for the pre-concentration of urinary 1-hydroxypyrene. J Anal Sci Technol 2015. [DOI: 10.1186/s40543-015-0055-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Synthetic polymers have some qualities that make them good candidates for pre concentration of trace analytes biological fluids because of their great potentials to be functionalized and electrospun into nanofibres.
Methods
In this study, Electrospun nanofiber sorbents fabricated from 11 polymers {poly(styrene-co-methacrylic acid), poly(styrene-co-divinylbenzene) (SDVB), poly(styrene-co-acrylamide), poly(styrene-co-p-sodium styrene sulfonate), polystyrene, poly(vinyl benzyl chloride), cellulose acetate, polyethylene terephthalate (PET), polysulfone, nylon 6} were evaluated for the extraction and pre-concentration of 1-hydroxypyrene from a water sample.
Results
Scanning electron microscopy (SEM) studies revealed the formation of continuous fine bead-free and randomly arrayed fibers with their average diameters ranging from 110 to 650 nm. The percentage recoveries were highest for nylon 6 with 72%, SDVB with 70%, whereas PET achieved the lowest recovery at 34%. Under optimized conditions, the analyte followed a linear relationship for all sorbents in the concentration range of 1 to 1,000 μg/L. The coefficient of determination (r
2) was between 0.9990 to 0.9999, with precision (%relative standard deviation (RSD)) ≤ 9.51% (n = 6) for all the analysis. The %RSD for intra- and inter-day precision at three different concentrations, 10, 25, and 50 μg/L, was ≤7.88% for intraday and ≤8.04% inter-day (3 days), respectively, for all evaluated sorbents. The LOD and LOQ were found to be between 0.054 and 0.16 μg/L and 0.18 and 0.53 μg/L, respectively, using a fluorescent detector.
Conclusions
The study suggested that if packed into cartridges, nylon 6 and SDVB nanofiber sorbents could serve as alternatives to the conventional C-18 sorbents in the pre-concentration and clean-up of the tumorigenic biomarker, 1-hydroxypyrene in human urine. The fabrication of selective nanofibers could also extend and simplify sample preparation for organic and biological analytes.
Collapse
|
10
|
Croes K, Den Hond E, Bruckers L, Govarts E, Schoeters G, Covaci A, Loots I, Morrens B, Nelen V, Sioen I, Van Larebeke N, Baeyens W. Endocrine actions of pesticides measured in the Flemish environment and health studies (FLEHS I and II). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:14589-14599. [PMID: 25138556 DOI: 10.1007/s11356-014-3437-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Accepted: 08/10/2014] [Indexed: 06/03/2023]
Abstract
Within the Flemish Environment and Health studies (FLEHS I, 2002-2006, and FLEHS II, 2007-2012), pesticide exposure, hormone levels and degree of sexual maturation were measured in 14-15-year-old adolescents residing in Flanders (Belgium). In FLEHS II, geometric mean concentrations (with 95 % confidence interval (CI)) of 307 (277-341) and 36.5 ng L(-1) (34.0-39.2) were found for p,p'-dichlorophenyldichloroethylene (p,p'-DDE) and hexachlorobenzene (HCB). These values were respectively 26 and 60 % lower than levels in FLEHS I, 5 years earlier. Metabolites of organophosphorus pesticides (OPPs) and of para-dichlorobenzene were measured for the first time in FLEHS II, yielding concentrations of 11.4, 3.27 and 1.57 μg L(-1) for the sum of dimethyl- and diethyl phosphate metabolites and 2,5-dichlorophenol (2,5-DCP), respectively. Data on internal exposure of HCB showed a positive correlation with sexual maturation, testosterone and the aromatase index for boys and with free thyroxine (fT4) and thyroid stimulating hormone (TSH) (both boys and girls). For both p,p'-DDE and HCB, a negative association with sexual development in girls was found. The OPP metabolites were negatively associated with sex hormone levels in the blood of boys and with sexual maturation (both boys and girls). The pesticide metabolite 2,5-DCP was negatively correlated with free T4, while a positive association with TSH was reported (boys and girls). These results show that even exposure to relatively low concentrations of pesticides can have significant influences on hormone levels and the degree of sexual maturation in 14-15-year-old adolescents.
Collapse
Affiliation(s)
- K Croes
- Department of Analytical, Environmental and Geo-Chemistry (AMGC), Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium.
| | - E Den Hond
- Flemish Institute for Technological Research (VITO), Environmental Risk and Health, Boeretang 200, 2400, Mol, Belgium
| | - L Bruckers
- Interuniversity Institute for Biostatistics and Statistical Bioinformatics, Hasselt University, Agoralaan 1, 3590, Diepenbeek, Belgium
| | - E Govarts
- Flemish Institute for Technological Research (VITO), Environmental Risk and Health, Boeretang 200, 2400, Mol, Belgium
| | - G Schoeters
- Flemish Institute for Technological Research (VITO), Environmental Risk and Health, Boeretang 200, 2400, Mol, Belgium
- Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - A Covaci
- Toxicological Centre, University of Antwerp (UA), Antwerp, Belgium
| | - I Loots
- Political and Social Sciences, University of Antwerp, Antwerp, Belgium
| | - B Morrens
- Political and Social Sciences, University of Antwerp, Antwerp, Belgium
| | - V Nelen
- Provincial Institute for Hygiene, Antwerp, Belgium
| | - I Sioen
- Department of Public Health, Ghent University, Ghent, Belgium
| | - N Van Larebeke
- Department of Analytical, Environmental and Geo-Chemistry (AMGC), Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | - W Baeyens
- Department of Analytical, Environmental and Geo-Chemistry (AMGC), Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| |
Collapse
|
11
|
Abstract
Polycyclic aromatic hydrocarbons (PAH) comprise the largest class of cancer-causing chemicals and are ranked ninth among chemical compounds threatening to humans. Although interest in PAH has been mainly due to their carcinogenic property, many of these compounds are genotoxic, mutagenic, teratogenic, and carcinogenic. They tend to bioaccumulate in the soft tissues of living organisms. Interestingly, many are not directly carcinogenic, but act like synergists. PAH carcinogenicity is related to their ability to bind DNA thereby causing a series of disruptive effects that can result in tumor initiation. Thus, any structural attribute or modification of a PAH molecule that enhances DNA cross linking can cause carcinogenicity. In part I, we review exposure to these dangerous chemicals across a spectrum of use in the community and industry.
Collapse
Affiliation(s)
| | - Chimezie Anyakora
- The Centre for Applied Research on Separation Science, Lagos, Nigeria; Department of Pharmaceutical Chemistry, University of Lagos, Lagos, Nigeria.
| |
Collapse
|
12
|
Langie SA, Koppen G, Desaulniers D, Al-Mulla F, Al-Temaimi R, Amedei A, Azqueta A, Bisson WH, Brown D, Brunborg G, Charles AK, Chen T, Colacci A, Darroudi F, Forte S, Gonzalez L, Hamid RA, Knudsen LE, Leyns L, Lopez de Cerain Salsamendi A, Memeo L, Mondello C, Mothersill C, Olsen AK, Pavanello S, Raju J, Rojas E, Roy R, Ryan E, Ostrosky-Wegman P, Salem HK, Scovassi I, Singh N, Vaccari M, Van Schooten FJ, Valverde M, Woodrick J, Zhang L, van Larebeke N, Kirsch-Volders M, Collins AR. Causes of genome instability: the effect of low dose chemical exposures in modern society. Carcinogenesis 2015; 36 Suppl 1:S61-S88. [PMID: 26106144 PMCID: PMC4565613 DOI: 10.1093/carcin/bgv031] [Citation(s) in RCA: 143] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 12/08/2014] [Accepted: 12/11/2014] [Indexed: 12/17/2022] Open
Abstract
Genome instability is a prerequisite for the development of cancer. It occurs when genome maintenance systems fail to safeguard the genome's integrity, whether as a consequence of inherited defects or induced via exposure to environmental agents (chemicals, biological agents and radiation). Thus, genome instability can be defined as an enhanced tendency for the genome to acquire mutations; ranging from changes to the nucleotide sequence to chromosomal gain, rearrangements or loss. This review raises the hypothesis that in addition to known human carcinogens, exposure to low dose of other chemicals present in our modern society could contribute to carcinogenesis by indirectly affecting genome stability. The selected chemicals with their mechanisms of action proposed to indirectly contribute to genome instability are: heavy metals (DNA repair, epigenetic modification, DNA damage signaling, telomere length), acrylamide (DNA repair, chromosome segregation), bisphenol A (epigenetic modification, DNA damage signaling, mitochondrial function, chromosome segregation), benomyl (chromosome segregation), quinones (epigenetic modification) and nano-sized particles (epigenetic pathways, mitochondrial function, chromosome segregation, telomere length). The purpose of this review is to describe the crucial aspects of genome instability, to outline the ways in which environmental chemicals can affect this cancer hallmark and to identify candidate chemicals for further study. The overall aim is to make scientists aware of the increasing need to unravel the underlying mechanisms via which chemicals at low doses can induce genome instability and thus promote carcinogenesis.
Collapse
Affiliation(s)
- Sabine A.S. Langie
- Environmental Risk and Health Unit, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium
- Health Canada, Environmental Health Sciences and Research Bureau, Environmental Health Centre, Ottawa, Ontario K1A0K9, Canada
- Department of Pathology, Kuwait University, Safat 13110, Kuwait
- Department of Experimental and Clinical Medicine, University of Firenze, Florence 50134, Italy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Navarra, Pamplona 31009, Spain
- Environmental and Molecular Toxicology, Environmental Health Sciences Center, Oregon State University, Corvallis, OR 97331, USA
- Department of Environmental and Radiological Health Sciences/Food Science and Human Nutrition, College of Veterinary Medicine and Biomedical Sciences, Colorado State University/Colorado School of Public Health, Fort Collins, CO 80523-1680, USA
- Department of Chemicals and Radiation, Division of Environmental Medicine, Norwegian Institute of Public Health, PO Box 4404, N-0403 Oslo, Norway
- Hopkins Building, School of Biological Sciences, University of Reading, Reading, Berkshire RG6 6UB, UK
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA
- Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, Bologna 40126, Italy
- Human and Environmental Safety Research, Department of Health Sciences, College of North Atlantic, Doha, State of Qatar
- Mediterranean Institute of Oncology, 95029 Viagrande, Italy
- Laboratory for Cell Genetics, Vrije Universiteit Brussel, Brussels 1050, Belgium
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, University Putra, Serdang 43400, Selangor, Malaysia
- University of Copenhagen, Department of Public Health, Copenhagen 1353, Denmark
- Institute of Molecular Genetics, National Research Council, Pavia 27100, Italy
- Medical Physics & Applied Radiation Sciences, McMaster University, Hamilton, Ontario L8S4L8, Canada
- Department of Cardiac, Thoracic and Vascular Sciences, Unit of Occupational Medicine, University of Padova, Padova 35128, Italy
- Toxicology Research Division, Bureau of Chemical Safety Food Directorate, Health Products and Food Branch Health Canada, Ottawa, Ontario K1A0K9, Canada
- Departamento de Medicina Genomica y Toxicologia Ambiental, Instituto de Investigaciones Biomedicas, Universidad Nacional Autonoma de México, México CP 04510, México
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
- Urology Department, kasr Al-Ainy School of Medicine, Cairo University, El Manial, Cairo 12515, Egypt
- Centre for Advanced Research, King George’s Medical University, Chowk, Lucknow 226003, Uttar Pradesh, India
- Department of Toxicology, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University, 6200MD, PO Box 61, Maastricht, The Netherlands
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA 94720-7360, USA
- Laboratory for Analytical and Environmental Chemistry, Vrije Universiteit Brussel, Brussels 1050, Belgium
- Study Centre for Carcinogenesis and Primary Prevention of Cancer, Ghent University, Ghent 9000, Belgium
- Department of Nutrition, University of Oslo, Oslo 0316, Norway
| | - Gudrun Koppen
- *To whom correspondence should be addressed. Tel: +32 14335165; Fax: +32 14580523
| | - Daniel Desaulniers
- Health Canada, Environmental Health Sciences and Research Bureau, Environmental Health Centre, Ottawa, Ontario K1A0K9, Canada
| | - Fahd Al-Mulla
- Department of Pathology, Kuwait University, Safat 13110, Kuwait
| | | | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Firenze, Florence 50134, Italy
| | - Amaya Azqueta
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Navarra, Pamplona 31009, Spain
| | - William H. Bisson
- Environmental and Molecular Toxicology, Environmental Health Sciences Center, Oregon State University, Corvallis, OR 97331, USA
| | - Dustin Brown
- Department of Environmental and Radiological Health Sciences/Food Science and Human Nutrition, College of Veterinary Medicine and Biomedical Sciences, Colorado State University/Colorado School of Public Health, Fort Collins, CO 80523-1680, USA
| | - Gunnar Brunborg
- Department of Chemicals and Radiation, Division of Environmental Medicine, Norwegian Institute of Public Health, PO Box 4404, N-0403 Oslo, Norway
| | - Amelia K. Charles
- Hopkins Building, School of Biological Sciences, University of Reading, Reading, Berkshire RG6 6UB, UK
| | - Tao Chen
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA
| | - Annamaria Colacci
- Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, Bologna 40126, Italy
| | - Firouz Darroudi
- Human and Environmental Safety Research, Department of Health Sciences, College of North Atlantic, Doha, State of Qatar
| | - Stefano Forte
- Mediterranean Institute of Oncology, 95029 Viagrande, Italy
| | - Laetitia Gonzalez
- Laboratory for Cell Genetics, Vrije Universiteit Brussel, Brussels 1050, Belgium
| | - Roslida A. Hamid
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, University Putra, Serdang 43400, Selangor, Malaysia
| | - Lisbeth E. Knudsen
- University of Copenhagen, Department of Public Health, Copenhagen 1353, Denmark
| | - Luc Leyns
- Laboratory for Cell Genetics, Vrije Universiteit Brussel, Brussels 1050, Belgium
| | | | - Lorenzo Memeo
- Mediterranean Institute of Oncology, 95029 Viagrande, Italy
| | - Chiara Mondello
- Institute of Molecular Genetics, National Research Council, Pavia 27100, Italy
| | - Carmel Mothersill
- Medical Physics & Applied Radiation Sciences, McMaster University, Hamilton, Ontario L8S4L8, Canada
| | - Ann-Karin Olsen
- Department of Chemicals and Radiation, Division of Environmental Medicine, Norwegian Institute of Public Health, PO Box 4404, N-0403 Oslo, Norway
| | - Sofia Pavanello
- Department of Cardiac, Thoracic and Vascular Sciences, Unit of Occupational Medicine, University of Padova, Padova 35128, Italy
| | - Jayadev Raju
- Toxicology Research Division, Bureau of Chemical Safety Food Directorate, Health Products and Food Branch Health Canada, Ottawa, Ontario K1A0K9, Canada
| | - Emilio Rojas
- Departamento de Medicina Genomica y Toxicologia Ambiental, Instituto de Investigaciones Biomedicas, Universidad Nacional Autonoma de México, México CP 04510, México
| | - Rabindra Roy
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Elizabeth Ryan
- Department of Environmental and Radiological Health Sciences/Food Science and Human Nutrition, College of Veterinary Medicine and Biomedical Sciences, Colorado State University/Colorado School of Public Health, Fort Collins, CO 80523-1680, USA
| | - Patricia Ostrosky-Wegman
- Departamento de Medicina Genomica y Toxicologia Ambiental, Instituto de Investigaciones Biomedicas, Universidad Nacional Autonoma de México, México CP 04510, México
| | - Hosni K. Salem
- Urology Department, kasr Al-Ainy School of Medicine, Cairo University, El Manial, Cairo 12515, Egypt
| | - Ivana Scovassi
- Institute of Molecular Genetics, National Research Council, Pavia 27100, Italy
| | - Neetu Singh
- Centre for Advanced Research, King George’s Medical University, Chowk, Lucknow 226003, Uttar Pradesh, India
| | - Monica Vaccari
- Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, Bologna 40126, Italy
| | - Frederik J. Van Schooten
- Department of Toxicology, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University, 6200MD, PO Box 61, Maastricht, The Netherlands
| | - Mahara Valverde
- Departamento de Medicina Genomica y Toxicologia Ambiental, Instituto de Investigaciones Biomedicas, Universidad Nacional Autonoma de México, México CP 04510, México
| | - Jordan Woodrick
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Luoping Zhang
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA 94720-7360, USA
| | - Nik van Larebeke
- Laboratory for Analytical and Environmental Chemistry, Vrije Universiteit Brussel, Brussels 1050, Belgium
- Study Centre for Carcinogenesis and Primary Prevention of Cancer, Ghent University, Ghent 9000, Belgium
| | | | | |
Collapse
|
13
|
Van Larebeke N, Sioen I, Hond ED, Nelen V, Van de Mieroop E, Nawrot T, Bruckers L, Schoeters G, Baeyens W. Internal exposure to organochlorine pollutants and cadmium and self-reported health status: a prospective study. Int J Hyg Environ Health 2014; 218:232-45. [PMID: 25547368 DOI: 10.1016/j.ijheh.2014.11.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 11/14/2014] [Accepted: 11/24/2014] [Indexed: 01/30/2023]
Abstract
In this paper, based on the Flemish biomonitoring programs, we describe the associations between internal exposure to organochlorine pollutants and to cadmium (measured in 2004-2005 for adults aged 50-65 years) and self-reported health status obtained through a questionnaire in November 2011. Dioxin-like activity in serum showed a significant positive association with risk of cancer for women. After adjustment for confounders and covariates, the odds ratio for an exposure equal to the 90th percentile was 2.4 times higher than for an exposure equal to the 10th percentile. For both men and women dioxin-like activity and serum hexachlorobenzene (HCB) showed a significant positive association with risk of diabetes and of hypertension. Detailed analysis suggested that an increase in BMI might be part of the mechanism through which HCB contributes to diabetes and hypertension. Serum dichlorodiphenyldichloroethylene (p,p'-DDE) concentration showed a significant positive association with diabetes and hypertension in men, but not in women. Serum polychlorinated biphenyl (PCB) 118 showed a significant positive association with diabetes in both men and women, and after adjustment for correlated exposures, also with hypertension in men. Urinary cadmium concentrations showed a significant positive association with hypertension. Urinary cadmium concentrations were (in 2004-2005) significantly higher in persons who felt in less than good health (in 2011) than in persons who felt in very good health. After adjustment for correlated exposures (to HCB, p,p'-DDE and PCB118) marker PCBs showed a significant negative association with diabetes and hypertension. Serum p,p'-DDE showed in men a significant negative association with risk of diseases based on atheromata. Our findings suggest that exposure to pollutants can lead to an important increase in the risk of diseases such as cancer, diabetes and hypertension. Some pollutants may possibly also decrease the risk of some health problems, although this requires confirmation by other approaches.
Collapse
Affiliation(s)
- Nik Van Larebeke
- Free University of Brussels (VUB), Department of Analytical and Environmental Chemistry (ANCH), Pleinlaan 2, 1050 Brussels, Belgium.
| | - Isabelle Sioen
- Ghent University, Department of Public Health, UZ-2 Blok A, De Pintelaan 185, 9000 Ghent, Belgium
| | - Elly Den Hond
- Flemish Institute for Technological Research (VITO), Environmental Health and Risk, Boeretang 200, 2400 Mol, Belgium
| | - Vera Nelen
- Provincial Institute for Hygiene, Kronenburgstraat 45, 2000 Antwerp, Belgium
| | - Els Van de Mieroop
- Provincial Institute for Hygiene, Kronenburgstraat 45, 2000 Antwerp, Belgium
| | - Tim Nawrot
- Centre for Environmental Sciences, Hasselt University, Agoralaan Gebouw D, 3590 Diepenbeek, Belgium; School of Public Health, Occupational & Environmental Medicine, K.U. Leuven, Herestraat 49 (O&N 706), 3000 Leuven, Belgium
| | - Liesbeth Bruckers
- Interuniversity Institute for Biostatistics and Statistical Bioinformatics, Hasselt University, Martelarenlaan 42, 3500 Hasselt, Belgium
| | - Greet Schoeters
- Flemish Institute for Technological Research (VITO), Environmental Health and Risk, Boeretang 200, 2400 Mol, Belgium
| | - Willy Baeyens
- Free University of Brussels (VUB), Department of Analytical and Environmental Chemistry (ANCH), Pleinlaan 2, 1050 Brussels, Belgium
| |
Collapse
|
14
|
Ifegwu OC, Anyakora C, Chigome S, Torto N. Application of Nanofiber-packed SPE for Determination of Urinary 1-Hydroxypyrene Level Using HPLC. ANALYTICAL CHEMISTRY INSIGHTS 2014; 9:17-25. [PMID: 24812483 PMCID: PMC3999818 DOI: 10.4137/aci.s13560] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2013] [Revised: 01/15/2014] [Accepted: 01/18/2014] [Indexed: 11/05/2022]
Abstract
It is always desirable to achieve maximum sample clean-up, extraction, and pre-concentration with the minimum possible organic solvent. The miniaturization of sample preparation devices was successfully demonstrated by packing 10 mg of 11 electrospun polymer nanofibers into pipette tip micro column and mini disc cartridges for efficient pre-concentration of 1-hydroxypyrene in urine samples. 1-hydroxypyrene is an extensively studied biomarker of the largest class of chemical carcinogens. Excretory 1-hydroxypyrene was monitored with HPLC/fluorescence detector. Important parameters influencing the percentage recovery such as fiber diameter, fiber packing amount, eluent, fiber packing format, eluent volume, surface area, porosity, and breakthrough parameters were thoroughly studied and optimized. Under optimized condition, there was a near perfect linearity of response in the range of 1-1000 μg/L with a coefficient of determination (r (2)) between 0.9992 and 0.9999 and precision (% RSD) ≤7.64% (n = 6) for all the analysis (10, 25, and 50 μg/L). The Limit of detection (LOD) was between 0.022 and 0.15 μg/L. When compared to the batch studies, both disc packed nanofiber sorbents and pipette tip packed sorbents exhibited evident dominance based on their efficiencies. The experimental results showed comparable absolute recoveries for the mini disc packed fibers (84% for Nylon 6) and micro columns (80% for Nylon 6), although the disc displayed slightly higher recoveries possibly due to the exposure of the analyte to a larger reacting surface. The results also showed highly comparative extraction efficiencies between the nanofibers and conventional C-18 SPE sorbent. Nevertheless, miniaturized SPE devices simplified sample preparation, reducing back pressure, time of the analysis with acceptable reliability, selectivity, detection levels, and environmental friendliness, hence promoting green chemistry.
Collapse
Affiliation(s)
- Okechukwu Clinton Ifegwu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Lagos, Lagos, Nigeria. ; Department of Chemistry, Rhodes University, Grahamstown, South Africa
| | - Chimezie Anyakora
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Lagos, Lagos, Nigeria
| | - Samuel Chigome
- Department of Chemistry, Rhodes University, Grahamstown, South Africa
| | - Nelson Torto
- Department of Chemistry, Rhodes University, Grahamstown, South Africa
| |
Collapse
|
15
|
Ifegwu C, Igwo-Ezikpe MN, Anyakora C, Osuntoki A, Oseni KA, Alao EO. 1-hydroxypyrene levels in blood samples of rats after exposure to generator fumes. BIOMARKERS IN CANCER 2013; 5:1-6. [PMID: 24179393 PMCID: PMC3791950 DOI: 10.4137/bic.s10759] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Polynuclear Aromatic Hydrocarbons (PAHs) are a major component of fuel generator fumes. Carcinogenicity of these compounds has long been established. In this study, 37 Swiss albino rats were exposed to generator fumes at varied distances for 8 hours per day for a period of 42 days and the level of 1-hydroxypyrene in their blood was evaluated. This study also tried to correlate the level of blood 1-hyroxypyrene with the distance from the source of pollution. Plasma was collected by centrifuging the whole blood sample followed by complete hydrolysis of the conjugated 1-hydroxypyrene glucuronide to yield the analyte of interest, 1-hydroxypyrene, which was achieved using beta glucuronidase. High performance liquid chromatography (HPLC) with UV detector was used to determine the 1-hydroxypyrene concentrations in the blood samples. The mobile phase was water:methanol (12:88 v/v) isocratic run at the flow rate of 1.2 mL/min with CI8 stationary phase at 250 nm. After 42 days of exposure, blood concentration level of 1-hydroxypyrene ranged from 34 μg/mL to 26.29 μg/mL depending on the distance from source of exposure. The control group had no 1-hydroxypyrene in their blood. After the period of exposure, percentage of death correlated with the distance from the source of exposure. Percentage of death ranged from 56% to zero depending on the proximity to source of pollution.
Collapse
Affiliation(s)
- Clinton Ifegwu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Lagos
| | | | | | | | | | | |
Collapse
|
16
|
Ifegwu C, Osunjaye K, Fashogbon F, Oke K, Adeniyi A, Anyakora C. Urinary 1-hydroxypyrene as a biomarker to carcinogenic polycyclic aromatic hydrocarbon exposure. BIOMARKERS IN CANCER 2012; 4:7-17. [PMID: 24179391 PMCID: PMC3791913 DOI: 10.4137/bic.s10065] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In order to capture the extent of exposure to polycyclic aromatic hydrocarbons (PAHs), various biomarkers have been employed. The biomarkers employed for PAHs include PAHs genetoxic end points in lymphocytes, urinary metabolites, PAH-DNA adducts, and PAH-Protein adducts. Of these, excretory 1-hydroxypyene, a metabolite of pyrene, has been used extensively as a biological monitoring indicator of exposure to PAHs. This study attempts to assess the level of this biomarker in the body fluid of 68 exposed subjects using high performance liquid chromatography HPLC. The subjects screened included auto mechanics, drivers, and fuel attendants. 1-hydroxypyrene was extracted from the urine of the subjects using solid phase extraction method. The HPLC analysis was done in isocratic mode using water:methanol (12:88 v/v) mobile phase. The stationary phase was XBridge C18 (150 × 4.6 mm) 5 μm column. The wavelength was 250 nm at a flow rate of 1.2 mL/min. The oven temperature was 30 ºC and the injection volume was 20 μL. The run time was 3 minutes. The level of urinary 1-hydroxypyrene detected varied for the different categories of occupation studied. About 27% of sampled fuel attendants and 22% of auto mechanics had detectable 1-hydroxypyrene in their urine samples. There was no detectable 1-hydroxypyene in the urine samples of commercial drivers or in the urine samples of students used as controls. The results of this study showed that fuel attendants and auto mechanics have significant exposures to PAHs. So far, there is no established benchmark for level of PAHs in urine, but our findings indicate the possibility of future cancer cases in this population as a result of their occupational exposure. The study was not able to link the level of 1-hydroxypyene with the smoking habits of the subjects.
Collapse
Affiliation(s)
- Clinton Ifegwu
- Department of Pharmaceutcal Chemistry, Faculty of Pharmacy, University of Lagos, Lagos, Nigeria
| | | | | | | | | | | |
Collapse
|
17
|
Hormone levels and sexual development in Flemish adolescents residing in areas differing in pollution pressure. Int J Hyg Environ Health 2009; 212:612-25. [DOI: 10.1016/j.ijheh.2009.05.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2008] [Revised: 05/02/2009] [Accepted: 05/27/2009] [Indexed: 12/23/2022]
|
18
|
Hansen ÅM, Mathiesen L, Pedersen M, Knudsen LE. Urinary 1-hydroxypyrene (1-HP) in environmental and occupational studies—A review. Int J Hyg Environ Health 2008; 211:471-503. [DOI: 10.1016/j.ijheh.2007.09.012] [Citation(s) in RCA: 170] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2007] [Revised: 09/17/2007] [Accepted: 09/25/2007] [Indexed: 12/25/2022]
|
19
|
De Coster S, Koppen G, Bracke M, Schroijen C, Den Hond E, Nelen V, Van de Mieroop E, Bruckers L, Bilau M, Baeyens W, Schoeters G, van Larebeke N. Pollutant effects on genotoxic parameters and tumor-associated protein levels in adults: a cross sectional study. Environ Health 2008; 7:26. [PMID: 18522717 PMCID: PMC2442593 DOI: 10.1186/1476-069x-7-26] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2008] [Accepted: 06/03/2008] [Indexed: 05/06/2023]
Abstract
BACKGROUND This study intended to investigate whether residence in areas polluted by heavy industry, waste incineration, a high density of traffic and housing or intensive use of pesticides, could contribute to the high incidence of cancer observed in Flanders. METHODS Subjects were 1583 residents aged 50-65 from 9 areas with different types of pollution. Cadmium, lead, p,p'-DDE, hexachlorobenzene, PCBs and dioxin-like activity (Calux test) were measured in blood, and cadmium, t,t'-muconic acid and 1-hydroxypyrene in urine. Effect biomarkers were prostate specific antigen, carcinoembryonic antigen and p53 protein serum levels, number of micronuclei per 1000 binucleated peripheral blood cells, DNA damage (comet assay) in peripheral blood cells and 8-hydroxy-deoxyguanosine in urine. Confounding factors were taken into account. RESULTS Overall significant differences between areas were found for carcinoembryonic antigen, micronuclei, 8-hydroxy-deoxyguanosine and DNA damage. Compared to a rural area with mainly fruit production, effect biomarkers were often significantly elevated around waste incinerators, in the cities of Antwerp and Ghent, in industrial areas and also in other rural areas. Within an industrial area DNA strand break levels were almost three times higher close to industrial installations than 5 kilometres upwind of the main industrial installations (p < 0.0001). Positive exposure-effect relationships were found for carcinoembryonic antigen (urinary cadmium, t,t'-muconic acid, 1-hydroxypyrene and blood lead), micronuclei (PCB118), DNA damage (PCB118) and 8-hydroxy-deoxyguanosine (t,t'-muconic acid, 1-hydroxypyrene). Also, we found significant associations between values of PSA above the p90 and higher values of urinary cadmium, between values of p53 above the p90 and higher serum levels of p,p'-DDE, hexachlorobenzene and marker PCBs (PCB 138, 153 and 180) and between serum levels of p,p'-DDE above the p90 and higher serum values of carcinoembryonic antigen. Significant associations were also found between effect biomarkers and occupational or lifestyle parameters. CONCLUSION Levels of internal exposure, and residence near waste incinerators, in cities, or close to important industries, but not in areas with intensive use of pesticides, showed positive correlations with biomarkers associated with carcinogenesis and thus probably contribute to risk of cancer. In some rural areas, the levels of these biomarkers were not lower than in the rest of Flanders.
Collapse
Affiliation(s)
- Sam De Coster
- Study Centre for Carcinogenesis and Primary Prevention of Cancer, Department of Radiotherapy, Nuclear Medicine, and Experimental Cancerology, Ghent University Hospital, De Pintelaan 185 3K3, 9000 Ghent, Belgium
| | - Gudrun Koppen
- Environmental toxicology, Flemish Institute of Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium
| | - Marc Bracke
- Laboratory of Experimental Cancerology, Department of Radiotherapy, Nuclear Medicine, and Experimental Cancerology, Ghent University Hospital, De Pintelaan 185 P7, 9000 Ghent, Ghent, Belgium
| | - Carmen Schroijen
- Vrije Universiteit Brussel (VUB), Analytical and Environmental Chemistry (ANCH), Pleinlaan 2, 1050 Brussels, Belgium
| | - Elly Den Hond
- Environmental toxicology, Flemish Institute of Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium
| | - Vera Nelen
- Provincial Institute of Hygiene, Kronenburgstraat 45, 2000 Antwerp, Belgium
| | - Els Van de Mieroop
- Provincial Institute of Hygiene, Kronenburgstraat 45, 2000 Antwerp, Belgium
| | - Liesbeth Bruckers
- University of Hasselt, University Campus, Building D, 3590 Diepenbeek, Belgium
| | - Maaike Bilau
- Ghent University, Department of Public Health, UZ 2 Blok A, De Pintelaan 185, 9000 Ghent, Belgium
| | - Willy Baeyens
- Vrije Universiteit Brussel (VUB), Analytical and Environmental Chemistry (ANCH), Pleinlaan 2, 1050 Brussels, Belgium
| | - Greet Schoeters
- Environmental toxicology, Flemish Institute of Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium
| | - Nik van Larebeke
- Study Centre for Carcinogenesis and Primary Prevention of Cancer, Department of Radiotherapy, Nuclear Medicine, and Experimental Cancerology, Ghent University Hospital, De Pintelaan 185 3K3, 9000 Ghent, Belgium
| |
Collapse
|
20
|
Helmig S, Schneider J. Oncogene and tumor-suppressor gene products as serum biomarkers in occupational-derived lung cancer. Expert Rev Mol Diagn 2007; 7:555-68. [PMID: 17892364 DOI: 10.1586/14737159.7.5.555] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Since lung cancer is the most frequent occupational cancer and one of the leading causes of cancer mortality in the world, it is one of the biggest challenges for research. In the literature, there are inconsistent results regarding the utility of the serum biomarkers p53, anti-p53 antibodies, EGF receptor or Ras. Based on the published results, routine use of these biomarkers for detection of occupationally derived lung carcinomas is not currently recommended. In this review, we summarize the literature and discuss the relevance of these oncogene and tumor-suppressor gene products as serum biomarkers in occupational-derived lung cancer.
Collapse
Affiliation(s)
- Simone Helmig
- Institut und Poliklinik für Arbeits- und Sozialmedizin, Aulweg 129, D-35392 Giessen, Germany.
| | | |
Collapse
|
21
|
Kellen E, Zeegers MP, Hond ED, Buntinx F. Blood cadmium may be associated with bladder carcinogenesis: the Belgian case-control study on bladder cancer. ACTA ACUST UNITED AC 2007; 31:77-82. [PMID: 17296271 DOI: 10.1016/j.cdp.2006.12.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2006] [Indexed: 11/28/2022]
Abstract
BACKGROUND The aim of this study was to assess the relationship between exposure to cadmium and bladder cancer risk. METHODS We conducted a case-control study in Belgium and measured the blood levels of cadmium in 172 bladder cases and 359 population controls. The data were analyzed as tertiles after logarithmic transformation. Cut-off points were based on the levels among the controls. Logistic regression was performed to calculate odds ratios (ORs) for bladder cancer occurrence with corresponding 95% confidence intervals (95% CI). RESULTS After adjustment for sex, age, and occupational exposure to PAHs or aromatic amines, the OR for cadmium was 8.3 (95% CI 5.0-13.8) comparing the highest to the lowest tertile (p for trend <0.001). Additional adjustment for smoking (current cigarette smoking status, years of cigarette smoking and number of cigarettes smoked per day) decreased the OR, however it remained strongly significant (OR: 5.7; 95% CI 3.3-9.9). CONCLUSION Our study suggests that individuals with increased exposure to cadmium have an increased risk of bladder cancer. Future studies should expand on this investigation by studying a larger number of bladder cancer patients and by collecting extensive information on the lifetime occupational, residential, and environmental exposures to clarify the role of cadmium in bladder cancer.
Collapse
Affiliation(s)
- Eliane Kellen
- Department of General Practice, Katholieke Universiteit Leuven, Comprehensive Cancer Institute Limburg, Belgium.
| | | | | | | |
Collapse
|