1
|
Priyadarshini E, Parambil AM, Rajamani P, Ponnusamy VK, Chen YH. Exposure, toxicological mechanism of endocrine disrupting compounds and future direction of identification using nano-architectonics. ENVIRONMENTAL RESEARCH 2023; 225:115577. [PMID: 36871939 DOI: 10.1016/j.envres.2023.115577] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/02/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Endocrine-disrupting compounds (EDC) are a group of exogenous chemicals that structurally mimic hormones and interfere with the hormonal signaling cascade. EDC interacts with hormone receptors, transcriptional activators, and co-activators, altering the signaling pathway at both genomic and non-genomic levels. Consequently, these compounds are responsible for adverse health ailments such as cancer, reproductive issues, obesity, and cardiovascular and neurological disorders. The persistent nature and increasing incidence of environmental contamination from anthropogenic and industrial effluents have become a global concern, resulting in a movement in both developed and developing countries to identify and estimate the degree of exposure to EDC. The U.S. Environment Protection Agency (EPA) has outlined a series of in vitro and in vivo assays to screen potential endocrine disruptors. However, the multidisciplinary nature and concerns over the widespread application demand alternative and practical techniques for identifying and estimating EDC. The review chronicles the state-of-art 20 years (1990-2023) of scientific literature regarding EDC's exposure and molecular mechanism, highlighting the toxicological effects on the biological system. Alteration in signaling mechanisms by representative endocrine disruptors such as bisphenol A (BPA), diethylstilbestrol (DES), and genistein has been emphasized. We further discuss the currently available assays and techniques for in vitro detection and propose the prominence of designing nano-architectonic-sensor substrates for on-site detection of EDC in the contaminated aqueous environment.
Collapse
Affiliation(s)
- Eepsita Priyadarshini
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Ajith Manayil Parambil
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India; Research Center for Precision Environmental Medicine, Kaohsiung Medical University (KMU), Kaohsiung City, 807, Taiwan
| | - Paulraj Rajamani
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| | - Vinoth Kumar Ponnusamy
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University (KMU), Kaohsiung City, 807, Taiwan; Department of Medicinal and Applied Chemistry, Kaohsiung Medical University (KMU), Kaohsiung City, 807, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital (KMUH), Kaohsiung City, Taiwan; Department of Chemistry, National Sun Yat-sen University (NSYSU), Kaohsiung City, 804, Taiwan; PhD Program in Aquatic Science and Technology, College of Hydrosphere Science, National Kaohsiung University of Science and Technology (NKUST), Kaohsiung City, 811, Taiwan.
| | - Yi-Hsun Chen
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University (KMU), Kaohsiung City, 807, Taiwan; Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung City, Taiwan.
| |
Collapse
|
2
|
Entezari B, Bozdag D, Gurer-Orhan H. Evaluation of Endocrine Related Adverse Effects of Non-Endocrine Targeted Pharmaceuticals in Cellular Systems. Endocr Metab Immune Disord Drug Targets 2023; 23:1740-1749. [PMID: 36843259 DOI: 10.2174/1871530323666230224145624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 12/04/2022] [Accepted: 12/29/2022] [Indexed: 02/28/2023]
Abstract
BACKGROUND Prenatal period is a critical developmental phase that is sensitive to hormonal disruption by natural and/or exogenous hormones. Some pharmaceuticals frequently prescribed and used safely during pregnancy are shown to interact with the developmental programming of fetus, resulting in endocrine-related adverse effects. OBJECTIVE In this research, we aimed to determine the endocrine disrupting potential of paracetamol, indomethacin, alpha-methyldopa and pantoprazole which are frequently prescribed pharmaceuticals during pregnancy. METHODS In vitro aromatase inhibitory, estrogen receptor (ER) agonist/antagonist (E-Screen assay) and hormone biosynthesis modulatory effects (H295R steroidogenesis assay) of the selected pharmaceuticals were evaluated. Furthermore, their effects on viability of MCF-7/BUS and H295R cells were also evaluated by MTT assay. RESULTS None of the pharmaceuticals affected H295R cell viability. Only indomethacin reduced MCF- 7/BUS cell viability at 100μM and 300μM. Among the tested pharmaceuticals, only paracetamol and indomethacin showed aromatase inhibitory activity with IC50 values of 14.7 x 10-5 M and 57.6 x 10-5 M, respectively. Moreover, indomethacin displayed a biphasic ER agonist effect. ER antagonist effects of indomethacin and pantoprazole were confirmed by performing two stepped E-Screen assay. After the partial validation of the H295R steroidogenesis assay with forskolin and prochloraz, the effects of pharmaceuticals on synthesis of testosterone (T) and estradiol (E2) levels were tested. Alpha-methyldopa increased E2 at all tested concentrations and T at 1.48 and 4.4μM. Contrarily other tested pharmaceuticals did not affect steroidogenesis. CONCLUSION Present data suggest that all tested pharmaceuticals may have potential endocrine disrupting effect, which should be considered when used in pregnancy.
Collapse
Affiliation(s)
- Bita Entezari
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Ege University, 35040, Izmir, Turkey
| | - Deniz Bozdag
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Ege University, 35040, Izmir, Turkey
| | - Hande Gurer-Orhan
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Ege University, 35040, Izmir, Turkey
| |
Collapse
|
3
|
Dias da Silva D, Ferreira B, Roque Bravo R, Rebelo R, Duarte de Almeida T, Valente MJ, Silva JP, Carvalho F, Bastos MDL, Carmo H. The new psychoactive substance 3-methylmethcathinone (3-MMC or metaphedrone) induces oxidative stress, apoptosis, and autophagy in primary rat hepatocytes at human-relevant concentrations. Arch Toxicol 2019; 93:2617-2634. [PMID: 31468101 DOI: 10.1007/s00204-019-02539-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 08/14/2019] [Indexed: 02/07/2023]
Abstract
3-Methylmethcathinone (3-MMC or metaphedrone) has become one of the most popular recreational drugs worldwide after the ban of mephedrone, and was recently deemed responsible for several intoxications and deaths. This study aimed at assessing the hepatotoxicity of 3-MMC. For this purpose, Wistar rat hepatocytes were isolated by collagenase perfusion, cultured and exposed for 24 h at a concentration range varying from 31 nM to 10 mM 3-MMC. The modulatory effects of cytochrome P450 (CYP) inhibitors on 3-MMC hepatotoxicity were evaluated. 3-MMC-induced toxicity was perceived at the lysosome at lower concentrations (NOEC 312.5 µM), compared to mitochondria (NOEC 379.5 µM) and cytoplasmic membrane (NOEC 1.04 mM). Inhibition of CYP2D6 and CYP2E1 diminished 3-MMC cytotoxicity, yet for CYP2E1 inhibition this effect was only observed for concentrations up to 1.3 mM. A significant concentration-dependent increase of intracellular reactive species was observed from 10 μM 3-MMC on; a concentration-dependent decrease in antioxidant glutathione defences was also observed. At 10 μM, caspase-3, caspase-8, and caspase-9 activities were significantly elevated, corroborating the activation of both intrinsic and extrinsic apoptosis pathways. Nuclear morphology and formation of cytoplasmic acidic vacuoles suggest prevalence of necrosis and autophagy at concentrations higher than 10 μM. No significant alterations were observed in the mitochondrial membrane potential, but intracellular ATP significantly decreased at 100 μM. Our data point to a role of metabolism in the hepatotoxicity of 3-MMC, which seems to be triggered both by autophagic and apoptotic/necrotic mechanisms. This work is the first approach to better understand 3-MMC toxicology.
Collapse
Affiliation(s)
- Diana Dias da Silva
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal.
| | - Bárbara Ferreira
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Rita Roque Bravo
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Rita Rebelo
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Tomás Duarte de Almeida
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Maria João Valente
- UCIBIO, REQUIMTE, Laboratory of Biochemistry Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - João Pedro Silva
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Félix Carvalho
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Maria de Lourdes Bastos
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Helena Carmo
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal.
| |
Collapse
|
4
|
Gray JM, Rasanayagam S, Engel C, Rizzo J. State of the evidence 2017: an update on the connection between breast cancer and the environment. Environ Health 2017; 16:94. [PMID: 28865460 PMCID: PMC5581466 DOI: 10.1186/s12940-017-0287-4] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 07/17/2017] [Indexed: 05/23/2023]
Abstract
BACKGROUND In this review, we examine the continually expanding and increasingly compelling data linking radiation and various chemicals in our environment to the current high incidence of breast cancer. Singly and in combination, these toxicants may have contributed significantly to the increasing rates of breast cancer observed over the past several decades. Exposures early in development from gestation through adolescence and early adulthood are particularly of concern as they re-shape the program of genetic, epigenetic and physiological processes in the developing mammary system, leading to an increased risk for developing breast cancer. In the 8 years since we last published a comprehensive review of the relevant literature, hundreds of new papers have appeared supporting this link, and in this update, the evidence on this topic is more extensive and of better quality than that previously available. CONCLUSION Increasing evidence from epidemiological studies, as well as a better understanding of mechanisms linking toxicants with development of breast cancer, all reinforce the conclusion that exposures to these substances - many of which are found in common, everyday products and byproducts - may lead to increased risk of developing breast cancer. Moving forward, attention to methodological limitations, especially in relevant epidemiological and animal models, will need to be addressed to allow clearer and more direct connections to be evaluated.
Collapse
Affiliation(s)
- Janet M. Gray
- Department of Psychology and Program in Science, Technology, and Society, Vassar College, 124 Raymond Avenue, Poughkeepsie, NY 12604-0246 USA
| | - Sharima Rasanayagam
- Breast Cancer Prevention Partners, 1388 Sutter St., Suite 400, San Francisco, CA 94109-5400 USA
| | - Connie Engel
- Breast Cancer Prevention Partners, 1388 Sutter St., Suite 400, San Francisco, CA 94109-5400 USA
| | - Jeanne Rizzo
- Breast Cancer Prevention Partners, 1388 Sutter St., Suite 400, San Francisco, CA 94109-5400 USA
| |
Collapse
|
5
|
Ezechiáš M, Cajthaml T. Novel full logistic model for estimation of the estrogenic activity of chemical mixtures. Toxicology 2016; 359-360:58-70. [DOI: 10.1016/j.tox.2016.06.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 06/25/2016] [Accepted: 06/27/2016] [Indexed: 12/14/2022]
|
6
|
Cocci P, Palermo FA, Quassinti L, Bramucci M, Miano A, Mosconi G. Determination of estrogenic activity in the river Chienti (Marche Region, Italy) by using in vivo and in vitro bioassays. J Environ Sci (China) 2016; 43:48-53. [PMID: 27155408 DOI: 10.1016/j.jes.2015.07.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 07/18/2015] [Accepted: 07/18/2015] [Indexed: 06/05/2023]
Abstract
Environmental estrogen-like compounds (i.e. xenoestrogens) are a variety of pollutants, ranging from synthetic to natural occurring molecules, that are found in surface and waste waters over a wide range of concentrations. In aquatic environment, the overall estrogenic activity is often due to the presence of a mixture of chemicals and their degraded products which can induce synergistic effects. Current strategies for monitoring estrogen-like chemicals are based on the use of a battery of in vivo and in vitro ecotoxicological tests. In this regard, the aim of the present work was to carry out a bio-monitoring study for testing estrogenicity of the Chienti river (Marche Region, Italy) by using both an E-screen and a vitellogenin (Vtg) induction assay in juvenile goldfish. Three sites were used for analysis, localized at the mouth (sampling point 1), in the middle (sampling point 2) and at the origin (sampling point 3) of Chienti river. For most of the water samples (i.e. samples collected at sampling points 2 and 3), clear estrogenic activity was detected in the E-screen assay suggesting different proliferation activities in function of the collecting site. In contrast, the Vtg ELISA demonstrated that water samples collected from each sampling point were estrogenic. Overall, we showed for the first time that the estrogenic activities in water samples from the Chienti river were significant in both in vivo and in vitro; we also observed a different sensitivity between bioassays.
Collapse
Affiliation(s)
- Paolo Cocci
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III Da Varano, I-62032 Camerino, MC, Italy
| | - Francesco Alessandro Palermo
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III Da Varano, I-62032 Camerino, MC, Italy.
| | - Luana Quassinti
- School of Pharmacy, University of Camerino, I-62032 Camerino, MC, Italy
| | - Massimo Bramucci
- School of Pharmacy, University of Camerino, I-62032 Camerino, MC, Italy
| | - Antonino Miano
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III Da Varano, I-62032 Camerino, MC, Italy
| | - Gilberto Mosconi
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III Da Varano, I-62032 Camerino, MC, Italy
| |
Collapse
|
7
|
Defining an additivity framework for mixture research in inducible whole-cell biosensors. Sci Rep 2015; 5:17200. [PMID: 26606975 PMCID: PMC4660423 DOI: 10.1038/srep17200] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 10/27/2015] [Indexed: 12/30/2022] Open
Abstract
A novel additivity framework for mixture effect modelling in the context of whole cell inducible biosensors has been mathematically developed and implemented in R. The proposed method is a multivariate extension of the effective dose (EDp) concept. Specifically, the extension accounts for differential maximal effects among analytes and response inhibition beyond the maximum permissive concentrations. This allows a multivariate extension of Loewe additivity, enabling direct application in a biphasic dose-response framework. The proposed additivity definition was validated, and its applicability illustrated by studying the response of the cyanobacterial biosensor Synechococcus elongatus PCC 7942 pBG2120 to binary mixtures of Zn, Cu, Cd, Ag, Co and Hg. The novel method allowed by the first time to model complete dose-response profiles of an inducible whole cell biosensor to mixtures. In addition, the approach also allowed identification and quantification of departures from additivity (interactions) among analytes. The biosensor was found to respond in a near additive way to heavy metal mixtures except when Hg, Co and Ag were present, in which case strong interactions occurred. The method is a useful contribution for the whole cell biosensors discipline and related areas allowing to perform appropriate assessment of mixture effects in non-monotonic dose-response frameworks
Collapse
|
8
|
Futran Fuhrman V, Tal A, Arnon S. Why endocrine disrupting chemicals (EDCs) challenge traditional risk assessment and how to respond. JOURNAL OF HAZARDOUS MATERIALS 2015; 286:589-611. [PMID: 25646754 DOI: 10.1016/j.jhazmat.2014.12.012] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 12/02/2014] [Accepted: 12/08/2014] [Indexed: 05/11/2023]
Abstract
Endocrine disrupting compounds (EDCs) are a diverse group of "chemicals of emerging concern" which have attracted much interest from the research community since the 1990s. Today there is still no definitive risk assessment tool for EDCs. While some decision making organizations have attempted to design methodology guidelines to evaluate the potential risk from this broadly defined group of constituents, risk assessors still face many uncertainties and unknowns. Until a risk assessment paradigm is designed specifically for EDCs and is vetted by the field, traditional risk assessment tools may be used with caution to evaluate EDCs. In doing so, each issue of contention should be addressed with transparency in order to leverage available information and technology without sacrificing integrity or accuracy. The challenges that EDCs pose to traditional risk assessment are described in this article to assist in this process.
Collapse
Affiliation(s)
- Vivian Futran Fuhrman
- Institute for Dryland, Environmental and Desert Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer 84990, Israel.
| | - Alon Tal
- Institute for Dryland, Environmental and Desert Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer 84990, Israel.
| | - Shai Arnon
- Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer 84990, Israel.
| |
Collapse
|
9
|
Non-tumorigenic epithelial cells secrete MCP-1 and other cytokines that promote cell division in breast cancer cells by activating ERα via PI3K/Akt/mTOR signaling. Int J Biochem Cell Biol 2014; 53:281-94. [DOI: 10.1016/j.biocel.2014.05.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 05/09/2014] [Accepted: 05/19/2014] [Indexed: 01/19/2023]
|
10
|
Extending the applicability of the dose addition model to the assessment of chemical mixtures of partial agonists by using a novel toxic unit extrapolation method. PLoS One 2014; 9:e88808. [PMID: 24533151 PMCID: PMC3923049 DOI: 10.1371/journal.pone.0088808] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 01/15/2014] [Indexed: 11/19/2022] Open
Abstract
Dose addition, a commonly used concept in toxicology for the prediction of chemical mixture effects, cannot readily be applied to mixtures of partial agonists with differing maximal effects. Due to its mathematical features, effect levels that exceed the maximal effect of the least efficacious compound present in the mixture, cannot be calculated. This poses problems when dealing with mixtures likely to be encountered in realistic assessment situations where chemicals often show differing maximal effects. To overcome this limitation, we developed a pragmatic solution that extrapolates the toxic units of partial agonists to effect levels beyond their maximal efficacy. We extrapolated different additivity expectations that reflect theoretically possible extremes and validated this approach with a mixture of 21 estrogenic chemicals in the E-Screen. This assay measures the proliferation of human epithelial breast cancers. We found that the dose-response curves of the estrogenic agents exhibited widely varying shapes, slopes and maximal effects, which made it necessary to extrapolate mixture responses above 14% proliferation. Our toxic unit extrapolation approach predicted all mixture responses accurately. It extends the applicability of dose addition to combinations of agents with differing saturating effects and removes an important bottleneck that has severely hampered the use of dose addition in the past.
Collapse
|
11
|
Persistent organochlorinated pesticides and mechanisms of their toxicity. Toxicology 2013; 307:74-88. [DOI: 10.1016/j.tox.2012.11.015] [Citation(s) in RCA: 298] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 11/24/2012] [Accepted: 11/27/2012] [Indexed: 12/12/2022]
|
12
|
Wang J, Trentham-Dietz A, Hemming JDC, Hedman CJ, Sprague BL. Serum factors and clinical characteristics associated with serum E-screen activity. Cancer Epidemiol Biomarkers Prev 2013; 22:962-71. [PMID: 23588007 DOI: 10.1158/1055-9965.epi-12-1117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND The E-Screen bioassay can measure the mitogenicity of human serum and thus may be useful as a biomarker in epidemiologic studies of breast cancer. While the assay's MCF-7 cells are known to proliferate in response to estrogen, the specific determinants of variation in E-Screen activity in human serum samples are poorly understood. We sought to identify serum molecules and patient characteristics associated with serum E-Screen activity among postmenopausal women. METHODS Postmenopausal women (N = 219) aged 55 to 70 years with no history of postmenopausal hormone use or breast cancer completed a questionnaire and provided a blood sample. Serum was analyzed for E-Screen activity and a variety of molecules including sex hormones, growth factors, and environmental chemicals. Stepwise selection procedures were used to identify correlates of E-Screen activity. RESULTS Serum samples from all women had detectable E-Screen activity, with a median estradiol equivalents value of 0.027 ng/mL and interquartile range of 0.018-0.036 ng/mL. In the final multivariable-adjusted model, serum E-Screen activity was positively associated with serum estradiol, estrone, insulin-like growth factor-binding protein (IGFBP)-3, and testosterone levels (all P < 0.05), as well as body mass index (P = 0.03). Serum E-Screen activity was lower among women with higher SHBG (P < 0.0001) and progesterone levels (P = 0.03). CONCLUSION Serum E-Screen activity varies according to levels of endogenous estrogens and other serum molecules. Obesity appears to confer additional serum mitogenicity beyond its impact on the measured hormones and growth factors. IMPACT By capturing mitogenicity due to a variety of patient and serum factors, the E-Screen may provide advantages for use as a biomarker in breast cancer studies.
Collapse
Affiliation(s)
- Jue Wang
- Department of Surgery, University of Vermont, Burlington, VT 05401, USA
| | | | | | | | | |
Collapse
|
13
|
Charles AK, Darbre PD. Combinations of parabens at concentrations measured in human breast tissue can increase proliferation of MCF-7 human breast cancer cells. J Appl Toxicol 2013; 33:390-8. [DOI: 10.1002/jat.2850] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 11/16/2012] [Accepted: 11/16/2012] [Indexed: 11/06/2022]
Affiliation(s)
- Amelia K. Charles
- School of Biological Sciences; University of Reading; Reading; RG66UB; UK
| | - Philippa D. Darbre
- School of Biological Sciences; University of Reading; Reading; RG66UB; UK
| |
Collapse
|
14
|
Marchese S, Silva E. Disruption of 3D MCF-12A breast cell cultures by estrogens--an in vitro model for ER-mediated changes indicative of hormonal carcinogenesis. PLoS One 2012; 7:e45767. [PMID: 23056216 PMCID: PMC3462778 DOI: 10.1371/journal.pone.0045767] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 08/23/2012] [Indexed: 02/05/2023] Open
Abstract
Introduction Estrogens regulate the proliferation of normal and neoplastic breast epithelium. Although the intracellular mechanisms of estrogens in the breast are largely understood, little is known about how they induce changes in the structure of the mammary epithelium, which are characteristic of breast cancer. In vitro three dimensional (3D) cultures of immortalised breast epithelial cells recapitulate features of the breast epithelium in vivo, including formation of growth arrested acini with hollow lumen and basement membrane. This model can also reproduce features of malignant transformation and breast cancer, such as increased cellular proliferation and filling of the lumen. However, a system where a connection between estrogen receptor (ER) activation and disruption of acini formation can be studied to elucidate the role of estrogens is still missing. Methods/Principal Findings We describe an in vitro 3D model for breast glandular structure development, using breast epithelial MCF-12A cells cultured in a reconstituted basement membrane matrix. These cells are estrogen receptor (ER)α, ERβ and G-protein coupled estrogen receptor 1 (GPER) competent, allowing the investigation of the effects of estrogens on mammary gland formation and disruption. Under normal conditions, MCF-12A cells formed organised acini, with deposition of basement membrane and hollow lumen. However, treatment with 17β-estradiol, and the exogenous estrogens bisphenol A and propylparaben resulted in deformed acini and filling of the acinar lumen. When these chemicals were combined with ER and GPER inhibitors (ICI 182,780 and G-15, respectively), the deformed acini recovered normal features, such as a spheroid shape, proliferative arrest and luminal clearing, suggesting a role for the ER and GPER in the estrogenic disruption of acinar formation. Conclusion This new model offers the opportunity to better understand the role of the ER and GPER in the morphogenesis of breast glandular structure as well as the events implicated in breast cancer initiation and progression.
Collapse
MESH Headings
- Benzhydryl Compounds/pharmacology
- Benzodioxoles/pharmacology
- Cell Culture Techniques
- Cell Line
- Cell Transformation, Neoplastic/drug effects
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Epithelial Cells/drug effects
- Epithelial Cells/metabolism
- Estradiol/analogs & derivatives
- Estradiol/pharmacology
- Estrogen Antagonists/pharmacology
- Estrogen Receptor Modulators/pharmacology
- Estrogen Receptor alpha/antagonists & inhibitors
- Estrogen Receptor alpha/genetics
- Estrogen Receptor alpha/metabolism
- Estrogen Receptor beta/antagonists & inhibitors
- Estrogen Receptor beta/genetics
- Estrogen Receptor beta/metabolism
- Estrogens/pharmacology
- Estrogens, Non-Steroidal/pharmacology
- Female
- Fulvestrant
- Gene Expression/drug effects
- Humans
- Immunoblotting
- Mammary Glands, Human/cytology
- Mammary Glands, Human/drug effects
- Mammary Glands, Human/metabolism
- Microscopy, Confocal
- Parabens/pharmacology
- Phenols/pharmacology
- Quinolines/pharmacology
- Receptors, Estrogen/antagonists & inhibitors
- Receptors, Estrogen/genetics
- Receptors, Estrogen/metabolism
- Receptors, G-Protein-Coupled/antagonists & inhibitors
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/metabolism
- Receptors, Progesterone/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- Trefoil Factor-1
- Tumor Suppressor Proteins/genetics
Collapse
Affiliation(s)
| | - Elisabete Silva
- UCL School of Pharmacy, London, United Kingdom
- Institute for the Environment, Brunel University, Uxbridge, United Kingdom
- * E-mail:
| |
Collapse
|
15
|
Evans RM, Scholze M, Kortenkamp A. Additive mixture effects of estrogenic chemicals in human cell-based assays can be influenced by inclusion of chemicals with differing effect profiles. PLoS One 2012; 7:e43606. [PMID: 22912892 PMCID: PMC3422259 DOI: 10.1371/journal.pone.0043606] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Accepted: 07/26/2012] [Indexed: 12/18/2022] Open
Abstract
A growing body of experimental evidence indicates that the in vitro effects of mixtures of estrogenic chemicals can be well predicted from the estrogenicity of their components by the concentration addition (CA) concept. However, some studies have observed small deviations from CA. Factors affecting the presence or observation of deviations could include: the type of chemical tested; number of mixture components; mixture design; and assay choice. We designed mixture experiments that address these factors, using mixtures with high numbers of components, chemicals from diverse chemical groups, assays with different in vitro endpoints and different mixture designs and ratios. Firstly, the effects of mixtures composed of up to 17 estrogenic chemicals were examined using estrogenicity assays with reporter-gene (ERLUX) and cell proliferation (ESCREEN) endpoints. Two mixture designs were used: 1) a ‘balanced’ design with components present in proportion to a common effect concentration (e.g. an EC10) and 2) a ‘non-balanced’ design with components in proportion to potential human tissue concentrations. Secondly, the individual and simultaneous ability of 16 potential modulator chemicals (each with minimal estrogenicity) to influence the assay outcome produced by a reference mixture of estrogenic chemicals was examined. Test chemicals included plasticizers, phthalates, metals, PCBs, phytoestrogens, PAHs, heterocyclic amines, antioxidants, UV filters, musks, PBDEs and parabens. In all the scenarios tested, the CA concept provided a good prediction of mixture effects. Modulation studies revealed that chemicals possessing minimal estrogenicity themselves could reduce (negatively modulate) the effect of a mixture of estrogenic chemicals. Whether the type of modulation we observed occurs in practice most likely depends on the chemical concentrations involved, and better information is required on likely human tissue concentrations of estrogens and of potential modulators. Successful prediction of the effects of diverse chemical combinations might be more likely if chemical profiling included consideration of effect modulation.
Collapse
Affiliation(s)
- Richard Mark Evans
- Institute for the Environment, Brunel University, Uxbridge, Middlesex, United Kingdom.
| | | | | |
Collapse
|
16
|
Shanle EK, Hawse JR, Xu W. Generation of stable reporter breast cancer cell lines for the identification of ER subtype selective ligands. Biochem Pharmacol 2011; 82:1940-9. [PMID: 21924251 DOI: 10.1016/j.bcp.2011.08.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Revised: 08/23/2011] [Accepted: 08/29/2011] [Indexed: 02/07/2023]
Abstract
Estrogen signaling is mediated by two estrogen receptors (ERs), ERα and ERβ, which have unique roles in the regulation of breast cancer cell proliferation. ERα induces proliferation in response to estrogen and ERβ inhibits proliferation in breast cancer cells, suggesting that ERβ selective ligands may be beneficial for promoting the anti-proliferative action of ERβ. Subtype selective ligands can be identified using transcriptional assays, but cell lines in which ERα or ERβ are independently expressed are required. Of the available reporter cell lines, none have been generated in breast cancer cells to identify subtype selective ligands. Here we describe the generation of two isogenic breast cancer cell lines, Hs578T-ERαLuc and Hs578T-ERβLuc, with stable integration of an estrogen responsive luciferase reporter gene. Hs578T-ERαLuc and Hs578T-ERβLuc cell lines are highly sensitive to estrogenic chemicals and ER subtype selective ligands, providing a tool to characterize the transcriptional potency and subtype selectivity of estrogenic ligands in the context of breast cancer cells. In addition to measuring reporter activity, ERβ target gene expression and growth inhibitory effects of ERβ selective ligands can be determined as biological endpoints. The finding that activation of ERβ by estrogen or ERβ selective natural phytoestrogens inhibits the growth of Hs578T-ERβ cells implies therapeutic potential for ERβ selective ligands in breast cancer cells that express ERβ.
Collapse
Affiliation(s)
- Erin K Shanle
- McArdle Laboratory for Cancer Research, University of Wisconsin, Madison, WI 53706, USA
| | | | | |
Collapse
|
17
|
Silva E, Rajapakse N, Scholze M, Backhaus T, Ermler S, Kortenkamp A. Joint Effects of Heterogeneous Estrogenic Chemicals in the E-Screen—Exploring the Applicability of Concentration Addition. Toxicol Sci 2011; 122:383-94. [DOI: 10.1093/toxsci/kfr103] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
18
|
Shanle EK, Xu W. Endocrine disrupting chemicals targeting estrogen receptor signaling: identification and mechanisms of action. Chem Res Toxicol 2011; 24:6-19. [PMID: 21053929 PMCID: PMC3119362 DOI: 10.1021/tx100231n] [Citation(s) in RCA: 360] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Many endocrine disrupting chemicals (EDCs) adversely impact estrogen signaling by interacting with two estrogen receptors (ERs): ERα and ERβ. Though the receptors have similar ligand binding and DNA binding domains, ERα and ERβ have some unique properties in terms of ligand selectivity and target gene regulation. EDCs that target ER signaling can modify genomic and nongenomic ER activity through direct interactions with ERs, indirectly through transcription factors such as the aryl hydrocarbon receptor (AhR), or through modulation of metabolic enzymes that are critical for normal estrogen synthesis and metabolism. Many EDCs act through multiple mechanisms as exemplified by chemicals that bind both AhR and ER, such as 3-methylcholanthrene. Other EDCs that target ER signaling include phytoestrogens, bisphenolics, and organochlorine pesticides, and many alter normal ER signaling through multiple mechanisms. EDCs can also display tissue-selective ER agonist and antagonist activities similar to selective estrogen receptor modulators (SERMs) designed for pharmaceutical use. Thus, biological effects of EDCs need to be carefully interpreted because EDCs can act through complex tissue-selective modulation of ERs and other signaling pathways in vivo. Current requirements by the U.S. Environmental Protection Agency require some in vitro and cell-based assays to identify EDCs that target ER signaling through direct and metabolic mechanisms. Additional assays may be useful screens for identifying EDCs that act through alternative mechanisms prior to further in vivo study.
Collapse
Affiliation(s)
- Erin K. Shanle
- Molecular and Environmental Toxicology Center, University of Wisconsin, Madison, WI 53706, USA
| | - Wei Xu
- McArdle Laboratory for Cancer Research, University of Wisconsin, 1400 University Avenue, Madison, WI 53706, USA
- Molecular and Environmental Toxicology Center, University of Wisconsin, Madison, WI 53706, USA
| |
Collapse
|
19
|
|
20
|
Yordy JE, Mollenhauer MAM, Wilson RM, Wells RS, Hohn A, Sweeney J, Schwacke LH, Rowles TK, Kucklick JR, Peden-Adams MM. Complex contaminant exposure in cetaceans: a comparative E-Screen analysis of bottlenose dolphin blubber and mixtures of four persistent organic pollutants. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2010; 29:2143-2153. [PMID: 20872675 DOI: 10.1002/etc.279] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Cetaceans are federally protected species that are prone to accumulate complex mixtures of persistent organic pollutants (POPs), which individually may exert estrogenic or antiestrogenic effects. In the present study it was assessed whether contaminant mixtures harbored by cetaceans are estrogenic or antiestrogenic using a comparative approach. Interactions of antiestrogenic and estrogenic compounds were first investigated with the E-Screen assay using a mixture of four POPs (dichlorodiphenyldichloroethylene [4,4'-DDE], trans-nonachlor, and polychlorinated biphenyls [PCBs] 138 180) prevalent in cetacean blubber. Estrogenic/antiestrogenic activity was determined for the individual compounds and their binary, tertiary, and quaternary combinations. Significantly different responses were observed for the various POP mixtures, including enhanced estrogenic and antiestrogenic effects and antagonistic interactions. These results were then compared to the concentrations and estrogenic/antiestrogenic activity of contaminant mixtures isolated directly from the blubber of 15 bottlenose dolphins (Tursiops truncatus) collected from five U.S. Atlantic and Gulf of Mexico locations. The lowest observed effect concentrations (LOECs) determined for 4,4'-DDE (20 µmol/L), PCB 138 (20 µmol/L), PCB 180 (21 µmol/L), and trans-nonachlor (3 µmol/L) in the E-Screen were greater than estimated dolphin blood concentrations. Although estimated blood concentrations were below the LOECs, significant estrogenic activity was detected in diluted dolphin blubber from Cape May, NJ and Bermuda. Positive correlations between blubber estrogenicity and select POP concentrations (ΣDDTs, ΣPBDEs, ΣHCB, Σestrogenic PCBs, Σestrogenic POPs) were also observed. Collectively, these results suggest that select bottlenose dolphin populations may be exposed to contaminants that act in concert to exert estrogenic effects at biologically relevant concentrations. These observations do not necessarily provide direct evidence of endocrine disruption; however, they may indicate an environmental source of xenoestrogenic exposure warranting future research.
Collapse
Affiliation(s)
- Jennifer E Yordy
- Marine Biomedicine and Environmental Sciences Center, Medical University of South Carolina, Charleston, South Carolina 29412, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Vanparys C, Depiereux S, Nadzialek S, Robbens J, Blust R, Kestemont P, De Coen W. Performance of the flow cytometric E-screen assay in screening estrogenicity of pure compounds and environmental samples. THE SCIENCE OF THE TOTAL ENVIRONMENT 2010; 408:4451-4460. [PMID: 20633926 DOI: 10.1016/j.scitotenv.2010.06.049] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Revised: 06/17/2010] [Accepted: 06/19/2010] [Indexed: 05/29/2023]
Abstract
In vitro estrogenicity screens are believed to provide a first prioritization step in hazard characterization of endocrine disrupting chemicals. When applied to complex environmental matrices or mixture samples, they have been indicated valuable in estimating the overall estrogen-mimicking load. In this study, the performance of an adapted format of the classical E-screen or MCF-7 cell proliferation assay was profoundly evaluated to rank pure compounds as well as influents and effluents of sewage treatment plants (STPs) according to estrogenic activity. In this adapted format, flow cytometric cell cycle analysis was used to allow evaluation of the MCF-7 cell proliferative effects after only 24 h of exposure. With an average EC(50) value of 2 pM and CV of 22%, this assay appears as a sensitive and reproducible system for evaluation of estrogenic activity. Moreover, estrogenic responses of 17 pure compounds corresponded well, qualitatively and quantitatively, with other in vitro and in vivo estrogenicity screens, such as the classical E-screen (R(2)=0.98), the estrogen receptor (ER) binding (R(2)=0.84) and the ER transcription activation assay (R(2)=0.87). To evaluate the applicability of this assay for complex samples, influents and effluents of 10 STPs covering different treatment processes, were compared and ranked according to estrogenic removal efficiencies. Activated sludge treatment with phosphorus and nitrogen removal appeared most effective in eliminating estrogenic activity, followed by activated sludge, lagoon and filter bed. This is well in agreement with previous findings based on chemical analysis or biological activity screens. Moreover, ER blocking experiments indicated that cell proliferative responses were mainly ER mediated, illustrating that the complexity of the end point, cell proliferation, compared to other ER screens, does not hamper the interpretation of the results. Therefore, this study, among other E-screen studies, supports the use of MCF-7 cell proliferation as estrogenicity screen for pure compounds and complex samples.
Collapse
Affiliation(s)
- Caroline Vanparys
- Laboratory of Ecophysiology, Biochemistry and Toxicology, University of Antwerp, Antwerp, Belgium.
| | | | | | | | | | | | | |
Collapse
|
22
|
Evans RM, Rahte S, Kortenkamp A. Inability to confirm estrogenicity of the heterocyclic amine PhIP in two in vitro assays. Toxicol In Vitro 2010; 24:1757-63. [DOI: 10.1016/j.tiv.2009.12.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2009] [Revised: 12/16/2009] [Accepted: 12/18/2009] [Indexed: 11/16/2022]
|
23
|
Xia W, Li Y, Wan Y, Chen T, Wei J, Lin Y, Xu S. Electrochemical biosensor for estrogenic substance using lipid bilayers modified by Au nanoparticles. Biosens Bioelectron 2010; 25:2253-8. [DOI: 10.1016/j.bios.2010.03.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Revised: 03/01/2010] [Accepted: 03/02/2010] [Indexed: 10/19/2022]
|
24
|
Kjaerstad MB, Taxvig C, Andersen HR, Nellemann C. Mixture effects of endocrine disrupting compounds in vitro. ACTA ACUST UNITED AC 2010; 33:425-33. [DOI: 10.1111/j.1365-2605.2009.01034.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
25
|
Silva E, Kabil A, Kortenkamp A. Cross-talk between non-genomic and genomic signalling pathways--distinct effect profiles of environmental estrogens. Toxicol Appl Pharmacol 2010; 245:160-70. [PMID: 20206645 DOI: 10.1016/j.taap.2010.02.015] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Revised: 02/24/2010] [Accepted: 02/24/2010] [Indexed: 01/18/2023]
Abstract
Estrogen receptor (ER) transcriptional cross-talk after activation by 17beta-estradiol (E2) has been studied in considerable detail, but comparatively little is known about the ways in which synthetic estrogen-like chemicals, so-called xenoestrogens, interfere with these signalling pathways. E2 can stimulate rapid, non-genomic signalling events, such as activation of the Src/Ras/Erk signalling pathway. We investigated how activation of this pathway by E2, the estrogenic environmental contaminants o,p'-DDT, beta-HCH and p,p'-DDE, and epidermal growth factor (EGF) influences the expression of ER target genes, such as TFF1, ER, PR, BRCA1 and CCND1, and the proliferation of breast cancer cells. Despite commonalities in their estrogenicity as judged by cell proliferation assays, the environmental contaminants exhibited striking differences in their non-genomic and genomic signalling. The gene expression profiles of o,p'-DDT and beta-HCH resembled the effects observed with E2. In the case of beta-HCH this is surprising, considering its reported lack of affinity to the "classical" ER. The expression profiles seen with p,p'-DDE showed some similarities with E2, but overall, p,p'-DDE was a fairly weak transcriptional inducer of TFF1, ER, PR, BRCA1 and CCND1. We observed distinct differences in the non-genomic signalling of the tested compounds. p,p'-DDE was unable to stimulate Src and Erk1/Erk2 activations. The effects of E2 on Src and Erk1/Erk2 phosphorylation were transient and weak when compared to EGF, but beta-HCH induced strong and sustained activation of all tested kinases. Transcription of TFF1, ER, PR and BRCA1 by E2, o,p'-DDT and beta-HCH could be suppressed partially by inhibiting the Src/Ras/Erk pathway with PD 98059. However, this was not seen with p,p'-DDE. Our investigations show that the cellular activities of estrogens and xenoestrogens are the result of a combination of extranuclear (non-genomic) and nuclear (genomic) events and highlight the need to take non-genomic effects and signalling cross-talk into consideration, when screening for environmental estrogens. Otherwise, chemicals devoid of ER affinity, such as beta-HCH, but with an effect profile otherwise similar to estrogens might be overlooked in safety testing.
Collapse
Affiliation(s)
- Elisabete Silva
- Centre for Toxicology, School of Pharmacy, University of London, 29-39 Brunswick Square, London, WC1N 1AX, UK.
| | | | | |
Collapse
|
26
|
Rochester JR, Heiblum R, Rozenboim I, Millam JR. Post-hatch oral estrogen exposure reduces oviduct and egg mass and alters nest-building behavior in adult zebra finches (Taeniopygia guttata). Physiol Behav 2008; 95:370-80. [DOI: 10.1016/j.physbeh.2008.07.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2008] [Revised: 06/23/2008] [Accepted: 07/02/2008] [Indexed: 11/29/2022]
|
27
|
Fernandez MF, Aguilar-Garduño C, Molina-Molina JM, Arrebola JP, Olea N. The total effective xenoestrogen burden, a biomarker of exposure to xenoestrogen mixtures, is predicted by the (anti)estrogenicity of its components. Reprod Toxicol 2008; 26:8-12. [PMID: 18586082 DOI: 10.1016/j.reprotox.2008.06.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2008] [Revised: 06/04/2008] [Accepted: 06/05/2008] [Indexed: 10/22/2022]
Abstract
Appropriate biomarkers of human exposure are required for epidemiological studies of endocrine disruption. We addressed this issue by improving a standardized method to assess the total effective xenoestrogen burden (TEXB), a biomarker of xenoestrogen exposure. Extensive separation of xenoestrogens from endogenous hormones was made in 20 adipose tissue samples by HPLC, and two eluates were separated and tested in the E-Screen bioassay. An extensive fractionation protocol was also developed. The objective of this study was to investigate predictors of TEXB by using a multiple regression model after adjusting by confounding factors. The final model included the estrogenicity of 8 out of 11 individual 1-min fractions into which the xenoestrogen eluate was split and the marital status of patients, and it explained 97% of TEXB variability, and variables. Our results indicate that TEXB of complex mixtures can be accurately predicted from the estrogenicity of a small number of components.
Collapse
Affiliation(s)
- M F Fernandez
- Department of Radiology, University of Granada, 18071-Granada, Spain.
| | | | | | | | | |
Collapse
|
28
|
Kabil A, Silva E, Kortenkamp A. Estrogens and genomic instability in human breast cancer cells--involvement of Src/Raf/Erk signaling in micronucleus formation by estrogenic chemicals. Carcinogenesis 2008; 29:1862-8. [DOI: 10.1093/carcin/bgn138] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|