1
|
Qin N, Sheng Y, Shao Y, Liao Q, Huang D, Li J, Li J, Liu H, Peng Y, Qiu X, Li H. Associations between prenatal phthalate exposure and newborn telomere length: Effect modification by infant sex. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 292:117977. [PMID: 40048909 DOI: 10.1016/j.ecoenv.2025.117977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 02/24/2025] [Accepted: 02/24/2025] [Indexed: 03/17/2025]
Abstract
BACKGROUND Phthalates are endocrine-disrupting chemicals (EDCs) ubiquitously present in the environment. There are limited studies on the impact of phthalate exposure during the gestational period on neonatal telomere length. OBJECTIVES The aim of this study is to investigate the correlation between maternal serum phthalate concentrations in early pregnancy and neonatal telomere length and whether this correlation exhibits sex-specificity. METHODS Between September 2015 and April 2018, 474 pregnant women were selected from the Guangxi Zhuang Birth Cohort (GZBC). Maternal serum samples from early pregnancy were measured for levels of five phthalates and four phthalate metabolites. Umbilical cord blood samples were collected to measure telomere length. The correlations between prenatal phthalate exposure and infant telomere length were assessed using multiple linear regression, Bayesian kernel machine regression (BKMR), quantile g-computation (qg-comp), and restricted cubic spline (RCS) models. RESULTS Multiple linear regression analyses revealed that per 2.7-fold increase in the concentration of butyl benzyl phthalate (BBP) and mono-ethyl phthalate (MEP), neonatal telomere length decreased by 2.66 % (95 % CI: -5.20 %, -0.05 %) and 3.43 % (95 % CI: -6.46 %, -0.30 %), respectively. Conversely, per 2.7-fold increase in di-butyl phthalate (DBP) concentration corresponded to a 3.01 % (95 % CI: 0.19 %, 5.91 %) increase in neonatal telomere length. Sex-stratified analyses demonstrated that BBP (percent change: -3.60 %; 95 % CI: -6.91 %, -0.18 %); mono-butyl phthalate (MBP) (percent change: -4.13 %; 95 % CI: -7.14 %, -1.01 %) and MEP (percent change: -7.66 %, 95 % CI: -11.53 %, -3.62 %) were inversely associated with neonatal telomere length in female infants only. Neonatal sex significantly modified the association between MEP exposure and neonatal telomere length (P-value for interaction = 0.018). Phthalate mixture was inversely associated with neonatal telomere length in female infants but not in male infants in qg-comp and BKMR models. CONCLUSION Our study suggests that maternal exposure to phthalates is linked to shorter telomere length in neonates, especially in female infants.
Collapse
Affiliation(s)
- Ning Qin
- Department of Hygiene Chemistry, School of Public Health, Guangxi Medical University, Nanning 530021, China; Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning 530021, China
| | - Yonghong Sheng
- Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Yantao Shao
- Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Qian Liao
- Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Dongping Huang
- Department of Hygiene Chemistry, School of Public Health, Guangxi Medical University, Nanning 530021, China; Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning 530021, China
| | - Juanhua Li
- Department of Hygiene Chemistry, School of Public Health, Guangxi Medical University, Nanning 530021, China; Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning 530021, China
| | - Jiemei Li
- Department of Hygiene Chemistry, School of Public Health, Guangxi Medical University, Nanning 530021, China; Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning 530021, China
| | - Hongxiu Liu
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yang Peng
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning 530021, China; Department of Environmental Health, School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Xiaoqiang Qiu
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning 530021, China; Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning 530021, China.
| | - Han Li
- Department of Hygiene Chemistry, School of Public Health, Guangxi Medical University, Nanning 530021, China; Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning 530021, China.
| |
Collapse
|
2
|
Jiang Y, Xu Z, Wang M, Liu H, Li Y, Xu S. Association Between Prenatal Exposure to Organochlorine Pesticides and Telomere Length in Neonatal Cord Blood. TOXICS 2024; 12:769. [PMID: 39590949 PMCID: PMC11597908 DOI: 10.3390/toxics12110769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/16/2024] [Accepted: 10/21/2024] [Indexed: 11/28/2024]
Abstract
Objectives: Environmental exposure may affect the telomere length (TL) of newborns, which is considered as an early biomarker indicating susceptibility for later life diseases. However, the effects of prenatal organochlorine pesticide (OCP) exposure on newborn TL remain unclear. This study aimed to investigate the association between prenatal exposure levels of OCPs during pregnancy and TL in neonatal cord blood. Methods: A total of 168 mother-infant pairs from a birth cohort in Wuhan, China, were included this study. The concentrations of hexachlorocyclohexanes (HCHs, including β-HCH, α-HCH, and γ-HCH), p,p'-dichlorodiphenyltrichloroethane (p,p'-DDT) and its metabolites (p,p'-dichlorodiphenyldichloroethane, p,p'-DDD; p,p'-dichlorodiphenyldichloroethylene, p,p'-DDE) were measured in cord blood. The associations between the OCPs and the TL in newborns were analyzed by a generalized linear regression model. Stratified analyses by newborn sex, maternal gestational weight gain, and pregnancy body mass index (BMI) were performed to evaluate if the associations were modified by these factors. Results: The detection rates of various OCPs ranged from 50.9% to 100.0%. The median concentration of p,p'-DDE was the highest (33.90 ng/g lipid), followed by β-HCH (8.67 ng/g lipid), and the median concentrations of the other OCPs were between 0.12 and 0.33 ng/g lipid. Among the all newborns, a two-fold increase in the γ-HCH concentration in the cord blood was significantly associated with a 0.024 (95% CI: -0.041, -0.007) decrease in the TL. After stratification by newborn sex, the inverse association between γ-HCH and the TL was only statistically significant in boys, but not in girls (P for interaction <0.05). In addition, after stratification by pre-pregnancy BMI, β-HCH and p,p'-DDT concentrations were significantly associated with a decreased TL in the overweight pre-pregnancy BMI group [-0.111 (95% CI: -0.203, -0.018) and -0.036 (95% CI: -0.049, -0.023), respectively]. Conclusions: Prenatal exposure to OCPs during pregnancy was associated with a decreased neonatal telomere length, which may be affected by the newborn sex and pre-pregnancy BMI. These findings may provide new insights into the mechanisms underlying OCP-induced adverse health effects.
Collapse
Affiliation(s)
- Ying Jiang
- Nanshan District Center for Disease Control and Prevention, Shenzhen 518054, China
| | - Ziyuan Xu
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Z.X.); (M.W.); (H.L.); (Y.L.)
| | - Meng Wang
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Z.X.); (M.W.); (H.L.); (Y.L.)
| | - Hongxiu Liu
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Z.X.); (M.W.); (H.L.); (Y.L.)
| | - Yuanyuan Li
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Z.X.); (M.W.); (H.L.); (Y.L.)
| | - Shunqing Xu
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Z.X.); (M.W.); (H.L.); (Y.L.)
- School of Environmental Science and Engineering, Hainan University, Haikou 570228, China
| |
Collapse
|
3
|
Jia Z, Qiu F, He Y, Chen H, Yang C, Liu H, Zheng T, Xu S, Wang S, Li Y. The fetal origins of metabolic health: exploring the association between newborn biological age and metabolism hormones in childhood. BMC Med 2024; 22:429. [PMID: 39379967 PMCID: PMC11462715 DOI: 10.1186/s12916-024-03629-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 09/11/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND Telomere length (TL), mitochondrial DNA copy number (mtDNAcn), and DNA methylation age (DNAmAge) are common aging biomarkers. However, research on the associations between these three markers at birth and subsequent metabolic status was limited. This study aimed to evaluate the association between TL, mtDNAcn, and DNAmAge in newborns and the variation in metabolic hormones of children at 3 years old. METHODS This research involved 895 mother-child pairs from a birth cohort in China, with TL and mtDNAcn measured using quantitative real-time PCR, DNA methylation (DNAm) assessed using Infinium MethylationEPIC Beadchip, and DNAm age (DNAmAge) determined using Horvath's epigenetic clock. Insulin and leptin levels were measured via electrochemiluminescence assay. Multivariable adjusted linear regression and restricted cubic spline (RCS) analysis were utilized to examine the association between aging markers and metabolic hormones. RESULTS The linear regression analysis indicated the percentage change of metabolism hormones for per doubling of aging biomarkers alterations and found significant associations between DNAmAge and insulin levels (adjusted percent change (95% CI), - 13.22 (- 23.21 to - 1.94)), TL and leptin levels (adjusted percent change (95% CI), 15.32 (1.32 to 31.24)), and mtDNAcn and leptin levels (adjusted percent change (95% CI), - 14.13 (- 21.59 to - 5.95)). The RCS analysis revealed significant non-linear associations between TL (Ln transformed) and insulin (Ln transformed) (P = 0.024 for nonlinearity), as well as DNAmAge (Ln transformed) and leptin (Ln transformed) (P = 0.043 for nonlinearity). Specifically, for TL and insulin, a positive association was observed when TL (Ln transformed) was less than - 0.05, which transitioned to an inverse association when TL (Ln transformed) was greater than - 0.05. Regarding DNAmAge and leptin, there was a sharp decline when DNAmAge (Ln transformed) was less than - 1.35, followed by a plateau between - 1.35 and - 0.67 and then a further decline when DNAmAge (Ln transformed) was greater than - 0.67. CONCLUSIONS In this prospective birth cohort study, variation in metabolic hormones of children at 3 years old was associated with TL, mtDNAcn, and DNAmAge at birth. These findings suggested that TL, mtDNAcn, and DNAmAge might play a role in the biological programming of metabolic health from birth.
Collapse
Affiliation(s)
- Zhenxian Jia
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Feng Qiu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Yujie He
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Huan Chen
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Chenhui Yang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Hongxiu Liu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Tongzhang Zheng
- Department of Epidemiology, School of Public Health, Brown University, Providence, RI, 02912, USA
| | - Shunqing Xu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030, China.
- School of Environmental Science and Engineering, Hainan University, Haikou, Hainan, 570228, China.
| | - Shiqiong Wang
- Institute of Maternal and Children Health, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei, 430016, China.
| | - Yuanyuan Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030, China.
| |
Collapse
|
4
|
Dehdashti B, Miri M, Khanahmad H, Feizi A, Mohammadi F, Rouholamin S, Amin MM. In-Utero exposure to potential sources of indoor air pollution and umbilical cord blood leukocyte telomere length. ENVIRONMENTAL RESEARCH 2024; 252:118791. [PMID: 38552826 DOI: 10.1016/j.envres.2024.118791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 03/20/2024] [Accepted: 03/24/2024] [Indexed: 04/06/2024]
Abstract
Indoor air pollution (IAP) has been associated with various adverse health effects. However, the evidence regarding such an association with leukocyte telomere length (LTL) in cord blood samples is still scarce. Therefore, the present study aimed to assess the relationship between exposure to indicators of IAP and LTL in umbilical cord blood samples. This cross-sectional study was based on 188 mother-newborn pairs who participated in our study between 2020 and 2022 in Isfahan, Iran. Umbilical LTL was measured by quantitative real-time polymerase chain reaction (qRT-PCR) technique. Linear mixed-effect models were used to assess the relationship between IAP indicators and umbilical LTL, adjusted for relevant covariates. The median (interquartile range (IQR)) of umbilical LTL was 0.92 (0.47). In fully adjusted models, frequency of using degreasing spray during pregnancy (times per month) (β = -0.047, 95% CI:0.09, -0.05, P-value = 0.02), using air freshener spray during pregnancy (β = -0.26, 95% CI: -0.5, -0.02, P-value = 0.03) and frequency of using insecticides during pregnancy (times per month) (β = -0.025, 95% CI: -0.047, -0.003, P-value = 0.02) were significantly associated with shorter umbilical LTL. There was a positive significant relationship between the frequency of using cleaning spray during pregnancy (times per month) with umbilical LTL (β = 0.019, 95% CI: 0.005, 0.033, P-value = 0.01). Furthermore, the direct connection of the parking with home and the frequency of using barbecue (times per week) were marginally associated with shorter umbilical LTL. For other indicators of IAP, we did not observe any statistically significant associations. Overall, this study suggested a negative association between prenatal exposure to IAP during pregnancy and umbilical LTL.
Collapse
Affiliation(s)
- Bahare Dehdashti
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran; Environment Research Center, Research Institute for Primordial Prevention of Non- Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran; Student Research Committee, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Miri
- Leishmaniasis Research Center, Department of Environmental Health, School of Public Health, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Hossein Khanahmad
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Awat Feizi
- Department of Biostatistics and Epidemiology, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Farzaneh Mohammadi
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Safoura Rouholamin
- Department of Obstetrics and Gynecology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Mehdi Amin
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran; Environment Research Center, Research Institute for Primordial Prevention of Non- Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
5
|
Qian T, Zhang J, Liu J, Wu J, Ruan Z, Shi W, Fan Y, Ye D, Fang X. Associations of phthalates with accelerated aging and the mitigating role of physical activity. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 278:116438. [PMID: 38744065 DOI: 10.1016/j.ecoenv.2024.116438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/06/2024] [Accepted: 05/03/2024] [Indexed: 05/16/2024]
Abstract
Phthalates are positioned as potential risk factors for health-related diseases. However, the effects of exposure to phthalates on accelerated aging and the potential modifications of physical activity remain unclear. A total of 2317 participants containing complete study-related information from the National Health and Nutrition Examination Survey 2007-2010 were included in the current study. We used two indicators, the Klemera-Doubal method biological age acceleration (BioAgeAccel) and phenotypic age acceleration (PhenoAgeAccel), to assess the accelerated aging status of the subjects. Multiple linear regression (single pollutant models), weighted quantile sum (WQS) regression, Quantile g-computation, and Bayesian kernel machine regression (BKMR) models were utilized to explore the associations between urinary phthalate metabolites and accelerated aging. Three groups of physical activity with different intensities were used to evaluate the modifying effects on the above associations. Results indicated that most phthalate metabolites were significantly associated with BioAgeAccel and PhenoAgeAccel, with effect values (β) ranging from 0.16 to 0.21 and 0.16-0.37, respectively. The WQS indices were positively associated with BioAgeAccel (0.33, 95% CI: 0.11, 0.54) and PhenoAgeAccel (0.50, 95% CI: 0.19, 0.82). Quantile g-computation indicated that phthalate mixtures were associated with accelerated aging, with effect values of 0.15 (95% CI: 0.02, 0.28) for BioAgeAccel and 0.39 (95% CI: 0.12, 0.67) for PhenoAgeAccel respectively. The BKMR models indicated a significant positive association between the concentrations of urinary phthalate mixtures with the two indicators. In addition, we found that most phthalate metabolites showed the strongest effects on accelerated aging in the no physical activity group and that the effects decreased gradually with increasing levels of physical activity (P < 0.05 for trend). Similar results were also observed in the mixed exposure models (WQS and Quantile g-computation). This study indicates that phthalates exposure is associated with accelerated aging, while physical activity may be a crucial barrier against phthalates exposure-related aging.
Collapse
Affiliation(s)
- Tingting Qian
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui 230032, China
| | - Jie Zhang
- School of Public Health, Anhui University of Science and Technology, Hefei, Anhui 231131, China; Key Laboratory of Industrial Dust Prevention and Control, Occupational Health and Safety, Ministry of Education, Anhui University of Science and Technology, Hefei, Anhui 231131, China; Anhui Institute of Occupational Safety and Health, Anhui University of Science and Technology, Hefei, Anhui 231131, China; Joint Research Center of Occupational Medicine and Health, Institute of Grand Health, Hefei Comprehensive National Science Center, Anhui University of Science and Technology, Hefei, Anhui 231131, China
| | - Jintao Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui 230032, China
| | - Jingwei Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui 230032, China
| | - Zhaohui Ruan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui 230032, China
| | - Wenru Shi
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui 230032, China
| | - Yinguang Fan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui 230032, China.
| | - Dongqing Ye
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China; School of Public Health, Anhui University of Science and Technology, Hefei, Anhui 231131, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui 230032, China; Key Laboratory of Industrial Dust Prevention and Control, Occupational Health and Safety, Ministry of Education, Anhui University of Science and Technology, Hefei, Anhui 231131, China; Anhui Institute of Occupational Safety and Health, Anhui University of Science and Technology, Hefei, Anhui 231131, China; Joint Research Center of Occupational Medicine and Health, Institute of Grand Health, Hefei Comprehensive National Science Center, Anhui University of Science and Technology, Hefei, Anhui 231131, China.
| | - Xinyu Fang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui 230032, China.
| |
Collapse
|
6
|
Pili MP, Cagliero L, Panichi V, Bordoni M, Pansarasa O, Cremaschi G, Tonga EB, Cappelletti F, Provenzi L. Exposure to pollution during the first thousand days and telomere length regulation: A literature review. ENVIRONMENTAL RESEARCH 2024; 249:118323. [PMID: 38336161 DOI: 10.1016/j.envres.2024.118323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/08/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024]
Abstract
Telomere length (TL) is a biomarker for cellular senescence and TL erosion is predictive of the risk for age-related diseases. Despite being genetically determined at birth, TL may be susceptible to modifications through epigenetic mechanisms. Pollutant agents are considered one of the major threats to both human and planetary health. Their ability to cross the placental barrier and induce oxidative stress in fetal cells is particularly concerning and it may be associated with early TL erosion. In consideration of the timely relevance of this topic, we conducted a literature review on the impact of prenatal exposure to pollutant agents on newborn TL. The search yielded a total of 1099 records, of which only 32 met the inclusion criteria for the review. These criteria included the participation of human subjects, a longitudinal design or collection of longitudinal data, reporting of original TL data, and a focus on exposure to pollutant agents. The majority of the studies reported a significant inverse association between prenatal exposure to pollutant agents and TL. Furthermore, the second trimester of pregnancy emerged as a special sensitive period for the occurrence of pollutant agent-driven TL modifications. Sex differences were inconsistently reported across studies. This review contributes to highlighting biochemical pathways for the threats of environmental pollution to human health. Future research is warranted to further highlight potential buffering mechanisms.
Collapse
Affiliation(s)
- Miriam Paola Pili
- Department of Brain and Behavioral Sciences, University of Pavia, Strada Nuova 65, 27100, Pavia, Italy.
| | - Lucia Cagliero
- Department of Brain and Behavioral Sciences, University of Pavia, Strada Nuova 65, 27100, Pavia, Italy
| | - Virginia Panichi
- Department of Brain and Behavioral Sciences, University of Pavia, Strada Nuova 65, 27100, Pavia, Italy
| | - Matteo Bordoni
- Cellular Models and Neuroepigenetics Unit, IRCCS Mondino Foundation, via Mondino 2, 27100, Pavia, Italy
| | - Orietta Pansarasa
- Cellular Models and Neuroepigenetics Unit, IRCCS Mondino Foundation, via Mondino 2, 27100, Pavia, Italy
| | - Giacomo Cremaschi
- Department of Brain and Behavioral Sciences, University of Pavia, Strada Nuova 65, 27100, Pavia, Italy
| | - Elgin Bilge Tonga
- Department of Brain and Behavioral Sciences, University of Pavia, Strada Nuova 65, 27100, Pavia, Italy
| | | | - Livio Provenzi
- Department of Brain and Behavioral Sciences, University of Pavia, Strada Nuova 65, 27100, Pavia, Italy; Developmental Psychobiology Lab, IRCCS Mondino Foundation, via Mondino 2, 27100, Pavia, Italy
| |
Collapse
|
7
|
Mu C, Lin M, Shao Y, Liao Q, Liang J, Yu C, Wu X, Chen M, Tang Y, Zhou L, Qiu X, Pan D, Huang D. Associations between maternal serum neonicotinoid pesticide exposure during pregnancy and newborn telomere length: Effect modification by sampling season. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 273:116164. [PMID: 38447517 DOI: 10.1016/j.ecoenv.2024.116164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 02/24/2024] [Accepted: 02/27/2024] [Indexed: 03/08/2024]
Abstract
BACKGROUND An increasing amount of evidence suggests that telomere length (TL) at birth can predict lifespan and is associated with chronic diseases later in life, but newborn TL may be affected by environmental pollutants. Neonicotinoids (NEOs) are widely used worldwide, and despite an increasing number of studies showing that they may have adverse effects on birth in mammals and even humans, few studies have examined the effect of NEO exposure on newborn TLs. OBJECTIVE To investigate the effects of prenatal exposure to NEOs and the interactions between NEOs and sampling season on newborn TL. METHODS We conducted a prospective cohort study of 500 mother-newborn pairs from the Guangxi Zhuang Birth Cohort. Ultraperformance liquid chromatographymass spectrometry was used to detect ten NEOs in maternal serum, and fluorescence quantitative PCR was used to estimate the newborn TL. A generalized linear model (GLM) was used to evaluate the relationships between individual NEO exposures and TLs , and quantile g-computation (Qgcomp) model and Bayesian kernel machine regression (BKMR) model were used to evaluate the combined effect of mixtures of components. RESULTS The results of the GLM showed that compared with maternal TMX levels < LOD, maternal TMX levels < median were negatively correlated with newborn TL (-6.93%, 95% CI%: -11.92%, -1.66%), and the decrease in newborn TL was more pronounced in girls (-9.60%, 95% CI: -16.84%, -1.72%). Moreover, different kinds of maternal NEO exposure had different effects on newborn TL in different sampling seasons, and the effect was statistically significant in all seasons except in autumn. Mixed exposure analysis revealed a potential positive trend between NEOs and newborn TL, but the association was not statistically significant. CONCLUSION Prenatal exposure to TMX may shorten newborn TL, and this effect is more pronounced among female newborns. Furthermore, the relationship between NEO exposure and TL may be modified by the sampling season.
Collapse
Affiliation(s)
- Changhui Mu
- Department of Sanitary Chemistry, School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Mengrui Lin
- Department of Sanitary Chemistry, School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Yantao Shao
- Department of Medical and Health Management, Logistics Infrastructure Department, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Qian Liao
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Jun Liang
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Chuanxiang Yu
- Wujiang District Center for Disease Control and Prevention, Suzhou 215299, China
| | - Xiaolin Wu
- Department of Sanitary Chemistry, School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Manlin Chen
- Department of Sanitary Chemistry, School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Ying Tang
- Department of Sanitary Chemistry, School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Lihong Zhou
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Xiaoqiang Qiu
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021, China.
| | - Dongxiang Pan
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021, China.
| | - Dongping Huang
- Department of Sanitary Chemistry, School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021, China; Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, Guangxi 530021, China.
| |
Collapse
|
8
|
Khodasevich D, Holland N, Hubbard A, Harley K, Deardorff J, Eskenazi B, Cardenas A. Associations between prenatal phthalate exposure and childhood epigenetic age acceleration. ENVIRONMENTAL RESEARCH 2023; 231:116067. [PMID: 37149020 PMCID: PMC10330458 DOI: 10.1016/j.envres.2023.116067] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/06/2023] [Accepted: 05/04/2023] [Indexed: 05/08/2023]
Abstract
BACKGROUND Phthalates, a group of pervasive endocrine-disrupting chemicals found in plastics and personal care products, have been associated with a wide range of developmental and health outcomes. However, their impact on biomarkers of aging has not been characterized. We tested associations between prenatal exposure to 11 phthalate metabolites on epigenetic aging in children at birth, 7, 9, and 14 years of age. We hypothesized that prenatal phthalate exposure will be associated with epigenetic age acceleration measures at birth and in early childhood, with patterns dependent on sex and timing of DNAm measurement. METHODS Among 385 mother-child pairs from the CHAMACOS cohort, we measured DNAm at birth, 7, 9, and 14 years of age, and utilized adjusted linear regression to assess the association between prenatal phthalate exposure and Bohlin's Gestational Age Acceleration (GAA) at birth and Intrinsic Epigenetic Age Acceleration (IEAA) throughout childhood. Additionally, quantile g-computation was utilized to assess the effect of the phthalate mixture on GAA at birth and IEAA throughout childhood. RESULTS We found a negative association between prenatal di (2-ethylhexyl) phthalate (DEHP) exposure and IEAA among males at age 7 (-0.62 years; 95% CI:-1.06 to -0.18), and a marginal negative association between the whole phthalate mixture and GAA among males at birth (-1.54 days, 95% CI: -2.79 to -0.28), while most other associations were nonsignificant. CONCLUSIONS Our results suggest that prenatal exposure to certain phthalates is associated with epigenetic aging in children. Additionally, our findings suggest that the influence of prenatal exposures on epigenetic age may only manifest during specific periods of child development, and studies relying on DNAm measurements solely from cord blood or single time points may overlook potential relationships.
Collapse
Affiliation(s)
- Dennis Khodasevich
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, USA; Center for Computational Biology, University of California, Berkeley, CA, USA
| | - Nina Holland
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, USA; Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Alan Hubbard
- Division of Biostatistics, School of Public Health, University of California, Berkeley, CA, USA
| | - Kim Harley
- Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Julianna Deardorff
- Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California, Berkeley, Berkeley, CA, USA; Division of Community Health Sciences, School of Public Health, University of California, Berkeley, CA, USA
| | - Brenda Eskenazi
- Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Andres Cardenas
- Department of Epidemiology and Population Health, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
9
|
Herrera-Moreno JF, Prada D, Baccarelli AA. Early Environment and Telomeres: a Long-Term Toxic Relationship. Curr Environ Health Rep 2023; 10:112-124. [PMID: 36944821 PMCID: PMC10849088 DOI: 10.1007/s40572-023-00395-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2023] [Indexed: 03/23/2023]
Abstract
PURPOSE OF REVIEW Telomere length (TL) shortening is a hallmark of biological aging. While studies have extensively focused on the impact of environmental exposures on TL in older populations, consistent evidence indicates that prenatal environmental exposures to air pollutants, polycyclic aromatic hydrocarbons, metals, and endocrine-disrupting chemicals influence TL shortening. Here, we summarize evidence linking prenatal environmental exposures with children's TL and discuss potential long-term effects. RECENT FINDINGS Current evidence shows that prenatal environmental exposures alter TL and identify pregnancy as a critical window of susceptibility for telomere damage in children. However, results vary across studies, possibly depending on the source, exposure time window, and stage evaluated. Additional research is needed to investigate whether early TL alterations mediate long-term health effects of offspring. Prenatal environmental exposures induce early childhood changes in TL. Based on known links between TL and biological aging, these alterations may have long-term impact on individuals' health throughout life.
Collapse
Affiliation(s)
- José Francisco Herrera-Moreno
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, 722 West 168Th Street, Suite 1105E, New York, NY, 10032, USA
| | - Diddier Prada
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, 722 West 168Th Street, Suite 1105E, New York, NY, 10032, USA
- Instituto Nacional de Cancerología - México, 14080, Mexico City, Mexico
| | - Andrea A Baccarelli
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, 722 West 168Th Street, Suite 1105E, New York, NY, 10032, USA.
| |
Collapse
|
10
|
Zhou F, Guo C, Wang L, Zhang G, Wang J, Chen W, Cui K, Tan Y, Zhou Z. Mono-(2-ethylhexyl) Phthalate (MEHP)-Induced Telomere Structure and Function Disorder Mediates Cell Cycle Dysregulation and Apoptosis via c-Myc and Its Upstream Transcription Factors in a Mouse Spermatogonia-Derived (GC-1) Cell Line. TOXICS 2023; 11:toxics11050448. [PMID: 37235262 DOI: 10.3390/toxics11050448] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/30/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023]
Abstract
As a typical environmental endocrine disrupting chemical (EDC), di-(2-ethylhexyl) phthalate (DEHP) is thought to be related to reproductive disorders, especially in males. Growing evidence suggests that various EDCs may result in an impaired telomere structure and function, which is associated with male infertility. However, the adverse effect of DEHP on telomeres in male reproductive cells has rarely been studied, and the related mechanisms remain unclear. In this study, we tested the effects of mono-(2-ethylhexyl) phthalate (MEHP), the primary metabolite of DEHP, on telomere dysfunction in mouse spermatogonia-derived cells (GC-1) and the potential role of TERT and c-Myc in MEHP-induced spermatogenic cell damage. Results showed that MEHP induced cell viability inhibition, G0/G1 phase cell cycle arrest, and apoptosis in GC-1 cells in a dose-dependent manner. Shortened telomeres, reduced telomerase activity, and decreased expression of TERT, c-Myc, and upstream transcription factors of c-Myc were also observed in the MEHP-treated cells. In conclusion, it can be concluded that TERT-mediated telomere dysfunction may contribute to MEHP-induced G0/G1 phase cell cycle arrest and apoptosis in GC-1 cells through the impairment of c-Myc and its upstream transcription factors.
Collapse
Affiliation(s)
- Fangji Zhou
- Department of Environmental Health, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Chengwei Guo
- Department of Environmental Health, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Lingqiao Wang
- Department of Environmental Health, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Guowei Zhang
- Department of Environmental Health, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Jia Wang
- Department of Environmental Health, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Weiyan Chen
- Department of Environmental Health, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Ke Cui
- Department of Environmental Health, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Yao Tan
- Department of Environmental Health, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Ziyuan Zhou
- Department of Environmental Health, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| |
Collapse
|
11
|
Liu Y, Song L, Wu M, Bi J, Wang L, Liu Q, Xiong C, Cao Z, Xu S, Wang Y. Association between rare earth element exposure during pregnancy and newborn telomere length. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:38751-38760. [PMID: 36586020 DOI: 10.1007/s11356-022-24958-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
Telomere length (TL) is considered a marker of biological aging and lifetime health, and some epidemiological studies report that the environmental exposures may influence TL at birth. We aimed to investigate the associations between prenatal rare earth elements (REE) exposure and newborn TL. A total of 587 mother-newborn pairs were recruited during 2013 to 2015 in Wuhan, China. Maternal urinary concentrations of REE collected during three trimesters were measured by inductively coupled plasma mass spectrometry. Quantitative real-time polymerase chain reaction was used to measure relative cord blood TL. The trimester-specific associations between prenatal REE exposure and cord blood TL were evaluated using multiple informant models. Weighted quantile sum regression was used to estimate the mixture effect of urinary REE on cord blood TL. After adjustment for potential confounders, per doubling of urinary REE (Dy, Yb, Pr, Nd, and Tm) concentrations (μg/g creatinine) during the second trimester was respectively associated with 1.94% (95% CI 0.19%, 3.72%), 2.10% (95% CI 0.31%, 3.92%), 2.11% (95% CI 0.35%, 3.89%), 2.08% (95% CI 0.01%, 4.20%), and 1.38% (95% CI 0.09%, 2.70%) increase in cord blood TL. Furthermore, exposure to the mixture of REE during the second trimester was also significantly associated with increased cord blood TL (percent change 1.20%, 95% CI 0.30%, 2.11%). However, these associations were not statistically significant in the first and third trimesters. This study provides new evidence on the potential effect of prenatal REE exposure on the initial (newborn) setting of offspring's telomere biology. Further epidemiological studies are warranted to confirm our findings.
Collapse
Affiliation(s)
- Yunyun Liu
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Department of Clinical and Public Health, School of Health and Rehabilitation, Jiangsu College of Nursing, Huai'an, Jiangsu, China
| | - Lulu Song
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Mingyang Wu
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jianing Bi
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lulin Wang
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qing Liu
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chao Xiong
- Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhongqiang Cao
- Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shunqing Xu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Youjie Wang
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, Hubei, China.
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
12
|
Li X, Liu H, Wan H, Li Y, Xu S, Xiao H, Xia W. Sex-specific associations between legacy and novel per- and polyfluoroalkyl substances and telomere length in newborns in Wuhan, China: Mixture and single pollutant associations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159676. [PMID: 36283531 DOI: 10.1016/j.scitotenv.2022.159676] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/26/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Telomere length (TL) at birth predicts later life TL and is related to health. Prenatal exposure to environmental pollutants might affect TL, but the associations between intrauterine per- and polyfluoroalkyl substances (PFASs) exposure and neonatal TL remained inconclusive. This study aimed to explore the single pollutant and mixture associations between legacy and novel PFASs and TL in newborns. In 908 mother-newborn pairs from Wuhan, China, thirteen PFASs were measured in cord serum, and TL was determined in cord leukocytes. Weighted quantile sum (WQS) regression and generalized linear model (GLM) were utilized to analyze the associations between PFASs mixture and single PFASs and TL in newborns. Furthermore, stratified and interaction analyses were performed to evaluate if there were sex-specific associations. The concentrations of perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA), and 6:2 chlorinated polyfluorinated ether sulfonate (6:2 Cl-PFESA) ranked the highest (geometric mean, 4.12, 1.61, and 0.77 ng/mL, respectively) among the 13 measured PFASs. Each unit increase in WQS index of PFASs mixture was associated with -5.19 % change (95% CI, -9.44, -0.73) of neonatal TL, and 8:2 Cl-PFESA contributed most (32.59 %) to the mixture association. In stratified analyses by neonatal sex, PFOS (-4.73 % change, 95% CI, -8.40, -0.93 for per doubling concentration) and 8:2 Cl-PFESA (-4.52 % change, 95% CI, -8.20, -0.70) were negatively associated with neonatal TL in male newborns, but no significant association appeared in females. In summary, intrauterine exposure to PFASs in mixture was associated with shorter neonatal TL, and the negative associations of 8:2 Cl-PFESA and PFOS with neonatal TL were observed only in boys. Future risk assessments are needed to pay more attention to the health effects of novel PFASs.
Collapse
Affiliation(s)
- Xiaojun Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China.
| | - Hongxiu Liu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China.
| | - Hongxia Wan
- Ningguo Meilin Hospital, Ningguo, Anhui 242321, PR China.
| | - Yuanyuan Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China.
| | - Shunqing Xu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China.
| | - Han Xiao
- Institute of Maternal and Child Health, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China.
| | - Wei Xia
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China.
| |
Collapse
|
13
|
Cai X, Ning C, Fan L, Li Y, Wang L, He H, Dong T, Cai Y, Zhang M, Lu Z, Chen C, Shi K, Ye T, Zhong R, Tian J, Li H, Li H, Zhu Y, Miao X. Triclosan is associated with breast cancer via oxidative stress and relative telomere length. Front Public Health 2023; 11:1163965. [PMID: 37213605 PMCID: PMC10197149 DOI: 10.3389/fpubh.2023.1163965] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 04/10/2023] [Indexed: 05/23/2023] Open
Abstract
Introduction Triclosan (TCS), a widely prescribed broad-spectrum antibacterial agent, is an endocrine-disrupting chemical. The relationship and biological mechanisms between TCS exposure and breast cancer (BC) are disputed. We aimed to examine the correlation between urinary TCS exposure and BC risk and estimated the mediating effects of oxidative stress and relative telomere length (RTL) in the above association. Methods This case-control study included 302 BC patients and 302 healthy individuals in Wuhan, China. We detected urinary TCS, three common oxidative stress biomarkers [8-hydroxy-2-deoxyguanosine (8-OHdG), 8-iso-prostaglandin F2α (8-isoPGF2α), 4-hydroxy-2-nonenal-mercapturic acid (HNE-MA)], and RTL in peripheral blood mononuclear cells. Results Significant associations were observed between log-transformed urinary concentrations of TCS, 8-OHdG, HNE-MA, 8-isoPGF2α, RTL, and BC risk, with the odds ratios (95% confidence intervals) being 1.58 (1.32-1.91), 3.08 (1.55-6.23), 3.39 (2.45-4.77), 3.99 (2.48-6.54), and 1.67 (1.35-2.09), respectively. Continuous TCS exposure was significantly positively correlated with RTL, HNE-MA, and 8-isoPGF2α (all p<0.05) but not with 8-OHdG (p = 0.060) after adjusting for covariates. The mediated proportions of 8-isoPGF22α and RTL in the relationship between TCS and BC risk were 12.84% and 8.95%, respectively (all p<0.001). Discussion In conclusion, our study provides epidemiological evidence to confirmed the deleterious effects of TCS on BC and indicated the mediating effect of oxidative stress and RTL on the correlation between TCS and BC risk. Moreover, exploring the contribution of TCS to BC can clarify the biological mechanisms of TCS exposure, provide new clues for the pathogenesis of BC, which is of great significance to improving public health systems.
Collapse
Affiliation(s)
- Xiaomin Cai
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Caibo Ning
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Linyun Fan
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanmin Li
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lu Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Heng He
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Tianyi Dong
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yimin Cai
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ming Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zequn Lu
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Can Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ke Shi
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tianrun Ye
- Department of Urology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rong Zhong
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianbo Tian
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University; Research Center of Public Health, Renmin Hospital of Wuhan University, Wuhan, China
| | - Heng Li
- Department of Urology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Heng Li, ; Haijie Li, ; Ying Zhu, ; Xiaoping Miao,
| | - Haijie Li
- Department of Gastrointestinal Cancer Research Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Heng Li, ; Haijie Li, ; Ying Zhu, ; Xiaoping Miao,
| | - Ying Zhu
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University; Research Center of Public Health, Renmin Hospital of Wuhan University, Wuhan, China
- *Correspondence: Heng Li, ; Haijie Li, ; Ying Zhu, ; Xiaoping Miao,
| | - Xiaoping Miao
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Heng Li, ; Haijie Li, ; Ying Zhu, ; Xiaoping Miao,
| |
Collapse
|
14
|
Qian B, Zheng ZX, Yang L, Wang CQ, Lin YC, Lin ZN. Prenatal exposure to phthalates and polybrominated diphenyl ethers on neonatal health: A birth cohort study in Guangxi, China. ENVIRONMENTAL RESEARCH 2023; 216:114571. [PMID: 36243047 DOI: 10.1016/j.envres.2022.114571] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 10/06/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
Few epidemiological studies have focused on prenatal phthalates (PAEs) and polybrominated diphenyl ethers (PBDEs) exposure to neonatal health in China. This study aimed to assess the associations between prenatal PAEs and PBDEs exposure and neonatal health in Guangxi, a Zhuang autonomous region of China. Concentrations of 4 PAEs metabolites (mPAEs) and 5 PBDEs congeners were measured in the serum of 267 healthy pregnant women. Birth outcomes and clinical data of neonates were collected after delivery. Mono-(2-Ethylhexyl) phthalate (MEHP) (81.52%) and BDE47 (35.21%) were the mPAEs and PBDEs congeners with the highest detection rate in serum. Prenatal exposures to mono-n-butyl phthalate (MBP), MEHP, and ΣmPAEs were negatively associated with birth weight (BW), birth length (BL), and gestational age (GA). Higher exposures to MBP, MEHP, and ΣmPAEs were associated with an increased odds ratio (OR) for low birth weight (LBW), but exposure to BDE28 exhibited the opposite effect. Moreover, higher exposures to MBP, MEHP, ΣmPAEs, BDE99, and ΣPBDEswere associated with an increased OR for premature birth (PTB) (P < 0.05). In contrast to MBP exposure, BDE28 exposure was associated with a higher OR for neonatal jaundice (NNJ) (P < 0.05). The interaction analysis showed a positive interaction between monoethyl phthalate (MEP) and BDE28 on the risk of NNJ and positive interaction between ΣmPAEs and BDE47 on the risk of NNJ. In addition, there are ethnicity-specific associations of prenatal PBDEs exposure with neonatal health in individuals of Zhuang and Han nationalities, and boy neonates were more sensitive to prenatal PBDEs exposure than girl neonates. The results revealed that prenatal exposure to mPAEs and PBDEs might have adverse effects on neonatal development, and the effects might be ethnicity- and sex-specific.
Collapse
Affiliation(s)
- Bo Qian
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian, 361102, China; Department of Occupational and Environmental Health, Guilin Medical University, Guilin, Guangxi, 541004, China
| | - Zhao-Xuan Zheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian, 361102, China
| | - Lei Yang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian, 361102, China
| | - Cheng-Qiang Wang
- Department of Occupational and Environmental Health, Guilin Medical University, Guilin, Guangxi, 541004, China
| | - Yu-Chun Lin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian, 361102, China.
| | - Zhong-Ning Lin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian, 361102, China.
| |
Collapse
|
15
|
Fan G, Song L, Liu Q, Wu M, Bi J, Xu L, Xiong C, Cao Z, Xu S, Wang Y. Association of maternal folic acid supplementation during pregnancy with newborn telomere length. Reprod Toxicol 2022; 114:52-56. [DOI: 10.1016/j.reprotox.2022.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 10/24/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022]
|
16
|
Song L, Wu M, Wang L, Bi J, Cao Z, Xu S, Tian Y, Xiong C, Wang Y. Ambient ozone exposure during pregnancy and telomere length in newborns: a prospective investigation in Wuhan, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:62662-62668. [PMID: 35411518 DOI: 10.1007/s11356-022-19977-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 03/25/2022] [Indexed: 06/14/2023]
Abstract
Recent studies suggest that environmental exposures, including air pollution, may influence initial (newborn) telomere length (TL), which has important implications for lifetime health. However, the effect of prenatal ozone exposure on newborn TL is unclear. This study aimed to examine the association of ozone exposure during pregnancy with newborn TL. We used data from a birth cohort study of 762 mother-newborn pairs performed in Wuhan, China, during 2013-2015. Land-use regression models were used to assess prenatal ozone exposure. Newborn TL was quantified in cord blood by qPCR assay. We applied multiple informant model to explore the relationship of prenatal ozone exposure with newborn TL. After adjustment for potential confounders, an interquartile range (IQR) increase in ozone exposure during the 2nd trimester, 3rd trimester, and whole pregnancy were associated with 6.00% (95% confidence interval [CI]: 1.59%, 10.62%), 12.64% (95% CI: 7.52%, 18.00%), and 7.10% (95% CI: 4.09%, 10.20%) longer cord blood TL, respectively. In contrast, an IQR increase in ozone exposure during the 1st trimester was associated with a 8.39% (95% CI: - 12.90%, - 3.65%) shorter cord blood TL. In multipollutant models, consistent associations were observed between ozone exposures during the 2nd trimester and whole pregnancy and cord blood TL, but not significant for the 1st and 3rd trimesters. In conclusion, our findings suggest positive associations of ozone exposure during the 2nd trimester, 3rd trimester, and whole pregnancy with newborn TL and a negative association during the 1st trimester. This study provides new evidence in humans for a potential "programming" mechanism linking maternal ozone exposure to the initial (newborn) setting of offspring's telomere biology.
Collapse
Affiliation(s)
- Lulu Song
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Mingyang Wu
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lulin Wang
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jianing Bi
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhongqiang Cao
- Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Hong Kong Road No. 100, Wuhan, Hubei, China
| | - Shunqing Xu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yaohua Tian
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chao Xiong
- Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Hong Kong Road No. 100, Wuhan, Hubei, China.
| | - Youjie Wang
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
17
|
Wang X, Wang LL, Tian YK, Xiong SM, Liu YJ, Zhang HN, Shen XB, Zhou YZ. Association between exposures to phthalate metabolites and preterm birth and spontaneous preterm birth: A systematic review and meta-analysis. Reprod Toxicol 2022; 113:1-9. [PMID: 35907437 DOI: 10.1016/j.reprotox.2022.07.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 07/17/2022] [Accepted: 07/23/2022] [Indexed: 11/25/2022]
Abstract
Emerging evidence from observational studies proves the association between preterm birth (PTB) and phthalate metabolites; however, such findings are inconsistent and inconclusive. This meta-analysis aimed to clarify this association by accessing the connection between 11 phthalate metabolites and PTB, and 6 phthalate metabolites and spontaneous PTB. The PubMed, Embase, and WOS (Web of Science) databases were searched up to July 2020. Seven prospective studies met the inclusion criteria. Pooled odds ratios (OR) with 95% confidence intervals (CIs) were calculated for risk estimation. Our results indicated that mono-n-butyl phthalate (MBP), sum of di-2-ethylhexyl phthalate (ΣDEHP), and mono 3- carboxypropyl phthalate (MCPP) significantly correlated with the risk of PTB (MBP: OR = 1.23, 95% CI = 1.05-1.45; ΣDEHP: OR = 1.21, 95% CI =1.01-1.44; MCPP: OR = 1.09, 95% CI = 1.00-1.19). Pooled results showed that spontaneous PTB was associated with higher urinary levels of mono-ethyl phthalate (MEP), MCPP, mono-isobutyl phthalate (MIBP), and MBP (MBP: OR = 1.27, 95% CI = 1.02-1.58; MEP: OR = 1.19, 95% CI = 1.01-1.40; MCPP: OR = 1.15, 95% CI = 1.02-1.30; MIBP: OR = 1.38, 95% CI = 1.12-1.71). Overall, we conclude that during pregnancy, MBP, ΣDEHP, and MCPP levels are associated positively with PTB. MBP, MEP, MCPP, and MIBP levels had increased odds of spontaneous PTB. No significant associations were observed between other phthalate metabolites and PTB or spontaneous PTB. Further research is needed to verify these findings and elucidate the association of phthalate levels and PTB.
Collapse
Affiliation(s)
- Xia Wang
- School of Public Health, Zunyi Medical University, Zunyi, China
| | - Ling-Lu Wang
- Obstetrics and Gynecology Department, Zunyi Medical University, Zunyi, China
| | - Ying-Kuan Tian
- School of Public Health, Zunyi Medical University, Zunyi, China
| | - Shi-Min Xiong
- School of Public Health, Zunyi Medical University, Zunyi, China
| | - Yi-Jun Liu
- School of Public Health, Zunyi Medical University, Zunyi, China
| | - Hao-Nan Zhang
- School of Public Health, Zunyi Medical University, Zunyi, China
| | - Xu-Bo Shen
- School of Public Health, Zunyi Medical University, Zunyi, China.
| | - Yuan-Zhong Zhou
- School of Public Health, Zunyi Medical University, Zunyi, China
| |
Collapse
|
18
|
Pan D, Shao Y, Song Y, Huang D, Liu S, Zeng X, Liang J, Juan Jennifer Tan H, Qiu X. Association between maternal per- and polyfluoroalkyl substance exposure and newborn telomere length: Effect modification by birth seasons. ENVIRONMENT INTERNATIONAL 2022; 161:107125. [PMID: 35183942 DOI: 10.1016/j.envint.2022.107125] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 01/27/2022] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Telomere length (TL) is an important biomarker of biological aging and disease that may be affected by prenatal exposure to environmental pollutants. Birth seasons have been linked to reproductive and immune-related diseases. Prenatal exposure to per- and polyfluoroalkyl substance (PFAS) has been associated with adverse birth outcomes, but the effects of PFAS and birth seasons on newborn TL are poorly understood. OBJECTIVES To explore the individual and combined effects of maternal PFAS exposure on newborn TL, with exploration of the interaction between PFAS and birth seasons on newborn TL. METHODS Between June 2015 and May 2018, a total of 499 mother-newborn pairs were recruited for a birth cohort study in Guangxi, China. Maternal blood samples were collected during pregnancy. Nine PFASs were measured by ultraperformance liquid chromatography-mass spectrometry. Newborn TL was assessed using quantitative real-time polymerase chain reaction. Modeling newborn TL as the outcome, multivariable linear regressions were performed for individual PFAS exposures, and Bayesian Kernel Machine Regressions were performed for PFAS mixtures. Furthermore, interaction analyses were conducted to evaluate the effect modification by birth seasons in these relationships. RESULTS For both single and multipollutant models, PFASs exposure were inversely associated with newborn TL, although none of the relationships were significant. The mixture of PFASs showed a potential positive trend of combined effect on newborn TL but non-statistically significant. Each ln-transformed unit concentration increase in PFOA was related to a 20.41% (95% CI: -30.44%, -8.93%) shorter TL in spring-born infants but not in those born in other birth seasons. Mothers in the middle and highest tertiles of PFOA exposure had 11.69% and 10.71% shorter TLs in spring-born infants, respectively. CONCLUSION Maternal PFAS exposure showed little association with newborn TL. The results suggested potential effect modification by birth season on the association between PFOA exposure and newborn TL.
Collapse
Affiliation(s)
- Dongxiang Pan
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Yantao Shao
- The Third Affiliated Hospital of Guangxi Medical University, Nanning 530031, Guangxi, China
| | - Yanye Song
- The Third Affiliated Hospital of Guangxi Medical University, Nanning 530031, Guangxi, China
| | - Dongping Huang
- Department of Sanitary Chemistry, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Shun Liu
- Department of Child and Adolescent Health & Maternal and Child Health, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Xiaoyun Zeng
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Jun Liang
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Hui Juan Jennifer Tan
- Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore
| | - Xiaoqiang Qiu
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China.
| |
Collapse
|
19
|
Liu C, Sun Y, Mustieles V, Chen YJ, Huang LL, Deng YL, Wang YX, Lu WQ, Messerlian C. Prenatal Exposure to Disinfection Byproducts and Intrauterine Growth in a Chinese Cohort. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:16011-16022. [PMID: 34813313 DOI: 10.1021/acs.est.1c04926] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Disinfection byproduct (DBP) exposure has been associated with birth size, pregnancy oxidative stress, and other adverse perinatal outcomes. However, little is known about the potential effect of prenatal DBP exposure on intrauterine growth. The present study included 1516 pregnant women from the Xiaogan Disinfection By-Products (XGDBP) birth cohort who were measured for four blood trihalomethanes [i.e., chloroform (TCM), bromodichloromethane (BDCM), dibromochloromethane (DBCM), and bromoform (TBM)] and two urinary haloacetic acids [i.e., dichloroacetic acid (DCAA) and trichloroacetic acid (TCAA)] across pregnancy trimesters. Second- and third-trimester fetal ultrasound measures of the abdominal circumference (AC), head circumference, biparietal diameter, femur length, and estimated fetal weight and birth weight were converted into z-scores. After adjusting for potential confounders, linear mixed models showed a decreasing AC z-score across tertiles of blood brominated THM (Br-THMs, the sum of BDCM, DBCM, and TBM) and total THM (THM4, the sum of Br-THMs and TCM) concentrations (both p for trend <0.01). We also observed a decreasing AC z-score across categories of blood TBM during pregnancy trimesters (p for trend = 0.03). Urinary haloacetic acids were unrelated to fetal growth parameters. In summary, prenatal exposure to THMs, particularly during the first trimester, was associated with reduced fetal abdominal circumference.
Collapse
Affiliation(s)
- Chong Liu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Yang Sun
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, United States
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, United States
| | - Vicente Mustieles
- Center for Biomedical Research (CIBM), University of Granada, Granada 18016, Spain
- Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), Madrid 28029, Spain
| | - Ying-Jun Chen
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Li-Li Huang
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Yan-Ling Deng
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Yi-Xin Wang
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, United States
| | - Wen-Qing Lu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Carmen Messerlian
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, United States
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, United States
| |
Collapse
|
20
|
Zhang Y, Huang B, He H, Wang X, Sabel CE, Thomsen M, Chen Z, Wang W. Urinary phthalate metabolites among workers in plastic greenhouses in western China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 289:117939. [PMID: 34426182 DOI: 10.1016/j.envpol.2021.117939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/22/2021] [Accepted: 08/06/2021] [Indexed: 06/13/2023]
Abstract
Agricultural plastic greenhouse (PG) production can extend the growing season of crops to satisfy domestic consumption in countries such as China. Workers in PGs have potential higher phthalate exposure risks than the general population as phthalate accumulation has been observed in greenhouse soil, air, and crops. To date, biomonitoring tests of phthalates for the working population have not been carried out. To address this shortage, we conducted a pilot study in Shaanxi Province, China, among 35 healthy PG workers by follow-up recording their seasonal dietary habits and work activities and urine sample collection and measurement between 2018 and 2019. The objectives were to uncover the association between phthalate metabolites and the population characteristics, seasonal and diurnal variations and causes, and to estimate exposure risks and contributions of exposure pathways from PG production systems. A total of 13 phthalate metabolite concentrations (Σ13 phthalate metabolites) ranged from 102 to 781 (5th-95th) ng/mL (median: 300 ng/mL). Mono-n-butyl phthalate (MNBP) made up 51.3% of Σ13 phthalate metabolites, followed by the sum of four di-2-ethylhexyl phthalate (DEHP) metabolites (24.2%), mono-2-isobutyl phthalate (MIBP) (13.4%), and mono-ethyl phthalate (MEP) (9.8%). The concentrations of MNBP and MIBP in summer were significantly higher than the levels in winter (p < 0.0001). A total of 62.3% of the PG worker population was shown to have exposure risks, and the proportion was as high as 79.4% in summer. Phthalate exposure of the workers from PG production systems constituted over 20% of the total creatinine-based daily intake, and consuming vegetables and fruit planted in PGs and inhalation in PGs were the two largest exposure pathways. Our findings demonstrate that it is important to protect workers in PGs from phthalate exposure risks, and phasing out the use of plastic materials containing phthalates in PGs is imperative, to guarantee food safety in PGs.
Collapse
Affiliation(s)
- Yanxia Zhang
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu, 210023, China; Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China; Aarhus Institute of Advanced Studies, Aarhus University, 8000, Aarhus C, Denmark.
| | - Biao Huang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Huan He
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu, 210023, China
| | - Xinkai Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Clive E Sabel
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, DK-4000, Roskilde, Denmark; Big Data Centre for Environment and Health, Department of Environmental Science, Aarhus University, Frederiksborgvej 399, DK-4000, Roskilde, Denmark
| | - Marianne Thomsen
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, DK-4000, Roskilde, Denmark
| | - Zhikun Chen
- Key Laboratory of Soil Resource & Biotech Applications, Shaanxi Academy of Sciences, Xi'an Botanical Garden of Shaanxi Province (Institute of Botany of Shaanxi Province), Xi'an, 710061, China
| | - Weixi Wang
- Key Laboratory of Soil Resource & Biotech Applications, Shaanxi Academy of Sciences, Xi'an Botanical Garden of Shaanxi Province (Institute of Botany of Shaanxi Province), Xi'an, 710061, China
| |
Collapse
|
21
|
Smith AR, Lin PID, Rifas-Shiman SL, Rahman ML, Gold DR, Baccarelli AA, Claus Henn B, Amarasiriwardena C, Wright RO, Coull B, Hivert MF, Oken E, Cardenas A. Prospective Associations of Early Pregnancy Metal Mixtures with Mitochondria DNA Copy Number and Telomere Length in Maternal and Cord Blood. ENVIRONMENTAL HEALTH PERSPECTIVES 2021; 129:117007. [PMID: 34797165 PMCID: PMC8604047 DOI: 10.1289/ehp9294] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
BACKGROUND Metal exposure during pregnancy influences maternal and child health. Oxidative stress and inflammation may mediate adverse effects of heavy metals, whereas essential metals may act as antioxidants. Mitochondrial DNA is a prime target for metal-induced oxidative damage. Telomere dysfunction is attributed to imbalances between reactive oxidant species and antioxidants. OBJECTIVES We evaluated individual and joint associations of prenatal metals with mitochondrial DNA copy number (mtDNAcn) and telomere length (TL) in maternal and cord blood as biomarkers of inflammation and oxidative stress. METHODS We measured six nonessential metals (arsenic, barium, cadmium, cesium, lead, mercury) and four essential metals (magnesium, manganese, selenium, zinc) in first-trimester maternal red blood cells in Project Viva, a U.S. prebirth cohort. We measured relative mtDNAcn (n=898) and TL (n=893) in second-trimester maternal blood and mtDNAcn (n=419) and TL (n=408) in cord blood. We used multivariable linear regression and quantile g-computation to estimate associations between prenatal metals and the biomarkers. We used generalized additive models and Bayesian kernel machine regression to examine nonlinearity and interactions. RESULTS A 2-fold increase in maternal magnesium was associated with lower maternal [β=-0.07, 95% confidence interval (CI): -0.10, -0.01] and cord blood (β=-0.08, 95% CI: -0.20, -0.01) mtDNAcn. Lead was associated with higher maternal mtDNAcn (β=0.04, 95% CI: 0.01, 0.06). Selenium was associated with longer cord blood TL (β=0.30, 95% CI: 0.01 0.50). An association was observed between the nonessential metal mixture and higher maternal mtDNAcn (β=0.04, 95% CI: 0.01, 0.07). There was a nonlinear relationship between cord blood mtDNAcn and magnesium; maternal mtDNAcn and barium, lead, and mercury; and maternal TL and barium. DISCUSSION Maternal exposure to metals such as lead, magnesium, and selenium was associated with mtDNAcn and TL in maternal second trimester and cord blood. Future work will evaluate whether these biomarkers are associated with child health. https://doi.org/10.1289/EHP9294.
Collapse
Affiliation(s)
- Anna R. Smith
- Division of Environmental Health Sciences, School of Public Health and Center for Computational Biology, University of California, Berkeley, Berkeley, California, USA
| | - Pi-I D. Lin
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, Massachusetts, USA
| | - Sheryl L. Rifas-Shiman
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, Massachusetts, USA
| | - Mohammad L. Rahman
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, Massachusetts, USA
| | - Diane R. Gold
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, USA
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston Massachusetts, USA
| | - Andrea A. Baccarelli
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Birgit Claus Henn
- Department of Environmental Health, Boston University School of Public Health, Boston University, Boston, Massachusetts, USA
| | - Chitra Amarasiriwardena
- Department of Environmental Medicine and Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - Robert O. Wright
- Department of Environmental Medicine and Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - Brent Coull
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, USA
| | - Marie-France Hivert
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, Massachusetts, USA
- Diabetes Unit, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Emily Oken
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, Massachusetts, USA
| | - Andres Cardenas
- Division of Environmental Health Sciences, School of Public Health and Center for Computational Biology, University of California, Berkeley, Berkeley, California, USA
| |
Collapse
|
22
|
Eick SM, Goin DE, Cushing L, DeMicco E, Park JS, Wang Y, Smith S, Padula AM, Woodruff TJ, Morello-Frosch R. Mixture effects of prenatal exposure to per- and polyfluoroalkyl substances and polybrominated diphenyl ethers on maternal and newborn telomere length. Environ Health 2021; 20:76. [PMID: 34193151 PMCID: PMC8247076 DOI: 10.1186/s12940-021-00765-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 06/24/2021] [Indexed: 05/25/2023]
Abstract
BACKGROUND Per- and polyfluoroalkyl substances (PFAS) and polybrominated diphenyl ethers (PBDEs) are endocrine disrupting chemicals with widespread exposures across the U.S. given their abundance in consumer products. PFAS and PBDEs are associated with reproductive toxicity and adverse health outcomes, including certain cancers. PFAS and PBDEs may affect health through alternations in telomere length. In this study, we examined joint associations between prenatal exposure to PFAS, PBDEs, and maternal and newborn telomere length using mixture analyses, to characterize effects of cumulative environmental chemical exposures. METHODS Study participants were enrolled in the Chemicals in Our Bodies (CIOB) study, a demographically diverse cohort of pregnant people and children in San Francisco, CA. Seven PFAS (ng/mL) and four PBDEs (ng/g lipid) were measured in second trimester maternal serum samples. Telomere length (T/S ratio) was measured in delivery cord blood of 292 newborns and 110 second trimester maternal whole blood samples. Quantile g-computation was used to assess the joint associations between groups of PFAS and PBDEs and newborn and maternal telomere length. Groups considered were: (1) all PFAS and PBDEs combined, (2) PFAS, and (3) PBDEs. Maternal and newborn telomere length were modeled as separate outcomes. RESULTS T/S ratios in newborn cord and maternal whole blood were moderately correlated (Spearman ρ = 0.31). In mixtures analyses, a simultaneous one quartile increase in all PFAS and PBDEs was associated with a small increase in newborn (mean change per quartile increase = 0.03, 95% confidence interval [CI] = -0.03, 0.08) and maternal telomere length (mean change per quartile increase = 0.03 (95% CI = -0.03, 0.09). When restricted to maternal-fetal paired samples (N = 76), increasing all PFAS and PBDEs combined was associated with a strong, positive increase in newborn telomere length (mean change per quartile increase = 0.16, 95% CI = 0.03, 0.28). These associations were primarily driven by PFAS (mean change per quartile increase = 0.11 [95% CI = 0.01, 0.22]). No associations were observed with maternal telomere length among paired samples. CONCLUSIONS Our findings suggest that PFAS and PBDEs may be positively associated with newborn telomere length.
Collapse
Affiliation(s)
- Stephanie M. Eick
- Program On Reproductive Health and the Environment, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, USA
| | - Dana E. Goin
- Program On Reproductive Health and the Environment, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, USA
| | - Lara Cushing
- Department of Environmental Health Sciences, Fielding School of Public Health, University of California, Los Angeles, USA
| | - Erin DeMicco
- Program On Reproductive Health and the Environment, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, USA
| | - June-Soo Park
- Program On Reproductive Health and the Environment, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, USA
- Environmental Chemistry Laboratory, Department of Toxic Substances Control, California Environmental Protection Agency, Berkeley, USA
| | - Yunzhu Wang
- Environmental Chemistry Laboratory, Department of Toxic Substances Control, California Environmental Protection Agency, Berkeley, USA
| | - Sabrina Smith
- Environmental Chemistry Laboratory, Department of Toxic Substances Control, California Environmental Protection Agency, Berkeley, USA
| | - Amy M. Padula
- Program On Reproductive Health and the Environment, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, USA
| | - Tracey J. Woodruff
- Program On Reproductive Health and the Environment, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, USA
| | - Rachel Morello-Frosch
- Program On Reproductive Health and the Environment, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, USA
- Department of Environmental Science, Policy and Management and School of Public Health, University of California, Berkeley, USA
| |
Collapse
|
23
|
Wu M, Wang L, Song L, Liu B, Liu Y, Bi J, Liu Q, Chen K, Li Y, Xia W, Xu S, Cao Z, Zhou A, Tian Y, Wang Y. The association between prenatal exposure to thallium and shortened telomere length of newborns. CHEMOSPHERE 2021; 265:129025. [PMID: 33257049 DOI: 10.1016/j.chemosphere.2020.129025] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 11/10/2020] [Accepted: 11/16/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Thallium is a widely known toxic heavy metal that has been reported have embryo toxicity. OBJECTIVE We aimed to investigate the relationship of prenatal thallium exposure with neonatal telomere length. METHODS A total of 746 mother-newborn pairs were recruited from Wuhan Children Hospital between November 2013 and March 2015 in Wuhan City, China. Maternal thallium exposure levels were measured in spot urine samples collected during the three trimesters and during hospital delivery using inductively coupled plasma mass spectrometry. Neonatal relative telomere length (rTL) was measured by a real-time quantitative polymerase chain reaction assay in cord blood. Multiple informant models were used to evaluate the association of maternal thallium exposure with neonatal rTL. RESULTS After adjustment for multiple potential confounders, each 25% incremental increase of maternal thallium exposure, measured in urine samples collected during hospital delivery, was associated with a 1.85% shortened neonatal rTL (95% CI: -3.62%, -0.05%; P = 0.044). Similarly, mothers in the highest quartile of urinary thallium exposure had a 11.74% (95% CI: -21.57%, -0.68%; P = 0.038) shorter cord blood leukocyte rTL than those in the lowest quartile. However, no significant association was found between neonatal rTL and maternal thallium exposure measured in urine samples collected during the three trimesters of pregnancy. CONCLUSIONS This study reveals that prenatal thallium exposure was related to shortened neonatal telomere length in Chinese population, pointing to the important role of thallium exposure in accelerating biological aging.
Collapse
Affiliation(s)
- Mingyang Wu
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lulin Wang
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lulu Song
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Bingqing Liu
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yunyun Liu
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jianing Bi
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qing Liu
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Kai Chen
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yuanyuan Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wei Xia
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shunqing Xu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhongqiang Cao
- Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Aifen Zhou
- Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yaohua Tian
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Youjie Wang
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
24
|
Telomere length shortening in hospitalized preterm infants: A pilot study. PLoS One 2021; 16:e0243468. [PMID: 33471805 PMCID: PMC7817026 DOI: 10.1371/journal.pone.0243468] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 11/21/2020] [Indexed: 12/18/2022] Open
Abstract
Leukocyte telomere length is a biomarker of aging-related health risks. Hospitalized preterm infants frequently experience elevated oxidative stress and inflammation, both of which contribute to telomere shortening. Our aim was to examine changes in telomere length during neonatal intensive care unit (NICU) hospitalization in a cohort of preterm infants <32 weeks' gestation. We conducted a longitudinal study of 10 infants (mean gestational age 27 weeks, range 23.5 to 29, at birth). We isolated DNA from dried blood spots and used Real Time Quantitative PCR to measure relative leukocyte telomere length in triplicate at three time points for each participant. From birth to discharge, infants experienced an average decline in relative telomere length of 0.021 units per week (95% CI -0.040, -0.0020; p = 0.03), after adjustment for gestational age at birth. Our results suggest a measurable decline in telomere length during NICU hospitalization. We speculate that telomere length change may convey information about NICU exposures that carry short- and long-term health risks.
Collapse
|
25
|
Dalzini A, Petrara MR, Ballin G, Zanchetta M, Giaquinto C, De Rossi A. Biological Aging and Immune Senescence in Children with Perinatally Acquired HIV. J Immunol Res 2020; 2020:8041616. [PMID: 32509884 PMCID: PMC7246406 DOI: 10.1155/2020/8041616] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 04/22/2020] [Indexed: 12/12/2022] Open
Abstract
Chronic HIV-infected children suffer from premature aging and aging-related diseases. Viral replication induces an ongoing inflammation process, with the release of pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs), the activation of the immune system, and the production of proinflammatory cytokines. Although combined highly active antiretroviral therapy (ART) has significantly modified the natural course of HIV infection, normalization of T and B cell phenotype is not completely achievable; thus, many HIV-infected children display several phenotypical alterations, including higher percentages of activated cells, that favor an accelerated telomere attrition, and higher percentages of exhausted and senescent cells. All these features ultimately lead to the clinical manifestations related to premature aging and comorbidities typically observed in older general population, including non-AIDS-related malignancies. Therefore, even under effective treatment, the premature aging process of HIV-infected children negatively impacts their quality and length of life. This review examines the available data on the impact of HIV and ART on immune and biological senescence of HIV-infected children.
Collapse
Affiliation(s)
- Annalisa Dalzini
- Section of Oncology and Immunology, Department of Surgery, Oncology and Gastroenterology, Unit of Viral Oncology and AIDS Reference Center, University of Padova, Padova, Italy
| | - Maria Raffaella Petrara
- Section of Oncology and Immunology, Department of Surgery, Oncology and Gastroenterology, Unit of Viral Oncology and AIDS Reference Center, University of Padova, Padova, Italy
| | - Giovanni Ballin
- Section of Oncology and Immunology, Department of Surgery, Oncology and Gastroenterology, Unit of Viral Oncology and AIDS Reference Center, University of Padova, Padova, Italy
| | | | - Carlo Giaquinto
- Department of Mother and Child Health, University of Padova, Padova, Italy
| | - Anita De Rossi
- Section of Oncology and Immunology, Department of Surgery, Oncology and Gastroenterology, Unit of Viral Oncology and AIDS Reference Center, University of Padova, Padova, Italy
- Veneto Institute of Oncology IOV – IRCCS, Padua, Italy
| |
Collapse
|