1
|
Qin N, Sheng Y, Shao Y, Liao Q, Huang D, Li J, Li J, Liu H, Peng Y, Qiu X, Li H. Associations between prenatal phthalate exposure and newborn telomere length: Effect modification by infant sex. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 292:117977. [PMID: 40048909 DOI: 10.1016/j.ecoenv.2025.117977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 02/24/2025] [Accepted: 02/24/2025] [Indexed: 03/17/2025]
Abstract
BACKGROUND Phthalates are endocrine-disrupting chemicals (EDCs) ubiquitously present in the environment. There are limited studies on the impact of phthalate exposure during the gestational period on neonatal telomere length. OBJECTIVES The aim of this study is to investigate the correlation between maternal serum phthalate concentrations in early pregnancy and neonatal telomere length and whether this correlation exhibits sex-specificity. METHODS Between September 2015 and April 2018, 474 pregnant women were selected from the Guangxi Zhuang Birth Cohort (GZBC). Maternal serum samples from early pregnancy were measured for levels of five phthalates and four phthalate metabolites. Umbilical cord blood samples were collected to measure telomere length. The correlations between prenatal phthalate exposure and infant telomere length were assessed using multiple linear regression, Bayesian kernel machine regression (BKMR), quantile g-computation (qg-comp), and restricted cubic spline (RCS) models. RESULTS Multiple linear regression analyses revealed that per 2.7-fold increase in the concentration of butyl benzyl phthalate (BBP) and mono-ethyl phthalate (MEP), neonatal telomere length decreased by 2.66 % (95 % CI: -5.20 %, -0.05 %) and 3.43 % (95 % CI: -6.46 %, -0.30 %), respectively. Conversely, per 2.7-fold increase in di-butyl phthalate (DBP) concentration corresponded to a 3.01 % (95 % CI: 0.19 %, 5.91 %) increase in neonatal telomere length. Sex-stratified analyses demonstrated that BBP (percent change: -3.60 %; 95 % CI: -6.91 %, -0.18 %); mono-butyl phthalate (MBP) (percent change: -4.13 %; 95 % CI: -7.14 %, -1.01 %) and MEP (percent change: -7.66 %, 95 % CI: -11.53 %, -3.62 %) were inversely associated with neonatal telomere length in female infants only. Neonatal sex significantly modified the association between MEP exposure and neonatal telomere length (P-value for interaction = 0.018). Phthalate mixture was inversely associated with neonatal telomere length in female infants but not in male infants in qg-comp and BKMR models. CONCLUSION Our study suggests that maternal exposure to phthalates is linked to shorter telomere length in neonates, especially in female infants.
Collapse
Affiliation(s)
- Ning Qin
- Department of Hygiene Chemistry, School of Public Health, Guangxi Medical University, Nanning 530021, China; Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning 530021, China
| | - Yonghong Sheng
- Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Yantao Shao
- Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Qian Liao
- Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Dongping Huang
- Department of Hygiene Chemistry, School of Public Health, Guangxi Medical University, Nanning 530021, China; Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning 530021, China
| | - Juanhua Li
- Department of Hygiene Chemistry, School of Public Health, Guangxi Medical University, Nanning 530021, China; Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning 530021, China
| | - Jiemei Li
- Department of Hygiene Chemistry, School of Public Health, Guangxi Medical University, Nanning 530021, China; Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning 530021, China
| | - Hongxiu Liu
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yang Peng
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning 530021, China; Department of Environmental Health, School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Xiaoqiang Qiu
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning 530021, China; Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning 530021, China.
| | - Han Li
- Department of Hygiene Chemistry, School of Public Health, Guangxi Medical University, Nanning 530021, China; Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning 530021, China.
| |
Collapse
|
2
|
Guo Z, Liu P, Li T, Gao E, Bian J, Ren X, Xu B, Chen X, Huang H, Liu J, Yang X, Lu S. Associations of urinary nicotine metabolites and essential metals with metabolic syndrome in older adults: The mediation effect of insulin resistance. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135969. [PMID: 39342858 DOI: 10.1016/j.jhazmat.2024.135969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/30/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
Exposure to tobacco smoke and essential metals is linked with metabolic syndrome (MS). However, the joint effect of them on MS in older adults and the underlying mechanisms are still unclear. This large-scale study measured the urinary concentrations of 8 nicotine metabolites and 8 essential metals in 4564 older adults from Shenzhen, China. The biomarker of insulin resistance, triglyceride-glucose index (TyG), was also calculated. Restricted cubic splines (RCS), Bayesian kernel machine regression and quantile-based g-computation were used to access the single and joint effects of urinary nicotine metabolites and essential metals on MS and insulin resistance. Mediation analysis was performed to investigate the role of TyG in these relationships. Single urinary nicotine metabolite and essential metal had non-linear relationships with MS in RCS. The overall effect of urinary nicotine metabolites and essential metals was positively associated with MS. Urinary zinc (52.2 %) and copper (20.1 %) were the major contributors to MS, whereas molybdenum had a negative association with MS. TyG mediated 64.7 % of the overall effect of urinary nicotine metabolites and essential metals on MS. Overall, the mixture of urinary nicotine metabolites and essential metals had a dose-response relationship with MS. Insulin resistance was as a crucial mediated pathway in this association.
Collapse
Affiliation(s)
- Zhihui Guo
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China; School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Peiyi Liu
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Tian Li
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China; Beijing Daxing District Center for Disease Control and Prevention, Beijng 102699, China
| | - Erwei Gao
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Junye Bian
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Xiaohu Ren
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Benhong Xu
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Xiao Chen
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Haiyan Huang
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Jianjun Liu
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Xifei Yang
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China.
| | - Shaoyou Lu
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China.
| |
Collapse
|
3
|
Tomsho KS, Quinn MR, Wang Z, Preston EV, Adamkiewicz G, Joseph NT, Wylie BJ, James-Todd T. Improving the Health and Environmental Health Literacy of Professionals: Evaluating the Effect of a Virtual Intervention on Phthalate Environmental Health Literacy. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:1571. [PMID: 39767412 PMCID: PMC11675889 DOI: 10.3390/ijerph21121571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/19/2024] [Accepted: 11/22/2024] [Indexed: 01/11/2025]
Abstract
The American College of Obstetricians and Gynecologists provided updated guidance in 2021, recommending that reproductive health professionals should include discussion of environmental exposures with their patients. However, environmental health is seldom included in medical training, with endocrine-disrupting chemicals, such as phthalates-linked to adverse pregnancy outcomes-being among the least discussed. We developed a one-hour virtual educational intervention to train reproductive health professionals on the routes of phthalate exposure, potential associated health impacts, and suggestions on how to discuss exposure reduction with patients. The intervention was designed to include perspectives from patients, scientists, and clinicians. Using a pre/post/post design, we evaluated the impact of the intervention on reproductive health professionals' phthalate-related reproductive health literacy via a validated environmental health literacy (EHL) scale, their confidence in discussing phthalates, and the frequency of discussions about phthalates with patients. All materials, including the study questionnaires and intervention materials, were administered virtually to reproductive health professionals (n = 203) currently seeing patients working in the United States. After completing the intervention, reproductive health professionals' average EHL increased (pre-course: 22.3, post-course: 23.7, 2 months post-course: 24.0), as did their confidence in discussing phthalates with their patients (pre-course: 1% (2/203) reported being quite confident, post-course: 64% (131/203) reported being quite confident, and 2 months post course: 86% (174/203) reported being quite confident). Additionally, the reported frequency of discussions about phthalates with patients rose substantially (pre-course: 0% (0/203) reported usually discussing phthalates with patients, and 2 months post-course: 86% (175/203) reported usually discussing phthalates with patients): In line with the recommendations of the American College of Obstetricians and Gynecologists, this online phthalate educational intervention tool increased EHL among reproductive health professionals and shifted clinical care to include discussion about phthalates, a reproductive toxicant.
Collapse
Affiliation(s)
- Kathryn S. Tomsho
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Marlee R. Quinn
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Zifan Wang
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Emma V. Preston
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Gary Adamkiewicz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Naima T. Joseph
- Division of Maternal and Fetal Medicine, Department of Obstetrics and Gynecology, Boston Medical Center, Boston University School of Medicine, Boston, MA 02118, USA
| | - Blair J. Wylie
- Division of Maternal and Fetal Medicine, Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Tamarra James-Todd
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| |
Collapse
|
4
|
Chen Z, Wei W, Hu Y, Niu Q, Yan Y. Associations between co-exposure to per- and polyfluoroalkyl substances and metabolic diseases: The mediating roles of inflammation and oxidative stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176187. [PMID: 39265689 DOI: 10.1016/j.scitotenv.2024.176187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 08/17/2024] [Accepted: 09/08/2024] [Indexed: 09/14/2024]
Abstract
BACKGROUND Per- and polyfluoroalkyl substances (PFAS) pose potential risks to human health. In real-world settings, humans are exposed to various PFAS through numerous pathways. OBJECTIVES This study evaluated the associations between co-exposure to PFAS and obesity and its comorbidities, along with the mediating roles of inflammation and oxidative stress. METHODS We analyzed 11,090 participants from National Health and Nutrition Examination Survey (NHANES), 2003-2018. Linear regression, logistic regression, and generalized additive models were used to assess the individual effects of PFAS exposure on obesity and its comorbidities. The environmental risk score (ERS) was calculated using the adaptive elastic-net model to assess the co-exposure effects. Linear and logistic regression models explored the associations between ERS and obesity and its comorbidities. Mediation analyses explored the roles of inflammatory (neutrophils, lymphocytes, and alkaline phosphatase) and oxidative stress (gamma-glutamyl transferase, total bilirubin, and uric acid) markers in the associations between ERS and obesity and its comorbidities. RESULTS For each unit increase in ERS, the odds of obesity and type 2 diabetes mellitus (T2DM) increased 3.60-fold (95 % CI: 2.03, 6.38) and 1.91-fold (95 % CI: 1.28, 2.86), respectively. For each unit increase in ERS, BMI increased by 2.36 (95 % CI: 1.24, 3.48) kg/m2, waist circumference increased by 6.47 (95 % CI: 3.56, 9.37) cm, and waist-to-height ratio increased by 0.04 (95 % CI: 0.02, 0.06). Lymphocytes, alkaline phosphatase, and total bilirubin were significantly associated with both ERS and obesity, with mediation proportions of 4.17 %, 3.62 %, and 7.37 %, respectively. Lymphocytes, alkaline phosphatase, total bilirubin, and uric acid were significantly associated with both ERS and T2DM, with the mediation proportions of 8.90 %, 8.74 %, 29.73 %, and 38.19 %, respectively. CONCLUSIONS Co-exposure to PFAS was associated with obesity and T2DM, and these associations may be mediated by inflammation and oxidative stress. Further mechanistic and prospective studies are required to verify these associations.
Collapse
Affiliation(s)
- Zuhai Chen
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Wanting Wei
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Yunhua Hu
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi, Xinjiang, China; Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, China; Key Laboratory of Preventive Medicine, Shihezi University, Shihezi, Xinjiang, China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Qiang Niu
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi, Xinjiang, China; Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, China; Key Laboratory of Preventive Medicine, Shihezi University, Shihezi, Xinjiang, China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Yizhong Yan
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi, Xinjiang, China; Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, China; Key Laboratory of Preventive Medicine, Shihezi University, Shihezi, Xinjiang, China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, China.
| |
Collapse
|
5
|
Al-Saleh I, Elkhatib R, Alghamdi R, Alrushud N, Alnuwaysir H, Alnemer M, Aldhalaan H, Shoukri M. Assessment of maternal phthalate exposure in urine across three trimesters and at delivery (umbilical cord blood and placenta) and its influence on birth anthropometric measures. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:174910. [PMID: 39053554 DOI: 10.1016/j.scitotenv.2024.174910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/18/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024]
Abstract
Phthalates, commonly used in plastic manufacturing, have been linked to adverse reproductive effects. Our research from the Saudi Early Autism and Environment Study (2019-2022), involving 672 participants, focused on the impacts of maternal phthalate exposure on birth anthropometric measures. We measured urinary phthalate metabolites in 390 maternal samples collected during each of the three trimesters of pregnancy and in cord serum and placental samples obtained at delivery. We employed various statistical methods to analyze our data. Intraclass correlation coefficients were used to assess the consistency of phthalate measurements, generalized estimating equations were used to explore temporal variations across the trimesters, and linear regression models, adjusted for significant confounders and Bonferroni correction, were used for each birth outcome. Exposure to six phthalates was consistently high across trimesters, with 82 %-100 % of samples containing significant levels of all metabolites, except for mono-benzyl phthalate. We found a 3.15 %-3.73 % reduction in birth weight (BWT), 1.39 %-1.69 % reduction in head circumference (HC), and 3.63 %-5.45 % reduction in placental weight (PWT) associated with a one-unit increase in certain urinary di(2-ethylhexyl) phthalate (DEHP) metabolites during the first trimester. In the second trimester, exposure to MEP, ∑7PAE, and ∑LMW correlated with a 3.15 %-4.5 % increase in the APGAR 5-min score and increases in PWT by 8.98 % for ∑7PAE and 9.09 % for ∑LMW. Our study also highlighted the maternal-to-fetal transfer of DEHP metabolites, indicating diverse impacts on birth outcomes and potential effects on developmental processes. Our study further confirmed the transfer of DEHP metabolites from mothers to fetuses, evidenced by variable rates in the placenta and cord serum, with an inverse relationship suggesting a passive transfer mechanism. Additionally, we observed distinct phthalate profiles across these matrices, adversely impacting birth outcomes. In serum, we noticed increases associated with DEHP metabolites, with birth gestational age rising by 1.01 % to 1.11 %, HC by 2.84 % to 3.67 %, and APGAR 5-min scores by 3.77 % to 3.87 %. Conversely, placental analysis revealed a different impact: BWT decreased by 3.54 % to 4.69 %, HC reductions ranged from 2.57 % to 4.69 %, and chest circumference decreased by 7.13 %. However, the cephalization index increased by 3.67 %-5.87 %. These results highlight the complex effects of phthalates on fetal development, indicating their potential influence on crucial developmental processes like sexual maturation and brain development.
Collapse
Affiliation(s)
- Iman Al-Saleh
- Environmental Health Program, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia.
| | - Rola Elkhatib
- Environmental Health Program, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Reem Alghamdi
- Environmental Health Program, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Nujud Alrushud
- Environmental Health Program, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Hissah Alnuwaysir
- Environmental Health Program, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Maha Alnemer
- Obstetrics and Gynecology Department, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Hesham Aldhalaan
- Center for Autism Research, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Mohamed Shoukri
- Department of Epidemiology and Biostatistics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
6
|
Siwakoti RC, Iyer G, Banker M, Rosario Z, Vélez-Vega CM, Alshawabkeh A, Cordero JF, Karnovsky A, Meeker JD, Watkins DJ. Metabolomic Alterations Associated with Phthalate Exposures among Pregnant Women in Puerto Rico. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:18076-18087. [PMID: 39353139 PMCID: PMC11736900 DOI: 10.1021/acs.est.4c03006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Although phthalate exposure has been linked with multiple adverse pregnancy outcomes, their underlying biological mechanisms are not fully understood. We examined associations between biomarkers of phthalate exposures and metabolic alterations using untargeted metabolomics in 99 pregnant women and 86 newborns [mean (SD) gestational age = 39.5 (1.5) weeks] in the PROTECT cohort. Maternal urinary phthalate metabolites were quantified using isotope dilution high-performance liquid chromatography-tandem mass spectrometry (LC-MS/MS), while metabolic profiles in maternal and cord blood plasma were characterized via reversed-phase LC-MS. Multivariable linear regression was used in metabolome-wide association studies (MWAS) to identify individual metabolic features associated with elevated phthalate levels, while clustering and correlation network analyses were used to discern the interconnectedness of biologically relevant features. In the MWAS adjusted for maternal age and prepregnancy BMI, we observed significant associations between specific phthalates, namely, di(2-ethylhexyl) phthalate (DEHP) and mono(3-carboxypropyl) phthalate (MCPP), and 34 maternal plasma metabolic features. These associations predominantly included upregulation of fatty acids, amino acids, purines, or their derivatives and downregulation of ceramides and sphingomyelins. In contrast, fewer significant associations were observed with metabolic features in cord blood. Correlation network analysis highlighted the overlap of features associated with phthalates and those identified as differentiating markers for preterm birth in a previous study. Overall, our findings underscore the complex impact of phthalate exposures on maternal and fetal metabolism, highlighting metabolomics as a tool for understanding associated biological processes. Future research should focus on expanding the sample size, exploring the effects of phthalate mixtures, and validating identified metabolic features in larger, more diverse populations.
Collapse
Affiliation(s)
- Ram C Siwakoti
- University of Michigan, Ann Arbor, Michigan 48105, United States
| | - Gayatri Iyer
- University of Michigan, Ann Arbor, Michigan 48105, United States
| | - Margaret Banker
- Northwestern University, Chicago, Illinois 60611, United States
| | - Zaira Rosario
- University of Puerto Rico Medical Sciences Campus, San Juan 00921, Puerto Rico
| | - Carmen M Vélez-Vega
- University of Puerto Rico Medical Sciences Campus, San Juan 00921, Puerto Rico
| | | | - José F Cordero
- University of Georgia, Athens, Georgia 30602, United States
| | - Alla Karnovsky
- University of Michigan, Ann Arbor, Michigan 48105, United States
| | - John D Meeker
- University of Michigan, Ann Arbor, Michigan 48105, United States
| | | |
Collapse
|
7
|
Hu Z, Wu N, An S, Deng M, Tao L, Liao D, Yu R, Yang J, Xiao Y, Zheng X, Zeng R, Liu Y, Xiong S, Xie Y, Liu X, Shen X, Shang X, Li Q, Zhou Y. Effect of combined exposure to phthalates and polycyclic aromatic hydrocarbons during early pregnancy on gestational age and neonatal size: A prospective cohort study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116868. [PMID: 39146592 DOI: 10.1016/j.ecoenv.2024.116868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/07/2024] [Accepted: 08/09/2024] [Indexed: 08/17/2024]
Abstract
Many studies have indicated that individual exposure to phthalates (PAEs) or polycyclic aromatic hydrocarbons (PAHs) affects pregnancy outcomes. However, combined exposure to PAEs and PAHs presents a more realistic situation, and research on the combined effects of PAEs and PAHs on gestational age and newborn size is still limited. This study aimed to assess the effects of combined exposure to PAEs and PAHs on neonatal gestational age and birth size. Levels of 9 PAE and 10 PAH metabolites were measured from the urine samples of 1030 women during early pregnancy from the Zunyi Birth Cohort in China. Various statistical models, including linear regression, restricted cubic spline, Bayesian kernel machine regression, and quantile g-computation, were used to study the individual effects, dose-response relationships, and combined effects, respectively. The results of this prospective study revealed that each ten-fold increase in the concentration of monoethyl phthalate (MEP), 2-hydroxynaphthalene (2-OHNap), 2-hydroxyphenanthrene (2-OHPhe), and 1-hydroxypyrene (1-OHPyr) decreased gestational age by 1.033 days (95 % CI: -1.748, -0.319), 0.647 days (95 % CI: -1.076, -0.219), 0.845 days (95 % CI: -1.430, -0.260), and 0.888 days (95 % CI: -1.398, -0.378), respectively. Moreover, when the concentrations of MEP, 2-OHNap, 2-OHPhe, and 1-OHPyr exceeded 0.528, 0.039, 0.012, and 0.002 µg/g Cr, respectively, gestational age decreased in a dose-response manner. Upon analyzing the selected PAE and PAH metabolites as a mixture, we found that they were significantly negatively associated with gestational age, birth weight, and the ponderal index, with 1-OHPyr being the most important contributor. These findings highlight the adverse effects of single and combined exposure to PAEs and PAHs on gestational age. Therefore, future longitudinal cohort studies with larger sample sizes should be conducted across different geographic regions and ethnic groups to confirm the impact of combined exposure to PAEs and PAHs on birth outcomes.
Collapse
Affiliation(s)
- Zhongmei Hu
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou 563000, China; Department of Obstetrics and Gynecology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, China; Department of Reproductive Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Nian Wu
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Songlin An
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Mingyu Deng
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou 563000, China; Department of Obstetrics and Gynecology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Lin Tao
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Dengqing Liao
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Rui Yu
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Jing Yang
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Yanling Xiao
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Xingting Zheng
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Rong Zeng
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou 563000, China; Key Laboratory of Maternal & Child Health and Exposure Science of Guizhou Higher Education Institutes, Zunyi, Guizhou 563000, China
| | - Yijun Liu
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou 563000, China; Key Laboratory of Maternal & Child Health and Exposure Science of Guizhou Higher Education Institutes, Zunyi, Guizhou 563000, China
| | - Shimin Xiong
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou 563000, China; Key Laboratory of Maternal & Child Health and Exposure Science of Guizhou Higher Education Institutes, Zunyi, Guizhou 563000, China
| | - Yan Xie
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou 563000, China; Key Laboratory of Maternal & Child Health and Exposure Science of Guizhou Higher Education Institutes, Zunyi, Guizhou 563000, China
| | - Xingyan Liu
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou 563000, China; Key Laboratory of Maternal & Child Health and Exposure Science of Guizhou Higher Education Institutes, Zunyi, Guizhou 563000, China
| | - Xubo Shen
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou 563000, China; Key Laboratory of Maternal & Child Health and Exposure Science of Guizhou Higher Education Institutes, Zunyi, Guizhou 563000, China
| | - Xuejun Shang
- Department of Andrology, School of Medicine, Jinling Hospital, Nanjing University, Nanjing 210002, China
| | - Quan Li
- Department of Obstetrics and Gynecology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, China.
| | - Yuanzhong Zhou
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou 563000, China; Key Laboratory of Maternal & Child Health and Exposure Science of Guizhou Higher Education Institutes, Zunyi, Guizhou 563000, China.
| |
Collapse
|
8
|
Hajjar R, Hatoum S, Mattar S, Moawad G, Ayoubi JM, Feki A, Ghulmiyyah L. Endocrine Disruptors in Pregnancy: Effects on Mothers and Fetuses-A Review. J Clin Med 2024; 13:5549. [PMID: 39337036 PMCID: PMC11432155 DOI: 10.3390/jcm13185549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/10/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
Background/Objectives: Endocrine disruptors are ubiquitous agents in the environment and are present in everyday consumer products. These agents can interfere with the endocrine system, and subsequently the reproductive system, especially in pregnancy. An increasing number of studies have been conducted to discover and describe the health effects of these agents on humans, including pregnant women, their fetuses, and the placenta. This review discusses prenatal exposure to various endocrine disruptors, focusing on bisphenols, phthalates, organophosphates, and perfluoroalkyl substances, and their effects on pregnancy and fetal development. Methods: We reviewed the literature via the PubMed and EBSCO databases and included the most relevant studies. Results: Our findings revealed that several negative health outcomes were linked to endocrine disruptors. However, despite the seriousness of this topic and the abundance of research on these agents, it remains challenging to draw strong conclusions about their effects from the available studies. This does not allow for strong, universal guidelines and might result in poor patient counseling and heterogeneous approaches to regulating endocrine disruptors. Conclusions: The seriousness of this matter calls for urgent efforts, and more studies are needed in this realm, to protect pregnant patients, and ultimately, in the long term, society.
Collapse
Affiliation(s)
- Rima Hajjar
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Sana Hatoum
- Foundation for Research and Education Excellence, Vestavia, AL 35243, USA
| | - Serge Mattar
- Fertility & IVF Clinic, Dubai P.O. Box 72960, United Arab Emirates
| | - Gaby Moawad
- Department of Obstetrics and Gynecology, The George Washington University Hospital, Washington, DC 20037, USA
| | - Jean Marc Ayoubi
- Department of Obstetrics and Gynecology and Reproductive Medicine, Hôpital Foch-Faculté de Médecine, Suresnes, 92150 Paris, France
| | - Anis Feki
- Department of Obstetrics and Gynecology and Reproductive Medicine, HFR-Hopital Fribourgeois, Chemin des Pensionnats 2-6, 1708 Fribourg, Switzerland
| | - Labib Ghulmiyyah
- Women's Specialty Care of Florida, Pediatrix Medical Group, Fort Lauderdale, FL 33316, USA
| |
Collapse
|
9
|
Yang Y, Zhang C, Gao H. Potential mechanisms and modifications of dietary antioxidants on the associations between co-exposure to plastic additives and diabetes. Nutr Diabetes 2024; 14:72. [PMID: 39227562 PMCID: PMC11372220 DOI: 10.1038/s41387-024-00330-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 08/19/2024] [Accepted: 08/22/2024] [Indexed: 09/05/2024] Open
Abstract
BACKGROUND The association of plastic additive mixture exposure with diabetes and the modifying effects of dietary antioxidants are unclear. METHODS The data from the NHANES 2011-2018 were retrieved, and phthalates and organophosphate esters (OPEs) were selected as exposures. The coexposure effect was analyzed by the environmental risk score (ERS) and quantile g-computation. To mitigate any potential bias caused by using the internal weights, another version of ERS was constructed using the cross-validation approach. The level of dietary antioxidant intake was measured by the composite dietary antioxidant index (CDAI). The biological mechanism underlying the association was studied by the adverse outcome pathway (AOP) framework. RESULTS Fifteen chemicals (ten phthalates and five OPEs) were measured in 2824 adult participants. A higher ERS was significantly associated with an increased risk of diabetes (OR per 1-SD increment of ERS: 1.25, 95% CI: 1.13-1.39). This association apparently interacted with the CDAI level (ORlow: 1.83, 95% CI: 1.37-2.55; ORhigh: 1.28, 95% CI: 1.15-1.45; Pinteraction = 0.038). Moreover, quantile g-computation also revealed higher level of combined exposure was positively associated with diabetes (OR: 1.27, 95% CI: 1.05-2.87), and the addition of dietary antioxidants showed a null association (OR: 1.09, 95% CI: 0.85-2.34). The AOP study identified TCPP and TCEP as key chemicals that cause aberrant glucose metabolism and insulin signaling pathways and result in diabetes. CONCLUSIONS Coexposure to phthalates and OPEs is positively associated with diabetes, where an antioxidative diet plays a modifying role. Several potential mechanisms have been proposed by AOP framework.
Collapse
Affiliation(s)
- Yang Yang
- Department of Prevention and Health Care, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, 321000, Zhejiang, China
| | - Cheng Zhang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei, 230022, Anhui, China
- Department of Biostatistics, Anhui Provincial Cancer Institute, No.218 Jixi Road, Hefei, 230022, Anhui, China
| | - Hui Gao
- Department of Pediatrics, the First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei, 230022, Anhui, China.
| |
Collapse
|
10
|
Cathey AL, Eaton JL, Watkins DJ, Rosario Pabón ZY, Vélez Vega CM, Alshawabkeh AN, Cordero JF, Meeker JD. Associations between urinary hydroxylated polycyclic aromatic hydrocarbon biomarker concentrations and measures of timing of delivery and infant size at birth. ENVIRONMENT INTERNATIONAL 2024; 190:108848. [PMID: 38936064 DOI: 10.1016/j.envint.2024.108848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 06/29/2024]
Abstract
Preterm birth is a leading cause of neonatal mortality and presents significant public health concerns. Environmental chemical exposures during pregnancy may be partially to blame for disrupted delivery timing. Polycyclic aromatic hydrocarbons (PAHs) are products of incomplete combustion, exposure to which occurs via inhalation of cigarette smoke and automobile exhaust, and ingestion of charred meats. Exposure to PAHs in the US population is widespread, and pregnant women represent a susceptible population to adverse effects of PAHs. We aimed to investigate associations between gestational exposure to PAHs and birth outcomes, including timing of delivery and infant birth size. We utilized data from the PROTECT birth cohort where pregnant women provided spot urine samples at up to three study visits (median 16, 20, and 24 weeks gestation). Urine samples were assayed for eight hydroxylated PAH concentrations. Associations between PAHs and birth outcomes were calculated using linear/logistic regression models, with adjustment for maternal age, education, pre-pregnancy BMI, and daily exposure to environmental tobacco smoke. Models accounted for urine dilution using specific gravity. We also explored effect modification by infant sex. Interquartile range (IQR) increases in all averaged PAH exposures during the second trimester were associated with reduced gestational age at delivery and increased odds of overall PTB, although these associations were not statistically significant (p > 0.05). Most PAHs at the second study visit were most strongly associated with earlier delivery and increased odds of overall and spontaneous PTB, with visit 2 2-hydroxynapthalene (2-NAP) being significantly associated with increased odds of overall PTB (OR:1.55; 95 %CI: 1.05,2.29). Some PAHs resulted in earlier timing of delivery among only female fetuses, specifically 2-NAP on overall PTB (female OR:1.52 95 %CI: 1.02,2.27; male OR:0.78, 95 %CI: 0.53,1.15). Future work should more deeply investigate differential physiological impacts of PAH exposure between pregnancies with male and female fetuses, and on varying developmental processes occurring at different points through pregnancy.
Collapse
Affiliation(s)
- Amber L Cathey
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Jarrod L Eaton
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Deborah J Watkins
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Zaira Y Rosario Pabón
- Department of Civil and Environmental Engineering, Northeastern University, Boston, MA, USA
| | - Carmen M Vélez Vega
- Department of Social Sciences, Doctoral Program in Social Determinants of Health, University of Puerto Rico, Medical Sciences Campus, San Juan, PR, USA
| | - Akram N Alshawabkeh
- Department of Civil and Environmental Engineering, Northeastern University, Boston, MA, USA
| | - José F Cordero
- Department of Epidemiology and Biostatistics, University of Georgia, Athens, GA, USA
| | - John D Meeker
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
11
|
Wang X, Xu M, Shi M, Tian Y, Zhi Y, Han X, Sui H, Wan Y, Jia X, Yang H. Macrophage polarization as a novel endpoint for assessing combined risk of phthalate esters. ENVIRONMENT INTERNATIONAL 2024; 190:108835. [PMID: 38908276 DOI: 10.1016/j.envint.2024.108835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/24/2024] [Accepted: 06/17/2024] [Indexed: 06/24/2024]
Abstract
Combined exposure to phthalate esters (PAEs) has garnered increasing attention due to potential synergistic effects on human health. This study aimed to develop an in vitro model using human macrophages to evaluate the combined toxicity of PAEs and explore the underlying mechanisms. A high-throughput screening system was engineered by expressing a PPRE-eGFP reporter in THP-1 monocytes to monitor macrophage polarization upon PAEs exposure. Individual PAEs exhibited varied inhibitory effects on M2 macrophage polarization, with mono(2-ethylhexyl) phthalate (MEHP) being the most potent. Isobologram analysis revealed additive interactions when MEHP was combined with other PAEs, resulting in more pronounced suppression of M2 markers compared to individual compounds. Mechanistic studies suggested PAEs may exert effects by modulating PPARγ activity to inhibit M2 polarization. Notably, an equimolar mixture of six PAEs showed additive inhibition of M2 markers. In vivo experiments corroborated the combined hepatotoxic effects, with mice exposed to a PAEs mixture exhibiting reduced liver weight, dyslipidemia, and decreased hepatic M2 macrophages compared to DEHP alone. Transcriptome analysis highlighted disruptions in PPAR signaling, and distinct pathway alterations on cholesterol metabolism in the mixture group. Collectively, these findings underscore the importance of evaluating mixture effects and provide a novel approach for hazard assessment of combined PAEs exposure with implications for environmental health risk assessment.
Collapse
Affiliation(s)
- Xiaohong Wang
- NHC Key Lab of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, China; Department of Nutrition and Food Safety, Peking Union Medical College, Research Unit of Food Safety, Chinese Academy of Medical Sciences, Beijing, China
| | - Miao Xu
- Department of Clinical Nutrition, West China Hospital, Sichuan University, Sichuan Chengdu, China
| | - Miaoying Shi
- NHC Key Lab of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, China; Department of Nutrition and Food Safety, Peking Union Medical College, Research Unit of Food Safety, Chinese Academy of Medical Sciences, Beijing, China
| | - Yaru Tian
- School of Public Health, Southern Medical University, Food Safety and Health Research Center, Guangdong Key Laboratory of Tropical Disease Research, Guangzhou, China; Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Yuan Zhi
- NHC Key Lab of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, China
| | - Xiaomin Han
- NHC Key Lab of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, China
| | - Haixia Sui
- NHC Key Lab of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, China
| | - Yi Wan
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Xudong Jia
- NHC Key Lab of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, China
| | - Hui Yang
- NHC Key Lab of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, China; Department of Nutrition and Food Safety, Peking Union Medical College, Research Unit of Food Safety, Chinese Academy of Medical Sciences, Beijing, China; School of Public Health, Southern Medical University, Food Safety and Health Research Center, Guangdong Key Laboratory of Tropical Disease Research, Guangzhou, China.
| |
Collapse
|
12
|
Kim C, Cathey AL, Park S, Watkins DJ, Mukherjee B, Rosario-Pabón ZY, Vélez-Vega CM, Alshawabkeh AN, Cordero JF, Meeker JD. Associations of maternal blood metal concentrations with plasma eicosanoids among pregnant women in Puerto Rico. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 928:172295. [PMID: 38588744 DOI: 10.1016/j.scitotenv.2024.172295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 04/10/2024]
Abstract
BACKGROUND/AIM Heavy metals are known to induce oxidative stress and inflammation, and the association between metal exposure and adverse birth outcomes is well established. However, there lacks research on biomarker profiles linking metal exposures and adverse birth outcomes. Eicosanoids are lipid molecules that regulate inflammation in the body, and there is growing evidence that suggests associations between plasma eicosanoids and pregnancy outcomes. Eicosanoids may aid our understanding of etiologic birth pathways. Here, we assessed associations between maternal blood metal concentrations with eicosanoid profiles among 654 pregnant women in the Puerto Rico PROTECT birth cohort. METHODS We measured concentrations of 11 metals in whole blood collected at median 18 and 26 weeks of pregnancy, and eicosanoid profiles measured in plasma collected at median 26 weeks. Multivariable linear models were used to regress eicosanoids on metals concentrations. Effect modification by infant sex was explored using interaction terms. RESULTS A total of 55 eicosanoids were profiled. Notably, 12-oxoeicosatetraenoic acid (12-oxoETE) and 15-oxoeicosatetraenoic acid (15-oxoETE), both of which exert inflammatory activities, had the greatest number of significant associations with metal concentrations. These eicosanoids were associated with increased concentrations of Cu, Mn, and Zn, and decreased concentrations of Cd, Co, Ni, and Pb, with the strongest effect sizes observed for 12-oxoETE and Pb (β:-33.5,95 %CI:-42.9,-22.6) and 15-oxoETE and Sn (β:43.2,95 %CI:11.4,84.1). Also, we observed differences in metals-eicosanoid associations by infant sex. Particularly, Cs and Mn had the most infant sex-specific significant associations with eicosanoids, which were primarily driven by female fetuses. All significant sex-specific associations with Cs were inverse among females, while significant sex-specific associations with Mn among females were positive within the cyclooxygenase group but inverse among the lipoxygenase group. CONCLUSION Certain metals were significantly associated with eicosanoids that are responsible for regulating inflammatory responses. Eicosanoid-metal associations may suggest a role for eicosanoids in mediating metal-induced adverse birth outcomes.
Collapse
Affiliation(s)
- Christine Kim
- University of Michigan School of Public Health, Department of Environmental Health Sciences, Ann Arbor, MI, United States
| | - Amber L Cathey
- University of Michigan School of Public Health, Department of Environmental Health Sciences, Ann Arbor, MI, United States
| | - Seonyoung Park
- University of Michigan School of Public Health, Department of Environmental Health Sciences, Ann Arbor, MI, United States
| | - Deborah J Watkins
- University of Michigan School of Public Health, Department of Environmental Health Sciences, Ann Arbor, MI, United States
| | - Bhramar Mukherjee
- University of Michigan School of Public Health, Department of Biostatistics, Ann Arbor, MI, United States
| | - Zaira Y Rosario-Pabón
- University of Puerto Rico Graduate School of Public Health, UPR Medical Sciences Campus, San Juan, Puerto Rico
| | - Carmen M Vélez-Vega
- University of Puerto Rico Graduate School of Public Health, UPR Medical Sciences Campus, San Juan, Puerto Rico
| | | | - José F Cordero
- Department of Epidemiology and Biostatistics, University of Georgia, Athens, GA, United States
| | - John D Meeker
- University of Michigan School of Public Health, Department of Environmental Health Sciences, Ann Arbor, MI, United States.
| |
Collapse
|
13
|
Meeker JD, McArthur KL, Adibi JJ, Alshawabkeh AN, Barrett ES, Brubaker SG, Cordero JF, Dabelea D, Dunlop AL, Herbstman JB, Kahn LG, Karr CJ, Mehta-Lee S, O'Connor TG, Sathyanarayana S, Trasande L, Kuiper JR. Urinary concentrations of phthalate metabolites in relation to preeclampsia and other hypertensive disorders of pregnancy in the environmental influences on child health outcomes (ECHO) program. ENVIRONMENT INTERNATIONAL 2024; 187:108678. [PMID: 38696977 PMCID: PMC11829711 DOI: 10.1016/j.envint.2024.108678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 03/01/2024] [Accepted: 04/17/2024] [Indexed: 05/04/2024]
Abstract
BACKGROUND Phthalate exposure may contribute to hypertensive disorders of pregnancy (HDP), including preeclampsia/eclampsia (PE/E), but epidemiologic studies are lacking. OBJECTIVES To evaluate associations of pregnancy phthalate exposure with development of PE/E and HDP. METHODS Using data from 3,430 participants in eight Environmental influences on Child Health Outcomes (ECHO) Program cohorts (enrolled from 1999 to 2019), we quantified concentrations of 13 phthalate metabolites (8 measured in all cohorts, 13 in a subset of four cohorts) in urine samples collected at least once during pregnancy. We operationalized outcomes as PE/E and composite HDP (PE/E and/or gestational hypertension). After correcting phthalate metabolite concentrations for urinary dilution, we evaluated covariate-adjusted associations of individual phthalates with odds of PE/E or composite HDP via generalized estimating equations, and the phthalate mixture via quantile-based g-computation. We also explored effect measure modification by fetal sex using stratified models. Effect estimates are reported as odds ratios (OR) with 95% confidence intervals (95% CIs). RESULTS In adjusted analyses, a doubling of mono-benzyl phthalate (MBzP) and of mono (3-carboxypropyl) phthalate (MCPP) concentrations was associated with higher odds of PE/E as well as composite HDP, with somewhat larger associations for PE/E. For example, a doubling of MCPP was associated with 1.12 times the odds of PE/E (95%CI 1.00, 1.24) and 1.02 times the odds of composite HDP (95%CI 1.00, 1.05). A quartile increase in the phthalate mixture was associated with 1.27 times the odds of PE/E (95%CI 0.94, 1.70). A doubling of mono-carboxy isononyl phthalate (MCiNP) and of mono-carboxy isooctyl phthalate (MCiOP) concentrations were associated with 1.08 (95%CI 1.00, 1.17) and 1.11 (95%CI 1.03, 1.19) times the odds of PE/E. Effect estimates for PE/E were generally larger among pregnancies carrying female fetuses. DISCUSSION In this study, multiple phthalates were associated with higher odds of PE/E and HDP. Estimates were precise and some were low in magnitude. Interventions to reduce phthalate exposures during pregnancy may help mitigate risk of these conditions.
Collapse
Affiliation(s)
- John D Meeker
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA.
| | - Kristen L McArthur
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA.
| | - Jennifer J Adibi
- Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA.
| | | | - Emily S Barrett
- Department of Biostatistics and Epidemiology, Rutgers University School of Public Health, Environmental and Occupational Health Institute, Piscataway, NJ, USA.
| | - Sara G Brubaker
- Division of Maternal-Fetal Medicine, New York University Grossman School of Medicine, New York, NY, USA.
| | - Jose F Cordero
- Department of Epidemiology and Biostatistics, University of Georgia College of Public Health, Athens, GA, USA.
| | - Dana Dabelea
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - Anne L Dunlop
- Department of Gynecology and Obstetrics, Emory University School of Medicine, Atlanta, GA, USA.
| | - Julie B Herbstman
- Department of Environmental Health Sciences, Columbia University, New York, NY, USA.
| | - Linda G Kahn
- Division of Environmental Pediatrics, New York University Grossman School of Medicine, New York, NY, USA.
| | - Catherine J Karr
- Department of Environmental and Occupational Health Sciences, University of Washington School of Public Health, Seattle, WA, USA.
| | - Shilpi Mehta-Lee
- Division of Maternal-Fetal Medicine, New York University Grossman School of Medicine, New York, NY, USA.
| | - Thomas G O'Connor
- Departments of Psychiatry, Neuroscience and Obstetrics and Gynecology, University of Rochester, Rochester, NY, USA.
| | - Sheela Sathyanarayana
- Department of Pediatrics, Department of Environmental and Occupational Health Sciences, Department of Epidemiology University of Washington and Seattle Children's Research Institute, Seattle, WA, USA.
| | | | - Jordan R Kuiper
- Department of Environmental and Occupational Health, The George Washington University, Washington, D.C., USA.
| |
Collapse
|
14
|
Opoku F, Flaws JA, Zelikoff JT. Reproductive effects associated with phthalate mixture exposure. Explore (NY) 2024; 20:460-461. [PMID: 38423834 DOI: 10.1016/j.explore.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Affiliation(s)
| | - Jodi A Flaws
- University of Illinois Urbana-Champaign, IL, United States
| | | |
Collapse
|
15
|
Ouidir M, Jedynak P, Rolland M, Lyon-Caen S, Thomsen C, Sakhi AK, Sabaredzovic A, Bayat S, Slama R, Philippat C. Analyzing the impact of phthalate and DINCH exposure on fetal growth in a cohort with repeated urine collection. ENVIRONMENT INTERNATIONAL 2024; 186:108584. [PMID: 38513557 DOI: 10.1016/j.envint.2024.108584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/15/2024] [Accepted: 03/15/2024] [Indexed: 03/23/2024]
Abstract
BACKGROUND Most previous studies investigating the associations between prenatal exposure to phthalates and fetal growth relied on measurements of phthalate metabolites at a single time point. They also focused on weight at birth without assessing growth over pregnancy, preventing the identification of potential periods of fetal vulnerability. We examined the associations between pregnancy urinary phthalate metabolites and fetal growth outcomes measured twice during pregnancy and at birth. METHODS For 484 pregnant women, we assessed 13 phthalate and two 1,2-cyclohexane dicarboxylic acid, diisononyl ester (DINCH) metabolite concentrations from two within-subject weekly pools of up to 21 urine samples (median of 18 and 34 gestational weeks, respectively). Fetal biparietal diameter, femur length, head and abdominal circumferences were measured during two routine pregnancy follow-up ultrasonographies (median 22 and 32 gestational weeks, respectively) and estimated fetal weight (EFW) was calculated. Newborn weight, length, and head circumference were measured at birth. Associations between phthalate/DINCH metabolite and growth parameters were investigated using adjusted linear regression and Bayesian kernel machine regression models. RESULTS Detection rates were above 99 % for all phthalate/DINCH metabolites. While no association was observed with birth measurements, mono-iso-butyl phthalate (MiBP) and mono-n-butyl phthalate (MnBP) were positively associated with most fetal growth parameters measured at the second trimester. Specifically, MiBP was positively associated with biparietal diameter, head and abdominal circumferences, while MnBP was positively associated with EFW, head and abdominal circumferences, with stronger associations among males. Pregnancy MnBP was positively associated with biparietal diameter and femur length at third trimester. Mixture of phthalate/DINCH metabolites was positively associated with EFW at second trimester. CONCLUSIONS In this pregnancy cohort using repeated urine samples to assess exposure, MiBP and MnBP were associated with increased fetal growth parameters. Further investigation on the effects of phthalates on child health would be relevant for expanding current knowledge on their long-term effects.
Collapse
Affiliation(s)
- Marion Ouidir
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Development and Respiratory Health, Institute for Advanced Biosciences, 38000, Grenoble, France.
| | - Paulina Jedynak
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Development and Respiratory Health, Institute for Advanced Biosciences, 38000, Grenoble, France
| | - Matthieu Rolland
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Development and Respiratory Health, Institute for Advanced Biosciences, 38000, Grenoble, France
| | - Sarah Lyon-Caen
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Development and Respiratory Health, Institute for Advanced Biosciences, 38000, Grenoble, France
| | | | | | | | - Sam Bayat
- Department of Pulmonology and Physiology, Grenoble University Hospital, La Tronche, France; Synchrotron Radiation for Biomedicine Laboratory (STROBE), Inserm UA07, Grenoble Alpes University, Grenoble, France
| | - Rémy Slama
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Development and Respiratory Health, Institute for Advanced Biosciences, 38000, Grenoble, France
| | - Claire Philippat
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Development and Respiratory Health, Institute for Advanced Biosciences, 38000, Grenoble, France
| |
Collapse
|
16
|
Goutman SA, Boss J, Jang DG, Mukherjee B, Richardson RJ, Batterman S, Feldman EL. Environmental risk scores of persistent organic pollutants associate with higher ALS risk and shorter survival in a new Michigan case/control cohort. J Neurol Neurosurg Psychiatry 2024; 95:241-248. [PMID: 37758454 PMCID: PMC11060633 DOI: 10.1136/jnnp-2023-332121] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/05/2023] [Indexed: 10/03/2023]
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is a fatal, progressive neurogenerative disease caused by combined genetic susceptibilities and environmental exposures. Identifying and validating these exposures are of paramount importance to modify disease risk. We previously reported that persistent organic pollutants (POPs) associate with ALS risk and survival and aimed to replicate these findings in a new cohort. METHOD Participants with and without ALS recruited in Michigan provided plasma samples for POPs analysis by isotope dilution with triple quadrupole mass spectrometry. ORs for risk models and hazard ratios for survival models were calculated for individual POPs. POP mixtures were represented by environmental risk scores (ERS), a summation of total exposures, to evaluate the association with risk (ERSrisk) and survival (ERSsurvival). RESULTS Samples from 164 ALS and 105 control participants were analysed. Several individual POPs significantly associated with ALS, including 8 of 22 polychlorinated biphenyls and 7 of 10 organochlorine pesticides (OCPs). ALS risk was most strongly represented by the mixture effects of OCPs alpha-hexachlorocyclohexane, hexachlorobenzene, trans-nonachlor and cis-nonachlor and an interquartile increase in ERSrisk enhanced ALS risk 2.58 times (p<0.001). ALS survival was represented by the combined mixture of all POPs and an interquartile increase in ERSsurvival enhanced ALS mortality rate 1.65 times (p=0.008). CONCLUSIONS These data continue to support POPs as important factors for ALS risk and progression and replicate findings in a new cohort. The assessments of POPs in non-Michigan ALS cohorts are encouraged to better understand the global effect and the need for targeted disease risk reduction strategies.
Collapse
Affiliation(s)
- Stephen A Goutman
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, Michigan, USA
| | - Jonathan Boss
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, USA
| | - Dae-Gyu Jang
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, Michigan, USA
| | - Bhramar Mukherjee
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, USA
| | - Rudy J Richardson
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan, USA
| | - Stuart Batterman
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan, USA
| | - Eva L Feldman
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
17
|
Jiang M, Zhao H. Joint association of heavy metals and polycyclic aromatic hydrocarbons exposure with depression in adults. ENVIRONMENTAL RESEARCH 2024; 242:117807. [PMID: 38043898 DOI: 10.1016/j.envres.2023.117807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 11/20/2023] [Accepted: 11/26/2023] [Indexed: 12/05/2023]
Abstract
BACKGROUND Heavy metals (HMs) and polycyclic aromatic hydrocarbons (PAHs) represent significant components of environmental pollution, typically occurring as mixtures, raising concerns about their potential impact on human health. However, the combined effect of HMs and PAHs exposure on depression has not been explored. METHODS Leveraging National Health and Nutrition Examination Survey (NHANES) data spanning 2005 to 2016, we employ survey-weighted multiple logistic regression models to probe the interrelation between HMs, PAHs, and depression. This exploration is complemented by age and gender-stratified analyses, as well as a determination of the dose-response linkage via restricted cubic spline regression. Furthermore, the combined impact of HMs and PAHs on depression was evaluated through a range of statistical methodologies. RESULTS The study encompasses 7732 adults. Our findings unveil notable associations, indicating the significant influence of cadmium (Cd), lead (Pb), and all six PAHs metabolites on depression. Moreover, mixed exposure to HMs and PAHs emerges as a substantial contributor to an augmented depression risk, with Cd, Pb, 1-hydroxynaphthalene (1-NAP), 2-hydroxyfluorene (2-FLU), and 1-hydroxypyrene (1-PYR) likely driving this positive relationship. Intriguingly, subgroup analyses highlight greater prominence of these connections among individuals aged 20-59 and among women. Furthermore, the results tentatively suggest a potential interplay between Cd and 2-NAP in relation to depression. CONCLUSION This study posits that exposure to both individual and combined HMs and PAHs may be associated with an elevated risk of depression. Further prospective investigations are warranted to substantiate these findings.
Collapse
Affiliation(s)
- Miaomiao Jiang
- The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China; Department of Pharmacy, Anhui Public Health Clinical Center, Hefei, Anhui, China
| | - Hui Zhao
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China.
| |
Collapse
|
18
|
Trasande L, Nelson ME, Alshawabkeh A, Barrett ES, Buckley JP, Dabelea D, Dunlop AL, Herbstman JB, Meeker JD, Naidu M, Newschaffer C, Padula AM, Romano ME, Ruden DM, Sathyanarayana S, Schantz SL, Starling AP, Hamra GB. Prenatal phthalate exposure and adverse birth outcomes in the USA: a prospective analysis of births and estimates of attributable burden and costs. Lancet Planet Health 2024; 8:e74-e85. [PMID: 38331533 PMCID: PMC11444077 DOI: 10.1016/s2542-5196(23)00270-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 12/06/2023] [Accepted: 12/11/2023] [Indexed: 02/10/2024]
Abstract
BACKGROUND Phthalates are synthetic chemicals widely used in consumer products and have been identified to contribute to preterm birth. Existing studies have methodological limitations and potential effects of di-2-ethylhexyl phthalate (DEHP) replacements are poorly characterised. Attributable fractions and costs have not been quantified, limiting the ability to weigh trade-offs involved in ongoing use. We aimed to leverage a large, diverse US cohort to study associations of phthalate metabolites with birthweight and gestational age, and estimate attributable adverse birth outcomes and associated costs. METHODS In this prospective analysis we used extant data in the US National Institutes of Health Environmental influences on Child Health Outcomes (ECHO) Program from 1998 to 2022 to study associations of 20 phthalate metabolites with gestational age at birth, birthweight, birth length, and birthweight for gestational age z-scores. We also estimated attributable adverse birth outcomes and associated costs. Mother-child dyads were included in the study if there were one or more urinary phthalate measurements during the index pregnancy; data on child's gestational age and birthweight; and singleton delivery. FINDINGS We identified 5006 mother-child dyads from 13 cohorts in the ECHO Program. Phthalic acid, diisodecyl phthalate (DiDP), di-n-octyl phthalate (DnOP), and diisononyl phthalate (DiNP) were most strongly associated with gestational age, birth length, and birthweight, especially compared with DEHP or other metabolite groupings. Although DEHP was associated with preterm birth (odds ratio 1·45 [95% CI 1·05-2·01]), the risks per log10 increase were higher for phthalic acid (2·71 [1·91-3·83]), DiNP (2·25 [1·67-3·00]), DiDP (1·69 [1·25-2·28]), and DnOP (2·90 [1·96-4·23]). We estimated 56 595 (sensitivity analyses 24 003-120 116) phthalate-attributable preterm birth cases in 2018 with associated costs of US$3·84 billion (sensitivity analysis 1·63- 8·14 billion). INTERPRETATION In a large, diverse sample of US births, exposure to DEHP, DiDP, DiNP, and DnOP were associated with decreased gestational age and increased risk of preterm birth, suggesting substantial opportunities for prevention. This finding suggests the adverse consequences of substitution of DEHP with chemically similar phthalates and need to regulate chemicals with similar properties as a class. FUNDING National Institutes of Health.
Collapse
Affiliation(s)
- Leonardo Trasande
- Department of Pediatrics, Division of Environmental Pediatrics, New York University Grossman School of Medicine, New York, NY, USA; Department of Population Health, New York University Grossman School of Medicine, New York, NY, USA; New York University Wagner School of Public Service, New York, NY, USA.
| | | | | | - Emily S Barrett
- Department of Biostatistics and Epidemiology, Rutgers University School of Public Health, Piscataway, NJ, USA
| | - Jessie P Buckley
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Dana Dabelea
- Lifecourse Epidemiology Adiposity and Diabetes Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Anne L Dunlop
- Department of Gynecology and Obstetrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Julie B Herbstman
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
| | - John D Meeker
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Mrudula Naidu
- Department of Pediatrics, Division of Environmental Pediatrics, New York University Grossman School of Medicine, New York, NY, USA
| | - Craig Newschaffer
- College of Human Health and Development, Penn State University, Hershey, PA, USA
| | - Amy M Padula
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Megan E Romano
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Douglas M Ruden
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, USA
| | - Sheela Sathyanarayana
- Seattle Children's Research Institute, Seattle, WA, USA; Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Susan L Schantz
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Anne P Starling
- Lifecourse Epidemiology Adiposity and Diabetes Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ghassan B Hamra
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| |
Collapse
|
19
|
Liu B, Lu X, Jiang A, Lv Y, Zhang H, Xu B. Influence of maternal endocrine disrupting chemicals exposure on adverse pregnancy outcomes: A systematic review and meta-analysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 270:115851. [PMID: 38157800 DOI: 10.1016/j.ecoenv.2023.115851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 01/03/2024]
Abstract
Maternal endocrine disrupting chemicals (EDCs) exposure, the common environmental pollutants, was capable of involving in adverse pregnancy outcomes. However, the evidence of their connection is not consistent. Our goal was to comprehensively explore the risk of EDCs related to adverse pregnancy outcomes. One hundred and one studies were included from two databases before 2023 to explore the association between EDCs and adverse pregnancy outcomes including miscarriage, small for gestational age (SGA), low birth weight (LBW) and preterm birth (PTB). We found that maternal PFASs exposure was positively correlated with PTB (OR:1.13, 95% CI:1.04-1.23), SGA (OR:1.10, 95% CI:1.04-1.16) and miscarriage (OR:1.09, 95% CI:1.00-1.19). The pooled estimates also showed maternal PAEs exposure was linked with PTB (OR:1.16, 95% CI:1.11-1.21), SGA (OR:1.20, 95% CI:1.07-1.35) and miscarriage (OR:1.55, 95% CI:1.33-1.81). In addition, maternal exposure to some specific class of EDCs including PFOS, MBP, MEHP, DEHP, and BPA was associated with PTB. Maternal exposure to PFOS, PFOA, PFHpA was associated with SGA. Maternal exposure to BPA was associated with LBW. Maternal exposure to MMP, MEHP, MEHHP, MEOHP, BPA was associated with miscarriage. Maternal PFASs, PAEs and BPA exposure may increase adverse pregnancy outcomes risk according to our study. However, the limited number of studies on dose-response hampered further explanation for causal association.
Collapse
Affiliation(s)
- Bin Liu
- Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China; Department of Medical Aspects of Specific Environments, School of Basic Medicine, Anhui Medical University, Hefei, China
| | - Xiaoling Lu
- Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China; Department of Medical Aspects of Specific Environments, School of Basic Medicine, Anhui Medical University, Hefei, China
| | - Antong Jiang
- Department of Medical Aspects of Specific Environments, School of Basic Medicine, Anhui Medical University, Hefei, China
| | - Yanming Lv
- Department of Toxicology, School of Public Health, Harbin Medical University, Harbin, China
| | - Hongmei Zhang
- Department of Toxicology, School of Public Health, Harbin Medical University, Harbin, China
| | - Bin Xu
- Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China; Department of Medical Aspects of Specific Environments, School of Basic Medicine, Anhui Medical University, Hefei, China.
| |
Collapse
|
20
|
Jiang M, Zhao H. Association of chronic cough with exposure to polycyclic aromatic hydrocarbons in the US population. Heliyon 2024; 10:e23413. [PMID: 38173475 PMCID: PMC10761574 DOI: 10.1016/j.heliyon.2023.e23413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/29/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are environmental pollutants formed during the incomplete combustion of organic substances, such as coal and oil. PAHs exposure is known to increase the incidence of respiratory diseases; however, limited research has focused on their impact on chronic cough. In this study, we utilized data from the National Health and Nutritional Examination Surveys (NHANES) from 2003 to 2012. Chronic cough was defined as 'coughing most days for three consecutive months or more'. Employing survey-weighted multivariate logistic regression models, we identified positive associations between all six PAHs metabolites (1-NAP, 2-NAP, 3-FLU, 2-FLU, 1-PHE, and 1-PYR) found in urine and the presence of chronic cough. Furthermore, results from restricted cubic spline modeling revealed a nonlinear relationship between urinary levels of 1-NAP, 2-NAP, 3-FLU, 2-FLU, and 1-PYR and the risk of chronic cough. Co-exposure modeling unveiled the combined effects of multiple exposures and the relative contributions of each PAHs. Notably, co-exposure to PAHs was positively associated with an increased risk of chronic cough, where 2-FLU emerged as the primary contributor to this association. These findings were particularly pronounced in individuals with high cotinine exposure (≥0.05 ng/mL). In conclusion, this study presents epidemiological evidence linking PAHs exposure to an elevated risk of chronic cough. Further prospective investigations are warranted to corroborate these findings.
Collapse
Affiliation(s)
- Miaomiao Jiang
- The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Department of Pharmacy, Anhui Public Health Clinical Center, Hefei, Anhui, China
| | - Hui Zhao
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
21
|
Duan S, Wu Y, Zhu J, Wang X, Zhang Y, Gu C, Fang Y. Development of interpretable machine learning models associated with environmental chemicals to predict all-cause and specific-cause mortality:A longitudinal study based on NHANES. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 270:115864. [PMID: 38142591 DOI: 10.1016/j.ecoenv.2023.115864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/07/2023] [Accepted: 12/17/2023] [Indexed: 12/26/2023]
Abstract
Limited information is available on potential predictive value of environmental chemicals for mortality. Our study aimed to investigate the associations between 43 of 8 classes representative environmental chemicals in serum/urine and mortality, and further develop the interpretable machine learning models associated with environmental chemicals to predict mortality. A total of 1602 participants were included from the National Health and Nutrition Examination Survey (NHANES). During 154,646 person-months of follow-up, 127 deaths occurred. We found that machine learning showed promise in predicting mortality. CoxPH was selected as the optimal model for predicting all-cause mortality with time-dependent AUROC of 0.953 (95%CI: 0.951-0.955). Coxnet was the best model for predicting cardiovascular disease (CVD) and cancer mortality with time-dependent AUROCs of 0.935 (95%CI: 0.933-0.936) and 0.850 (95%CI: 0.844-0.857). Based on clinical variables, adding environmental chemicals could enhance the predictive ability of cancer mortality (P < 0.05). Some environmental chemicals contributed more to the models than traditional clinical variables. Combined the results of association and prediction models by interpretable machine learning analyses, we found urinary methyl paraben (MP) and urinary 2-napthol (2-NAP) were negatively associated with all-cause mortality, while serum cadmium (Cd) was positively associated with all-cause mortality. Urinary bisphenol A (BPA) was positively associated with CVD mortality.
Collapse
Affiliation(s)
- Siyu Duan
- Center for Aging and Health Research, School of Public Health, Xiamen University, Xiamen, China
| | - Yafei Wu
- Center for Aging and Health Research, School of Public Health, Xiamen University, Xiamen, China
| | - Junmin Zhu
- Center for Aging and Health Research, School of Public Health, Xiamen University, Xiamen, China
| | - Xing Wang
- Center for Aging and Health Research, School of Public Health, Xiamen University, Xiamen, China
| | - Yaheng Zhang
- Center for Aging and Health Research, School of Public Health, Xiamen University, Xiamen, China
| | - Chenming Gu
- Center for Aging and Health Research, School of Public Health, Xiamen University, Xiamen, China
| | - Ya Fang
- Center for Aging and Health Research, School of Public Health, Xiamen University, Xiamen, China; National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China.
| |
Collapse
|
22
|
Shin HE, Won CW, Kim M. Development of multiple biomarker panels for prediction of sarcopenia in community-dwelling older adults. Arch Gerontol Geriatr 2023; 115:105115. [PMID: 37422966 DOI: 10.1016/j.archger.2023.105115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/22/2023] [Accepted: 06/29/2023] [Indexed: 07/11/2023]
Abstract
BACKGROUND It is required to consider multiple biomarkers simultaneously to predict sarcopenia and to understand its complex pathological mechanisms. This study aimed to develop multiple biomarker panels for predicting sarcopenia in older adults and to further examine its association with the incidence of sarcopenia. METHODS A total of 1,021 older adults were selected from the Korean Frailty and Aging Cohort Study. Sarcopenia was defined by the Asian Working Group for Sarcopenia 2019 criteria. Among the 14 biomarker candidates at baseline, eight biomarkers that could optimally detect individuals with sarcopenia were selected to develop a multi-biomarker risk score (range from 0 to 10). The utility of developed multi-biomarker risk score in discriminating sarcopenia was investigated using receiver operating characteristic (ROC) analysis. RESULTS The multi-biomarker risk score had an area under the ROC curve (AUC) of 0.71 with an optimal cut-off of 1.76 score, which was significantly higher than all single biomarkers with AUC of <0.7 (all, p<0.01). During the two-year follow-up, the incidence of sarcopenia was 11.1%. Continuous multi-biomarker risk score was positively associated with incidence of sarcopenia after adjusting confounders (odds ratio [OR]=1.63; 95% confidence interval [CI]=1.23-2.17). Participants with a high risk score had higher odds of sarcopenia than those with a low risk score (OR=1.82; 95% CI=1.04-3.19). CONCLUSIONS Multi-biomarker risk score, which was a combination of eight biomarkers with different pathophysiologies, better discriminated the presence of sarcopenia than a single biomarker, and it could further predict the incidence of sarcopenia over two years in older adults.
Collapse
Affiliation(s)
- Hyung Eun Shin
- Department of Biomedical Science and Technology, College of Medicine, Kyung Hee University, Seoul 02447, Korea
| | - Chang Won Won
- Elderly Frailty Research Center, Department of Family Medicine, College of Medicine, Kyung Hee University, Seoul 02447, Korea.
| | - Miji Kim
- Department of Biomedical Science and Technology, College of Medicine, East-West Medical Research Institute, Kyung Hee University, Seoul 02447, Korea.
| |
Collapse
|
23
|
Chen C, Ma C, Li Q, Hang JG, Shen J, Nakayama SF, Kido T, Lin Y, Feng H, Jung C, Sun XL, Lou J. Prenatal Exposure to Heavy Metals and Adverse Birth Outcomes: Evidence From an E-Waste Area in China. GEOHEALTH 2023; 7:e2023GH000897. [PMID: 38023386 PMCID: PMC10680130 DOI: 10.1029/2023gh000897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/31/2023] [Accepted: 11/02/2023] [Indexed: 12/01/2023]
Abstract
Electronic waste that has not been properly treated can lead to environmental contamination including of heavy metals, which can pose risks to human health. Infants, a sensitive group, are highly susceptible to heavy metals exposure. The aim of this study was to investigate the association between prenatal heavy metal exposure and infant birth outcomes in an e-waste recycling area in China. We analyzed cadmium (Cd), chromium (Cr), manganese (Mn), lead (Pb), copper (Cu), and arsenic (As) concentrations in 102 human milk samples collected 4 weeks after delivery. The results showed that 34.3% of participants for Cr, which exceeds the World Health Organization (WHO) guidelines, as well as the mean exposure of Cr exceeded the WHO guidelines. We collected data on the birth weight (BW) and length of infants and analyzed the association between metal concentration in human milk and birth outcomes using multivariable linear regression. We observed a significant negative association between the Cd concentration in maternal milk and BW in female infants (β = -162.72, 95% CI = -303.16, -22.25). In contrast, heavy metals did not associate with birth outcomes in male infants. In this study, we found that 34.3% of participants in an e-waste recycling area had a Cr concentration that exceeded WHO guidelines, and there was a significant negative association between prenatal exposure to the Cd and infant BW in females. These results suggest that prenatal exposure to heavy metals in e-waste recycling areas may lead to adverse birth outcomes, especially for female infants.
Collapse
Affiliation(s)
- Chen Chen
- School of Medicine, and Huzhou Key Laboratory for Precise Prevention and Control of Major Chronic DiseasesHuzhou UniversityHuzhouChina
| | | | - Qiyao Li
- School of Medicine, and Huzhou Key Laboratory for Precise Prevention and Control of Major Chronic DiseasesHuzhou UniversityHuzhouChina
| | - Jin Guo Hang
- Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical UniversityTaizhouChina
| | - Jiantong Shen
- School of Medicine, and Huzhou Key Laboratory for Precise Prevention and Control of Major Chronic DiseasesHuzhou UniversityHuzhouChina
| | - Shoji F. Nakayama
- Japan Environment and Children's Study Programme OfficeNational Institute for Environmental StudiesTsukubaJapan
| | - Teruhiko Kido
- Faculty of Health SciencesInstitute of Medical, Pharmaceutical, and Health SciencesKanazawa UniversityKanazawaJapan
| | - Yibin Lin
- School of Medicine, and Huzhou Key Laboratory for Precise Prevention and Control of Major Chronic DiseasesHuzhou UniversityHuzhouChina
| | - Hao Feng
- School of MedicineJiaxing UniversityJiaxingChina
| | - Chau‐Ren Jung
- Department of Public HealthCollege of Public HealthChina Medical UniversityTaichungTaiwan
| | - Xian Liang Sun
- School of Medicine, and Huzhou Key Laboratory for Precise Prevention and Control of Major Chronic DiseasesHuzhou UniversityHuzhouChina
- Faculty of Health SciencesInstitute of Medical, Pharmaceutical, and Health SciencesKanazawa UniversityKanazawaJapan
| | - Jianlin Lou
- School of Medicine, and Huzhou Key Laboratory for Precise Prevention and Control of Major Chronic DiseasesHuzhou UniversityHuzhouChina
| |
Collapse
|
24
|
Park S, Cathey AL, Hao W, Zeng L, Pennathur S, Aung MT, Rosario-Pabón Z, Vélez-Vega CM, Cordero JF, Alshawabkeh A, Watkins DJ, Meeker JD. Associations of phthalates, phthalate replacements, and their mixtures with eicosanoid biomarkers during pregnancy. ENVIRONMENT INTERNATIONAL 2023; 178:108101. [PMID: 37487376 PMCID: PMC10733973 DOI: 10.1016/j.envint.2023.108101] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 06/25/2023] [Accepted: 07/17/2023] [Indexed: 07/26/2023]
Abstract
Humans are exposed to complex mixtures of phthalates. Gestational exposure to phthalates has been linked to preeclampsia and preterm birth through potential pathways such as endocrine disruption, oxidative stress, and inflammation. Eicosanoids are bioactive signaling lipids that are related to a variety of homeostatic and inflammatory processes. We investigated associations between urinary phthalates and their mixtures with plasma eicosanoid levels during pregnancy using the PROTECT cohort in Puerto Rico (N = 655). After adjusting for covariates, we estimated pair-wise associations between the geometric mean of individual phthalate metabolite concentrations across pregnancy and eicosanoid biomarkers using multivariable linear regression. We used bootstrapping of adaptive elastic net regression (adENET) to evaluate phthalate mixtures associated with eicosanoids and subsequently create environmental risk scores (ERS) to represent weighted sums of phthalate exposure for each individual. After adjusting for false-discovery, in single-pollutant analysis, 14 of 20 phthalate metabolites or parent compound indices showed significant and primarily negative associations with multiple eicosanoids. In our mixture analysis, associations with several metabolites of low molecular weight phthalates - DEP, DBP, and DIBP - became prominent. Additionally, MEHHTP and MECPTP, metabolites of a new phthalate replacement, DEHTP, were selected as important predictors for determining the concentrations of multiple eicosanoids from different pathway groups. A unit increase in phthalate ERS derived from bootstrapping of adENET was positively associated with several eicosanoids mainly from Cytochrome P450 pathway. For example, an increase in ERS was associated with 11(S)-HETE (β = 1.6, 95% CI: 0.020, 3.180), (±)11,12-DHET (β = 2.045, 95% CI: 0.250, 3.840), 20(S)-HETE (β = 0.813, 95% CI: 0.147, 1.479), and 9 s-HODE (β = 2.381, 95% CI: 0.657, 4.104). Gestational exposure to phthalates and phthalate mixtures were associated with eicosanoid levels during pregnancy. Results from the mixture analyses underscore the complexity of physiological impacts of phthalate exposure and call for further in-depth studies to examine these relationships.
Collapse
Affiliation(s)
- Seonyoung Park
- Department of Environmental Health Sciences, University of Michigan, School of Public Health, Ann Arbor, MI, USA
| | - Amber L Cathey
- Department of Environmental Health Sciences, University of Michigan, School of Public Health, Ann Arbor, MI, USA
| | - Wei Hao
- Department of Biostatistics, University of Michigan, School of Public Health, Ann Arbor, MI, USA
| | - Lixia Zeng
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Subramaniam Pennathur
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Max T Aung
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| | - Zaira Rosario-Pabón
- Graduate School of Public Health, Medical Sciences Campus, University of Puerto Rico, San Juan, PR, USA
| | - Carmen M Vélez-Vega
- Graduate School of Public Health, Medical Sciences Campus, University of Puerto Rico, San Juan, PR, USA
| | - José F Cordero
- Department of Epidemiology and Biostatistics, University of Georgia, Athens, GA, USA
| | | | - Deborah J Watkins
- Department of Environmental Health Sciences, University of Michigan, School of Public Health, Ann Arbor, MI, USA
| | - John D Meeker
- Department of Environmental Health Sciences, University of Michigan, School of Public Health, Ann Arbor, MI, USA.
| |
Collapse
|
25
|
Wei D, Wang L, Xu Q, Wang J, Shi J, Ma C, Geng J, Zhao M, Liu X, Hou J, Huo W, Li L, Jing T, Wang C, Mao Z. Exposure to herbicides mixtures in relation to type 2 diabetes mellitus among Chinese rural population: Results from different statistical models. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 261:115109. [PMID: 37300918 DOI: 10.1016/j.ecoenv.2023.115109] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/01/2023] [Accepted: 06/03/2023] [Indexed: 06/12/2023]
Abstract
BACKGROUND Although it has been reported that herbicides exposure is related to adverse outcomes, available evidence on the associations of quantitatively measured herbicides with type 2 diabetes mellitus (T2DM) and prediabetes is still scant. Furthermore, the effects of herbicides mixtures on T2DM and prediabetes remain unclear among the Chinese rural population. AIMS To assess the associations of plasma herbicides with T2DM and prediabetes among the Chinese rural population. METHODS A total of 2626 participants were enrolled from the Henan Rural Cohort Study. Plasma herbicides were measured with gas chromatography coupled to triple quadrupole tandem mass spectrometry. Generalized linear regression analysis was employed to assess the associations of a single herbicide with T2DM, prediabetes, as well as indicators of glucose metabolism. In addition, the quantile g-computation and environmental risk score (ERS) structured by adaptive elastic net (AENET), and Bayesian kernel machine regression (BKMR) were used to estimate the effects of herbicides mixtures on T2DM and prediabetes. RESULTS After adjusting for covariates, positive associations of atrazine, ametryn, and oxadiazon with the increased odds of T2DM were obtained. As for prediabetes, each 1-fold increase in ln-transformed oxadiazon was related to 8.4% (95% confidence interval (CI): 1.033, 1.138) higher odds of prediabetes. In addition, several herbicides were significantly related to fasting plasma glucose, fasting insulin, and HOMA2-IR (false discovery rates adjusted P value < 0.05). Furthermore, the quantile g-computation analysis showed that one quartile increase in multiple herbicides was associated with T2DM (OR (odds ratio): 1.099, 95%CI: 1.043, 1.158), and oxadiazon was assigned the largest positive weight, followed by atrazine. In addition, the ERS calculated by the selected herbicides from AENET were found to be associated with T2DM and prediabetes, and the corresponding ORs and 95%CIs were 1.133 (1.108, 1.159) and 1.065 (1.016, 1.116), respectively. The BKMR analysis indicated a positive association between mixtures of herbicides exposure and the risk of T2DM. CONCLUSIONS Exposure to mixtures of herbicides was associated with an increased risk of T2DM among Chinese rural population, indicating that the impact of herbicides exposure on diabetes should be paid attention to and measures should be taken to avoid herbicides mixtures exposure.
Collapse
Affiliation(s)
- Dandan Wei
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Lulu Wang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Qingqing Xu
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Juan Wang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Jiayu Shi
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Cuicui Ma
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Jintian Geng
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Mengzhen Zhao
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Xiaotian Liu
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Jian Hou
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Wenqian Huo
- Department of Occupational and Environmental Health Sciences, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Linlin Li
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Tao Jing
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Chongjian Wang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Zhenxing Mao
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China.
| |
Collapse
|
26
|
Stevens DR, Rosen EM, Van Wickle K, McNell EE, Bommarito PA, Calafat AM, Botelho JC, Sinkovskaya E, Przybylska A, Saade G, Abuhamad A, Ferguson KK. Early pregnancy phthalates and replacements in relation to fetal growth: The human placenta and phthalates study. ENVIRONMENTAL RESEARCH 2023; 229:115975. [PMID: 37094650 PMCID: PMC10201455 DOI: 10.1016/j.envres.2023.115975] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/14/2023] [Accepted: 04/21/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND Pregnant persons are exposed ubiquitously to phthalates and increasingly to chemicals introduced to replace phthalates. In early pregnancy, exposure to these chemicals may disrupt fetal formation and development, manifesting adverse fetal growth. Previous studies examining the consequences of early pregnancy exposure relied on single spot urine measures and did not investigate replacement chemicals. OBJECTIVE Characterize associations between urinary phthalate and replacement biomarkers in early pregnancy and fetal growth outcomes. METHODS Analyses were conducted among 254 pregnancies in the Human Placenta and Phthalates Study, a prospective cohort with recruitment 2017-2020. Exposures were geometric mean concentrations of phthalate and replacement biomarkers quantified in two spot urine samples collected around 12- and 14-weeks of gestation. Outcomes were fetal ultrasound biometry (head and abdominal circumferences, femur length, estimated fetal weight) collected in each trimester and converted to z-scores. Adjusted linear mixed effects (single-pollutant) and quantile g-computation (mixture) models with participant-specific random effects estimated the difference, on average, in longitudinal fetal growth for a one-interquartile range (IQR) increase in individual (single-pollutant) or all (mixture) early pregnancy phthalate and replacement biomarkers. RESULTS Mono carboxyisononyl phthalate and the sums of metabolites of di-n-butyl, di-iso-butyl, and di-2-ethylhexyl phthalate were inversely associated with fetal head and abdominal circumference z-scores. A one-IQR increase in the phthalate and replacement biomarker mixture was inversely associated with fetal head circumference (β: -0.36 [95% confidence interval: -0.56, -0.15]) and abdominal circumference (-0.31 [-0.49, -0.12]) z-scores. This association was mainly driven by phthalate biomarkers. CONCLUSIONS Urine concentrations of phthalate biomarkers, but not replacement biomarkers, in early pregnancy were associated with reductions in fetal growth. Though the clinical implications of these differences are unclear, reduced fetal growth contributes to excess morbidity and mortality across the lifecourse. Given widespread global exposure to phthalates, findings suggest a substantial population health burden resulting from early pregnancy phthalate exposure.
Collapse
Affiliation(s)
- Danielle R Stevens
- Epidemiology Branch, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - Emma M Rosen
- Epidemiology Branch, National Institute of Environmental Health Sciences, Durham, NC, USA; Department of Epidemiology, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA
| | - Kimi Van Wickle
- Epidemiology Branch, National Institute of Environmental Health Sciences, Durham, NC, USA; Department of Epidemiology, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA
| | - Erin E McNell
- Epidemiology Branch, National Institute of Environmental Health Sciences, Durham, NC, USA; Curriculum in Toxicology and Environmental Medicine, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA
| | - Paige A Bommarito
- Epidemiology Branch, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - Antonia M Calafat
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Julianne C Botelho
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Elena Sinkovskaya
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Ann Przybylska
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Eastern Virginia Medical School, Norfolk, VA, USA
| | - George Saade
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, TX, USA
| | - Alfred Abuhamad
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Kelly K Ferguson
- Epidemiology Branch, National Institute of Environmental Health Sciences, Durham, NC, USA.
| |
Collapse
|
27
|
Jin S, Cui S, Xu J, Zhang X. Associations between prenatal exposure to phthalates and birth weight: A meta-analysis study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115207. [PMID: 37393820 DOI: 10.1016/j.ecoenv.2023.115207] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/25/2023] [Accepted: 06/28/2023] [Indexed: 07/04/2023]
Abstract
Previous studies have suggested that phthalates are associated with birth weight. However, most phthalate metabolites have not been fully explored. Therefore, we conducted this meta-analysis to assess the relationship between phthalate exposure and birth weight. We identified original studies that measured phthalate exposure and reported its association with infant birth weight in relevant databases. Regression coefficients (β) with 95% confidence intervals (CIs) were extracted and analyzed for risk estimation. Fixed-effects (I2 ≤ 50%) or random-effects (I2 > 50%) models were adopted according to their heterogeneity. Overall summary estimates indicated negative associations of prenatal exposure to mono-n-butyl phthalate (pooled β = -11.34 g; 95% CI: -20.98 to -1.70 g) and mono-methyl phthalate (pooled β = -8.78 g; 95% CI: -16.30 to -1.27 g). No statistical association was found between the other less commonly used phthalate metabolites and birth weight. Subgroup analyses indicated that exposure to mono-n-butyl phthalate was associated with birth weight in females (β = -10.74 g; 95% CI: -18.70 to -2.79 g). Our findings indicate that phthalate exposure might be a risk factor for low birth weight and that this relationship may be sex specific. More research is needed to promote preventive policies regarding the potential health hazards of phthalates.
Collapse
Affiliation(s)
- Shihao Jin
- Department of Maternal, Child and Adolescent Health, School of Public Health, Tianjin Medical University, No. 22 Qixiangtai Road, Tianjin 300070, PR China
| | - Shanshan Cui
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Jinghan Xu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Tianjin Medical University, No. 22 Qixiangtai Road, Tianjin 300070, PR China
| | - Xin Zhang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Tianjin Medical University, No. 22 Qixiangtai Road, Tianjin 300070, PR China.
| |
Collapse
|
28
|
Savitz DA, Hattersley AM. Evaluating Chemical Mixtures in Epidemiological Studies to Inform Regulatory Decisions. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:45001. [PMID: 37022726 PMCID: PMC10078806 DOI: 10.1289/ehp11899] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 01/24/2023] [Accepted: 02/28/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Epidemiological studies are increasingly going beyond the evaluation of health effects of individual chemicals to consider chemical mixtures. To our knowledge, the advantages and disadvantages of addressing chemical mixtures for informing regulatory decisions-as opposed to obtaining a more comprehensive understanding of etiology-has not been carefully considered. OBJECTIVES We offer a framework for the study of chemical mixtures in epidemiological research intended to inform regulatory decisions. We identify a) the different ways mixtures originate (product source, pollution source, shared mode of action, or shared effect on health outcome), b) the use of indicator chemicals to address mixtures, and c) the requirements for epidemiological studies to be informative for regulatory purposes. DISCUSSION The principal advantage of considering mixtures is to obtain a more complete understanding of the role of the chemical environment as a determinant of health. Incorporating other exposures may improve the assessment of the net effect of the chemicals of interest. However, the increased complexity and potential loss of generalizability may limit the value of studies of mixtures, especially for mixtures based on mode of action or shared health outcomes. Our recommended strategy is to successively assess the marginal contribution of individual chemicals, joint effects with other specific chemicals, and hypothesis-driven evaluation of mixtures rather than applying hypothesis-free data exploration methods. Although more ambitious statistical approaches to mixtures may, in time, be helpful for guiding regulation, the authors believe conventional methods for assessing individual and combined effects of chemicals remain preferable. https://doi.org/10.1289/EHP11899.
Collapse
Affiliation(s)
- David A. Savitz
- Department of Epidemiology, Brown University School of Public Health, Brown University, Providence, Rhode Island, USA
| | - Anne M. Hattersley
- Global Safety Surveillance and Analysis, Procter & Gamble, Cincinnati, Ohio, USA
| |
Collapse
|
29
|
Lapehn S, Houghtaling S, Ahuna K, Kadam L, MacDonald JW, Bammler TK, LeWinn KZ, Myatt L, Sathyanarayana S, Paquette AG. Mono(2-ethylhexyl) phthalate induces transcriptomic changes in placental cells based on concentration, fetal sex, and trophoblast cell type. Arch Toxicol 2023; 97:831-847. [PMID: 36695872 PMCID: PMC9968694 DOI: 10.1007/s00204-023-03444-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 01/17/2023] [Indexed: 01/26/2023]
Abstract
Phthalates are ubiquitous plasticizer chemicals found in consumer products. Exposure to phthalates during pregnancy has been associated with adverse pregnancy and birth outcomes and differences in placental gene expression in human studies. The objective of this research was to evaluate global changes in placental gene expression via RNA sequencing in two placental cell models following exposure to the phthalate metabolite mono(2-ethylhexyl) phthalate (MEHP). HTR-8/SVneo and primary syncytiotrophoblast cells were exposed to three concentrations (1, 90, 180 µM) of MEHP for 24 h with DMSO (0.1%) as a vehicle control. mRNA and lncRNAs were quantified using paired-end RNA sequencing, followed by identification of differentially expressed genes (DEGs), significant KEGG pathways, and enriched transcription factors (TFs). MEHP caused gene expression changes across all concentrations for HTR-8/SVneo and primary syncytiotrophoblast cells. Sex-stratified analysis of primary cells identified different patterns of sensitivity in response to MEHP dose by sex, with male placentas being more responsive to MEHP exposure. Pathway analysis identified 11 KEGG pathways significantly associated with at least one concentration in both cell types. Four ligand-inducible nuclear hormone TFs (PPARG, PPARD, ESR1, AR) were enriched in at least three treatment groups. Overall, we demonstrated that MEHP differentially affects placental gene expression based on concentration, fetal sex, and trophoblast cell type. This study confirms prior studies, as enrichment of nuclear hormone receptor TFs were concordant with previously published mechanisms of phthalate disruption, and generates new hypotheses, as we identified many pathways and genes not previously linked to phthalate exposure.
Collapse
Affiliation(s)
- Samantha Lapehn
- Center for Developmental Biology and Regenerative Medicine, Seattle Children’s Research Institute, 1900 9th Ave, Jack R. MacDonald Building, Seattle, WA 98101 USA
| | - Scott Houghtaling
- Center for Developmental Biology and Regenerative Medicine, Seattle Children’s Research Institute, 1900 9th Ave, Jack R. MacDonald Building, Seattle, WA 98101 USA
| | - Kylia Ahuna
- Department of Obstetrics and Gynecology, Oregon Health and Science University, Portland, OR 97239 USA
| | - Leena Kadam
- Department of Obstetrics and Gynecology, Oregon Health and Science University, Portland, OR 97239 USA
| | - James W. MacDonald
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195 USA
| | - Theo K. Bammler
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195 USA
| | - Kaja Z. LeWinn
- Department of Psychiatry, University of California-San Francisco, San Francisco, CA 94143 USA
| | - Leslie Myatt
- Department of Obstetrics and Gynecology, Oregon Health and Science University, Portland, OR 97239 USA
| | - Sheela Sathyanarayana
- Department of Pediatrics, University of Washington, Seattle, WA 98195 USA
- Center for Child Health, Behavior and Development, Seattle Children’s Research Institute, Seattle, WA 98101 USA
| | - Alison G. Paquette
- Center for Developmental Biology and Regenerative Medicine, Seattle Children’s Research Institute, 1900 9th Ave, Jack R. MacDonald Building, Seattle, WA 98101 USA
- Department of Pediatrics, University of Washington, Seattle, WA 98195 USA
| |
Collapse
|
30
|
Luan M, Liang H, Chen Y, Chen D, Ji H, Chen H, Miao M, Yuan W. Prenatal exposure to organophosphate esters is associated with decreased anogenital distance in offspring. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159050. [PMID: 36174683 DOI: 10.1016/j.scitotenv.2022.159050] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/22/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Evidence from in vitro and rodent studies suggests that organophosphate esters (OPEs) may disrupt sex steroid hormone homeostasis, but no human studies, to date, have examined the effects of in utero exposure to OPEs on offspring reproductive development. OBJECTIVE Anogenital distance (AGD) is a sensitive biomarker of fetal hormonal milieu and has been used to assess reproductive toxicity. We evaluated the longitudinal effects of prenatal exposure to OPEs on the AGD of offspring from birth to 4 years. METHODS Based on Shanghai-Minhang Birth Cohort Study, pregnant women provided urine samples at a gestational age of 12-16 weeks, which were analyzed for eight OPE metabolites. AGD was measured in offspring at birth and 0.5, 1, and 4 years of age. We used generalized estimating equations (GEE) and Bayesian kernel machine regression (BKMR) models to estimate the associations of prenatal exposure to individual OPE metabolites and OPE mixtures with AGD stratified by sex. RESULTS A total of 733 mother-infant pairs were analyzed. Prenatal exposure to diphenyl phosphate and bis-(2-ethylhexyl) phosphate was associated with decreased AGD in boys in GEE models. Bis-(1-chloro-2-propyl) phosphate (BCIPP) showed a similar but marginally significant effect. Prenatal exposure to most OPE metabolites was associated with decreased AGD in girls, with the most profound association observed for bis (2-butoxyethyl) phosphate (BBOEP) and alkyl-OPEs. The OPE mixture was also inversely associated with AGD in both sexes. The single-exposure effects of BKMR models were largely consistent with those observed in the GEE models. In addition, alkyl-OPEs, particularly BBOEP, contributed the most to the decreased AGD in girls, while BCIPP contributed the most to the decreased AGD in boys. CONCLUSIONS This study provides the first human evidence that prenatal exposure to OPEs is associated with decreased AGD in offspring. The magnitude of these effects may vary depending on the structure of OPEs.
Collapse
Affiliation(s)
- Min Luan
- NHC Key Lab. of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Shanghai, China
| | - Hong Liang
- NHC Key Lab. of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Shanghai, China
| | - Yafei Chen
- NHC Key Lab. of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Shanghai, China
| | - Da Chen
- School of Environment and Guangdong Key Laboratory of Environment Pollution and Health, Jinan University, Guangzhou, China
| | - Honglei Ji
- NHC Key Lab. of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Shanghai, China
| | - Hexia Chen
- School of Environment and Guangdong Key Laboratory of Environment Pollution and Health, Jinan University, Guangzhou, China
| | - Maohua Miao
- NHC Key Lab. of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Shanghai, China.
| | - Wei Yuan
- NHC Key Lab. of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Shanghai, China
| |
Collapse
|
31
|
Zang L, Lv H, Du J, Pan Y, Lin Y, Dai J. Association of phthalate exposure with low birth weight in couples conceiving naturally or via assisted reproductive technology in a prospective birth cohort. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 855:158852. [PMID: 36122707 DOI: 10.1016/j.scitotenv.2022.158852] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/14/2022] [Accepted: 09/14/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Few studies have investigated the adverse effects of preconception phthalate (PAE) exposure on birth weight in couples receiving assisted reproductive technology (ART) compared to naturally conceived newborns. OBJECTIVES We examined the association between parental preconception/prenatal urinary phthalate exposure and low birth weight (LBW) risk in couples who conceived using ART or naturally. METHODS From the Jiangsu Birth Cohort Study (China), we recruited 544 couples who conceived after infertility treatment and 940 couples who conceived naturally and gave birth to a singleton infant between November 2014 and December 2019. Seventeen metabolites of phthalate and three metabolites of phthalate alternatives were analyzed in parental spot urine samples. Clinical data were collected from medical records. We used generalized linear models, elastic net regression, Bayesian kernel machine regression, and quantile-based g-computation to examine the individual and joint effects of parental phthalate exposure on birth weight and LBW risk ratios (RR). RESULTS The relationship between parental phthalate exposure and birth weight was consistent between ART and natural conception. Maternal exposure to mono-ethyl phthalate and mono-carboxyisooctyl phthalate was associated with an increased risk of LBW in ART-conceived infants (RR = 1.27; 95 % confidence interval (CI): 1.03, 1.56; and RR = 1.31; 95 % CI: 1.03, 1.67, respectively). In contrast, in the spontaneously conceived infants, higher paternal prenatal concentrations of mono-benzyl phthalate and mono-carboxyisononyl phthalate were associated with a 40 % and 53 % increase in LBW risk, respectively. Exposure to PAE mixtures was associated with LBW in ART-conceived infants, with the effects primarily driven by di-ethyl phthalate, benzylbutyl phthalate, and di-isononyl phthalate metabolites. Sex-specific LBW was observed, with females appearing to be more susceptible than males. CONCLUSIONS Maternal preconception and paternal prenatal exposure to phthalates were associated with increased risk of LBW in infants. Compared with natural conception, ART-conceived fetuses were more sensitive to PAE mixtures, which requires further attention.
Collapse
Affiliation(s)
- Lu Zang
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hong Lv
- State Keey Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; State Key Laboratory of Reproductive Medicine (Suzhou Centre), Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215006, China
| | - Jiangbo Du
- State Keey Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yitao Pan
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; State Keey Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yuan Lin
- State Keey Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; State Key Laboratory of Reproductive Medicine (Suzhou Centre), Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215006, China.
| | - Jiayin Dai
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; State Keey Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
32
|
Lee CW, Cathey AL, Watkins DJ, Rosario-Pabón ZY, Vélez-Vega CM, Alshawabkeh AN, Cordero JF, Meeker JD. Associations of urinary phthalate metabolites and inflammatory biomarkers among pregnant women in Puerto Rico. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 854:158773. [PMID: 36113809 PMCID: PMC10323976 DOI: 10.1016/j.scitotenv.2022.158773] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/31/2022] [Accepted: 09/10/2022] [Indexed: 06/11/2023]
Abstract
Phthalates are ubiquitous environmental exposures that may be implicated in inflammatory processes, as demonstrated by previous in vivo and in vitro studies. Few human studies have substantiated these observations. This study sought to examine whether maternal phthalate exposures impact inflammatory processes, as measured by circulating inflammatory biomarkers, in the PROTECT cohort in northern Puerto Rico. Inflammatory biomarkers included matrix metalloproteinases 1, 2, and 9 (MMPs), C-reactive protein (CRP), vascular cell adhesion molecule-1 (VCAM), and intercellular cell adhesion molecule-1 (ICAM). Biomarkers were measured in maternal serum samples collected during pregnancy. 19 phthalate metabolites were assessed in urinary samples collected at three study visits across pregnancy. Phthalates with <50 % of measurements above the limit of detection were excluded from analysis. We utilized linear mixed effect models to estimate associations between interquartile range increases in phthalate metabolite concentrations and percent changes in inflammatory biomarkers. Our results revealed significant associations between mono-n-butyl phthalate (MBP) and higher MMP1 by 7.86 % (95 % CI: 0.49, 15.76) and between mono oxononyl phthalate (MONP) and higher MMP2 by 8.30 % (95 % CI: 2.22, 14.75). We observed negative or null associations between phthalate metabolites and MMP2, MMP9, ICAM, VCAM, and CRP. Many results were significantly modified by fetal sex, particularly those between di-2-ethylhexyl phthalate (DEHP) metabolites and MMP1 (p-interaction: MEHHP = 0.01, MEOHP = 0.04, MECPP = 0.01) and MMP2 (p-interaction: MEHHP = 0.03, MEOHP = 0.01, MECPP = 0.01), for which associations were positive among only women carrying female fetuses. MMPs have been previously associated with preeclampsia and hypertensive pregnancy disorders as mediators of artery remodeling. Hence, our findings suggest a potential role for phthalates in mediating the maternal inflammatory response, as well as significant sexual dimorphism in these relationships, which has implications for several adverse pregnancy outcomes.
Collapse
Affiliation(s)
- Christine W Lee
- Department of Environmental Health Sciences, University of Michigan School of Public Health,Ann Arbor, MI, USA
| | - Amber L Cathey
- Department of Environmental Health Sciences, University of Michigan School of Public Health,Ann Arbor, MI, USA
| | - Deborah J Watkins
- Department of Environmental Health Sciences, University of Michigan School of Public Health,Ann Arbor, MI, USA
| | | | - Carmen M Vélez-Vega
- Graduate School of Public Health, University of Puerto Rico, San Juan, PR, USA
| | | | - José F Cordero
- College of Public Health, University of Georgia, Athens, GA, USA
| | - John D Meeker
- Department of Environmental Health Sciences, University of Michigan School of Public Health,Ann Arbor, MI, USA..
| |
Collapse
|
33
|
Yan S, Hu C, Wang Y, Gao J, Wang Z, Han T, Sun C, Jiang W. Association of phthalate exposure with all-cause and cause-specific mortality among people with hypertension: The U.S. National Health and Nutrition Examination Survey, 2003-2014. CHEMOSPHERE 2022; 303:135190. [PMID: 35660055 DOI: 10.1016/j.chemosphere.2022.135190] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 05/29/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
There is growing evidence that phthalate exposure results in a deteriorated effect on human health, while very few studies directly investigate the relationship of phthalate metabolites with mortality among people with hypertension. We aimed to explore whether exposure to phthalates is associated with all-cause and cause-specific mortality among people with hypertension. This study included 4012 people with hypertension from the National Health and Nutrition Examination Survey from 2003 to 2014. Death information was obtained from the National Death Index until 2015. A total of 577 deaths including 196 deaths due to cardiovascular disease (CVD) and 119 deaths due to cancer were documented. Cox proportional hazards regression models were used to estimate hazard ratios (HR) and 95% confidence intervals (CI). After adjustment for potential covariates, participants exposed to mono-ethyl phthalate (MEP) had a higher risk of cancer mortality (HR, 2.06; 95% CI, 1.07-3.95). Participants exposed to mono-n-butyl phthalate (MnBP) had higher risks of all-cause (HR, 1.83; 95% CI, 1.28-2.60), CVD (HR, 2.19; 95% CI, 1.21-3.95), and cancer (HR, 2.35; 95% CI, 1.07-5.17) mortality. Participants exposed to mono-benzyl phthalate (MBzP) had higher risks of all-cause (HR, 2.19; 95% CI, 1.58-3.05) and CVD (HR, 2.36; 95% CI, 1.35-4.13) mortality. Participants exposed to di-2-ethylhexylphthalate (DEHP) had a higher risk of all-cause mortality (HR, 1.69; 95% CI, 1.19-2.39). Our findings suggested that higher levels of specific phthalates were significantly associated with increased risks of all-cause, CVD, and cancer mortality among people with hypertension. Further studies are needed to confirm these findings and identify the underlying mechanisms.
Collapse
Affiliation(s)
- Shiwei Yan
- Department of Nutrition and Food Hygiene, College of Public Health, Harbin Medical University, Harbin, Heilongjiang Province, 150081, PR China
| | - Cong Hu
- Department of Nutrition and Food Hygiene, College of Public Health, Harbin Medical University, Harbin, Heilongjiang Province, 150081, PR China
| | - Yu Wang
- Department of Nutrition and Food Hygiene, College of Public Health, Harbin Medical University, Harbin, Heilongjiang Province, 150081, PR China
| | - Jian Gao
- Department of Nutrition and Food Hygiene, College of Public Health, Harbin Medical University, Harbin, Heilongjiang Province, 150081, PR China
| | - Ziqi Wang
- Department of Nutrition and Food Hygiene, College of Public Health, Harbin Medical University, Harbin, Heilongjiang Province, 150081, PR China
| | - Tianshu Han
- Department of Nutrition and Food Hygiene, College of Public Health, Harbin Medical University, Harbin, Heilongjiang Province, 150081, PR China.
| | - Changhao Sun
- Department of Nutrition and Food Hygiene, College of Public Health, Harbin Medical University, Harbin, Heilongjiang Province, 150081, PR China.
| | - Wenbo Jiang
- Department of Nutrition and Food Hygiene, College of Public Health, Harbin Medical University, Harbin, Heilongjiang Province, 150081, PR China.
| |
Collapse
|