1
|
Zhang K, Su J, Hu X, Yan X, Chen S, Li C, Pan G, Chang H, Tian W, Abbas MN, Cui H. Integrin β2 and β3: Two plasmatocyte markers deepen our understanding of the development of plasmatocytes in the silkworm Bombyx mori. INSECT SCIENCE 2022; 29:1659-1671. [PMID: 35420711 DOI: 10.1111/1744-7917.13045] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 02/27/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
Insect hemocytes play important biological roles at developmental stages, metamorphosis, and innate immunity. As one of the most abundant cell types, plasmatocytes can participate in various innate immune responses, especially in encapsulation and node formation. Here, 2 molecular markers of plasmatocytes, consisting of integrin β2 and β3, were identified and used to understand the development of plasmatocytes. Plasmatocytes are widely distributed in the hematopoietic system, including circulating hemolymph and hematopoietic organs (HPOs). HPOs constantly release plasmatocytes with high proliferative activity in vitro; removal of HPOs leads to a dramatic reduction in the circulating plasmatocytes, and the remaining plasmatocytes gradually lose their ability to proliferate in vivo. Our results demonstrated that the release of plasmatocytes from HPOs is regulated by insulin-mediated signals and their downstream pathways, including PI3K/Akt and MAPK/Erk signals. The insulin/PI3K/Akt signaling pathway can significantly irritate the hematopoiesis, and its inhibitor LY294002 could inhibit the hemocytes discharged from HPOs. While the insulin/MAPK/Erk signaling pathway plays a negative regulatory role, inhibiting its activity with U0126 can markedly promote the discharge of plasmatocytes from HPOs. Our results indicate that the circulating plasmatocytes are mainly generated and discharged by HPOs. This process is co-regulated by the PI3K/Akt and MAPK/Erk signals in an antagonistic manner to adjust the dynamic balance of the hemocytes. These findings can enhance our understanding of insect hematopoiesis.
Collapse
Affiliation(s)
- Kui Zhang
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Jingjing Su
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Xin Hu
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Xiaomin Yan
- Chongqing iCELL Biotechnology Co. Ltd, Chongqing, China
| | - Siyuan Chen
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chongyang Li
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Guangzhao Pan
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Hongbo Chang
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Wenli Tian
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Muhammad Nadeem Abbas
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
- Cancer Center, Reproductive Medicine Center, Medical Research Institute, Southwest University, Chongqing, China
| |
Collapse
|
2
|
Abstract
In adult insects, as in vertebrates, the gut epithelium is a highly regenerative tissue that can renew itself rapidly in response to changing inputs from nutrition, the gut microbiota, ingested toxins, and signals from other organs. Because of its cellular and genetic similarities to the mammalian intestine, and its relevance as a target for the control of insect pests and disease vectors, many researchers have used insect intestines to address fundamental questions about stem cell functions during tissue maintenance and regeneration. In Drosophila, where most of the experimental work has been performed, not only are intestinal cell types and behaviors well characterized, but numerous cell signaling interactions have been detailed that mediate gut epithelial regeneration. A prevailing model for regenerative responses in the insect gut invokes stress sensing by damaged enterocytes (ECs) as a principal source for signaling that activates the division of intestinal stem cells (ISCs) and the growth and differentiation of their progeny. However, extant data also reveal alternative mechanisms for regeneration that involve ISC-intrinsic functions, active culling of healthy epithelial cells, enhanced EC growth, and even cytoplasmic shedding by infected ECs. This article reviews current knowledge of the molecular mechanisms involved in gut regeneration in several insect models (Drosophila and Aedes of the order Diptera, and several Lepidoptera).
Collapse
Affiliation(s)
- Peng Zhang
- Huntsman Cancer Institute, University of Utah
- Department of Oncological Sciences, University of Utah, Salt Lake City, Utah 84112, USA
| | - Bruce A Edgar
- Huntsman Cancer Institute, University of Utah
- Department of Oncological Sciences, University of Utah, Salt Lake City, Utah 84112, USA
| |
Collapse
|
3
|
Levy T, Sagi A. The "IAG-Switch"-A Key Controlling Element in Decapod Crustacean Sex Differentiation. Front Endocrinol (Lausanne) 2020; 11:651. [PMID: 33013714 PMCID: PMC7511715 DOI: 10.3389/fendo.2020.00651] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/11/2020] [Indexed: 12/12/2022] Open
Abstract
The androgenic gland (AG)-a unique crustacean endocrine organ that secretes factors such as the insulin-like androgenic gland (IAG) hormone-is a key player in crustacean sex differentiation processes. IAG expression induces masculinization, while the absence of the AG or a deficiency in IAG expression results in feminization. Therefore, by virtue of its universal role as a master regulator of crustacean sexual development, the IAG hormone may be regarded as the sexual "IAG-switch." The switch functions within an endocrine axis governed by neuropeptides secreted from the eyestalks, and interacts downstream with specific insulin receptors at its target organs. In recent years, IAG hormones have been found-and sequenced-in dozens of decapod crustacean species, including crabs, prawns, crayfish and shrimps, bearing different types of reproductive strategies-from gonochorism, through hermaphroditism and intersexuality, to parthenogenesis. The IAG-switch has thus been the focus of efforts to manipulate sex developmental processes in crustaceans. Most sex manipulations were performed using AG ablation or knock-down of the IAG gene in males in order to sex reverse them into "neo-females," or using AG implantation/injecting AG extracts or cells into females to produce "neo-males." These manipulations have highlighted the striking crustacean sexual plasticity in different species and have permitted the manifestation of either maleness or femaleness without altering the genotype of the animals. Furthermore, these sex manipulations have not only facilitated fundamental studies of crustacean sexual mechanisms, but have also enabled the development of the first IAG-switch-based monosex population biotechnologies, primarily for aquaculture but also for pest control. Here, we review the crustacean IAG-switch, a unique crustacean endocrine mechanism, from the early discoveries of the AG and the IAG hormone to recent IAG-switch-based manipulations. Moreover, we discuss this unique early pancrustacean insulin-based sexual differentiation control mechanism in contrast to the extensively studied mechanisms in vertebrates, which are based on sex steroids.
Collapse
Affiliation(s)
- Tom Levy
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Amir Sagi
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
4
|
Caccia S, Casartelli M, Tettamanti G. The amazing complexity of insect midgut cells: types, peculiarities, and functions. Cell Tissue Res 2019; 377:505-525. [DOI: 10.1007/s00441-019-03076-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 07/08/2019] [Indexed: 01/12/2023]
|
5
|
Castagnola A, Jurat-Fuentes JL. Intestinal regeneration as an insect resistance mechanism to entomopathogenic bacteria. CURRENT OPINION IN INSECT SCIENCE 2016; 15:104-10. [PMID: 27436739 PMCID: PMC4957658 DOI: 10.1016/j.cois.2016.04.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 04/11/2016] [Accepted: 04/13/2016] [Indexed: 06/06/2023]
Abstract
The intestinal epithelium of insects is exposed to xenobiotics and entomopathogens during the feeding developmental stages. In these conditions, an effective enterocyte turnover mechanism is highly desirable to maintain integrity of the gut epithelial wall. As in other insects, the gut of lepidopteran larvae have stem cells that are capable of proliferation, which occurs during molting and pathogenic episodes. While much is known on the regulation of gut stem cell division during molting, there is a current knowledge gap on the molecular regulation of gut healing processes after entomopathogen exposure. Relevant information on this subject is emerging from studies of the response to exposure to insecticidal proteins from the bacterium Bacillus thuringiensis (Bt) as model intoxicants. In this work we discuss currently available data on the molecular cues involved in gut stem cell proliferation, insect gut healing, and the implications of enhanced healing as a potential mechanism of resistance against Bt toxins.
Collapse
Affiliation(s)
- Anaïs Castagnola
- Center for Insect Science, University of Arizona, Tucson, AZ 85721, USA
| | - Juan Luis Jurat-Fuentes
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN 37996, USA.
| |
Collapse
|
6
|
Effect of BBX-B8 overexpression on development, body weight, silk protein synthesis and egg diapause of Bombyx mori. Transgenic Res 2016; 25:507-16. [DOI: 10.1007/s11248-016-9947-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 03/01/2016] [Indexed: 10/22/2022]
|
7
|
Castagnola A, Eda S, Jurat-Fuentes JL. Monitoring stem cell proliferation and differentiation in primary midgut cell cultures from Heliothis virescens larvae using flow cytometry. Differentiation 2010; 81:192-8. [PMID: 21190786 DOI: 10.1016/j.diff.2010.12.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Revised: 11/23/2010] [Accepted: 12/04/2010] [Indexed: 01/25/2023]
Abstract
In the midgut of Heliothis virescens larvae, proliferation and differentiation of stem cell populations allow for midgut growth and regeneration. Basic epithelial regenerative function can be assessed in vitro by purifying these two cell type populations, yet efficient high throughput methods to monitor midgut stem cell proliferation and differentiation are not available. We describe a flow cytometry method to differentiate stem from mature midgut cells and use it to monitor proliferation, differentiation and death in primary midgut stem cell cultures from H. virescens larvae. Our method is based on differential light scattering and vital stain fluorescence properties to distinguish between stem and mature midgut cells. Using this method, we monitored proliferation and differentiation of H. virescens midgut cells cultured in the presence of fetal bovine serum (FBS) or AlbuMAX II. Supplementation with FBS resulted in increased stem cell differentiation after 5 days of culture, while AlbuMAX II-supplemented medium promoted stem cell proliferation. These data demonstrate utility of our flow cytometry method for studying stem cell-based epithelial regeneration, and indicate that AlbuMAX II-supplemented medium may be used to maintain pluripotency in primary midgut stem cell cultures.
Collapse
Affiliation(s)
- A Castagnola
- Department of Entomology and Plant Pathology, University of Tennessee, 2431 Joe Johnson Drive, 205 Ellington Plant Sciences Building, Knoxville, TN 37996, USA
| | | | | |
Collapse
|
8
|
Fallon AM, Gerenday A. Ecdysone and the cell cycle: investigations in a mosquito cell line. JOURNAL OF INSECT PHYSIOLOGY 2010; 56:1396-401. [PMID: 20303973 PMCID: PMC2918671 DOI: 10.1016/j.jinsphys.2010.03.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2010] [Revised: 03/06/2010] [Accepted: 03/09/2010] [Indexed: 05/25/2023]
Abstract
Cell lines provide a tool for investigating basic biological processes that underlie the complex interactions among the tissues and organs of an intact organism. We compare the evolution of insect and mammalian populations as they progress from diploid cell strains to continuous cell lines, and review the history of the well-characterized Aedes albopictus mosquito cell line, C7-10. Like Kc and S3 cells from Drosophila melanogaster, C7-10 cells are sensitive to the insect steroid hormone, 20-hydroxyecdysone (20E), and express 20E-inducible proteins as well as the EcR and USP components of the ecdysteroid receptor. The decrease in growth associated with 20E treatment results in an accumulation of cells in the G1 phase of the cycle, and a concomitant decrease in levels of cyclin A. In contrast, 20E induces a G2 arrest in a well-studied imaginal disc cell line from the moth, Plodia interpunctella. We hypothesize that 20E-mediated events associated with molting and metamorphosis include effects on regulatory proteins that modulate the mitotic cell cycle and that differences between the 20E response in diverse insect cell lines reflect an interplay between classical receptor-mediated effects on gene expression and non-classical effects on signaling pathways similar to those recently described for the vertebrate steroid hormone, estrogen.
Collapse
Affiliation(s)
- Ann M Fallon
- Department of Entomology, University of Minnesota, 1980 Folwell Ave., St. Paul, MN 55108, United States.
| | | |
Collapse
|
9
|
Loeb MJ. Factors affecting proliferation and differentiation of Lepidopteran midgut stem cells. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2010; 74:1-16. [PMID: 20422716 DOI: 10.1002/arch.20349] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Midgut stem cells of last instar larvae and pupae of Heliothis virescens, Lymantria dispar and several other Lepidopteran species have been cultured in vitro and have been induced to proliferate using low titers of ecdysteroids and the 77-Kda peptide fragment, alpha-arylphorin, isolated and identified from pupal fat body tissue. The insulin-related hormone, Bombyxin, also induced mitosis in cultured midgut stem cells; it appeared to be fast-acting and quickly inactivated, while alpha-arylphorin was slower to act and had a longer lasting effect in vitro, indicating different functions for these proliferation agents. Changes in Calcium ion concentration within or outside the cells discretely affected stem cell differentiation, indicating a role for second messenger participation in peptide regulation of this process. Four different peptides (MDFs 1-4) that induced midgut stem cells to differentiate to mature midgut cell types in vitro were isolated and characterized from conditioned media and hemolymph of H. virescens and L. dispar. However, platelet-derived growth factor (PDGF), epidermal growth factor (EGF), and all-trans retinoic acid (RA) from vertebrate sources induced differentiation to non-midgut cell types as well. MDF1 was located in basal areas of columnar cells of midgut epithelium, although MDF2 was observed in all of the cytoplasm of columnar cells and in droplets of antibody positive material in the midgut lumen, suggesting a digestive function as well for this peptide. Anti-MDF-3 stained the central areas of cultured midgut columnar cells and the bases of columnar cells of midgut epithelium in vivo. Midgut secretory cells stained with anti-MDF-4; streams of MFD-4-positive material were observed extending from secretory cells facing the epithelial lumen, and as a layer on the hemolymph-facing side, suggesting an endocrine or paracrine function for this or an immunologically similar peptide.
Collapse
Affiliation(s)
- Marcia J Loeb
- U. S. Department of Agriculture, Insect Biocontrol Laboratory, Beltsville, Maryland, USA.
| |
Collapse
|
10
|
Hakim RS, Baldwin K, Smagghe G. Regulation of midgut growth, development, and metamorphosis. ANNUAL REVIEW OF ENTOMOLOGY 2010; 55:593-608. [PMID: 19775239 DOI: 10.1146/annurev-ento-112408-085450] [Citation(s) in RCA: 173] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The insect midgut is an important site of entry for pathogens and insect control agents. This review focuses on recent information related to midgut epithelial growth, metamorphosis, and repair as a defense against pathogens. The roles of stem cell mitogens and differentiation factors are described. Included is a discussion of apoptosis and autophagy in the yellow body. Sloughing, also described, protects the midgut from virus infections and bacterial toxins through death and replacement of affected cells. The mechanisms by which the repair process reduces the effectiveness of pest control strategies are discussed. Primary tissue culture methods also are described, and their value in understanding the mechanisms by which biologically based insecticides work is discussed.
Collapse
Affiliation(s)
- Raziel S Hakim
- Department of Anatomy, Howard University, Washington, DC 20059, USA.
| | | | | |
Collapse
|
11
|
Van de Velde S, Badisco L, Claeys I, Verleyen P, Chen X, Vanden Bosch L, Vanden Broeck J, Smagghe G. Insulin-like peptides in Spodoptera littoralis (Lepidoptera): Detection, localization and identification. Gen Comp Endocrinol 2007; 153:72-9. [PMID: 17559850 DOI: 10.1016/j.ygcen.2007.05.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2006] [Revised: 04/28/2007] [Accepted: 05/01/2007] [Indexed: 11/21/2022]
Abstract
Insulin is an extensively studied peptide hormone in mammals. However, insulin is not restricted to vertebrates, but has also been identified in invertebrates, among whom several insect species. These insulin-like peptides (ILPs) show structural and-at least some-functional homology with mammalian insulin and act through a conserved pathway. Yet many aspects of insulin function in insects remain to be unveiled. We analyzed the presence of ILPs in the cotton leafworm, Spodoptera littoralis, at two levels: (1) cellular localization of ILPs in whole tissues of the central nervous system from S. littoralis, and (2) detection and identification of ILPs at nucleotide level. To our knowledge, nothing about the presence of ILPs in S. littoralis has been described so far. By whole mount in situ immunolocalization, we localized bombyxin-like material in S. littoralis in four pairs of pars intercerebralis cells and in the corpus cardiacum-corpus allatum complexes. In addition, we have cloned two different S. littoralis ILP precursor cDNAs by a combination of PCR and RAcE. The corresponding precursor polypeptides ('Sl-ILPP1' and 'Sl-ILPP2') show significant sequence homology with precursors for bombyxin and other bombyxin-related peptides. Our results strongly suggest that the S. littoralis ILPs belong to the category of bombyxin-analogs.
Collapse
Affiliation(s)
- Sandrien Van de Velde
- Laboratory of Agrozoology, Department of Crop Protection, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Hakim RS, Blackburn MB, Corti P, Gelman DB, Goodman C, Elsen K, Loeb MJ, Lynn D, Soin T, Smagghe G. Growth and mitogenic effects of arylphorin in vivo and in vitro. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2007; 64:63-73. [PMID: 17212351 DOI: 10.1002/arch.20155] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
In insects, developmental responses are organ- and tissue-specific. In previous studies of insect midgut cells in primary tissue cultures, growth-promoting and differentiation factors were identified from the growth media, hemolymph, and fat body. Recently, it was determined that the mitogenic effect of a Manduca sexta fat body extract on midgut stem cells of Heliothis virescens was due to the presence of monomeric alpha-arylphorin. Here we report that in primary midgut cell cultures, this same arylphorin stimulates stem cell proliferation in the lepidopterans M. sexta and Spodoptera littoralis, and in the beetle Leptinotarsa decemlineata. Studies using S. littoralis cells confirm that the mitogenic effect is due to free alpha-arylphorin subunits. In addition, feeding artificial diets containing arylphorin increased the growth rates of several insect species. When tested against continuous cell lines, including some with midgut and fat body origins, arylphorin had no effect; however, a cell line derived from Lymantria dispar fat body grew more rapidly in medium containing a chymotryptic digest of arylphorin.
Collapse
Affiliation(s)
- R S Hakim
- Department of Anatomy, Howard University, Washington, DC 20059, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Manor R, Weil S, Oren S, Glazer L, Aflalo ED, Ventura T, Chalifa-Caspi V, Lapidot M, Sagi A. Insulin and gender: an insulin-like gene expressed exclusively in the androgenic gland of the male crayfish. Gen Comp Endocrinol 2007; 150:326-36. [PMID: 17094989 DOI: 10.1016/j.ygcen.2006.09.006] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2006] [Revised: 08/26/2006] [Accepted: 09/07/2006] [Indexed: 10/23/2022]
Abstract
Members of the insulin family of hormones are generally not regarded as gender-specific, although there is sporadic evidence for the possible involvement of insulin pathways in sexual differentiation. In crustaceans, sexual differentiation is controlled by the androgenic gland (AG), an organ unique to males. To date, attempts to identify active AG factors in decapods through either classical purification methods or sequence similarity with isopod AG hormones have proven unsuccessful. In the present study, the first subtractive cDNA library from a decapod AG was constructed from the red-claw crayfish Cherax quadricarinatus. During library screening, an AG-specific gene, expressed exclusively in males even at early stages of maturation and termed Cq-IAG (C. quadricarinatus insulin-like AG factor), was discovered. In situ hybridization of Cq-IAG confirmed the exclusive localization of its expression to the AG. Following cloning and complete sequencing of the gene, its cDNA was found to contain 1445 nucleotides encoding a deduced translation product of 176 amino acids. The proposed protein sequence encompasses Cys residue and putative cleaved peptide patterns whose linear and 3D organization are similar to those of members of the insulin/insulin-like growth factor/relaxin family and their receptor recognition surface. The identification of Cq-IAG is the first report of a pro-insulin-like gene expressed in a decapod crustacean in a gender-specific manner. Its expression in a male-specific endocrine gland controlling sex differentiation supports the notion that insulin may have evolved in the context of regulating sexual differentiation.
Collapse
Affiliation(s)
- Rivka Manor
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Nakahara Y, Matsumoto H, Kanamori Y, Kataoka H, Mizoguchi A, Kiuchi M, Kamimura M. Insulin signaling is involved in hematopoietic regulation in an insect hematopoietic organ. JOURNAL OF INSECT PHYSIOLOGY 2006; 52:105-11. [PMID: 16271363 DOI: 10.1016/j.jinsphys.2005.09.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2005] [Revised: 09/26/2005] [Accepted: 09/26/2005] [Indexed: 05/05/2023]
Abstract
Only a few extracellular hematopoietic factors have been identified in insects. We previously developed an in vitro culture system for the larval hematopoietic organ (HPO) of the silkworm Bombyx mori, and found that cell proliferation is linked to hemocyte discharge from the HPO. In this study, we tested hematopoietic activity of bombyxin, a peptide in the insulin family. When silkworm HPO was cultured with synthetic bombyxin-II, the number of discharged hemocytes increased in a dose-dependent manner, indicating that bombyxin promoted cell proliferation in the HPO. However, a neutralization experiment using anti-bombyxin-II antibody revealed that bombyxin is not the primary effector in larval plasma. Similarly, bovine insulin showed hematopoietic activity. Addition of molting hormone, 20-hydroxyecdysone, circumstantially enhanced the hematopoietic activity of bombyxin and insulin. Bombyxin and insulin induced phosphorylation of different sets of proteins in the HPO, suggesting that their signaling pathways are different.
Collapse
Affiliation(s)
- Yuichi Nakahara
- National Institute of Agrobiological Sciences, 1-2 Ohwashi, Tsukuba, Ibaraki 305-8634, Japan
| | | | | | | | | | | | | |
Collapse
|