1
|
Torres D, Villamayor PR, Román A, García P, Martínez P, Sanchez-Quinteiro P. In-depth histological, lectin-histochemical, immunohistochemical and ultrastructural description of the olfactory rosettes and olfactory bulbs of turbot (Scophthalmus maximus). Cell Tissue Res 2024; 397:215-239. [PMID: 39112611 DOI: 10.1007/s00441-024-03906-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/18/2024] [Indexed: 09/05/2024]
Abstract
Chemical communication through olfaction is crucial for fish behaviours, mediating in socio-sexual behaviours as reproduction. Turbot, a flatfish with significant aquaculture production, possesses a well-developed olfactory system from early developmental stages. After metamorphosis, flatfish acquire their characteristic bilateral asymmetry with an ocular side facing the open water column, housing the dorsal olfactory rosette, and a blind side in contact with the sea bottom where the ventral rosette is located. This study aimed to address the existing gap in specific histological, ultrastructural, lectin-histochemical and immunohistochemical studies of the turbot olfactory rosettes and olfactory bulbs. We examined microdissected olfactory organs of adult turbots and premetamorphic larvae by using routine histological staining techniques, and a wide array of lectins and primary antibodies against G-proteins and calcium-binding proteins. We observed no discernible structural variations in the olfactory epithelium between rosettes, except for the dorsal rosette being larger in size compared to the ventral rosette. Additionally, the use of transmission electron microscopy significantly improved the characterization of the adult olfactory epithelium, exhibiting high cell density, small cell size, and a wide diversity of cell types. Moreover, specific immunopositivity in sensory and non-sensory cells provided us of essential information regarding their olfactory roles. The results obtained significantly enriched the scarce morphological and neurochemical information available on the turbot olfactory system, revealing a highly complex olfactory epithelium with distinct features compared to other teleost species, especially with regard to olfactory cell distribution and immunolabelling patterns.
Collapse
Affiliation(s)
- Dorinda Torres
- Department of Anatomy, Animal Production and Clinical Veterinary Sciences, Faculty of Veterinary, Universidade de Santiago de Compostela, Av Carballo Calero S/N, 27002, Lugo, Spain
- Department of Zoology, Genetics and Physical Anthropology, Faculty of Veterinary, Universidade de Santiago de Compostela, 27002, Lugo, Spain
| | - Paula R Villamayor
- Department of Zoology, Genetics and Physical Anthropology, Faculty of Veterinary, Universidade de Santiago de Compostela, 27002, Lugo, Spain
| | - Albina Román
- Electron Microscopy Unit, Research Infrastructures Area, Universidade de Santiago de Compostela, 27002, Lugo, Spain
| | - Pablo García
- Pescanova Biomarine Center, 36980 O Grove, Pontevedra, Spain
| | - Paulino Martínez
- Department of Zoology, Genetics and Physical Anthropology, Faculty of Veterinary, Universidade de Santiago de Compostela, 27002, Lugo, Spain
| | - Pablo Sanchez-Quinteiro
- Department of Anatomy, Animal Production and Clinical Veterinary Sciences, Faculty of Veterinary, Universidade de Santiago de Compostela, Av Carballo Calero S/N, 27002, Lugo, Spain.
| |
Collapse
|
2
|
Abstract
The olfactory receptor organs and their primary centers are classified into
several types. The receptor organs are divided into fish-type olfactory epithelium (OE),
mammal-type OE, middle chamber epithelium (MCE), lower chamber epithelium (LCE), recess
epithelium, septal olfactory organ of Masera (SO), mammal-type vomeronasal organ (VNO) and
snake-type VNO. The fish-type OE is observed in flatfish and lungfish, while the
mammal-type OE is observed in amphibians, reptiles, birds and mammals. The MCE and LCE are
unique to Xenopus and turtles, respectively. The recess epithelium is
unique to lungfish. The SO is observed only in mammals. The mammal-type VNO is widely
observed in amphibians, lizards and mammals, while the snake-type VNO is unique to snakes.
The VNO itself is absent in turtles and birds. The mammal-type OE, MCE, LCE and recess
epithelium seem to be descendants of the fish-type OE that is derived from the putative
primitive OE. The VNO may be derived from the recess epithelium or fish-type OE and
differentiate into the mammal-type VNO and snake-type VNO. The primary olfactory centers
are divided into mammal-type main olfactory bulbs (MOB), fish-type MOB and mammal-type
accessory olfactory bulbs (AOB). The mammal-type MOB first appears in amphibians and
succeeds to reptiles, birds and mammals. The fish-type MOB, which is unique to fish, may
be the ancestor of the mammal-type MOB. The mammal-type AOB is observed in amphibians,
lizards, snakes and mammals and may be the remnant of the fish-type MOB.
Collapse
Affiliation(s)
- Kazuyuki Taniguchi
- Laboratory of Veterinary Anatomy, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan
| | | |
Collapse
|
3
|
Taniguchi K, Saito S, Taniguchi K. Phylogenic outline of the olfactory system in vertebrates. J Vet Med Sci 2010; 73:139-47. [PMID: 20877153 DOI: 10.1292/jvms.10-0316] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Phylogenic outline of the vertebrate olfactory system is summarized in the present review. In the fish and the birds, the olfactory system consists only of the olfactory epithelium (OE) and the olfactory bulb (B). In the amphibians, reptiles and mammals, the olfactory system is subdivided into the main olfactory and the vomeronasal olfactory systems, and the former consists of the OE and the main olfactory bulb (MOB), while the latter the vomeronasal organ (VNO) and the accessory olfactory bulb (AOB). The subdivision of the olfactory system into the main and the vomeronasal olfactory systems may partly be induced by the difference between paraphyletic groups and monophyletic groups in the phylogeny of vertebrates.
Collapse
Affiliation(s)
- Kazumi Taniguchi
- School of Veterinary Medicine and Animal Sciences, Kitasato University, Towada, Japan.
| | | | | |
Collapse
|