1
|
Tveten AK, Ørstenvik HL, Tolaas I. Loop-mediated isothermal amplification (LAMP) for detection of atypical enterovirus D68 strain VR-1197. J Virol Methods 2024; 330:115030. [PMID: 39236986 DOI: 10.1016/j.jviromet.2024.115030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/30/2024] [Accepted: 09/01/2024] [Indexed: 09/07/2024]
Abstract
A method that has rapidly evolved for detection of viral pathogens are loop-mediated isothermal amplification (LAMP) assays. The available LAMP assays usually target the most common viral strains, including enteroviruses, but for the atypical enterovirus D68 strain VR-1197 this method has not yet been developed. Enterovirus D68 are known for severe respiratory distress in children, and atypical strains are less likely to be detected by traditional methods. This study targets the atypical EVD68 strain VR-1197 and have developed a rapid detection method saving time when differentiating enterovirus strains. This study present method development and review the sensitivity and specificity compared to traditional RT-qPCR, and wet lab cross reactivity with other airway pathogens. The EVD68 VR-1197 assay can be a rapid POC (Point of care) test for atypical EVD68 VR-1197 and have the potential as reliable detection method with minimal technological requirements.
Collapse
Affiliation(s)
- Ann-Kristin Tveten
- Faculty of Natural Sciences, Department of Biological Sciences Ålesund, Norwegian University of Science and Technology (NTNU), Larsgaardsveien 2, Aalesund NO-6009, Norway.
| | - Hanne Lillerovde Ørstenvik
- Faculty of Natural Sciences, Department of Biological Sciences Ålesund, Norwegian University of Science and Technology (NTNU), Larsgaardsveien 2, Aalesund NO-6009, Norway
| | - Ingvill Tolaas
- Faculty of Natural Sciences, Department of Biological Sciences Ålesund, Norwegian University of Science and Technology (NTNU), Larsgaardsveien 2, Aalesund NO-6009, Norway
| |
Collapse
|
2
|
Hifumi T, Akioka K, Tanaka T, Miyoshi N. Development of a loop-mediated isothermal amplification (LAMP) assay targeting the mitochondrial cytochrome b gene for the rapid detection of alveolar echinococcosis in hepatic nodules of horses. Vet Parasitol 2021; 299:109573. [PMID: 34521042 DOI: 10.1016/j.vetpar.2021.109573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 09/03/2021] [Accepted: 09/05/2021] [Indexed: 10/20/2022]
Abstract
Alveolar echinococcosis, which is caused by a larval-stage infection of Echinococcus multilocularis, is a zoonosis with public health importance. Recently, alveolar echinococcosis in slaughtered horses has been reported in Japan and Poland. In terms of public health, a highly sensitive and specific diagnostic method is essential for early detection during meat inspection. In this study, the loop-mediated isothermal amplification (LAMP) assay was developed and validated to target the mitochondrial cytochrome b (cob) gene of E. multilocularis. Forty-one hepatic solid nodules obtained from each horse were evaluated based on histopathological examination and cob-targeted PCR and then submitted to the LAMP assay. The optimal condition of the developed LAMP assay was 64℃ for 30 min. The results of the developed LAMP assay were completely consistent with those of cob PCR. In addition, the detection limit for the number of copies of the cob gene was 135 copies/μL in the LAMP assay. These findings suggest that the ability of the LAMP assay developed in this study is equivalent to that of the conventional PCR testing. The LAMP assay developed in this study can be used as an alternative to PCR testing for the routine genetic diagnosis of alveolar echinococcosis in horses.
Collapse
Affiliation(s)
- Tatsuro Hifumi
- Transboundary Animal Diseases Research Center, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan; Laboratory of Veterinary Histopathology, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Kohei Akioka
- Kumamoto Prefectural Meat Inspection Center, 1314 Sosaki, Shichijo-machi, Kikuchi, Kumamoto 861-1344, Japan
| | - Tetsuya Tanaka
- Laboratory of Infectious Diseases, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan.
| | - Noriaki Miyoshi
- Laboratory of Veterinary Histopathology, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| |
Collapse
|
3
|
Khan A, Mushtaq MH, Muhammad J, Ahmed B, Khan EA, Khan A, Zakki SA, Altaf E, Haq I, Saleem A, Warraich MA, Ahmed N, Rabaan AA. Global epidemiology of Equine Influenza viruses; "A possible emerging zoonotic threat in future" an extensive systematic review with evidence. BRAZ J BIOL 2021; 83:e246591. [PMID: 34468519 DOI: 10.1590/1519-6984.246591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/15/2021] [Indexed: 11/22/2022] Open
Abstract
There are different opinions around the World regarding the zoonotic capability of H3N8 equine influenza viruses. In this report, we have tried to summarize the findings of different research and review articles from Chinese, English, and Mongolian Scientific Literature reporting the evidence for equine influenza virus infections in human beings. Different search engines i.e. CNKI, PubMed, ProQuest, Chongqing Database, Mongol Med, and Web of Knowledge yielded 926 articles, of which 32 articles met the inclusion criteria for this review. Analyzing the epidemiological and Phylogenetic data from these articles, we found a considerable experimental and observational evidence of H3N8 equine influenza viruses infecting human being in different parts of the World in the past. Recently published articles from Pakistan and China have highlighted the emerging threat and capability of equine influenza viruses for an epidemic in human beings in future. In this review article we have summarized the salient scientific reports published on the epidemiology of equine influenza viruses and their zoonotic aspect. Additionally, several recent developments in the start of 21st century, including the transmission and establishment of equine influenza viruses in different animal species i.e. camels and dogs, and presumed encephalopathy associated to influenza viruses in horses, have documented the unpredictable nature of equine influenza viruses. In sum up, several reports has highlighted the unpredictable nature of H3N8 EIVs highlighting the need of continuous surveillance for H3N8 in equines and humans in contact with them for novel and threatening mutations.
Collapse
Affiliation(s)
- A Khan
- The University of Haripur, Department of Public Health & Nutrition, Haripur, Pakistan
| | - M H Mushtaq
- The University of Veterinary and Animal Sciences, Department of Epidemiology and Public Health, Lahore, Pakistan
| | - J Muhammad
- The University of Haripur, Department of Microbiology, Haripur, Pakistan
| | - B Ahmed
- Nanjing Medical University, School of Pharmacy, Nanjing, Jiangsu, China
| | - E A Khan
- Lady Reading Hospital Peshawar, Peshawar, Pakistan
| | - A Khan
- Pir Mehr Ali Shah Arid Agriculture University, Department of Clinical Medicine and Surgery, Rawalpindi, Pakistan
| | - S A Zakki
- The University of Haripur, Department of Public Health & Nutrition, Haripur, Pakistan
| | - E Altaf
- The University of Haripur, Department of Public Health & Nutrition, Haripur, Pakistan
| | - I Haq
- The University of Haripur, Department of Public Health & Nutrition, Haripur, Pakistan
| | - A Saleem
- The University of Haripur, Department of Microbiology, Haripur, Pakistan
| | - M A Warraich
- Marketing Rennes School of Business, Rennes, France
| | - N Ahmed
- Centre of Excellence in Molecular Biology, Lahore, Pakistan
| | - A A Rabaan
- Johns Hopkins Aramco Healthcare, Molecular Diagnostic Laboratory, Dhahran, Saudi Arabia
| |
Collapse
|
4
|
Knox A, Beddoe T. Isothermal Nucleic Acid Amplification Technologies for the Detection of Equine Viral Pathogens. Animals (Basel) 2021; 11:ani11072150. [PMID: 34359278 PMCID: PMC8300645 DOI: 10.3390/ani11072150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/17/2021] [Accepted: 07/18/2021] [Indexed: 01/25/2023] Open
Abstract
Simple Summary Equine viral diseases remain a prominent concern for human and equine health globally. Many of these viruses are of primary biosecurity concern to countries that import equines where these viruses are not present. In addition, several equine viruses are zoonotic, which can have a significant impact on human health. Current diagnostic techniques are both time consuming and laboratory-based. The ability to accurately detect diseases will lead to better management, treatment strategies, and health outcomes. This review outlines the current modern isothermal techniques for diagnostics, such as loop-mediated isothermal amplification and insulated isothermal polymerase chain reaction, and their application as point-of-care diagnostics for the equine industry. Abstract The global equine industry provides significant economic contributions worldwide, producing approximately USD $300 billion annually. However, with the continuous national and international movement and importation of horses, there is an ongoing threat of a viral outbreak causing large epidemics and subsequent significant economic losses. Additionally, horses serve as a host for several zoonotic diseases that could cause significant human health problems. The ability to rapidly diagnose equine viral diseases early could lead to better management, treatment, and biosecurity strategies. Current serological and molecular methods cannot be field-deployable and are not suitable for resource-poor laboratories due to the requirement of expensive equipment and trained personnel. Recently, isothermal nucleic acid amplification technologies, such as loop-mediated isothermal amplification (LAMP) and insulated isothermal polymerase chain reaction (iiPCR), have been developed to be utilized in-field, and provide rapid results within an hour. We will review current isothermal diagnostic techniques available to diagnose equine viruses of biosecurity and zoonotic concern and provide insight into their potential for in-field deployment.
Collapse
|
5
|
Bakre AA, Jones LP, Bennett HK, Bobbitt DE, Tripp RA. Detection of swine influenza virus in nasal specimens by reverse transcription-loop-mediated isothermal amplification (RT-LAMP). J Virol Methods 2021; 288:114015. [PMID: 33271254 PMCID: PMC7799534 DOI: 10.1016/j.jviromet.2020.114015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 12/31/2022]
Abstract
Detection of swine influenza virus (SIV) in commercial swine herds is important for understanding the infection status of the herd and for controlling disease. Current molecular diagnostics require that specimens be submitted to a laboratory which provides results to the growers after some time which is generally too late to intercede in disease control. Moreover, current diagnostic assays are time-consuming, typically costly, and require skilled technical expertise. We have instituted a reverse transcription loop-mediated isothermal amplification (RT-LAMP) diagnostic assay based on conserved regions of the SIV matrix (M) gene and H1N1 hemagglutinin (HA) sequences. The RT-LAMP assay was optimized to use both colorimetric and fluorescent endpoints and was validated. The M and HA RT-LAMP assays have a limit-of-detection (LOD) sensitive to 11 and 8-log-fold dilutions of viral RNA, respectively, and are capable of discriminating between H1 and H3 strains of SIV. Additionally, the RT-LAMP assay was optimized for direct amplification of SIV from field samples without the need for viral RNA isolation. The direct RT-LAMP detected >86 % of qRT-PCR validated SIV samples, and >66 % of negative samples when spiked with viral RNA or SIV. The diagnostic RT-LAMP assay is a rapid, sensitive, specific, and cost-effective method for the detection of SIV in herds substantially aiding diagnosis and surveillance.
Collapse
Affiliation(s)
- Abhijeet A Bakre
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Les P Jones
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Hailey K Bennett
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Davis E Bobbitt
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Ralph A Tripp
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States.
| |
Collapse
|
6
|
Ahn SJ, Baek YH, Lloren KKS, Choi WS, Jeong JH, Antigua KJC, Kwon HI, Park SJ, Kim EH, Kim YI, Si YJ, Hong SB, Shin KS, Chun S, Choi YK, Song MS. Rapid and simple colorimetric detection of multiple influenza viruses infecting humans using a reverse transcriptional loop-mediated isothermal amplification (RT-LAMP) diagnostic platform. BMC Infect Dis 2019; 19:676. [PMID: 31370782 PMCID: PMC6669974 DOI: 10.1186/s12879-019-4277-8] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 07/11/2019] [Indexed: 01/15/2023] Open
Abstract
Background In addition to seasonal influenza viruses recently circulating in humans, avian influenza viruses (AIVs) of H5N1, H5N6 and H7N9 subtypes have also emerged and demonstrated human infection abilities with high mortality rates. Although influenza viral infections are usually diagnosed using viral isolation and serological/molecular analyses, the cost, accessibility, and availability of these methods may limit their utility in various settings. The objective of this study was to develop and optimized a multiplex detection system for most influenza viruses currently infecting humans. Methods We developed and optimized a multiplex detection system for most influenza viruses currently infecting humans including two type B (both Victoria lineages and Yamagata lineages), H1N1, H3N2, H5N1, H5N6, and H7N9 using Reverse Transcriptional Loop-mediated Isothermal Amplification (RT-LAMP) technology coupled with a one-pot colorimetric visualization system to facilitate direct determination of results without additional steps. We also evaluated this multiplex RT-LAMP for clinical use using a total of 135 clinical and spiked samples (91 influenza viruses and 44 other human infectious viruses). Results We achieved rapid detection of seasonal influenza viruses (H1N1, H3N2, and Type B) and avian influenza viruses (H5N1, H5N6, H5N8 and H7N9) within an hour. The assay could detect influenza viruses with high sensitivity (i.e., from 100 to 0.1 viral genome copies), comparable to conventional RT-PCR-based approaches which would typically take several hours and require expensive equipment. This assay was capable of specifically detecting each influenza virus (Type B, H1N1, H3N2, H5N1, H5N6, H5N8 and H7N9) without cross-reactivity with other subtypes of AIVs or other human infectious viruses. Furthermore, 91 clinical and spiked samples confirmed by qRT-PCR were also detected by this multiplex RT-LAMP with 98.9% agreement. It was more sensitive than one-step RT-PCR approach (92.3%). Conclusions Results of this study suggest that our multiplex RT-LAMP assay may provide a rapid, sensitive, cost-effective, and reliable diagnostic method for identifying recent influenza viruses infecting humans, especially in locations without access to large platforms or sophisticated equipment. Electronic supplementary material The online version of this article (10.1186/s12879-019-4277-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Su Jeong Ahn
- Department of Microbiology, College of Medicine and Medical Research Institute, Chungbuk National University, Chungdae-ro 1, Seowon-Ku, Cheongju, 28644, Republic of Korea
| | - Yun Hee Baek
- Department of Microbiology, College of Medicine and Medical Research Institute, Chungbuk National University, Chungdae-ro 1, Seowon-Ku, Cheongju, 28644, Republic of Korea
| | - Khristine Kaith S Lloren
- Department of Microbiology, College of Medicine and Medical Research Institute, Chungbuk National University, Chungdae-ro 1, Seowon-Ku, Cheongju, 28644, Republic of Korea
| | - Won-Suk Choi
- Department of Microbiology, College of Medicine and Medical Research Institute, Chungbuk National University, Chungdae-ro 1, Seowon-Ku, Cheongju, 28644, Republic of Korea
| | - Ju Hwan Jeong
- Department of Microbiology, College of Medicine and Medical Research Institute, Chungbuk National University, Chungdae-ro 1, Seowon-Ku, Cheongju, 28644, Republic of Korea
| | - Khristine Joy C Antigua
- Department of Microbiology, College of Medicine and Medical Research Institute, Chungbuk National University, Chungdae-ro 1, Seowon-Ku, Cheongju, 28644, Republic of Korea
| | - Hyeok-Il Kwon
- Department of Microbiology, College of Medicine and Medical Research Institute, Chungbuk National University, Chungdae-ro 1, Seowon-Ku, Cheongju, 28644, Republic of Korea
| | - Su-Jin Park
- Department of Microbiology, College of Medicine and Medical Research Institute, Chungbuk National University, Chungdae-ro 1, Seowon-Ku, Cheongju, 28644, Republic of Korea
| | - Eun-Ha Kim
- Department of Microbiology, College of Medicine and Medical Research Institute, Chungbuk National University, Chungdae-ro 1, Seowon-Ku, Cheongju, 28644, Republic of Korea
| | - Young-Il Kim
- Department of Microbiology, College of Medicine and Medical Research Institute, Chungbuk National University, Chungdae-ro 1, Seowon-Ku, Cheongju, 28644, Republic of Korea
| | - Young-Jae Si
- Department of Microbiology, College of Medicine and Medical Research Institute, Chungbuk National University, Chungdae-ro 1, Seowon-Ku, Cheongju, 28644, Republic of Korea
| | - Seung Bok Hong
- Department of Clinical Laboratory Science, Chungbuk Health and Science University, Cheongju, Republic of Korea
| | - Kyeong Seob Shin
- Departments of Laboratory Medicine, Chungbuk National University College of Medicine, Cheongju, Republic of Korea
| | - Sungkun Chun
- Department of Physiology, Chonbuk National University Medical School, Jeonju, 54907, Republic of Korea
| | - Young Ki Choi
- Department of Microbiology, College of Medicine and Medical Research Institute, Chungbuk National University, Chungdae-ro 1, Seowon-Ku, Cheongju, 28644, Republic of Korea.
| | - Min-Suk Song
- Department of Microbiology, College of Medicine and Medical Research Institute, Chungbuk National University, Chungdae-ro 1, Seowon-Ku, Cheongju, 28644, Republic of Korea.
| |
Collapse
|
7
|
Singh RK, Dhama K, Karthik K, Khandia R, Munjal A, Khurana SK, Chakraborty S, Malik YS, Virmani N, Singh R, Tripathi BN, Munir M, van der Kolk JH. A Comprehensive Review on Equine Influenza Virus: Etiology, Epidemiology, Pathobiology, Advances in Developing Diagnostics, Vaccines, and Control Strategies. Front Microbiol 2018; 9:1941. [PMID: 30237788 PMCID: PMC6135912 DOI: 10.3389/fmicb.2018.01941] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 07/31/2018] [Indexed: 01/23/2023] Open
Abstract
Among all the emerging and re-emerging animal diseases, influenza group is the prototype member associated with severe respiratory infections in wide host species. Wherein, Equine influenza (EI) is the main cause of respiratory illness in equines across globe and is caused by equine influenza A virus (EIV-A) which has impacted the equine industry internationally due to high morbidity and marginal morality. The virus transmits easily by direct contact and inhalation making its spread global and leaving only limited areas untouched. Hitherto reports confirm that this virus crosses the species barriers and found to affect canines and few other animal species (cat and camel). EIV is continuously evolving with changes at the amino acid level wreaking the control program a tedious task. Until now, no natural EI origin infections have been reported explicitly in humans. Recent advances in the diagnostics have led to efficient surveillance and rapid detection of EIV infections at the onset of outbreaks. Incessant surveillance programs will aid in opting a better control strategy for this virus by updating the circulating vaccine strains. Recurrent vaccination failures against this virus due to antigenic drift and shift have been disappointing, however better understanding of the virus pathogenesis would make it easier to design effective vaccines predominantly targeting the conserved epitopes (HA glycoprotein). Additionally, the cold adapted and canarypox vectored vaccines are proving effective in ceasing the severity of disease. Furthermore, better understanding of its genetics and molecular biology will help in estimating the rate of evolution and occurrence of pandemics in future. Here, we highlight the advances occurred in understanding the etiology, epidemiology and pathobiology of EIV and a special focus is on designing and developing effective diagnostics, vaccines and control strategies for mitigating the emerging menace by EIV.
Collapse
Affiliation(s)
- Raj K. Singh
- ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Kumaragurubaran Karthik
- Central University Laboratory, Tamil Nadu Veterinary and Animal Sciences University, Chennai, India
| | - Rekha Khandia
- Department of Biochemistry and Genetics, Barkatullah University, Bhopal, India
| | - Ashok Munjal
- Department of Biochemistry and Genetics, Barkatullah University, Bhopal, India
| | | | - Sandip Chakraborty
- Department of Veterinary Microbiology, College of Veterinary Sciences and Animal Husbandry, West Tripura, India
| | - Yashpal S. Malik
- Division of Biological Standardization, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | | | - Rajendra Singh
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | | | - Muhammad Munir
- Division of Biomedical and Life Sciences, Lancaster University, Lancaster, United Kingdom
| | - Johannes H. van der Kolk
- Division of Clinical Veterinary Medicine, Swiss Institute for Equine Medicine (ISME), Vetsuisse Faculty, University of Bern and Agroscope, Bern, Switzerland
| |
Collapse
|
8
|
Kinoshita Y, Niwa H, Higuchi T, Katayama Y. Development of a loop-mediated isothermal amplification method for detecting virulent Rhodococcus equi. J Vet Diagn Invest 2016; 28:608-11. [PMID: 27493140 DOI: 10.1177/1040638716656222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Rhodococcus equi is the most important causative bacterium of severe pneumonia in foals. We report herein the development of a specific loop-mediated isothermal amplification (LAMP) assay, which targets a gene encoding vapA for detecting virulent R. equi The detection limit of the LAMP assay was 10(4) colony forming units (CFU)/mL, which was equal to 10 CFU/reaction. The clinical efficacy of the LAMP assay was compared with those of 2 published PCR-based methods: nested PCR and quantitative real-time (q)PCR. Agreements between bacterial culture, which is the gold standard for detection of R. equi, and each of the 3 molecular tests were measured by calculating a kappa coefficient. The kappa coefficients of the LAMP (0.760), nested PCR (0.583), and qPCR (0.888) indicated substantial agreement, moderate agreement, and almost perfect agreement, respectively. Although the clinical efficacy of LAMP was not the best among the 3 methods tested, LAMP could be more easily introduced into less well-equipped clinics because it does not require special equipment (such as a thermocycler) for gene amplification. Veterinary practitioners could diagnose R. equi pneumonia more quickly by using LAMP and could use the results to select an appropriate initial treatment.
Collapse
Affiliation(s)
- Yuta Kinoshita
- Microbiology Division, Equine Research Institute, Japan Racing Association, Tochigi, Japan (Kinoshita, Niwa, Katayama)Hidaka Agriculture Mutual Aid Association, Hokkaido, Japan (Higuchi)
| | - Hidekazu Niwa
- Microbiology Division, Equine Research Institute, Japan Racing Association, Tochigi, Japan (Kinoshita, Niwa, Katayama)Hidaka Agriculture Mutual Aid Association, Hokkaido, Japan (Higuchi)
| | - Tohru Higuchi
- Microbiology Division, Equine Research Institute, Japan Racing Association, Tochigi, Japan (Kinoshita, Niwa, Katayama)Hidaka Agriculture Mutual Aid Association, Hokkaido, Japan (Higuchi)
| | - Yoshinari Katayama
- Microbiology Division, Equine Research Institute, Japan Racing Association, Tochigi, Japan (Kinoshita, Niwa, Katayama)Hidaka Agriculture Mutual Aid Association, Hokkaido, Japan (Higuchi)
| |
Collapse
|
9
|
A Review of Evidence that Equine Influenza Viruses Are Zoonotic. Pathogens 2016; 5:pathogens5030050. [PMID: 27420100 PMCID: PMC5039430 DOI: 10.3390/pathogens5030050] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Revised: 07/01/2016] [Accepted: 07/08/2016] [Indexed: 12/28/2022] Open
Abstract
Among scientists, there exist mixed opinions whether equine influenza viruses infect man. In this report, we summarize a 2016 systematic and comprehensive review of the English, Chinese, and Mongolian scientific literature regarding evidence for equine influenza virus infections in man. Searches of PubMed, Web of Knowledge, ProQuest, CNKI, Chongqing VIP Database, Wanfang Data and MongolMed yielded 2831 articles, of which 16 met the inclusion criteria for this review. Considering these 16 publications, there was considerable experimental and observational evidence that at least H3N8 equine influenza viruses have occasionally infected man. In this review we summarize the most salient scientific reports.
Collapse
|
10
|
Abstract
Influenza viruses cause recurring epidemic outbreaks every year associated with high morbidity and mortality. Despite extensive research and surveillance efforts to control influenza outbreaks, the primary mitigation treatment for influenza is the development of yearly vaccine mixes targeted for the most prevalent virus strains. Consequently, the focus of many detection technologies has evolved toward accurate identification of subtype and understanding the evolution and molecular determinants of novel and pathogenic forms of influenza. The recent availability of potential antiviral treatments are only effective if rapid and accurate diagnostic tests for influenza epidemic management are available; thus, early detection of influenza infection is still important for prevention, containment, patient management, and infection control. This review discusses the current and emerging technologies for detection and strain identification of influenza virus and their specific gene targets, as well as their implications in patient management.
Collapse
Affiliation(s)
- Anthony P Malanoski
- Center for Bio/Molecular Science and Engineering, U. S. Naval Research Laboratory, 4555 Overlook Avenue, S. W., Code 6900, Washington, DC, 20375, USA
| | | |
Collapse
|