1
|
Kobayashi K, Kubota H, Tohya M, Ushikubo M, Yamamoto M, Ariyoshi T, Uchitani Y, Mitobe M, Okuno R, Nakagawa I, Sekizaki T, Suzuki J, Sadamasu K. Characterization of pig tonsils as niches for the generation of Streptococcus suis diversity. Vet Res 2024; 55:17. [PMID: 38321502 PMCID: PMC10848530 DOI: 10.1186/s13567-024-01270-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 01/12/2024] [Indexed: 02/08/2024] Open
Abstract
Streptococcus suis is a gram-positive bacterium that causes meningitis, septicemia, endocarditis, and other disorders in pigs and humans. We obtained 42 and 50 S. suis isolates from lesions of porcine endocarditis and palatine tonsils, respectively, of clinically healthy pigs in Japan; we then determined their sequence types (STs) by multilocus sequence typing (MLST), cps genotypes, serotypes, and presence of classical major virulence-associated marker genes (mrp, epf, and sly). The 42 isolates from endocarditis lesions were assigned to a limited number of STs and clonal complexes (CCs). On the other hand, the 50 isolates from tonsils were diverse in these traits and seemingly in the degree of virulence, suggesting that tonsils can accommodate a variety of S. suis isolates. The goeBURST full algorithm using tonsil isolates obtained in this study and those retrieved from the database showed that major CCs as well as many other clusters were composed of isolates originating from different countries, and some of the STs were very similar to each other despite the difference in country of origin. These findings indicate that S. suis with not only different but also similar mutations in the genome have survived in tonsils independently across different geographical locations. Therefore, unlike the lesions of endocarditis, the tonsils of pigs seemingly accommodate various S. suis lineages. The present study suggests that S. suis acquired its diversity by natural mutations during colonization and persistence in the tonsils of pigs.
Collapse
Affiliation(s)
- Kai Kobayashi
- Department of Microbiology, Tokyo Metropolitan Institute of Public Health, Hyakunincho 3-24-1, Shinjuku-ku, Tokyo, 169-0073, Japan.
| | - Hiroaki Kubota
- Department of Microbiology, Tokyo Metropolitan Institute of Public Health, Hyakunincho 3-24-1, Shinjuku-ku, Tokyo, 169-0073, Japan
| | - Mari Tohya
- Division of Biomedical Food Research, National Institute of Health Sciences, Tonomachi 3-25-26, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-9501, Japan
- Department of Microbiology and Department of Microbiome Research, Juntendo University School of Medicine, Hongo 2-1-1, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Megumi Ushikubo
- Shibaura Meat Sanitary Inspection Station, Tokyo Metropolitan Government, Konan 2-7-19, Minato-ku, Tokyo, 108-0075, Japan
| | - Miki Yamamoto
- Shibaura Meat Sanitary Inspection Station, Tokyo Metropolitan Government, Konan 2-7-19, Minato-ku, Tokyo, 108-0075, Japan
| | - Tsukasa Ariyoshi
- Department of Microbiology, Tokyo Metropolitan Institute of Public Health, Hyakunincho 3-24-1, Shinjuku-ku, Tokyo, 169-0073, Japan
| | - Yumi Uchitani
- Department of Microbiology, Tokyo Metropolitan Institute of Public Health, Hyakunincho 3-24-1, Shinjuku-ku, Tokyo, 169-0073, Japan
| | - Morika Mitobe
- Department of Microbiology, Tokyo Metropolitan Institute of Public Health, Hyakunincho 3-24-1, Shinjuku-ku, Tokyo, 169-0073, Japan
| | - Rumi Okuno
- Department of Microbiology, Tokyo Metropolitan Institute of Public Health, Hyakunincho 3-24-1, Shinjuku-ku, Tokyo, 169-0073, Japan
| | - Ichiro Nakagawa
- Department of Microbiology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Tsutomu Sekizaki
- Department of Microbiology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
- Research Center for Food Safety, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Jun Suzuki
- Department of Microbiology, Tokyo Metropolitan Institute of Public Health, Hyakunincho 3-24-1, Shinjuku-ku, Tokyo, 169-0073, Japan
| | - Kenji Sadamasu
- Department of Microbiology, Tokyo Metropolitan Institute of Public Health, Hyakunincho 3-24-1, Shinjuku-ku, Tokyo, 169-0073, Japan
| |
Collapse
|
2
|
Nicholson TL, Kalalah AA, Eppinger M. Population structure and genetic diversity of Streptococcus suis isolates obtained from the United States. Front Microbiol 2023; 14:1250265. [PMID: 37808309 PMCID: PMC10551183 DOI: 10.3389/fmicb.2023.1250265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/22/2023] [Indexed: 10/10/2023] Open
Abstract
Diseases caused by the zoonotic pathogen Streptococcus suis are an extensive economic problem as well as an animal welfare concern for the global swine industry. Previous studies have evaluated the genomic diversity and population structure of S. suis isolates, however, the majority of these studies utilized isolates obtained from countries other than the U.S. This study applied whole genome sequencing and cgMLST-based typing to evaluate the population structure and genetic relatedness among S. suis isolates obtained within the U.S. The established high-resolution phylogenomic framework revealed extensive genomic variation and diversity among the sampled S. suis isolates, with isolates from the U.S. and from countries outside the U.S. found interspersed in the phylogeny. S. suis isolates obtained within the U.S. did not cluster by state or geographic location, however, isolates with similar serotypes, both obtained from within and outside the U.S., generally clustered together. Average nucleotide identity (ANI) values determined for the S. suis genomes were extensively broad, approaching the recommended species demarcation value, and correlated with the phylogenetic group distribution of the cgMLST-based tree. Numerous antimicrobial resistance (AMR) elements were identified among both U.S. and non-U.S. isolates with ble, tetO, and ermB genes identified as the most prevalent. The epf, mrp, and sly genes, historically used as markers for virulence potential, were also observed in the genomes of isolates that grouped together forming a subclade of clonal complex 1 (CC1) isolates. Collectively, the data in this report provides critical information needed to address potential biosurveillance needs and insights into the genetic diversity and population structure of S. suis isolates obtained within the U.S.
Collapse
Affiliation(s)
- Tracy L. Nicholson
- National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, United States
| | - Anwar A. Kalalah
- South Texas Center for Emerging Infectious Diseases (STCEID), The University of Texas at San Antonio, San Antonio, TX, United States
- Department of Molecular Microbiology and Immunology (MMI), The University of Texas at San Antonio, San Antonio, TX, United States
| | - Mark Eppinger
- South Texas Center for Emerging Infectious Diseases (STCEID), The University of Texas at San Antonio, San Antonio, TX, United States
- Department of Molecular Microbiology and Immunology (MMI), The University of Texas at San Antonio, San Antonio, TX, United States
| |
Collapse
|
3
|
Nicholson TL, Waack U, Anderson TK, Bayles DO, Zaia SR, Goertz I, Eppinger M, Hau SJ, Brockmeier SL, Shore SM. Comparative Virulence and Genomic Analysis of Streptococcus suis Isolates. Front Microbiol 2021; 11:620843. [PMID: 33574803 PMCID: PMC7870872 DOI: 10.3389/fmicb.2020.620843] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 12/21/2020] [Indexed: 11/13/2022] Open
Abstract
Streptococcus suis is a zoonotic bacterial swine pathogen causing substantial economic and health burdens to the pork industry. Mechanisms used by S. suis to colonize and cause disease remain unknown and vaccines and/or intervention strategies currently do not exist. Studies addressing virulence mechanisms used by S. suis have been complicated because different isolates can cause a spectrum of disease outcomes ranging from lethal systemic disease to asymptomatic carriage. The objectives of this study were to evaluate the virulence capacity of nine United States S. suis isolates following intranasal challenge in swine and then perform comparative genomic analyses to identify genomic attributes associated with swine-virulent phenotypes. No correlation was found between the capacity to cause disease in swine and the functional characteristics of genome size, serotype, sequence type (ST), or in vitro virulence-associated phenotypes. A search for orthologs found in highly virulent isolates and not found in non-virulent isolates revealed numerous predicted protein coding sequences specific to each category. While none of these predicted protein coding sequences have been previously characterized as potential virulence factors, this analysis does provide a reliable one-to-one assignment of specific genes of interest that could prove useful in future allelic replacement and/or functional genomic studies. Collectively, this report provides a framework for future allelic replacement and/or functional genomic studies investigating genetic characteristics underlying the spectrum of disease outcomes caused by S. suis isolates.
Collapse
Affiliation(s)
- Tracy L Nicholson
- National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, United States
| | - Ursula Waack
- National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, United States.,Oak Ridge Institute for Science and Education, United States Department of Energy, Oak Ridge, TN, United States
| | - Tavis K Anderson
- National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, United States
| | - Darrell O Bayles
- National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, United States
| | - Sam R Zaia
- South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX, United States.,Department of Biology, University of Texas at San Antonio, San Antonio, TX, United States
| | - Isaiah Goertz
- South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX, United States.,Department of Biology, University of Texas at San Antonio, San Antonio, TX, United States
| | - Mark Eppinger
- South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX, United States.,Department of Biology, University of Texas at San Antonio, San Antonio, TX, United States
| | - Samantha J Hau
- National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, United States.,Oak Ridge Institute for Science and Education, United States Department of Energy, Oak Ridge, TN, United States
| | - Susan L Brockmeier
- National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, United States
| | - Sarah M Shore
- National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, United States
| |
Collapse
|
4
|
Serotype and Genotype (Multilocus Sequence Type) of Streptococcus suis Isolates from the United States Serve as Predictors of Pathotype. J Clin Microbiol 2019; 57:JCM.00377-19. [PMID: 31243086 PMCID: PMC6711919 DOI: 10.1128/jcm.00377-19] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 06/18/2019] [Indexed: 12/16/2022] Open
Abstract
Streptococcus suis is a significant cause of mortality in piglets and growing pigs worldwide. The species contains pathogenic and commensal strains, with pathogenic strains causing meningitis, arthritis, endocarditis, polyserositis, and septicemia. Serotyping and multilocus sequence typing (MLST) are primary methods to differentiate strains, but the information is limited for strains found in the United States. Streptococcus suis is a significant cause of mortality in piglets and growing pigs worldwide. The species contains pathogenic and commensal strains, with pathogenic strains causing meningitis, arthritis, endocarditis, polyserositis, and septicemia. Serotyping and multilocus sequence typing (MLST) are primary methods to differentiate strains, but the information is limited for strains found in the United States. The objective of this study was to characterize the diversity of 208 S. suis isolates collected between 2014 and 2017 across North America (mainly the United States) by serotyping and MLST and to investigate associations between subtype and pathotype classifications (pathogenic, possibly opportunistic, and commensal), based on clinical information and site of isolation. Twenty serotypes were identified, and the predominant serotypes were 1/2 and 7. Fifty-eight sequence types (STs) were identified, and the predominant ST was ST28. Associations among serotypes, STs, and pathotypes were investigated using odds ratio and clustering analyses. Evaluation of serotype and ST with pathotype identified a majority of isolates of serotypes 1, 1/2, 2, 7, 14, and 23 and ST1, ST13, ST25, ST28, ST29, ST94, ST108, ST117, ST225, ST373, ST961, and ST977 as associated with the pathogenic pathotype. Serotypes 21 and 31, ST750, and ST821 were associated with the commensal pathotype, which is composed of isolates from farms with no known history of S. suis-associated disease. Our study demonstrates the use of serotyping and MLST to differentiate pathogenic from commensal isolates and establish links between pathotype and subtype, thus increasing the knowledge about S. suis strains circulating in the United States.
Collapse
|
5
|
Komatsu T, Watando E, Inaba N, Sugie K, Okura M, Shibahara T. Bovine vegetative endocarditis caused by Streptococcus suis. J Vet Med Sci 2018; 80:1567-1571. [PMID: 30210095 PMCID: PMC6207521 DOI: 10.1292/jvms.18-0337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
A 5-month-old crossbred beef steer died after exhibiting astasia. A postmortem examination revealed verrucous endocarditis and numerous renal hemorrhages. Gram-positive bacteria were identified in the necrotic lesions of the verruca and mitral valve via histopathological analysis. Multifocal necrosis and hemorrhage were detected in the renal cortex. Gram-positive cocci isolated from the verruca were identified via biochemical tests and 16S rRNA gene sequence analysis as Streptococcus suis. Serotyping indicated that the S. suis isolates were untypable, following which these isolates were classified as a new sequence type (ST1000) via multi-locus sequence typing. S. suis is an important pathogen of pigs. However, clinical cases in cattle are rare. This report is intended to provide information that may be useful in the diagnosis of streptococcal disease in cattle.
Collapse
Affiliation(s)
- Tetsuya Komatsu
- Aichi Prefectural Chuo Livestock Hygiene Service Center, 1-306 Jizono, Miaicho, Okazaki, Aichi 444-0805, Japan
| | - Eri Watando
- Aichi Prefectural Chuo Livestock Hygiene Service Center, 1-306 Jizono, Miaicho, Okazaki, Aichi 444-0805, Japan
| | - Nanami Inaba
- Aichi Prefectural Chuo Livestock Hygiene Service Center, 1-306 Jizono, Miaicho, Okazaki, Aichi 444-0805, Japan
| | - Kennosuke Sugie
- Aichi Prefectural Chuo Livestock Hygiene Service Center, 1-306 Jizono, Miaicho, Okazaki, Aichi 444-0805, Japan
| | - Masatoshi Okura
- Division of Bacterial and Parasitic Disease, National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856, Japan
| | - Tomoyuki Shibahara
- Division of Pathology and Pathophysiology, National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856, Japan.,Department of Veterinary Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku-oraikita, Izumisano, Osaka 598-8531, Japan
| |
Collapse
|
6
|
Vötsch D, Willenborg M, Weldearegay YB, Valentin-Weigand P. Streptococcus suis - The "Two Faces" of a Pathobiont in the Porcine Respiratory Tract. Front Microbiol 2018; 9:480. [PMID: 29599763 PMCID: PMC5862822 DOI: 10.3389/fmicb.2018.00480] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 02/28/2018] [Indexed: 11/16/2022] Open
Abstract
Streptococcus (S.) suis is a frequent early colonizer of the upper respiratory tract of pigs. In fact, it is difficult to find S. suis-free animals under natural conditions, showing the successful adaptation of this pathogen to its porcine reservoir host. On the other hand, S. suis can cause life-threatening diseases and represents the most important bacterial cause of meningitis in pigs worldwide. Notably, S. suis can also cause zoonotic infections, such as meningitis, septicemia, endocarditis, and other diseases in humans. In Asia, it is classified as an emerging zoonotic pathogen and currently considered as one of the most important causes of bacterial meningitis in adults. The “two faces” of S. suis, one of a colonizing microbe and the other of a highly invasive pathogen, have raised many questions concerning the interpretation of diagnostic detection and the definition of virulence. Thus, one major research challenge is the identification of virulence-markers which allow differentiation of commensal and virulent strains. This is complicated by the high phenotypic and genotypic diversity of S. suis, as reflected by the occurrence of (at least) 33 capsular serotypes. In this review, we present current knowledge in the context of S. suis as a highly diverse pathobiont in the porcine respiratory tract that can exploit disrupted host homeostasis to flourish and promote inflammatory processes and invasive diseases in pigs and humans.
Collapse
Affiliation(s)
- Désirée Vötsch
- Institute for Microbiology, Center for Infection Medicine, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Maren Willenborg
- Institute for Microbiology, Center for Infection Medicine, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Yenehiwot B Weldearegay
- Institute for Microbiology, Center for Infection Medicine, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Peter Valentin-Weigand
- Institute for Microbiology, Center for Infection Medicine, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
7
|
Auger JP, Meekhanon N, Okura M, Osaki M, Gottschalk M, Sekizaki T, Takamatsu D. Streptococcus suis Serotype 2 Capsule In Vivo. Emerg Infect Dis 2018; 22:1793-6. [PMID: 27648583 PMCID: PMC5038428 DOI: 10.3201/eid2210.151640] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Many Streptococcus suis isolates from porcine endocarditis in slaughterhouses have lost their capsule and are considered avirulent. However, we retrieved capsule- and virulence-recovered S. suis after in vivo passages of a nonencapsulated strain in mice, suggesting that nonencapsulated S. suis are still potentially hazardous for persons in the swine industry.
Collapse
|
8
|
Devi M, Dutta JB, Rajkhowa S, Kalita D, Saikia GK, Das BC, Hazarika RA, Mahato G. Prevalence of multiple drug resistant Streptococcus suis in and around Guwahati, India. Vet World 2017; 10:556-561. [PMID: 28620262 PMCID: PMC5465772 DOI: 10.14202/vetworld.2017.556-561] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Accepted: 04/07/2017] [Indexed: 11/16/2022] Open
Abstract
Aim: This study was conducted to determine the prevalence and antimicrobial susceptibility of Streptococcus suis and their resistance patterns isolated from both clinically healthy carriers and diseased pigs in and around Guwahati, Assam, India. Materials and Methods: A total of 497 samples were collected during October, 2012, to April, 2014, from clinically healthy (n=67) and diseased (n=230) pigs of varying age and either sex maintained under organized and unorganized farming systems. Samples were processed for isolation and identification of S. suis by biochemical characterization and polymerase chain reaction targeting the housekeeping gene glutamate dehydrogenase. In vitro antimicrobial susceptibility of the recovered isolates against nine antibiotic groups comprising 17 antimicrobial agents was studied by standard method. Results: Of the 497 samples examined, 7 (1.41%) isolates were confirmed to be S. suis of which 5 (1.87%) and 2 (0.87%) were derived from clinically healthy and diseased pigs, respectively. All the isolates were susceptible to gentamicin, amikacin, and erythromycin (100%) followed by the penicillin group and enrofloxacin (85.71%), ceftriaxone, doxycycline HCL, ofloxacin and chloramphenicol (71.43%), to kanamycin, clindamycin and co-trimoxazole (42.85%). The isolates showed least susceptibility to cefalexin, tetracycline and streptomycin (28.57%). All the five S. suis isolates from clinically healthy pigs were susceptible to penicillin G, amoxyclav, doxycycline HCl, gentamicin, amikacin and erythromycin, 80.00% isolates susceptible to ampicillin, enrofloxacin and ofloxacin, 60.00% to ceftriaxone, kanamycin and chloramphenicol, 40% to cefalexin, tetracycline, clindamycin and co-trimoxazole, respectively. Only 20.00% isolates were susceptible to streptomycin. Both the isolates recovered from diseased pigs were susceptible to ampicillin, ceftriaxone, gentamicin, amikacin, enrofloxacin, erythromycin, and clindamycin. On the other hand, both the isolates were resistant to cefalexin, tetracycline, doxycycline HCL, and kanamycin. Altogether five different resistance patterns (multi-drug resistance) were observed. Of the seven S. suis isolates, two isolates were susceptible to all the 17 antimicrobial agents, one isolate was resistant to four antimicrobial agents, two isolates to seven agents, one isolate to nine agents, and one isolate exhibited resistance to 14 antimicrobial agents. Conclusion: This study was conducted to determine the prevalence of S. suis in clinically healthy and diseased pigs and their antimicrobial susceptibility patterns. All the isolates were susceptible to gentamicin, amikacin and erythromycin, and most of them were resistant to cefalexin, tetracycline and streptomycin. Five different patterns of antimicrobial resistance (multi-drug resistance) were observed.
Collapse
Affiliation(s)
- Mrinalee Devi
- Department of Veterinary Epidemiology and Preventive Veterinary Medicine, College of Veterinary Science, AAU, Khanapara, Guwahati, Assam - 781 022, India
| | - Jyoti B Dutta
- Department of Veterinary Epidemiology and Preventive Veterinary Medicine, College of Veterinary Science, AAU, Khanapara, Guwahati, Assam - 781 022, India
| | - Swaraj Rajkhowa
- National Research Centre on Pig, ICAR, Rani, Kamrup, Assam - 781 131, India
| | - Dhireswar Kalita
- AICRP/MSP on Pigs, College of Veterinary Science, AAU, Khanapara, Guwahati, Assam - 781 022, India
| | - Girindra Kumar Saikia
- Department of Veterinary Microbiology, College of Veterinary Science, AAU, Khanapara, Guwahati, Assam - 781 022, India
| | - Bipin Chandra Das
- Department of Veterinary Epidemiology and Preventive Veterinary Medicine, College of Veterinary Science, AAU, Khanapara, Guwahati, Assam - 781 022, India
| | - Razibuddin Ahmed Hazarika
- Department of Veterinary Public Health, College of Veterinary Science, AAU, Khanapara, Guwahati, Assam - 781 022, India
| | - Gauranga Mahato
- Department of Veterinary Epidemiology and Preventive Veterinary Medicine, College of Veterinary Science, AAU, Khanapara, Guwahati, Assam - 781 022, India
| |
Collapse
|
9
|
Tohya M, Watanabe T, Maruyama F, Arai S, Ota A, Athey TBT, Fittipaldi N, Nakagawa I, Sekizaki T. Comparative Genome Analyses of Streptococcus suis Isolates from Endocarditis Demonstrate Persistence of Dual Phenotypic Clones. PLoS One 2016; 11:e0159558. [PMID: 27433935 PMCID: PMC4951133 DOI: 10.1371/journal.pone.0159558] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 07/04/2016] [Indexed: 11/19/2022] Open
Abstract
Many bacterial species coexist in the same niche as heterogeneous clones with different phenotypes; however, understanding of infectious diseases by polyphenotypic bacteria is still limited. In the present study, encapsulation in isolates of the porcine pathogen Streptococcus suis from persistent endocarditis lesions was examined. Coexistence of both encapsulated and unencapsulated S. suis isolates was found in 26 out of 59 endocarditis samples. The isolates were serotype 2, and belonged to two different sequence types (STs), ST1 and ST28. The genomes of each of the 26 pairs of encapsulated and unencapsulated isolates from the 26 samples were sequenced. The data showed that each pair of isolates had one or more unique nonsynonymous mutations in the cps gene, and the encapsulated and unencapsulated isolates from the same samples were closest to each other. Pairwise comparisons of the sequences of cps genes in 7 pairs of encapsulated and unencapsulated isolates identified insertion/deletions (indels) ranging from one to 104 bp in different cps genes of unencapsulated isolates. Capsule expression was restored in a subset of unencapsulated isolates by complementation in trans with cps expression vectors. Examination of gene content common to isolates indicated that mutation frequency was higher in ST28 pairs than in ST1 pairs. Genes within mobile genetic elements were mutation hot spots among ST28 isolates. Taken all together, our results demonstrate the coexistence of dual phenotype (encapsulated and unencapsulated) bacterial clones and suggest that the dual phenotypes arose independently in each farm by means of spontaneous mutations in cps genes.
Collapse
Affiliation(s)
- Mari Tohya
- Research Center for Food Safety, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Takayasu Watanabe
- Research Center for Food Safety, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Fumito Maruyama
- Department of Microbiology, Kyoto University Graduate School of Medicine, Kyoto, Kyoto, Japan
- * E-mail: (TS); (FM)
| | - Sakura Arai
- Research Center for Food Safety, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Atsushi Ota
- Department of Microbiology, Kyoto University Graduate School of Medicine, Kyoto, Kyoto, Japan
| | | | - Nahuel Fittipaldi
- Public Health Ontario, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Ichiro Nakagawa
- Department of Microbiology, Kyoto University Graduate School of Medicine, Kyoto, Kyoto, Japan
| | - Tsutomu Sekizaki
- Research Center for Food Safety, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- * E-mail: (TS); (FM)
| |
Collapse
|
10
|
Complex Population Structure and Virulence Differences among Serotype 2 Streptococcus suis Strains Belonging to Sequence Type 28. PLoS One 2015; 10:e0137760. [PMID: 26375680 PMCID: PMC4574206 DOI: 10.1371/journal.pone.0137760] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 08/21/2015] [Indexed: 11/19/2022] Open
Abstract
Streptococcus suis is a major swine pathogen and a zoonotic agent. Serotype 2 strains are the most frequently associated with disease. However, not all serotype 2 lineages are considered virulent. Indeed, sequence type (ST) 28 serotype 2 S. suis strains have been described as a homogeneous group of low virulence. However, ST28 strains are often isolated from diseased swine in some countries, and at least four human ST28 cases have been reported. Here, we used whole-genome sequencing and animal infection models to test the hypothesis that the ST28 lineage comprises strains of different genetic backgrounds and different virulence. We used 50 S. suis ST28 strains isolated in Canada, the United States and Japan from diseased pigs, and one ST28 strain from a human case isolated in Thailand. We report a complex population structure among the 51 ST28 strains. Diversity resulted from variable gene content, recombination events and numerous genome-wide polymorphisms not attributable to recombination. Phylogenetic analysis using core genome single-nucleotide polymorphisms revealed four discrete clades with strong geographic structure, and a fifth clade formed by US, Thai and Japanese strains. When tested in experimental animal models, strains from this latter clade were significantly more virulent than a Canadian ST28 reference strain, and a closely related Canadian strain. Our results highlight the limitations of MLST for both phylogenetic analysis and virulence prediction and raise concerns about the possible emergence of ST28 strains in human clinical cases.
Collapse
|
11
|
Sánchez Del Rey V, Fernández-Garayzábal JF, Bárcena C, Briones V, Domínguez L, Gottschalk M, Vela AI. Molecular typing of Streptococcus suis isolates from Iberian pigs: a comparison with isolates from common intensively-reared commercial pig breeds. Vet J 2014; 202:597-602. [PMID: 25458888 DOI: 10.1016/j.tvjl.2014.10.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 10/07/2014] [Accepted: 10/11/2014] [Indexed: 11/26/2022]
Abstract
The Iberian pig (IP) is a traditional Spanish breed variety of the domestic pig (Sus scrofa domesticus) with high economic importance because of the value of the dry-cured products in national and international markets. The genetic characteristics of tonsillar and clinical Streptococcus suis isolates from the IP maintained under extensive or intensive management conditions were investigated. S. suis isolates from IP pigs were compared with S. suis isolates from intensively-farmed pigs of common breeds (CBP). S. suis was isolated from 48.4% of the IP tonsils examined, indicating wide distribution among IP pigs. Serotypes 1 (9.4%), 2 (8.6%) and 9 (7%) were the most commonly found, although a high percentage of S. suis isolates were not typeable by coagglutination testing. No significant differences in carrier rates or serotype diversity were observed between management systems, indicating that intensive farming does not influence S. suis colonisation. Both pulsed-field gel electrophoresis and multiple-locus variable number tandem repeat analysis showed a serotype-based distribution of S. suis IP isolates. Serotypes 1 and 2 S. suis isolates were grouped in the same cluster, whereas isolates of serotypes 9 and 7 were assigned to another cluster. All clinical and most tonsillar serotype 2 IP isolates were assigned to sequence type 1 (ST1) and exhibited the virulence genotype mrp+/epf+/sly+, indicating a high distribution of this genetic lineage among IP as well as a population of serotype 2 common to IPs and CBPs. The only clinical isolate of serotype 9 from IP was assigned to ST123, a sequence type associated with clinical isolates in CBPs in Spain.
Collapse
Affiliation(s)
- V Sánchez Del Rey
- Centro de Vigilancia Sanitaria Veterinaria (VISAVET), Universidad Complutense, 28040 Madrid, Spain
| | - J F Fernández-Garayzábal
- Centro de Vigilancia Sanitaria Veterinaria (VISAVET), Universidad Complutense, 28040 Madrid, Spain; Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense, 28040 Madrid, Spain
| | - C Bárcena
- Centro de Vigilancia Sanitaria Veterinaria (VISAVET), Universidad Complutense, 28040 Madrid, Spain
| | - V Briones
- Centro de Investigación en Sanidad Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Ministerio de Economia y Competitividad, Valdeolmos, 28130 Madrid, Spain
| | - L Domínguez
- Centro de Vigilancia Sanitaria Veterinaria (VISAVET), Universidad Complutense, 28040 Madrid, Spain
| | - M Gottschalk
- Groupe de Recherche sur les Maladies Infectieuses du Porc, Faculté de Médecine Vétérinaire, Université de Montréal, 3200 Sicotte, St.-Hyacinthe, Québec J2S 2M2, Canada
| | - A I Vela
- Centro de Vigilancia Sanitaria Veterinaria (VISAVET), Universidad Complutense, 28040 Madrid, Spain; Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense, 28040 Madrid, Spain.
| |
Collapse
|
12
|
Streptococcus suis, an important pig pathogen and emerging zoonotic agent-an update on the worldwide distribution based on serotyping and sequence typing. Emerg Microbes Infect 2014; 3:e45. [PMID: 26038745 PMCID: PMC4078792 DOI: 10.1038/emi.2014.45] [Citation(s) in RCA: 484] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 04/22/2014] [Accepted: 04/23/2014] [Indexed: 12/18/2022]
Abstract
Streptococcus suis is an important pathogen causing economic problems in the pig
industry. Moreover, it is a zoonotic agent causing severe infections to people in close
contact with infected pigs or pork-derived products. Although considered sporadic in the
past, human S. suis infections have been reported during the last 45 years, with
two large outbreaks recorded in China. In fact, the number of reported human cases has
significantly increased in recent years. In this review, we present the worldwide
distribution of serotypes and sequence types (STs), as determined by multilocus sequence
typing, for pigs (between 2002 and 2013) and humans (between 1968 and 2013). The methods
employed for S. suis identification and typing, the current epidemiological
knowledge regarding serotypes and STs and the zoonotic potential of S. suis are
discussed. Increased awareness of S. suis in both human and veterinary diagnostic
laboratories and further establishment of typing methods will contribute to our knowledge
of this pathogen, especially in regions where complete and/or recent data is lacking. More
research is required to understand differences in virulence that occur among S.
suis strains and if these differences can be associated with specific serotypes or
STs.
Collapse
|
13
|
Lakkitjaroen N, Takamatsu D, Okura M, Sato M, Osaki M, Sekizaki T. Capsule loss or death: The position of mutations among capsule genes sways the destiny ofStreptococcus suis. FEMS Microbiol Lett 2014; 354:46-54. [DOI: 10.1111/1574-6968.12428] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 03/12/2014] [Accepted: 03/12/2014] [Indexed: 11/30/2022] Open
Affiliation(s)
- Nattakan Lakkitjaroen
- Research Center for Food Safety; Graduate School of Agricultural and Life Sciences; The University of Tokyo; Tokyo Japan
| | - Daisuke Takamatsu
- Bacterial and Parasitic Diseases Research Division; National Institute of Animal Health; National Agriculture and Food Research Organization; Tsukuba Ibaraki Japan
- The United Graduate School of Veterinary Sciences; Gifu University; Gifu Japan
| | - Masatoshi Okura
- Bacterial and Parasitic Diseases Research Division; National Institute of Animal Health; National Agriculture and Food Research Organization; Tsukuba Ibaraki Japan
| | - Masumi Sato
- Epidemiological Information Section; National Institute of Animal Health; National Agriculture and Food Research Organization; Tsukuba Ibaraki Japan
| | - Makoto Osaki
- Bacterial and Parasitic Diseases Research Division; National Institute of Animal Health; National Agriculture and Food Research Organization; Tsukuba Ibaraki Japan
| | - Tsutomu Sekizaki
- Research Center for Food Safety; Graduate School of Agricultural and Life Sciences; The University of Tokyo; Tokyo Japan
| |
Collapse
|