1
|
Chen W, Fan G, Huang Y, Zhou K, Chen Z, Chen K, Zhang H, Li Z. Characteristics of the pseudorabies virus strain GDWS2 with severe neurological signs and high viral shedding capacity in pigs. Front Vet Sci 2025; 12:1530765. [PMID: 40297827 PMCID: PMC12034708 DOI: 10.3389/fvets.2025.1530765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 03/17/2025] [Indexed: 04/30/2025] Open
Abstract
Pseudorabies virus (PRV) poses a serious threat to the global swine industry, as PRV infection can lead to reproductive disorders in sows and high mortality in newborn piglets. Although pigs typically exhibit age-related resistance to PRV, with older pigs exhibiting milder symptoms upon infection, the recent isolation of multiple highly pathogenic PRV variants and reports of severe symptoms and even death in older pigs have garnered much attention. The GDWS2 strain isolated in this study exhibits characteristics similar to those of highly pathogenic strains. GDWS2 was isolated from the brain tissue of a 90-day-old diseased pig that exhibited severe respiratory and neurological symptoms. The pig originated from a farm that had been previously vaccinated with the Bartha-k61 strain. In vitro experiments demonstrated that GDWS2 induces substantial cytopathic effects in PK-15, VERO, BHK cells, and PAM. Moreover, GDWS2 formed larger plaques and exhibited higher early replication titers in PK-15 cells compared to the highly pathogenic variant strain JM isolated in China. Phylogenetic analysis revealed that GDWS2 belongs to PRV genotype II, with gD, gE, and TK genes showing high homology to those of highly pathogenic PRV variants. Additionally, GDWS2 harbors unique insertions or mutations in the US1, UL36, and UL5 gene regions, and its genome contains recombination events with PRV variants, Bartha, or genotype I strains. In vivo experiments further confirmed the high pathogenicity of GDWS2. In rabbit and 90-day-old pig models, GDWS2, compared with the JM strain, caused high mortality rates, accompanied by severe pathological damage. Notably, in the 90-day-old pig model, the GDWS2 challenge group exhibited more severe respiratory and neurological symptoms, and enhanced neurotropism and shedding capacity. The data from this study may indicate the emergence of a naturally recombined and highly pathogenic PRV variant in China once again.
Collapse
Affiliation(s)
- Wang Chen
- School of Animal Science and Technology, Foshan University, Foshan, China
| | - Gao Fan
- Wen’s Food Group, Yunfu, China
| | - Yurong Huang
- School of Animal Science and Technology, Foshan University, Foshan, China
| | | | - Zifan Chen
- School of Animal Science and Technology, Foshan University, Foshan, China
| | - Kexin Chen
- School of Animal Science and Technology, Foshan University, Foshan, China
| | - Huihua Zhang
- School of Animal Science and Technology, Foshan University, Foshan, China
| | - Zhaoyao Li
- Wen’s Food Group, Yunfu, China
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| |
Collapse
|
2
|
Zhuang L, Gong J, Shen J, Zhao Y, Yang J, Liu Q, Zhang Y, Shen Q. Advances in molecular epidemiology and detection methods of pseudorabies virus. DISCOVER NANO 2025; 20:45. [PMID: 39992589 PMCID: PMC11850701 DOI: 10.1186/s11671-025-04217-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 02/10/2025] [Indexed: 02/26/2025]
Abstract
Pseudorabies (PR), a highly contagious disease caused by the pseudorabies virus (PRV), represents a significant threat to the global swine industry. Despite the success of developed countries in controlling the PRV epidemic through swine pseudorabies eradication programs, wild boars, as a potential source of infection, still require sustained attention and effective control measures. Concurrently, there has been considerable global attention directed towards cases of PRV infection in humans. In consideration of the aforementioned factors, this paper presents a comprehensive review of recent developments in the PRV genome, epidemiology, vaccine research, and molecular detection methods. The epidemiology section presents an analysis of the transmission routes, susceptible animal groups, and geographic distribution of PRV, as well as an examination of the trend of the epidemic in recent years. In the field of vaccine research, the current development of genetically engineered vaccines is emphasized, and the immunogenicity and safety of vaccines are discussed. Moreover, the molecular detection techniques utilized to identify PRV, including immunological methods, nucleic acid detection methods, biosensors, and so forth, are presented in a systematic manner. Finally, this paper presents a comprehensive discussion of the current status of PRV-related research and offers insights into future directions, with the aim of providing a foundation for the scientific prevention and control of PRV.
Collapse
Affiliation(s)
- Linlin Zhuang
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, People's Republic of China
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing, 211102, People's Republic of China
| | - Jiansen Gong
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, 225125, People's Republic of China
| | - Jingyi Shen
- School of Animal Science and Food Engineering, Jinling Institute of Technology, Nanjing, 210038, People's Republic of China
| | - Ying Zhao
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing, 211102, People's Republic of China
| | - Jianbo Yang
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, People's Republic of China
| | - Qingxin Liu
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, People's Republic of China
| | - Yu Zhang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing, 211102, People's Republic of China.
| | - Qiuping Shen
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, People's Republic of China.
| |
Collapse
|
3
|
Ding C, Sun Y, Zhang X, Shi M, Yang H, Zhou X, Li S, Li Y, Yang X, Yu L, Chen L. The immunogenicity of PRV ΔgE/TK/UL49.5 three-gene-deleted vaccine in mice. Virol J 2025; 22:25. [PMID: 39905542 PMCID: PMC11792629 DOI: 10.1186/s12985-025-02641-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 01/24/2025] [Indexed: 02/06/2025] Open
Abstract
BACKGROUND Pseudorabies (PR) caused by the re-emerging of pseudorabies virus (PRV) variant has outbroken among PRV vaccine immunized swine in many pig farms, which has caused serious social and economic consequences since the end of 2011. The PRV UL49.5 protein can inactivate the transporter associated with antigen processing (TAP), thereby downregulating the cell surface expression of swine leukocyte antigen class I (SLA-I) to evade host immune surveillance. METHODS In this study, based on the PRV ΔgE/TK strain, PRV ΔgE/TK/UL49.5 triple gene deletion strain was constructed through homologous recombination and deletion of the PRV UL49.5 gene by the Cre-LoxP system. Its growth curve and effect on SLA-I transcription level were determined. Preliminary studies were carried out on serum neutralizing antibody levels, IFN-γ and IL-4 cytokines levels in mice immunized with PRV ΔgE/TK/UL49.5, and the viral load and challenge protection in mice tissues after challenge. RESULTS The growth characteristics of PRV ΔgE/TK/UL49.5 strain were similar to those of PRV ΔgE/TK strain. The level of SLA-I was returned to normal after the deletion of PRV UL49.5 gene. The immunization of PRV ΔgE/TK/UL49.5 did not affect the weight gain of mice. Immunized mice could induce high levels of serum neutralization antibodies and immune cytokines, including IFN-γ and IL-4, which could provide complete protection against virulent PRV challenge. No obvious pathological damage was observed in lung, brain and trigeminal ganglion of mice immunized with PRV ΔgE/TK/UL49.5, and the tissue viral load was the lowest. CONCLUSIONS PRV ΔgE/TK/UL49.5 strain can induce enhanced immunogenicity and had the potential to be used as a candidate strain.
Collapse
MESH Headings
- Animals
- Mice
- Antibodies, Viral/blood
- Gene Deletion
- Herpesvirus 1, Suid/genetics
- Herpesvirus 1, Suid/immunology
- Herpesvirus 1, Suid/growth & development
- Antibodies, Neutralizing/blood
- Pseudorabies/prevention & control
- Pseudorabies/immunology
- Pseudorabies/virology
- Viral Load
- Viral Proteins/genetics
- Viral Proteins/immunology
- Mice, Inbred BALB C
- Pseudorabies Vaccines/immunology
- Pseudorabies Vaccines/genetics
- Pseudorabies Vaccines/administration & dosage
- Female
- Immunogenicity, Vaccine
- Swine
- Cytokines
- Viral Vaccines/immunology
- Viral Vaccines/genetics
- Viral Vaccines/administration & dosage
- Interferon-gamma/blood
- Vaccines, Attenuated/immunology
- Vaccines, Attenuated/administration & dosage
- Vaccines, Attenuated/genetics
- Interleukin-4/blood
Collapse
Affiliation(s)
- Chenmeng Ding
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou City, 450046, Henan Province, China
- Shangqiu Meilan Biological Co., Ltd, Shangqiu City, 476200, Henan Province, China
- Henan Zhongsheng Biological Engineering Co., Ltd, Shangqiu City, 476200, Henan Province, China
| | - Yawei Sun
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou City, 450046, Henan Province, China
| | - Xianfeng Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou City, 450046, Henan Province, China
- Shangqiu Meilan Biological Co., Ltd, Shangqiu City, 476200, Henan Province, China
| | - Mengmeng Shi
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou City, 450046, Henan Province, China
| | - Han Yang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou City, 450046, Henan Province, China
| | - Xin Zhou
- Shangqiu Meilan Biological Co., Ltd, Shangqiu City, 476200, Henan Province, China
| | - Shuangshuang Li
- Shangqiu Meilan Biological Co., Ltd, Shangqiu City, 476200, Henan Province, China
| | - Yongtao Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou City, 450046, Henan Province, China
| | - Xia Yang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou City, 450046, Henan Province, China
| | - Linyang Yu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou City, 450046, Henan Province, China
| | - Lu Chen
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou City, 450046, Henan Province, China.
| |
Collapse
|
4
|
Cao L, Lv W, Li A, Yang L, Zhou F, Wen F, Yuan S, Huang S, Li Z, Guo J. A SYBR green I-based multiplex real-time PCR for simultaneous detection of pseudorabies virus, porcine circovirus 3 and porcine parvovirus. BMC Vet Res 2025; 21:10. [PMID: 39773253 PMCID: PMC11705656 DOI: 10.1186/s12917-024-04440-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Pseudorabies virus (PRV), porcine parvovirus (PPV) and porcine circovirus 3 (PCV3) are common in swine farms in China. Single infection or co-infection with PRV, PPV and/or PCV3 was difficult to distinguish between their clinical symptoms and pathological changes. Therefore, a quick and accurate detection method is needed for epidemiological surveillance, disease management, import and export control. METHODS In the present study, we established a multiplex real-time PCR assay based on SYBR Green I for the simultaneous detection of PRV, PPV and PCV3 genomes. RESULTS PRV, PPV and PCV3 were distinguished in the same sample by their different melting temperatures (Tm), with melting peaks at 90 °C for PRV, 84 °C for PPV and 80 °C for PCV3, respectively, and other non-targeted swine pathogens did not exhibit specific melting peaks. The assay showed a high degree of linearity (R2≧0.995), and the detection limits were 4.76 copies/μL for PRV, 3.67 copies/μL for PPV, 3.07 copies/μL for PCV3 and 1.87 × 102 copies/μL for the three mixed plasmids, respectively. In this research, 81 clinical samples from pig farms in nine different regions of Guangdong Province were used to evaluate this new method. The detection rate of the multiplex real-time PCR assay was higher than that of the conventional PCR assay. CONCLUSIONS This multiplex real-time PCR assay could be used as a diagnostic tool that is rapid, sensitive and reliable for the detection of co-infection of PRV, PPV and PCV3 as well as for molecular epidemiological surveillance.
Collapse
Affiliation(s)
- Lihua Cao
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, 528231, China
| | - Wenke Lv
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, 528231, China
| | - Anqi Li
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, 528231, China
| | - Lulu Yang
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, 528231, China
| | - Feng Zhou
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, 528231, China
| | - Feng Wen
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, 528231, China
| | - Sheng Yuan
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, 528231, China
| | - Shujian Huang
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, 528231, China
| | - Zhili Li
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, 528231, China
| | - Jinyue Guo
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, 528231, China.
| |
Collapse
|
5
|
Bude SA, Lu Z, Zhao Z, Zhang Q. Pseudorabies Virus Glycoproteins E and B Application in Vaccine and Diagnosis Kit Development. Vaccines (Basel) 2024; 12:1078. [PMID: 39340108 PMCID: PMC11435482 DOI: 10.3390/vaccines12091078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/13/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
Background: Pseudorabies virus (PRV) is a highly infectious pathogen that affects a wide range of mammals and imposes a significant economic burden on the global pig industry. The viral envelope of PRV contains several glycoproteins, including glycoprotein E (gE) and glycoprotein B (gB), which play critical roles in immune recognition, vaccine development, and diagnostic procedures. Mutations in these glycoproteins may enhance virulence, highlighting the need for updated vaccines. Method: This review examines the functions of PRV gE and gB in vaccine development and diagnostics, focusing on their roles in viral replication, immune system interaction, and pathogenicity. Additionally, we explore recent findings on the importance of gE deletion in attenuated vaccines and the potential of gB to induce immunity. Results: Glycoprotein E (gE) is crucial for the virus's axonal transport and nerve invasion, facilitating transmission to the central nervous system. Deletion of gE is a successful strategy in vaccine development, enhancing the immune response. Glycoprotein B (gB) plays a central role in viral replication and membrane fusion, aiding viral spread. Mutations in these glycoproteins may increase PRV virulence, complicating vaccine efficacy. Conclusion: With PRV glycoproteins being essential to both vaccine development and diagnostic approaches, future research should focus on enhancing these components to address emerging PRV variants. Updated vaccines and diagnostic tools are critical for combating new, more virulent strains of PRV.
Collapse
Affiliation(s)
- Sara Amanuel Bude
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China; (S.A.B.); (Z.L.)
- College of Veterinary Medicine and Agriculture, Addis Ababa University, Bishoftu P.O. Box 34, Ethiopia
| | - Zengjun Lu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China; (S.A.B.); (Z.L.)
| | - Zhixun Zhao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China; (S.A.B.); (Z.L.)
| | - Qiang Zhang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China; (S.A.B.); (Z.L.)
| |
Collapse
|
6
|
Wang X, Li Y, Dong S, Wang C, Wang Y, Zhang H. Transcriptomic analysis reveals impact of gE/gI/TK deletions on host response to PRV infection. Virol J 2023; 20:303. [PMID: 38115115 PMCID: PMC10731697 DOI: 10.1186/s12985-023-02265-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 12/09/2023] [Indexed: 12/21/2023] Open
Abstract
BACKGROUND Pseudorabies virus (PRV) causes substantial losses in the swine industry worldwide. Attenuated PRV strains with deletions of immunomodulatory genes glycoprotein E (gE), glycoprotein I (gI) and thymidine kinase (TK) are candidate vaccines. However, the effects of gE/gI/TK deletions on PRV-host interactions are not well understood. METHODS To characterize the impact of gE/gI/TK deletions on host cells, we analyzed and compared the transcriptomes of PK15 cells infected with wild-type PRV (SD2017), PRV with gE/gI/TK deletions (SD2017gE/gI/TK) using RNA-sequencing. RESULTS The attenuated SD2017gE/gI/TK strain showed increased expression of inflammatory cytokines and pathways related to immunity compared to wild-type PRV. Cell cycle regulation and metabolic pathways were also perturbed. CONCLUSIONS Deletion of immunomodulatory genes altered PRV interactions with host cells and immune responses. This study provides insights into PRV vaccine design.
Collapse
Affiliation(s)
- Xiaoli Wang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian, China
| | - Yingguang Li
- Shandong Collaborative Innovation Center for Development of Veterinary Pharmaceuticals, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Shaoming Dong
- Shandong Collaborative Innovation Center for Development of Veterinary Pharmaceuticals, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Cong Wang
- China animal husbandry industry Co., Ltd, Beijing, China
| | - Yongming Wang
- Shandong Huahong Biological Engineering Co., Ltd, Binzhou, China
| | - Hongliang Zhang
- Shandong Collaborative Innovation Center for Development of Veterinary Pharmaceuticals, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China.
| |
Collapse
|
7
|
Wang G, Cao J, Gui M, Huang P, Zhang L, Qi R, Chen R, Lin L, Han Q, Lin Y, Chen T, He P, Ma J, Fu R, Hong J, Wu Q, Yu H, Chen J, Huang C, Zhang T, Yuan Q, Zhang J, Chen Y, Xia N. The potential of swine pseudorabies virus attenuated vaccine for oncolytic therapy against malignant tumors. J Exp Clin Cancer Res 2023; 42:284. [PMID: 37891570 PMCID: PMC10604416 DOI: 10.1186/s13046-023-02848-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 10/01/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND Oncolytic viruses are now well recognized as potential immunotherapeutic agents against cancer. However, the first FDA-approved oncolytic herpes simplex virus 1 (HSV-1), T-VEC, showed limited benefits in some patients in clinical trials. Thus, the identification of novel oncolytic viruses that can strengthen oncolytic virus therapy is warranted. Here, we identified a live-attenuated swine pseudorabies virus (PRV-LAV) as a promising oncolytic agent with broad-spectrum antitumor activity in vitro and in vivo. METHODS PRV cytotoxicity against tumor cells and normal cells was tested in vitro using a CCK8 cell viability assay. A cell kinase inhibitor library was used to screen for key targets that affect the proliferation of PRV-LAV. The potential therapeutic efficacy of PRV-LAV was tested against syngeneic tumors in immunocompetent mice, and against subcutaneous xenografts of human cancer cell lines in nude mice. Cytometry by time of flight (CyTOF) and flow cytometry were used to uncover the immunological mechanism of PRV-LAV treatment in regulating the tumor immune microenvironment. RESULTS Through various tumor-specific analyses, we show that PRV-LAV infects cancer cells via the NRP1/EGFR signaling pathway, which is commonly overexpressed in cancer. Further, we show that PRV-LAV kills cancer cells by inducing endoplasmic reticulum (ER) stress. Moreover, PRV-LAV is responsible for reprogramming the tumor microenvironment from immunologically naïve ("cold") to inflamed ("hot"), thereby increasing immune cell infiltration and restoring CD8+ T cell function against cancer. When delivered in combination with immune checkpoint inhibitors (ICIs), the anti-tumor response is augmented, suggestive of synergistic activity. CONCLUSIONS PRV-LAV can infect cancer cells via NRP1/EGFR signaling and induce cancer cells apoptosis via ER stress. PRV-LAV treatment also restores CD8+ T cell function against cancer. The combination of PRV-LAV and immune checkpoint inhibitors has a significant synergistic effect. Overall, these findings point to PRV-LAV as a serious potential candidate for the treatment of NRP1/EGFR pathway-associated tumors.
Collapse
Affiliation(s)
- Guosong Wang
- State Key Laboratory of Vaccines for Infectious Diseases, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic ProductsNational Innovation Platform for Industry-Education Intergration in Vaccine ResearchSchool of Life Sciences, School of Public Health, Xiang An Biomedicine Laboratory, Xiamen University, Xiamen, People's Republic of China
| | - Jiali Cao
- Department of Laboratory Medicine, Fujian Key Clinical Specialty of Laboratory Medicine, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, People's Republic of China
| | - Mengxuan Gui
- State Key Laboratory of Vaccines for Infectious Diseases, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic ProductsNational Innovation Platform for Industry-Education Intergration in Vaccine ResearchSchool of Life Sciences, School of Public Health, Xiang An Biomedicine Laboratory, Xiamen University, Xiamen, People's Republic of China
| | - Pengfei Huang
- State Key Laboratory of Vaccines for Infectious Diseases, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic ProductsNational Innovation Platform for Industry-Education Intergration in Vaccine ResearchSchool of Life Sciences, School of Public Health, Xiang An Biomedicine Laboratory, Xiamen University, Xiamen, People's Republic of China
| | - Liang Zhang
- State Key Laboratory of Vaccines for Infectious Diseases, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic ProductsNational Innovation Platform for Industry-Education Intergration in Vaccine ResearchSchool of Life Sciences, School of Public Health, Xiang An Biomedicine Laboratory, Xiamen University, Xiamen, People's Republic of China
| | - Ruoyao Qi
- State Key Laboratory of Vaccines for Infectious Diseases, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic ProductsNational Innovation Platform for Industry-Education Intergration in Vaccine ResearchSchool of Life Sciences, School of Public Health, Xiang An Biomedicine Laboratory, Xiamen University, Xiamen, People's Republic of China
| | - Ruiqi Chen
- State Key Laboratory of Vaccines for Infectious Diseases, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic ProductsNational Innovation Platform for Industry-Education Intergration in Vaccine ResearchSchool of Life Sciences, School of Public Health, Xiang An Biomedicine Laboratory, Xiamen University, Xiamen, People's Republic of China
| | - Lina Lin
- State Key Laboratory of Vaccines for Infectious Diseases, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic ProductsNational Innovation Platform for Industry-Education Intergration in Vaccine ResearchSchool of Life Sciences, School of Public Health, Xiang An Biomedicine Laboratory, Xiamen University, Xiamen, People's Republic of China
| | - Qiangyuan Han
- State Key Laboratory of Vaccines for Infectious Diseases, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic ProductsNational Innovation Platform for Industry-Education Intergration in Vaccine ResearchSchool of Life Sciences, School of Public Health, Xiang An Biomedicine Laboratory, Xiamen University, Xiamen, People's Republic of China
| | - Yanhua Lin
- State Key Laboratory of Vaccines for Infectious Diseases, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic ProductsNational Innovation Platform for Industry-Education Intergration in Vaccine ResearchSchool of Life Sciences, School of Public Health, Xiang An Biomedicine Laboratory, Xiamen University, Xiamen, People's Republic of China
| | - Tian Chen
- State Key Laboratory of Vaccines for Infectious Diseases, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic ProductsNational Innovation Platform for Industry-Education Intergration in Vaccine ResearchSchool of Life Sciences, School of Public Health, Xiang An Biomedicine Laboratory, Xiamen University, Xiamen, People's Republic of China
| | - Peiqing He
- State Key Laboratory of Vaccines for Infectious Diseases, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic ProductsNational Innovation Platform for Industry-Education Intergration in Vaccine ResearchSchool of Life Sciences, School of Public Health, Xiang An Biomedicine Laboratory, Xiamen University, Xiamen, People's Republic of China
| | - Jian Ma
- State Key Laboratory of Vaccines for Infectious Diseases, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic ProductsNational Innovation Platform for Industry-Education Intergration in Vaccine ResearchSchool of Life Sciences, School of Public Health, Xiang An Biomedicine Laboratory, Xiamen University, Xiamen, People's Republic of China
| | - Rao Fu
- State Key Laboratory of Vaccines for Infectious Diseases, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic ProductsNational Innovation Platform for Industry-Education Intergration in Vaccine ResearchSchool of Life Sciences, School of Public Health, Xiang An Biomedicine Laboratory, Xiamen University, Xiamen, People's Republic of China
| | - Junping Hong
- State Key Laboratory of Vaccines for Infectious Diseases, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic ProductsNational Innovation Platform for Industry-Education Intergration in Vaccine ResearchSchool of Life Sciences, School of Public Health, Xiang An Biomedicine Laboratory, Xiamen University, Xiamen, People's Republic of China
| | - Qian Wu
- State Key Laboratory of Vaccines for Infectious Diseases, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic ProductsNational Innovation Platform for Industry-Education Intergration in Vaccine ResearchSchool of Life Sciences, School of Public Health, Xiang An Biomedicine Laboratory, Xiamen University, Xiamen, People's Republic of China
| | - Hai Yu
- State Key Laboratory of Vaccines for Infectious Diseases, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic ProductsNational Innovation Platform for Industry-Education Intergration in Vaccine ResearchSchool of Life Sciences, School of Public Health, Xiang An Biomedicine Laboratory, Xiamen University, Xiamen, People's Republic of China
| | - Junyu Chen
- State Key Laboratory of Vaccines for Infectious Diseases, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic ProductsNational Innovation Platform for Industry-Education Intergration in Vaccine ResearchSchool of Life Sciences, School of Public Health, Xiang An Biomedicine Laboratory, Xiamen University, Xiamen, People's Republic of China
| | - Chenghao Huang
- State Key Laboratory of Vaccines for Infectious Diseases, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic ProductsNational Innovation Platform for Industry-Education Intergration in Vaccine ResearchSchool of Life Sciences, School of Public Health, Xiang An Biomedicine Laboratory, Xiamen University, Xiamen, People's Republic of China.
| | - Tianying Zhang
- State Key Laboratory of Vaccines for Infectious Diseases, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic ProductsNational Innovation Platform for Industry-Education Intergration in Vaccine ResearchSchool of Life Sciences, School of Public Health, Xiang An Biomedicine Laboratory, Xiamen University, Xiamen, People's Republic of China.
| | - Quan Yuan
- State Key Laboratory of Vaccines for Infectious Diseases, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic ProductsNational Innovation Platform for Industry-Education Intergration in Vaccine ResearchSchool of Life Sciences, School of Public Health, Xiang An Biomedicine Laboratory, Xiamen University, Xiamen, People's Republic of China.
| | - Jun Zhang
- State Key Laboratory of Vaccines for Infectious Diseases, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic ProductsNational Innovation Platform for Industry-Education Intergration in Vaccine ResearchSchool of Life Sciences, School of Public Health, Xiang An Biomedicine Laboratory, Xiamen University, Xiamen, People's Republic of China.
| | - Yixin Chen
- State Key Laboratory of Vaccines for Infectious Diseases, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic ProductsNational Innovation Platform for Industry-Education Intergration in Vaccine ResearchSchool of Life Sciences, School of Public Health, Xiang An Biomedicine Laboratory, Xiamen University, Xiamen, People's Republic of China.
| | - Ningshao Xia
- State Key Laboratory of Vaccines for Infectious Diseases, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic ProductsNational Innovation Platform for Industry-Education Intergration in Vaccine ResearchSchool of Life Sciences, School of Public Health, Xiang An Biomedicine Laboratory, Xiamen University, Xiamen, People's Republic of China.
| |
Collapse
|
8
|
Ye N, Feng W, Fu T, Tang D, Zeng Z, Wang B. Membrane fusion, potential threats, and natural antiviral drugs of pseudorabies virus. Vet Res 2023; 54:39. [PMID: 37131259 PMCID: PMC10152797 DOI: 10.1186/s13567-023-01171-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 04/04/2023] [Indexed: 05/04/2023] Open
Abstract
Pseudorabies virus (PrV) can infect several animals and causes severe economic losses in the swine industry. Recently, human encephalitis or endophthalmitis caused by PrV infection has been frequently reported in China. Thus, PrV can infect animals and is becoming a potential threat to human health. Although vaccines and drugs are the main strategies to prevent and treat PrV outbreaks, there is no specific drug, and the emergence of new PrV variants has reduced the effectiveness of classical vaccines. Therefore, it is challenging to eradicate PrV. In the present review, the membrane fusion process of PrV entering target cells, which is conducive to revealing new therapeutic and vaccine strategies for PrV, is presented and discussed. The current and potential PrV pathways of infection in humans are analyzed, and it is hypothesized that PrV may become a zoonotic agent. The efficacy of chemically synthesized drugs for treating PrV infections in animals and humans is unsatisfactory. In contrast, multiple extracts of traditional Chinese medicine (TCM) have shown anti-PRV activity, exerting its effects in different phases of the PrV life-cycle and suggesting that TCM compounds may have great potential against PrV. Overall, this review provides insights into developing effective anti-PrV drugs and emphasizes that human PrV infection should receive more attention.
Collapse
Affiliation(s)
- Ni Ye
- College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Wei Feng
- College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Tiantian Fu
- College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Deyuan Tang
- College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Zhiyong Zeng
- College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Bin Wang
- College of Animal Science, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
9
|
Zhou M, Abid M, Cao S, Zhu S. Recombinant Pseudorabies Virus Usage in Vaccine Development against Swine Infectious Disease. Viruses 2023; 15:v15020370. [PMID: 36851584 PMCID: PMC9962541 DOI: 10.3390/v15020370] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 02/03/2023] Open
Abstract
Pseudorabies virus (PRV) is the pathogen of pseudorabies (PR), which belongs to the alpha herpesvirus subfamily with a double stranded DNA genome encoding approximately 70 proteins. PRV has many non-essential regions for replication, has a strong capacity to accommodate foreign genes, and more areas for genetic modification. PRV is an ideal vaccine vector, and multivalent live virus-vectored vaccines can be developed using the gene-deleted PRV. The immune system continues to be stimulated by the gene-deleted PRVs and maintain a long immunity lasting more than 4 months. Here, we provide a brief overview of the biology of PRV, recombinant PRV construction methodology, the technology platform for efficiently constructing recombinant PRV, and the applications of recombinant PRV in vaccine development. This review summarizes the latest information on PRV usage in vaccine development against swine infectious diseases, and it offers novel perspectives for advancing preventive medicine through vaccinology.
Collapse
Affiliation(s)
- Mo Zhou
- Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Engineering Technology Research Center for Modern Animal Science and Novel Veterinary Pharmaceutic Development, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225306, China
| | - Muhammad Abid
- Viral Oncogenesis Group, The Pirbright Institute, Ash Road Pirbright, Woking, Surrey GU24 0NF, UK
| | - Shinuo Cao
- Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Engineering Technology Research Center for Modern Animal Science and Novel Veterinary Pharmaceutic Development, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225306, China
- Correspondence: (S.C.); (S.Z.); Tel.: +86-150-0469-3053 (S.C.)
| | - Shanyuan Zhu
- Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Engineering Technology Research Center for Modern Animal Science and Novel Veterinary Pharmaceutic Development, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225306, China
- Correspondence: (S.C.); (S.Z.); Tel.: +86-150-0469-3053 (S.C.)
| |
Collapse
|
10
|
Jiang C, Ma Z, Bai J, Sun Y, Cao M, Wang X, Jiang P, Liu X. Comparison of the protective efficacy between the candidate vaccine ZJ01R carrying gE/gI/TK deletion and three commercial vaccines against an emerging pseudorabies virus variant. Vet Microbiol 2023; 276:109623. [PMID: 36495739 DOI: 10.1016/j.vetmic.2022.109623] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/20/2022] [Accepted: 12/04/2022] [Indexed: 12/12/2022]
Abstract
Pseudorabies virus (PRV) is a swine alpha-herpesvirus that mainly causes reproductive disorders in sows and neurological diseases in piglets. Vaccination is the most efficient method to prevent the disease. In China, since the emergence of PRV mutant strains in late 2011, the traditional commercial vaccines have not been providing complete protection. Our previous studies have demonstrated that PRV ZJ01 is a highly virulent strain, and its derivative, ZJ01R, which carries the gE/gI/TK gene deletion, could provide protection against the variant PRV challenge. However, the difference in immune efficacy between ZJ01R and other commercial vaccines remains unclear. In this study, the immune protection efficacy between ZJ01R and three commercial PRV vaccines (Bartha-K61, HB2000, and SA215) was evaluated in piglets. The safety of ZJ01R was shown to be equivalent to that of the three commercial vaccines. The titers of the neutralizing antibodies against the PRV classical strain LA in the four vaccine groups were similar, while the anti-PRV variant neutralizing antibody titers in the ZJ01R group were significantly higher than those in the Bartha-K61, HB2000, and SA215 strain groups. After the PRV challenge, ZJ01R, HB2000, and SA215 vaccinations could provide complete protection, whereas the Bartha-K61 vaccination could only provide 60 % protection. Importantly, the rectal viral excretion and PRV DNA loads in the lung tissues in the ZJ01R group were significantly lower than those in the Bartha-K61, HB2000, and SA215 groups. Altogether, these results indicated that ZJ01R could provide higher protection efficacy against the PRV virulent ZJ01 challenge than the three commercial PRV gene-deleted live vaccines derived from the classical vaccine strains, providing the potential to develop a new PRV vaccine to control the epidemic PRV variant strains in the future.
Collapse
Affiliation(s)
- Chenlong Jiang
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhicheng Ma
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Juan Bai
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yangyang Sun
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Mingzhu Cao
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Xianwei Wang
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Ping Jiang
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Xing Liu
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.
| |
Collapse
|
11
|
The Deletion of US3 Gene of Pseudorabies Virus (PRV) ΔgE/TK Strain Induces Increased Immunogenicity in Mice. Vaccines (Basel) 2022; 10:vaccines10101603. [DOI: 10.3390/vaccines10101603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/15/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Re-emerging pseudorabies (PR) caused by pseudorabies virus (PRV) variant has been prevailing among immunized herds in China since 2011, indicating that commercially available PR vaccine strains couldn’t provide complete protection against novel, epidemic PRV variant. Before this study, a gE/TK-gene-deleted virus (PRV ΔgE/TK) was constructed from PRV QYY2012 variant through homologous recombination and Cre/LoxP system. Here, PRV ΔgE/TK/US3 strain was generated by deleting US3 gene based on PRV ΔgE/TK strain using the same method. The growth characteristics of PRV ΔgE/TK/US3 were analogous to that of PRV ΔgE/TK. Moreover, the deletion of US3 gene could promote apoptosis, upregulate the level of swine leukocyte antigen class I molecule (SLA-I) in vitro, and relieve inflammatory response in inoculated BALB/c mice. Subsequently, the safety and immunogenicity of PRV ΔgE/TK/US3 was evaluated as a vaccine candidate in mice. The results revealed that PRV ΔgE/TK/US3 was safe for mice, and mice vaccinated with PRV ΔgE/TK/US3 could induce a higher level of PRV-specific neutralizing antibodies and cytokines, including IFN-γ, IL-2 and IL-4, also higher level of CD8+ CD69+ Tissue-Resident Memory T cells (TRM). The results show that the deletion of US3 gene of PRV ΔgE/TK strain could induce increased immunogenicity, indicating that the PRV ΔgE/TK/US3 strain is a promising vaccine candidate for preventing and controlling of the epidemic PR in China.
Collapse
|
12
|
Li L, Du Y, Zhang Y, Li P, Liu X, Zhang X, Li J, Zhang T, Li X, Xiao D, Liu P, Qi P, Xiao J. Comprehensive evaluation of the safety and immunogenicity of a gene-deleted variant pseudorabies virus attenuated vaccine. Vet Res 2022; 53:73. [PMID: 36138470 PMCID: PMC9502647 DOI: 10.1186/s13567-022-01091-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 07/12/2022] [Indexed: 11/15/2022] Open
Abstract
Pseudorabies virus (PRV) variant infections have caused a substantial economic impact on swine production in the absence of new powerful candidate vaccines. In this study, we developed and evaluated a gene-deleted variant pseudorabies virus (PRV)-attenuated vaccine, PRV GX-ΔTK/IES, in which the genes TK, gI, gE, US9 and US2 were deleted. During a study of innocuousness, all mice inoculated with PRV GX-ΔTK/IES survived, neither clinical signs nor pathological changes were observed, and viral genomes could not be detected in the blood and tissues. All piglets inoculated with high titres of PRV GX-ΔTK/IES remained clinically healthy, and neither fever nor clinical signs were observed. Viral detection results were negative in nasal swab samples, blood and tissue samples. Moreover, none of the cohabitated piglets seroconverted during a trial on horizontal transmission. The immunogenicity was assessed through a vaccination and challenge experiment in piglets. Piglets vaccinated with PRV GX-ΔTK/IES and the commercial vaccine were completely protected from subsequent PRV infection, and the level of immunity and protection induced by PRV GX-ΔTK/IES was better than that provided by the live commercial vaccine. Thus, PRV GX-ΔTK/IES is completely safe for both nontarget and target animals and can be regarded as a novel live gene-deleted PRV vaccine candidate.
Collapse
Affiliation(s)
- Ling Li
- Key Laboratory of Veterinary Bioproduction and Chemical Medicine of the Ministry of Agriculture, Engineering and Technology Research Center for Beijing Veterinary Peptide Vaccine Design and Preparation, Zhongmu Institute of China Animal Husbandry Industry, Co., Ltd., Beijing, China.
| | - Yongfeng Du
- Cahic Chengdu Machinery Factory, Chengdu, 610100, China
| | - Yanbin Zhang
- Key Laboratory of Veterinary Bioproduction and Chemical Medicine of the Ministry of Agriculture, Engineering and Technology Research Center for Beijing Veterinary Peptide Vaccine Design and Preparation, Zhongmu Institute of China Animal Husbandry Industry, Co., Ltd., Beijing, China
| | - Pengyu Li
- Key Laboratory of Veterinary Bioproduction and Chemical Medicine of the Ministry of Agriculture, Engineering and Technology Research Center for Beijing Veterinary Peptide Vaccine Design and Preparation, Zhongmu Institute of China Animal Husbandry Industry, Co., Ltd., Beijing, China
| | - Xinyue Liu
- Key Laboratory of Veterinary Bioproduction and Chemical Medicine of the Ministry of Agriculture, Engineering and Technology Research Center for Beijing Veterinary Peptide Vaccine Design and Preparation, Zhongmu Institute of China Animal Husbandry Industry, Co., Ltd., Beijing, China
| | - Xin Zhang
- Key Laboratory of Veterinary Bioproduction and Chemical Medicine of the Ministry of Agriculture, Engineering and Technology Research Center for Beijing Veterinary Peptide Vaccine Design and Preparation, Zhongmu Institute of China Animal Husbandry Industry, Co., Ltd., Beijing, China
| | - Jing Li
- Key Laboratory of Veterinary Bioproduction and Chemical Medicine of the Ministry of Agriculture, Engineering and Technology Research Center for Beijing Veterinary Peptide Vaccine Design and Preparation, Zhongmu Institute of China Animal Husbandry Industry, Co., Ltd., Beijing, China
| | - Tong Zhang
- Key Laboratory of Veterinary Bioproduction and Chemical Medicine of the Ministry of Agriculture, Engineering and Technology Research Center for Beijing Veterinary Peptide Vaccine Design and Preparation, Zhongmu Institute of China Animal Husbandry Industry, Co., Ltd., Beijing, China
| | - Xin Li
- Cahic Jiangxi Biological Pharmaceutical Factory, Nanchang, 330200, China
| | - Dong Xiao
- Cahic Jiangxi Biological Pharmaceutical Factory, Nanchang, 330200, China
| | - Peng Liu
- Animal Husbandry and Veterinary Station of Wendeng District, Shandong, 264400, Weihai, China
| | - Peng Qi
- Key Laboratory of Veterinary Bioproduction and Chemical Medicine of the Ministry of Agriculture, Engineering and Technology Research Center for Beijing Veterinary Peptide Vaccine Design and Preparation, Zhongmu Institute of China Animal Husbandry Industry, Co., Ltd., Beijing, China
| | - Jin Xiao
- Key Laboratory of Veterinary Bioproduction and Chemical Medicine of the Ministry of Agriculture, Engineering and Technology Research Center for Beijing Veterinary Peptide Vaccine Design and Preparation, Zhongmu Institute of China Animal Husbandry Industry, Co., Ltd., Beijing, China.
| |
Collapse
|
13
|
Pseudorabies Virus: From Pathogenesis to Prevention Strategies. Viruses 2022; 14:v14081638. [PMID: 36016260 PMCID: PMC9414054 DOI: 10.3390/v14081638] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/21/2022] [Accepted: 07/25/2022] [Indexed: 11/16/2022] Open
Abstract
Pseudorabies (PR), also called Aujeszky’s disease (AD), is a highly infectious viral disease which is caused by pseudorabies virus (PRV). It has been nearly 200 years since the first PR case occurred. Currently, the virus can infect human beings and various mammals, including pigs, sheep, dogs, rabbits, rodents, cattle and cats, and among them, pigs are the only natural host of PRV infection. PRV is characterized by reproductive failure in pregnant sows, nervous disorders in newborn piglets, and respiratory distress in growing pigs, resulting in serious economic losses to the pig industry worldwide. Due to the extensive application of the attenuated vaccine containing the Bartha-K61 strain, PR was well controlled. With the variation of PRV strain, PR re-emerged and rapidly spread in some countries, especially China. Although researchers have been committed to the design of diagnostic methods and the development of vaccines in recent years, PR is still an important infectious disease and is widely prevalent in the global pig industry. In this review, we introduce the structural composition and life cycle of PRV virions and then discuss the latest findings on PRV pathogenesis, following the molecular characteristic of PRV and the summary of existing diagnosis methods. Subsequently, we also focus on the latest clinical progress in the prevention and control of PRV infection via the development of vaccines, traditional herbal medicines and novel small RNAs. Lastly, we provide an outlook on PRV eradication.
Collapse
|
14
|
Yang MF, Yan W, Li Y, Li SQ, Chen HY, Yin QQ, Dang XW, Zhang HY. The Probiotic Attributes and Anti-pseudorabies Virus Evaluation of Lactobacillus Isolates. Front Vet Sci 2022; 9:902052. [PMID: 35795786 PMCID: PMC9252522 DOI: 10.3389/fvets.2022.902052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
The emergence of pseudorabies virus (PRV) variants brings serious harm to the swine industry, and its effective treatments are limited at present. As one of the probiotics, the Lactobacillus species have beneficial characteristics of regulating the balance of intestinal flora, inhibiting the growth of pathogenic bacteria and viruses' proliferation, and improving self-immunity. In this study, Lactobacillus plantarum HN-11 and Lactobacillus casei HN-12 were selected and identified through morphology observation, Gram stain microscopy, 16S rRNA sequencing analysis, and specific amplification of the recA gene and pheS gene. All tested isolates exhibited rapid adaptation to the different conditions, excellent acid, and bile tolerance, and sensitivity to Salmonella, Staphylococcus aureus, and Escherichia coli. The antibiotic susceptibility assay displayed the isolates sensitive to most antibiotics and resistant to Lincomycin and Norfloxacin. Moreover, the supernatants of HN-11 and HN-12 inhibited PRV proliferation in ST cells. The results of animal experiments showed that supplementing the challenged mice with the supernatants of Lactobacillus isolates in advance delayed the course of the disease. PRV was detected in the heart, liver, spleen, lung, kidney, and brain tissues of dead mice in the test groups, and its copies in the lungs were significantly decreased compared with the control mice (P < 0.05). These findings proved the advantages of L. plantarum and L. casei as potential probiotic cultures, which could provide a basis for its application in microecological preparations and functional formulations.
Collapse
Affiliation(s)
- Ming-Fan Yang
- Zhengzhou Key Laboratory for Pig Disease Prevention and Control, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Wei Yan
- Zhengzhou Key Laboratory for Pig Disease Prevention and Control, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Yan Li
- Zhengzhou Key Laboratory for Pig Disease Prevention and Control, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Shuai-Qi Li
- Zhengzhou Key Laboratory for Pig Disease Prevention and Control, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Hong-Ying Chen
- Zhengzhou Key Laboratory for Pig Disease Prevention and Control, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Qing-Qiang Yin
- Zhengzhou Key Laboratory for Pig Disease Prevention and Control, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Xiao-Wei Dang
- Henan Delin Biological Products Co., Ltd., Zhengzhou, China
| | - Hong-Ying Zhang
- Zhengzhou Key Laboratory for Pig Disease Prevention and Control, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
- *Correspondence: Hong-Ying Zhang
| |
Collapse
|
15
|
A Review of Pseudorabies Virus Variants: Genomics, Vaccination, Transmission, and Zoonotic Potential. Viruses 2022; 14:v14051003. [PMID: 35632745 PMCID: PMC9144770 DOI: 10.3390/v14051003] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/05/2022] [Accepted: 05/05/2022] [Indexed: 12/16/2022] Open
Abstract
Pseudorabies virus (PRV), the causative agent of Aujeszky’s disease, has a broad host range including most mammals and avian species. In 2011, a PRV variant emerged in many Bartha K61-vaccinated pig herds in China and has attracted more and more attention due to its serious threat to domestic and wild animals, and even human beings. The PRV variant has been spreading in China for more than 10 years, and considerable research progresses about its molecular biology, pathogenesis, transmission, and host–virus interactions have been made. This review is mainly organized into four sections including outbreak and genomic evolution characteristics of PRV variants, progresses of PRV variant vaccine development, the pathogenicity and transmission of PRV variants among different species of animals, and the zoonotic potential of PRV variants. Considering PRV has caused a huge economic loss of animals and is a potential threat to public health, it is necessary to extensively explore the mechanisms involved in its replication, pathogenesis, and transmission in order to ultimately eradicate it in China.
Collapse
|
16
|
Sun Y, Zhao L, Fu ZF. Effective Cross-protection of a lyophilized live gE/gI/TK-deleted pseudorabies virus (PRV) vaccine against classical and variant PRV challenges. Vet Microbiol 2022; 267:109387. [PMID: 35276621 DOI: 10.1016/j.vetmic.2022.109387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/18/2022] [Accepted: 02/27/2022] [Indexed: 10/19/2022]
|
17
|
Choudhury SM, Ma X, Dang W, Li Y, Zheng H. Recent Development of Ruminant Vaccine Against Viral Diseases. Front Vet Sci 2021; 8:697194. [PMID: 34805327 PMCID: PMC8595237 DOI: 10.3389/fvets.2021.697194] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 10/04/2021] [Indexed: 01/21/2023] Open
Abstract
Pathogens of viral origin produce a large variety of infectious diseases in livestock. It is essential to establish the best practices in animal care and an efficient way to stop and prevent infectious diseases that impact animal husbandry. So far, the greatest way to combat the disease is to adopt a vaccine policy. In the fight against infectious diseases, vaccines are very popular. Vaccination's fundamental concept is to utilize particular antigens, either endogenous or exogenous to induce immunity against the antigens or cells. In light of how past emerging and reemerging infectious diseases and pandemics were handled, examining the vaccination methods and technological platforms utilized for the animals may provide some useful insights. New vaccine manufacturing methods have evolved because of developments in technology and medicine and our broad knowledge of immunology, molecular biology, microbiology, and biochemistry, among other basic science disciplines. Genetic engineering, proteomics, and other advanced technologies have aided in implementing novel vaccine theories, resulting in the discovery of new ruminant vaccines and the improvement of existing ones. Subunit vaccines, recombinant vaccines, DNA vaccines, and vectored vaccines are increasingly gaining scientific and public attention as the next generation of vaccines and are being seen as viable replacements to conventional vaccines. The current review looks at the effects and implications of recent ruminant vaccine advances in terms of evolving microbiology, immunology, and molecular biology.
Collapse
Affiliation(s)
- Sk Mohiuddin Choudhury
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - XuSheng Ma
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Wen Dang
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - YuanYuan Li
- Gansu Agricultural University, Lanzhou, China
| | - HaiXue Zheng
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
18
|
African Swine Fever Virus Bearing an I226R Gene Deletion Elicits Robust Immunity in Pigs to African Swine Fever. J Virol 2021; 95:e0119921. [PMID: 34495696 PMCID: PMC8577359 DOI: 10.1128/jvi.01199-21] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
African swine fever (ASF) is a severe hemorrhagic infectious disease in pigs caused by African swine fever virus (ASFV), leading to devastating economic losses in epidemic regions. Its control currently depends on thorough culling and clearance of the diseased and surrounding suspected pigs. An ASF vaccine has been extensively explored for years worldwide, especially in hog-intensive areas where it is highly desired, but it is still unavailable for numerous reasons. Here, we report another ASF vaccine candidate, named SY18ΔI226R, bearing a deletion of the I226R gene with a replacement of an enhanced green fluorescent protein (eGFP) expression cassette at the right end of the viral genome. This deletion results in the complete loss of virulence of SY18 as the gene-deleted strain does not cause any clinical symptoms in all pigs inoculated with a dosage of either 104.0 or 107.0 50% tissue culture infective doses (TCID50). Apparent viremia with a gradual decline was monitored, while virus shedding was detected only occasionally in oral or anal swabs. ASFV-specific antibody appeared at 9 days postinoculation. After intramuscular challenge with its parental strain ASFV SY18 at 21 days postinoculation, all the challenged pigs survived, without obvious febrile or abnormal clinical signs. No viral DNA could be detected upon the dissection of any tissue when viremia disappeared. These results indicated that SY18ΔI226R is safe in swine and elicits robust immunity to virulent ASFV infection. IMPORTANCE Outbreaks of African swine fever have resulted in devastating losses to the swine industry worldwide, but there is currently no commercial vaccine available. Although several vaccine candidates have been reported, none has been approved for use for several reasons, especially ones concerning biosafety. Here, we identified a new undescribed functional gene, I226R. When deleted from the ASFV genome, the virus completely loses its virulence in swine. Importantly, pigs infected with this gene-deleted virus were resistant to infection by intramuscular challenge with 102.5 or 104.0 TCID50 of its virulent parental virus. Furthermore, the nucleic acid of the gene-deleted virus and its virulent parental virus was rarely detected from oral or anal swabs. Viruses could not be detected in any tissues after necropsy when viremia became negative, indicating that robust immunity was achieved. Therefore, SY18ΔI226R is a novel, ideal, and efficacious vaccine candidate for genotype II ASF.
Collapse
|
19
|
Li L, Wang R, Hu H, Chen X, Yin Z, Liang X, He C, Yin L, Ye G, Zou Y, Yue G, Tang H, Jia R, Song X. The antiviral activity of kaempferol against pseudorabies virus in mice. BMC Vet Res 2021; 17:247. [PMID: 34275451 PMCID: PMC8287772 DOI: 10.1186/s12917-021-02953-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 06/28/2021] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Pseudorabies virus (PRV), a member of the Alphaherpesviruses, is one of the most important pathogens that harm the global pig industry. Accumulated evidence indicated that PRV could infect humans under certain circumstances, inducing severe clinical symptoms such as acute human encephalitis. Currently, there are no antiviral drugs to treat PRV infections, and vaccines available only for swine could not provide full protection. Thus, new control measures are urgently needed. RESULTS In the present study, kaempferol exhibited anti-PRV activity in mice through improving survival rate by 22.22 %, which was higher than acyclovir (Positive control) with the survival rate of 16.67 % at 6 days post infection (dpi); meanwhile, the survival rate was 0 % at 6 dpi in the infected-untreated group. Kaempferol could inhibit the virus replication in the brain, lung, kidney, heart and spleen, especially the viral gene copies were reduced by over 700-fold in the brain, which was further confirmed by immunohistochemical examination. The pathogenic changes induced by PRV infection in these organs were also alleviated. The transcription of the only immediate-early gene IE180 in the brain was significantly inhibited by kaempferol, leading to the decreased transcriptional levels of the early genes (EPO and TK). The expression of latency-associated transcript (LAT) was also inhibited in the brain, which suggested that kaempferol could inhibit PRV latency. Kaempferol-treatment could induce higher levels of IL-1β, IL-4, IL-6, TNF-α and IFN-γ in the serum at 3 dpi which were then declined to normal levels at 5 dpi. CONCLUSIONS These results suggested that kaempferol was expected to be a new alternative control measure for PRV infection.
Collapse
Affiliation(s)
- Lixia Li
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, 611130, Chengdu, China
| | - Rui Wang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, 611130, Chengdu, China
| | - Huaiyue Hu
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, 611130, Chengdu, China
| | - Xu Chen
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, 611130, Chengdu, China
| | - Zhongqiong Yin
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, 611130, Chengdu, China
| | - Xiaoxia Liang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, 611130, Chengdu, China
| | - Changliang He
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, 611130, Chengdu, China
| | - Lizi Yin
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, 611130, Chengdu, China
| | - Gang Ye
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, 611130, Chengdu, China
| | - Yuanfeng Zou
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, 611130, Chengdu, China
| | - Guizhou Yue
- College of Science, Sichuan Agricultural University, 625014, Ya'an, China
| | - Huaqiao Tang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, 611130, Chengdu, China
| | - Renyong Jia
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, 611130, Chengdu, China
| | - Xu Song
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, 611130, Chengdu, China.
| |
Collapse
|
20
|
Tan L, Yao J, Yang Y, Luo W, Yuan X, Yang L, Wang A. Current Status and Challenge of Pseudorabies Virus Infection in China. Virol Sin 2021; 36:588-607. [PMID: 33616892 PMCID: PMC7897889 DOI: 10.1007/s12250-020-00340-0] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 09/17/2020] [Indexed: 12/12/2022] Open
Abstract
Pseudorabies (PR), also called Aujeszky’s disease, is a highly infectious disease caused by pseudorabies virus (PRV). Without specific host tropism, PRV can infect a wide variety of mammals, including pig, sheep, cattle, etc., thereby causing severe clinical symptoms and acute death. PRV was firstly reported in China in 1950s, while outbreaks of emerging PRV variants have been documented in partial regions since 2011, leading to significant economic losses in swine industry. Although scientists have been devoting to the design of diagnostic approaches and the development of vaccines during the past years, PR remains a vital infectious disease widely prevalent in Chinese pig industry. Especially, its potential threat to human health has also attracted the worldwide attention. In this review, we will provide a summary of current understanding of PRV in China, mainly focusing on PRV history, the existing diagnosis methods, PRV prevalence in pig population and other susceptible mammals, molecular characteristics, and the available vaccines against its infection. Additionally, promising agents including traditional Chinese herbal medicines and novel inhibitors that may be employed to treat this viral infection, are also discussed.
Collapse
Affiliation(s)
- Lei Tan
- Laboratory of Animal Disease Prevention and Control and Animal Model, Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University (HUNAU), Changsha, 410128, China
| | - Jun Yao
- Yunnan Tropical and Subtropical Animal Virus Diseases Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming, 650224, China
| | - Yadi Yang
- Laboratory of Animal Disease Prevention and Control and Animal Model, Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University (HUNAU), Changsha, 410128, China
| | - Wei Luo
- Department of Animal Science and Technology, Huaihua Vocational and Technical College, Huaihua, 418000, China
| | - Xiaomin Yuan
- Laboratory of Animal Disease Prevention and Control and Animal Model, Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University (HUNAU), Changsha, 410128, China
| | - Lingchen Yang
- Laboratory of Animal Disease Prevention and Control and Animal Model, Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University (HUNAU), Changsha, 410128, China.
| | - Aibing Wang
- Laboratory of Animal Disease Prevention and Control and Animal Model, Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University (HUNAU), Changsha, 410128, China.
- PCB Biotechnology LLC, Rockville, MD, 20852, USA.
| |
Collapse
|