1
|
Iwaide S, Murakami T, Sedghi Masoud N, Kobayashi N, Fortin JS, Miyahara H, Higuchi K, Chambers JK. Classification of amyloidosis and protein misfolding disorders in animals 2024: A review on pathology and diagnosis. Vet Pathol 2025; 62:117-138. [PMID: 39389927 DOI: 10.1177/03009858241283750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Amyloidosis is a group of diseases in which proteins become amyloid, an insoluble fibrillar aggregate, resulting in organ dysfunction. Amyloid deposition has been reported in various animal species. To diagnose and understand the pathogenesis of amyloidosis, it is important to identify the amyloid precursor protein involved in each disease. Although 42 amyloid precursor proteins have been reported in humans, little is known about amyloidosis in animals, except for a few well-described amyloid proteins, including amyloid A (AA), amyloid light chain (AL), amyloid β (Aβ), and islet amyloid polypeptide-derived amyloid. Recently, several types of novel amyloidosis have been identified in animals using immunohistochemistry and mass spectrometry-based proteomic analysis. Certain species are predisposed to specific types of amyloidosis, suggesting a genetic background for its pathogenesis. Age-related amyloidosis has also emerged due to the increased longevity of captive animals. In addition, experimental studies have shown that some amyloids may be transmissible. Accurate diagnosis and understanding of animal amyloidosis are necessary for appropriate therapeutic intervention and comparative pathological studies. This review provides an updated classification of animal amyloidosis, including associated protein misfolding disorders of the central nervous system, and the current understanding of their pathogenesis. Pathologic features are presented together with state-of-the-art diagnostic methods that can be applied for routine diagnosis and identification of novel amyloid proteins in animals.
Collapse
Affiliation(s)
- Susumu Iwaide
- Tokyo University of Agriculture and Technology, Fuchu-shi, Japan
| | - Tomoaki Murakami
- Tokyo University of Agriculture and Technology, Fuchu-shi, Japan
| | | | | | | | | | - Keiichi Higuchi
- Shinshu University, Matsumoto, Japan
- Meio University, Nago, Japan
| | | |
Collapse
|
2
|
Ferrer I. Alzheimer's Disease Neuropathological Change in Aged Non-Primate Mammals. Int J Mol Sci 2024; 25:8118. [PMID: 39125687 PMCID: PMC11311584 DOI: 10.3390/ijms25158118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/18/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Human brain aging is characterized by the production and deposition of β-amyloid (Aβ) in the form of senile plaques and cerebral amyloid angiopathy and the intracellular accumulation of hyper-phosphorylated tau (Hp-tau) to form neurofibrillary tangles (NFTs) and dystrophic neurites of senile plaques. The process progresses for years and eventually manifests as cognitive impairment and dementia in a subgroup of aged individuals. Aβ is produced and deposited first in the neocortex in most aged mammals, including humans; it is usually not accompanied by altered behavior and cognitive impairment. Hp-tau is less frequent than Aβ pathology, and NFTs are rare in most mammals. In contrast, NFTs are familiar from middle age onward in humans; NFTs first appear in the paleocortex and selected brain stem nuclei. NFTs precede for decades or years Aβ deposition and correlate with dementia in about 5% of individuals at the age of 65 and 25% at the age of 85. Based on these comparative data, (a) Aβ deposition is the most common Alzheimer's disease neuropathological change (ADNC) in the brain of aged mammals; (b) Hp-tau is less common, and NFTs are rare in most aged mammals; however, NFTs are the principal cytoskeletal pathology in aged humans; (c) NFT in aged humans starts in selected nuclei of the brain stem and paleocortical brain regions progressing to the most parts of the neocortex and other regions of the telencephalon; (d) human brain aging is unique among mammalian species due to the early appearance and dramatic progression of NFTs from middle age onward, matching with cognitive impairment and dementia in advanced cases; (e) neither mammalian nor human brain aging supports the concept of the amyloid cascade hypothesis.
Collapse
Affiliation(s)
- Isidro Ferrer
- Department of Pathology and Experimental Therapeutics, University of Barcelona, carrer Feixa Llarga sn, 08907 Hospitalet de Llobregat, Spain;
- Reial Acadèmia de Medicina de Catalunya, carrer del Carme 47, 08001 Barcelona, Spain
| |
Collapse
|
3
|
IWAIDE S, NAKAYAMA Y, CHAMBERS JK, UCHIDA K, NAKAGAWA D, YAMANASHI Y, BANDO H, MURAKAMI T. Senile plaques and phosphorylated tau deposition in a super-aged rhesus monkey (Macaca mulatta). J Vet Med Sci 2023; 85:1296-1300. [PMID: 37821381 PMCID: PMC10788178 DOI: 10.1292/jvms.23-0313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/01/2023] [Indexed: 10/13/2023] Open
Abstract
The brain of a rhesus monkey that died at 43 years of age with symptoms of suspected cognitive dysfunction was analyzed. pathological analyses revealed characteristic Alzheimer's disease-related lesions: the aggregation of amyloid β (Aβ) in the form of senile plaques and phosphorylated tau proteins. We also revealed that Aβ43, which is prone to aggregation and toxicity in humans, is involved in senile plaques in the brain of the rhesus monkey, as well as several other Aβ species. Comparative studies of neuropathology using aged nonhuman primates lack behavioral descriptions compared to human medicine. This case report showed behavioral abnormalities and the detailed pathological changes that may have caused it in a super-aged rhesus monkey.
Collapse
Affiliation(s)
- Susumu IWAIDE
- Laboratory of Veterinary Toxicology, Tokyo University of
Agriculture and Technology, Tokyo, Japan
| | - Yutaro NAKAYAMA
- Laboratory of Veterinary Pathology, The University of Tokyo,
Tokyo, Japan
| | - James K CHAMBERS
- Laboratory of Veterinary Pathology, The University of Tokyo,
Tokyo, Japan
| | - Kazuyuki UCHIDA
- Laboratory of Veterinary Pathology, The University of Tokyo,
Tokyo, Japan
| | | | | | | | - Tomoaki MURAKAMI
- Laboratory of Veterinary Toxicology, Tokyo University of
Agriculture and Technology, Tokyo, Japan
| |
Collapse
|
4
|
Apostolopoulou EP, Raikos N, Vlemmas I, Michaelidis E, Brellou GD. Metallothionein I/II Expression and Metal Ion Levels in Correlation with Amyloid Beta Deposits in the Aged Feline Brain. Brain Sci 2023; 13:1115. [PMID: 37509045 PMCID: PMC10377600 DOI: 10.3390/brainsci13071115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/13/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
Brain aging has been correlated with high metallothionein I-II (MT-I/II) expression, iron and zinc dyshomeostasis, and Aβ deposition in humans and experimental animals. In the present study, iron and zinc accumulation, the expression of MT-I/II and Aβ42, and their potential association with aging in the feline brain were assessed. Tissue sections from the temporal and frontal grey (GM) and white (WM) matter, hippocampus, thalamus, striatum, cerebellum, and dentate nucleus were examined histochemically for the presence of age-related histopathological lesions and iron deposits and distribution. We found, using a modified Perl's/DAB method, two types of iron plaques that showed age-dependent accumulation in the temporal GM and WM and the thalamus, along with the age-dependent increment in cerebellar-myelin-associated iron. We also demonstrated an age-dependent increase in MT-I/II immunoreactivity in the feline brain. In cats over 7 years old, Aβ immunoreactivity was detected in vessel walls and neuronal somata; extracellular Aβ deposits were also evident. Interestingly, Aβ-positive astrocytes were also observed in certain cases. ICP-MS analysis of brain content regarding iron and zinc concentrations showed no statistically significant association with age, but a mild increase in iron with age was noticed, while zinc levels were found to be higher in the Mature and Senior groups. Our findings reinforce the suggestion that cats could serve as a dependable natural animal model for brain aging and neurodegeneration; thus, they should be further investigated on the basis of metal ion concentration changes and their effects on aging.
Collapse
Affiliation(s)
- Emmanouela P Apostolopoulou
- Department of Pathology, Faculty of Health Sciences, School of Veterinary Medicine, Aristotle University of Thessaloniki, 54627 Thessaloniki, Greece
| | - Nikolaos Raikos
- Department of Forensic Medicine & Toxicology, Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Ioannis Vlemmas
- Department of Pathology, Faculty of Health Sciences, School of Veterinary Medicine, Aristotle University of Thessaloniki, 54627 Thessaloniki, Greece
| | - Efstratios Michaelidis
- Laboratories of the 3rd Army Veterinary Hospital, Chemical Department, 57001 Thessaloniki, Greece
| | - Georgia D Brellou
- Department of Pathology, Faculty of Health Sciences, School of Veterinary Medicine, Aristotle University of Thessaloniki, 54627 Thessaloniki, Greece
| |
Collapse
|
5
|
de Sousa AA, Rigby Dames BA, Graff EC, Mohamedelhassan R, Vassilopoulos T, Charvet CJ. Going beyond established model systems of Alzheimer's disease: companion animals provide novel insights into the neurobiology of aging. Commun Biol 2023; 6:655. [PMID: 37344566 PMCID: PMC10284893 DOI: 10.1038/s42003-023-05034-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 06/12/2023] [Indexed: 06/23/2023] Open
Abstract
Alzheimer's disease (AD) is characterized by brain plaques, tangles, and cognitive impairment. AD is one of the most common age-related dementias in humans. Progress in characterizing AD and other age-related disorders is hindered by a perceived dearth of animal models that naturally reproduce diseases observed in humans. Mice and nonhuman primates are model systems used to understand human diseases. Still, these model systems lack many of the biological characteristics of Alzheimer-like diseases (e.g., plaques, tangles) as they grow older. In contrast, companion animal models (cats and dogs) age in ways that resemble humans. Both companion animal models and humans show evidence of brain atrophy, plaques, and tangles, as well as cognitive decline with age. We embrace a One Health perspective, which recognizes that the health of humans is connected to those of animals, and we illustrate how such a perspective can work synergistically to enhance human and animal health. A comparative biology perspective is ideally suited to integrate insights across veterinary and human medical disciplines and solve long-standing problems in aging.
Collapse
Affiliation(s)
- Alexandra A de Sousa
- Centre for Health and Cognition, Bath Spa University, Bath, UK
- Department of Psychology, University of Bath, Bath, UK
| | - Brier A Rigby Dames
- Department of Psychology, University of Bath, Bath, UK
- Department of Computer Science, University of Bath, Bath, UK
- Department of Biology and Biochemistry, Milner Centre for Evolution, University of Bath, Bath, UK
| | - Emily C Graff
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Rania Mohamedelhassan
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Tatianna Vassilopoulos
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Christine J Charvet
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA.
| |
Collapse
|