1
|
Poonsin P, Wiwatvisawakorn V, Chansaenroj J, Poovorawan Y, Piewbang C, Techangamsuwan S. Canine respiratory coronavirus in Thailand undergoes mutation and evidences a potential putative parent for genetic recombination. Microbiol Spectr 2023; 11:e0226823. [PMID: 37707446 PMCID: PMC10581155 DOI: 10.1128/spectrum.02268-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 07/27/2023] [Indexed: 09/15/2023] Open
Abstract
Canine respiratory coronavirus (CRCoV) is associated with canine infectious respiratory disease complex. Although its detection has been reported worldwide, the genomic characteristics and evolutionary patterns of this virus remain poorly defined. In this study, 21 CRCoV sequences obtained from dogs in Thailand during two episodes (2013-2015, group A; 2021-2022, group B) were characterized and analyzed. The genomic characteristics of Thai CRCoVs changed from 2013 to 2022 and showed a distinct phylogenetic cluster. Phylogenetic analysis of the spike (S) genes divided the analyzed CRCoV strains into five clades. The full-length genome characterization revealed that all Thai CRCoVs possessed a nonsense mutation within the nonstructural gene located between the S and envelope genes, leading to a truncated putative nonstructural protein. Group B Thai CRCoV strains represented the signature nonsynonymous mutations in the S gene that was not identified in group A Thai CRCoVs, suggesting the ongoing evolutionary process of Thai CRCoVs. Although no evidence of recombination of Thai CRCoV strains was found, our analysis identified one Thai CRCoV strain as a potential parent virus for a CRCoV strain found in the United States. Selective pressure analysis of the hypervariable S region indicated that the CRCoV had undergone purifying selection during evolution. Evolutionary analysis suggested that the CRCoV was emerged in 1992 and was first introduced in Thailand in 2004, sharing a common ancestor with Korean CRCoV strains. These findings regarding the genetic characterization and evolutionary analysis of CRCoVs add to the understanding of CRCoVs. IMPORTANCE Knowledge of genomic characterization of the CRCoV is still limited and its evolution remains poorly investigated. We, therefore, investigated the full-length genome of CRCoV in Thailand for the first time and analyzed the evolutionary dynamic of CRCoV. Genomic characterization of Thai CRCoV strains revealed that they possess unique genome structures and have undergone nonsynonymous mutations, which have not been reported in previously described CRCoV strains. Our work suggests that the Thai CRCoVs were not undergone mutation through genetic recombination for their evolution. However, one Thai CRCoV strain PP158_THA_2015 was found to be a potential parent virus for the CRCoV strains found in the United States. This study provides an understanding of the genomic characterization and highlights the signature mutations and ongoing evolutionary process of CRCoV that could be crucial for monitoring in the future.
Collapse
Affiliation(s)
- Panida Poonsin
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Animal Virome and Diagnostic Development Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | | | - Jira Chansaenroj
- Department of Pediatrics, Faculty of Medicine, Center of Excellence in Clinical Virology, Chulalongkorn University, Bangkok, Thailand
| | - Yong Poovorawan
- Department of Pediatrics, Faculty of Medicine, Center of Excellence in Clinical Virology, Chulalongkorn University, Bangkok, Thailand
| | - Chutchai Piewbang
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Animal Virome and Diagnostic Development Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Somporn Techangamsuwan
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Animal Virome and Diagnostic Development Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
2
|
Stummer M, Frisch V, Glitz F, Hinney B, Spergser J, Krücken J, Diekmann I, Dimmel K, Riedel C, Cavalleri JMV, Rümenapf T, Joachim A, Lyrakis M, Auer A. Presence of Equine and Bovine Coronaviruses, Endoparasites, and Bacteria in Fecal Samples of Horses with Colic. Pathogens 2023; 12:1043. [PMID: 37624003 PMCID: PMC10458731 DOI: 10.3390/pathogens12081043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/09/2023] [Accepted: 08/11/2023] [Indexed: 08/26/2023] Open
Abstract
Acute abdominal pain (colic) is one of the major equine health threats worldwide and often necessitates intensive veterinary medical care and surgical intervention. Equine coronavirus (ECoV) infections can cause colic in horses but are rarely considered as a differential diagnosis. To determine the frequency of otherwise undetected ECoV infections in horses with acute colic, fresh fecal samples of 105 horses with acute colic and 36 healthy control horses were screened for viruses belonging to the Betacoronavirus 1 species by RT-PCR as well as for gastrointestinal helminths and bacteria commonly associated with colic. Horses with colic excreted significantly fewer strongyle eggs than horses without colic. The prevalence of anaerobic, spore-forming, gram-positive bacteria (Clostridium perfringens and Clostridioides difficile) was significantly higher in the feces of horses with colic. Six horses with colic (5.7%) and one horse from the control group (2.8%) tested positive for Betacoronaviruses. Coronavirus-positive samples were sequenced to classify the virus by molecular phylogeny (N gene). Interestingly, in three out of six coronavirus-positive horses with colic, sequences closely related to bovine coronaviruses (BCoV) were found. The pathogenic potential of BCoV in horses remains unclear and warrants further investigation.
Collapse
Affiliation(s)
- Moritz Stummer
- Institute of Virology, University of Veterinary Medicine, 1210 Vienna, Austria (K.D.); (T.R.)
| | - Vicky Frisch
- Clinical Unit of Equine Internal Medicine, University of Veterinary Medicine, 1210 Vienna, Austria; (V.F.); (J.-M.V.C.)
| | | | - Barbara Hinney
- Institute of Parasitology, University of Veterinary Medicine, 1210 Vienna, Austria; (B.H.); (A.J.)
| | - Joachim Spergser
- Institute of Microbiology, University of Veterinary Medicine, 1210 Vienna, Austria;
| | - Jürgen Krücken
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, 14163 Berlin, Germany; (J.K.); (I.D.)
| | - Irina Diekmann
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, 14163 Berlin, Germany; (J.K.); (I.D.)
| | - Katharina Dimmel
- Institute of Virology, University of Veterinary Medicine, 1210 Vienna, Austria (K.D.); (T.R.)
| | - Christiane Riedel
- CIRI-Centre International de Recherche en Infectiologie, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, 46 allée d’Italie, 69364 Lyon, France;
| | | | - Till Rümenapf
- Institute of Virology, University of Veterinary Medicine, 1210 Vienna, Austria (K.D.); (T.R.)
| | - Anja Joachim
- Institute of Parasitology, University of Veterinary Medicine, 1210 Vienna, Austria; (B.H.); (A.J.)
| | - Manolis Lyrakis
- Platform for Bioinformatics and Biostatistics, Department of Biomedical Sciences, University of Veterinary Medicine, 1210 Vienna, Austria;
| | - Angelika Auer
- Institute of Virology, University of Veterinary Medicine, 1210 Vienna, Austria (K.D.); (T.R.)
| |
Collapse
|
3
|
Donnik IM, Chvala IA, Kish LK, Ermakov AM. Coronavirus Infections in Animals: Risks of Direct and Reverse Zoonoses. HERALD OF THE RUSSIAN ACADEMY OF SCIENCES 2022; 92:491-496. [PMID: 36091853 PMCID: PMC9447960 DOI: 10.1134/s1019331622040116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/10/2022] [Accepted: 02/25/2022] [Indexed: 06/15/2023]
Abstract
The publications on animal coronavirus infections that have the greatest emerging potential, as well as official data from the World Organization for Animal Health (OIE) on cases of animal infection with COVID-19, are analyzed. Like most infectious diseases common to humans, coronavirus infections were first discovered in animals. Due to the increased rate of replication and recombination activity compared to other viruses, mutations occur more often in the genome of coronaviruses, which contribute to the acquisition of new qualities in order to consolidate in the host organism. Examples of cross-species transmission are not only SARS-CoV, MERS-CoV, and SARS-CoV-2, which are dangerous to humans, but also coronaviruses of agricultural and domestic animals, between which there is a genetic relationship. There are several known cases of zoo, wild, domestic, and farm animals displaying symptoms characteristic of COVID-19 and identification of the genome of the SARS-CoV-2 virus in them. The issue of cross-species transmission of coronavirus infections, in particular the reverse zoonosis of SARS-CoV-2 from animals to humans, is widely discussed. According to the conclusions of many researchers, including OIE experts, there is no direct evidence base for infection of humans with COVID-19 from animals. However, people with suspected COVID-19 and with a confirmed diagnosis are still advised to isolate not only from people but also from animals. A number of methods for specific prevention, diagnosis, and immunization against a wide range of coronavirus infections are being developed at the All-Russia Research Institute for Animal Protection.
Collapse
Affiliation(s)
| | - I. A. Chvala
- Federal Center for Animal Health, All-Russia Research Institute for Animal Protection (ARRIAH), Vladimir, Russia
| | - L. K. Kish
- Russian State Center for Animal Feed and Drug Standardization and Quality (VGNKI), Moscow, Russia
| | - A. M. Ermakov
- Don State Technical University (DSTU), Rostov-on-Don, Russia
| |
Collapse
|
4
|
Kim EM, Cho HC, Shin SU, Park J, Choi KS. Prevalence and genetic characterization of bovine coronavirus identified from diarrheic pre-weaned native Korean calves from 2019 to 2021. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 100:105263. [PMID: 35276339 DOI: 10.1016/j.meegid.2022.105263] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/13/2022] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
Bovine coronavirus (BCoV) is associated with severe diarrhea in calves, winter dysentery in adult cattle, and respiratory diseases in cattle. However, there is currently limited information regarding its molecular characterization in the Republic of Korea (KOR). Therefore, this study investigated the prevalence of BCoV in diarrheic pre-weaned calves (aged ≤60 days) and compared BCoV genome sequences identified globally. A total of 846 fecal samples were collected from calves with diarrhea across 100 beef farms in the KOR. The samples were divided into three groups based on age as follows: 1-10 days (n = 490), 11-30 days (n = 277), and 31-60 days (n = 79). BCoV infection was detected in 50 calves by real-time RT-PCR analysis. The results showed that the prevalence of BCoV was associated with calf age (P = 0.028) and was significantly higher in calves aged 31-60 days (odds ratio: 2.69, 95% confidence interval: 1.24-5.85; P = 0.012) than in those aged 1-10 days. Our findings show that BCoV is an important etiological agent of diarrhea in calves aged 31-60 days. Fifteen full genome sequences (2019-2021 variants) of the spike, hemagglutinin/esterase, and nucleocapsid were obtained from the 50 BCoV-positive samples. Phylogenetic analysis of each gene revealed that BCoVs circulating worldwide might have no boundary between enteric and respiratory tropisms, demonstrating the presence of three BCoVs groups: the classical, Asia/USA, and European. Initially, Korean BCoVs were originated from the USA, but diverged since the 1980s and rapidly evolved independently, unlike in other Asian countries. In this study, Korean BCoVs are more recent BCoVs and present relatively high nucleotide substitution rates in all genes compared with other BCoVs. Our results showed that the 2019-2021 variants undergo continuous genetic evolution and that there are genetic differences among globally distributed BCoVs.
Collapse
Affiliation(s)
- Eun-Mi Kim
- Department of Animal Science and Biotechnology, College of Ecology and Environmental Science, Kyungpook National University, Sangju 37224, Republic of Korea
| | - Hyung-Chul Cho
- Department of Animal Science and Biotechnology, College of Ecology and Environmental Science, Kyungpook National University, Sangju 37224, Republic of Korea
| | - Seung-Uk Shin
- Department of Animal Science and Biotechnology, College of Ecology and Environmental Science, Kyungpook National University, Sangju 37224, Republic of Korea
| | - Jinho Park
- College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Republic of Korea
| | - Kyoung-Seong Choi
- Department of Animal Science and Biotechnology, College of Ecology and Environmental Science, Kyungpook National University, Sangju 37224, Republic of Korea.
| |
Collapse
|
5
|
Zhu Q, Li B, Sun D. Advances in Bovine Coronavirus Epidemiology. Viruses 2022; 14:v14051109. [PMID: 35632850 PMCID: PMC9147158 DOI: 10.3390/v14051109] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/02/2022] [Accepted: 05/19/2022] [Indexed: 11/16/2022] Open
Abstract
Bovine coronavirus (BCoV) is a causative agent of enteric and respiratory disease in cattle. BCoV has also been reported to cause a variety of animal diseases and is closely related to human coronaviruses, which has attracted extensive attention from both cattle farmers and researchers. However, there are few comprehensive epidemiological reviews, and key information regarding the effect of S-gene differences on tissue tendency and potential cross-species transmission remain unclear. In this review, we summarize BCoV epidemiology, including the transmission, infection-associated factors, co-infection, pathogenicity, genetic evolution, and potential cross-species transmission. Furthermore, the potential two-receptor binding motif system for BCoV entry and the association between BCoV and SARS-CoV-2 are also discussed in this review. Our aim is to provide valuable information for the prevention and treatment of BCoV infection throughout the world.
Collapse
Affiliation(s)
- Qinghe Zhu
- Heilongjiang Provincial Key Laboratory of the Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, China;
| | - Bin Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing 210014, China
- Correspondence: (B.L.); (D.S.); Tel.: +86-045-9681-9121 (D.S.)
| | - Dongbo Sun
- Heilongjiang Provincial Key Laboratory of the Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, China;
- Correspondence: (B.L.); (D.S.); Tel.: +86-045-9681-9121 (D.S.)
| |
Collapse
|
6
|
Lalchhandama K. A history of coronaviruses. WIKIJOURNAL OF MEDICINE 2022. [DOI: 10.15347/wjm/2022.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The history of coronaviruses is an account of the discovery of coronaviruses and the diseases they cause. It starts with a report of a new type of upper-respiratory tract disease among chickens in North Dakota, US, in 1931. The causative agent was identified as a virus in 1933. By 1936, the disease and the virus were recognised as unique from other viral diseases. The virus became known as infectious bronchitis virus (IBV), but later officially renamed as Avian coronavirus. A new brain disease of mice (murine encephalomyelitis) was discovered in 1947 at Harvard Medical School in Boston. The virus was called JHM (after Harvard pathologist John Howard Mueller). Three years later a new mouse hepatitis was reported from the National Institute for Medical Research in London. The causative virus was identified as mouse hepatitis virus (MHV), later renamed Murine coronavirus. In 1961, a virus was obtained from a school boy in Epsom, England, who was suffering from common cold. The sample, designated B814, was confirmed as novel virus in 1965. New common cold viruses (assigned 229E) collected from medical students at the University of Chicago were also reported in 1966. Structural analyses of IBV, MHV, B18 and 229E using transmission electron microscopy revealed that they all belong to the same group of viruses. Making a crucial comparison in 1967, June Almeida and David Tyrrell invented the collective name coronavirus, as all those viruses were characterised by solar corona-like projections (called spikes) on their surfaces. Other coronaviruses have been discovered from pigs, dogs, cats, rodents, cows, horses, camels, Beluga whales, birds and bats. As of 2022, 52 species are described. Bats are found to be the richest source of different species of coronaviruses. All coronaviruses originated from a common ancestor about 293 million years ago. Zoonotic species such as Severe acute respiratory syndrome-related coronavirus (SARS-CoV), Middle East respiratory syndrome-related coronavirus (MERS-CoV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a variant of SARS-CoV, emerged during the past two decades and caused the first pandemics of the 21st century.
Collapse
|
7
|
Nova N. Cross-Species Transmission of Coronaviruses in Humans and Domestic Mammals, What Are the Ecological Mechanisms Driving Transmission, Spillover, and Disease Emergence? Front Public Health 2021; 9:717941. [PMID: 34660513 PMCID: PMC8514784 DOI: 10.3389/fpubh.2021.717941] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/24/2021] [Indexed: 12/19/2022] Open
Abstract
Coronaviruses cause respiratory and digestive diseases in vertebrates. The recent pandemic, caused by the novel severe acute respiratory syndrome (SARS) coronavirus 2, is taking a heavy toll on society and planetary health, and illustrates the threat emerging coronaviruses can pose to the well-being of humans and other animals. Coronaviruses are constantly evolving, crossing host species barriers, and expanding their host range. In the last few decades, several novel coronaviruses have emerged in humans and domestic animals. Novel coronaviruses have also been discovered in captive wildlife or wild populations, raising conservation concerns. The evolution and emergence of novel viruses is enabled by frequent cross-species transmission. It is thus crucial to determine emerging coronaviruses' potential for infecting different host species, and to identify the circumstances under which cross-species transmission occurs in order to mitigate the rate of disease emergence. Here, I review (broadly across several mammalian host species) up-to-date knowledge of host range and circumstances concerning reported cross-species transmission events of emerging coronaviruses in humans and common domestic mammals. All of these coronaviruses had similar host ranges, were closely related (indicative of rapid diversification and spread), and their emergence was likely associated with high-host-density environments facilitating multi-species interactions (e.g., shelters, farms, and markets) and the health or well-being of animals as end- and/or intermediate spillover hosts. Further research is needed to identify mechanisms of the cross-species transmission events that have ultimately led to a surge of emerging coronaviruses in multiple species in a relatively short period of time in a world undergoing rapid environmental change.
Collapse
Affiliation(s)
- Nicole Nova
- Department of Biology, Stanford University, Stanford, CA, United States
| |
Collapse
|
8
|
Brüssow H, Brüssow L. Clinical evidence that the pandemic from 1889 to 1891 commonly called the Russian flu might have been an earlier coronavirus pandemic. Microb Biotechnol 2021; 14:1860-1870. [PMID: 34254725 PMCID: PMC8441924 DOI: 10.1111/1751-7915.13889] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 06/27/2021] [Indexed: 01/10/2023] Open
Abstract
Contemporary medical reports from Britain and Germany on patients suffering from a pandemic infection between 1889 and 1891, which was historically referred to as the Russian flu, share a number of characteristics with COVID-19. Most notable are aspects of multisystem affections comprising respiratory, gastrointestinal and neurological symptoms including loss of taste and smell perception; a protracted recovery resembling long covid and pathology observations of thrombosis in multiple organs, inflammation and rheumatic affections. As in COVID-19 and unlike in influenza, mortality was seen in elderly subjects while children were only weakly affected. Contemporary reports noted trans-species infection between pet animals or horses and humans, which would concur with a cross-infection by a broad host range bovine coronavirus dated by molecular clock arguments to an about 1890 cross-species infection event.
Collapse
Affiliation(s)
- Harald Brüssow
- Department of BiosystemsLaboratory of Gene TechnologyKU LeuvenLeuvenBelgium
| | - Lutz Brüssow
- Internal Medicine, Angiology and Gastroenterology SpecialistNeussGermany
| |
Collapse
|
9
|
Zhang G, Li B, Yoo D, Qin T, Zhang X, Jia Y, Cui S. Animal coronaviruses and SARS-CoV-2. Transbound Emerg Dis 2021; 68:1097-1110. [PMID: 32799433 PMCID: PMC7461065 DOI: 10.1111/tbed.13791] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/27/2020] [Accepted: 08/10/2020] [Indexed: 01/08/2023]
Abstract
COVID-19 is a highly contagious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). It has rapidly spread to 216 countries and territories since first outbreak in December of 2019, posing a substantial economic losses and extraordinary threats to the public health worldwide. Although bats have been suggested as the natural host of SARS-CoV-2, transmission chains of this virus, role of animals during cross-species transmission, and future concerns remain unclear. Diverse animal coronaviruses have extensively been studied since the discovery of avian coronavirus in 1930s. The current article comprehensively reviews and discusses the current understanding about animal coronaviruses and SARS-CoV-2 for their emergence, transmission, zoonotic potential, alteration of tissue/host tropism, evolution, status of vaccines and surveillance. This study aims at providing guidance for control of COVID-19 and preventative strategies for possible future outbreaks of zoonotic coronavirus via cross-species transmission.
Collapse
Affiliation(s)
- Guangzhi Zhang
- Institute of Animal SciencesChinese Academy of Agricultural SciencesBeijingChina
- Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Technology of BeijingMinistry of AgricultureBeijingChina
| | - Bin Li
- Institute of Veterinary MedicineJiangsu Academy of Agricultural SciencesKey Laboratory of Veterinary Biological Engineering and TechnologyMinistry of AgricultureNanjingChina
| | - Dongwan Yoo
- Department of PathobiologyCollege of Veterinary MedicineUniversity of Illinois at Urbana‐ChampaignUrbanaILUSA
| | - Tong Qin
- Institute of Animal SciencesChinese Academy of Agricultural SciencesBeijingChina
- Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Technology of BeijingMinistry of AgricultureBeijingChina
| | - Xiaodong Zhang
- Key Laboratory of Zoonosis ResearchMinistry of EducationInstitute of Zoonosis and Department of Public HealthJilin UniversityChangchunChina
| | - Yaxiong Jia
- Institute of Animal SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Shangjin Cui
- Institute of Animal SciencesChinese Academy of Agricultural SciencesBeijingChina
- Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Technology of BeijingMinistry of AgricultureBeijingChina
| |
Collapse
|
10
|
Vlasova AN, Saif LJ. Bovine Coronavirus and the Associated Diseases. Front Vet Sci 2021; 8:643220. [PMID: 33869323 PMCID: PMC8044316 DOI: 10.3389/fvets.2021.643220] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/08/2021] [Indexed: 12/17/2022] Open
Abstract
Coronaviruses (CoVs) possess the largest and most complex RNA genome (up to 32 kb) that encodes for 16 non-structural proteins regulating RNA synthesis and modification. Coronaviruses are known to infect a wide range of mammalian and avian species causing remarkably diverse disease syndromes. Variable tissue tropism and the ability to easily cross interspecies barriers are the well-known characteristics of certain CoVs. The 21st century epidemics of severe acute respiratory CoV (SARS-CoV), Middle East respiratory CoV and the ongoing SARS-CoV-2 pandemic further highlight these characteristics and emphasize the relevance of CoVs to the global public health. Bovine CoVs (BCoVs) are betacoronaviruses associated with neonatal calf diarrhea, and with winter dysentery and shipping fever in older cattle. Of interest, no distinct genetic or antigenic markers have been identified in BCoVs associated with these distinct clinical syndromes. In contrast, like other CoVs, BCoVs exist as quasispecies. Besides cattle, BCoVs and bovine-like CoVs were identified in various domestic and wild ruminant species (water buffalo, sheep, goat, dromedary camel, llama, alpaca, deer, wild cattle, antelopes, giraffes, and wild goats), dogs and humans. Surprisingly, bovine-like CoVs also cannot be reliably distinguished from BCoVs using comparative genomics. Additionally, there are historical examples of zoonotic transmission of BCoVs. This article will discuss BCoV pathogenesis, epidemiology, interspecies transmission, immune responses, vaccines, and diagnostics.
Collapse
Affiliation(s)
- Anastasia N Vlasova
- Center for Food Animal Health Research, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH, United States
| | - Linda J Saif
- Center for Food Animal Health Research, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH, United States
| |
Collapse
|
11
|
Donnik IM, Popov IV, Sereda SV, Popov IV, Chikindas ML, Ermakov AM. Coronavirus Infections of Animals: Future Risks to Humans. BIOL BULL+ 2021; 48:26-37. [PMID: 33679117 PMCID: PMC7917535 DOI: 10.1134/s1062359021010052] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/27/2020] [Accepted: 07/17/2020] [Indexed: 01/31/2023]
Abstract
Coronaviruses have tremendous evolutionary potential, and three major outbreaks of new human coronavirus infections have occurred in the recent history of humankind. In this paper, the patterns of occurrence of new zoonotic coronavirus infections and the role of bioveterinary control in preventing their potential outbreaks in the future are determined. The possibility of SARS-CoV-2 infection in companion animals is considered. Diverse human activities may trigger various interactions between animal species and their viruses, sometimes causing the emergence of new viral pathogens. In addition, the possibility of using probiotics for the control of viral infections in animals is discussed.
Collapse
Affiliation(s)
- I. M. Donnik
- Russian Academy of Sciences, 119991 Moscow, Russia
| | - Ig. V. Popov
- Don State Technical University, 344000 Rostov-on-Don, Russia ,Rostov State Medical University, 344022 Rostov-on-Don, Russia
| | - S. V. Sereda
- Don State Technical University, 344000 Rostov-on-Don, Russia
| | - Il. V. Popov
- Rostov State Medical University, 344022 Rostov-on-Don, Russia
| | - M. L. Chikindas
- Don State Technical University, 344000 Rostov-on-Don, Russia ,Health Promoting Naturals Laboratory, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, 08901 New Brunswick, NJ USA
| | - A. M. Ermakov
- Don State Technical University, 344000 Rostov-on-Don, Russia
| |
Collapse
|
12
|
Bovine Coronavirus: Variability, Evolution, and Dispersal Patterns of a No Longer Neglected Betacoronavirus. Viruses 2020; 12:v12111285. [PMID: 33182765 PMCID: PMC7697035 DOI: 10.3390/v12111285] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 12/13/2022] Open
Abstract
Bovine coronavirus (BoCV) is an important pathogen of cattle, causing severe enteric disease and playing a role in the bovine respiratory disease complex. Similar to other coronaviruses, a remarkable variability characterizes both its genome and biology. Despite their potential relevance, different aspects of the evolution of BoCV remain elusive. The present study reconstructs the history and evolution of BoCV using a phylodynamic approach based on complete genome and spike protein sequences. The results demonstrate high mutation and recombination rates affecting different parts of the viral genome. In the spike gene, this variability undergoes significant selective pressures—particularly episodic pressure—located mainly on the protein surface, suggesting an immune-induced selective pressure. The occurrence of compensatory mutations was also identified. On the contrary, no strong evidence in favor of host and/or tissue tropism affecting viral evolution has been proven. The well-known plasticity is thus ascribable to the innate broad viral tropism rather than mid- or long-term adaptation. The evaluation of the geographic spreading pattern clearly evidenced two clusters: a European cluster and an American–Asian cluster. While a relatively dense and quick migration network was identified in the former, the latter was dominated by the primary role of the United States (US) as a viral exportation source. Since the viral spreading pattern strongly mirrored the cattle trade, the need for more intense monitoring and preventive measures cannot be underestimated as well as the need to enforce the vaccination of young animals before international trade, to reduce not only the clinical impact but also the transferal and mixing of BoCV strains.
Collapse
|
13
|
An emerging novel bovine coronavirus with a 4-amino-acid insertion in the receptor-binding domain of the hemagglutinin-esterase gene. Arch Virol 2020; 165:3011-3015. [PMID: 33025200 PMCID: PMC7538171 DOI: 10.1007/s00705-020-04840-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 09/08/2020] [Indexed: 12/28/2022]
Abstract
The hemagglutinin-esterase (HE) protein of betacoronavirus lineage A is a secondary receptor in the infection process and is involved in the emergence of new betacoronavirus genotypes with altered host specificity and tissue tropism. We previously reported a novel recombinant bovine coronavirus (BCoV) strain that was circulating in dairy cattle in China, but this virus was not successfully isolated, and the genetic characteristics of BCoV are still largely unknown. In this study, 20 diarrheic faecal samples were collected from a farm in Liaoning province that had an outbreak of calf diarrhea (≤ 3 months of age) in November 2018, and all of the samples tested positive for BCoV by RT-PCR. In addition, a BCoV strain with a recombinant HE (designated as SWUN/A1/2018) and another BCoV strain with a recombinant HE containing an insertion (designated as SWUN/A10/2018) were successfully isolated in cell culture (TCID50: 104.25/mL and 104.73/mL, respectively). Unexpectedly, we identified the emergence of a novel BCoV variant characterized by a 12-nt bovine gene insertion in the receptor-binding domain in a natural recombinant HE gene, suggesting a novel evolutionary pattern in BCoV.
Collapse
|
14
|
Comparative Pathogenesis of Bovine and Porcine Respiratory Coronaviruses in the Animal Host Species and SARS-CoV-2 in Humans. J Clin Microbiol 2020; 58:JCM.01355-20. [PMID: 32522830 PMCID: PMC7383540 DOI: 10.1128/jcm.01355-20] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Discovery of bats with severe acute respiratory syndrome (SARS)-related coronaviruses (CoVs) raised the specter of potential future outbreaks of zoonotic SARS-CoV-like disease in humans, which largely went unheeded. Nevertheless, the novel SARS-CoV-2 of bat ancestral origin emerged to infect humans in Wuhan, China, in late 2019 and then became a global pandemic. Less than 5 months after its emergence, millions of people worldwide have been infected asymptomatically or symptomatically and at least 360,000 have died. Coronavirus disease 2019 (COVID-19) in severely affected patients includes atypical pneumonia characterized by a dry cough, persistent fever, and progressive dyspnea and hypoxia, sometimes accompanied by diarrhea and often followed by multiple organ failure, especially of the respiratory and cardiovascular systems. In this minireview, we focus on two endemic respiratory CoV infections of livestock: bovine coronavirus (BCoV) and porcine respiratory coronavirus (PRCV). Both animal respiratory CoVs share some common features with SARS-CoV and SARS-CoV-2. BCoV has a broad host range including wild ruminants and a zoonotic potential. BCoV also has a dual tropism for the respiratory and gastrointestinal tracts. These aspects, their interspecies transmission, and certain factors that impact disease severity in cattle parallel related facets of SARS-CoV or SARS-CoV-2 in humans. PRCV has a tissue tropism for the upper and lower respiratory tracts and a cellular tropism for type 1 and 2 pneumocytes in lung but is generally a mild infection unless complicated by other exacerbating factors, such as bacterial or viral coinfections and immunosuppression (corticosteroids).
Collapse
|
15
|
Evolutionary genetics of canine respiratory coronavirus and recent introduction into Swedish dogs. INFECTION GENETICS AND EVOLUTION 2020; 82:104290. [PMID: 32205264 PMCID: PMC7102562 DOI: 10.1016/j.meegid.2020.104290] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 03/16/2020] [Accepted: 03/17/2020] [Indexed: 01/05/2023]
Abstract
Canine respiratory coronavirus (CRCoV) has been identified as a causative agent of canine infectious respiratory disease, an upper respiratory infection affecting dogs. The epidemiology is currently opaque, with an unclear understanding of global prevalence, pathology, and genetic characteristics. In this study, Swedish privately-owned dogs with characteristic signs of canine infectious respiratory disease (n = 88) were screened for CRCoV and 13 positive samples (14.7%, 8.4-23.7% [95% confidence interval (CI)]) were further sequenced. Sequenced Swedish CRCoV isolates were highly similar despite being detected in dogs living in geographically distant locations and sampled across 3 years (2013-2015). This is due to a single introduction into Swedish dogs in approximately 2010, as inferred by time structured phylogeny. Unlike other CRCoVs, there was no evidence of recombination in Swedish CRCoV viruses, further supporting a single introduction. Finally, there were low levels of polymorphisms, in the spike genes. Overall, we demonstrate that there is little diversity of CRCoV which is endemic in Swedish dogs.
Collapse
|
16
|
Szczepanski A, Owczarek K, Bzowska M, Gula K, Drebot I, Ochman M, Maksym B, Rajfur Z, Mitchell JA, Pyrc K. Canine Respiratory Coronavirus, Bovine Coronavirus, and Human Coronavirus OC43: Receptors and Attachment Factors. Viruses 2019; 11:v11040328. [PMID: 30959796 PMCID: PMC6521053 DOI: 10.3390/v11040328] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 03/31/2019] [Accepted: 04/02/2019] [Indexed: 01/19/2023] Open
Abstract
Despite high similarity of canine respiratory coronavirus (CRCoV), bovine coronavirus, (BCoV) and human coronavirus OC43 (HCoV-OC43), these viruses differ in species specificity. For years it was believed that they share receptor specificity, utilizing sialic acids for cell surface attachment, internalization, and entry. Interestingly, careful literature analysis shows that viruses indeed bind to the cell surface via sialic acids, but there is no solid data that these moieties mediate virus entry. In our study, using a number of techniques, we showed that all three viruses are indeed able to bind to sialic acids to a different extent, but these molecules render the cells permissive only for the clinical strain of HCoV-OC43, while for others they serve only as attachment receptors. CRCoV and BCoV appear to employ human leukocyte antigen class I (HLA-1) as the entry receptor. Furthermore, we identified heparan sulfate as an alternative attachment factor, but this may be related to the cell culture adaptation, as in ex vivo conditions, it does not seem to play a significant role. Summarizing, we delineated early events during CRCoV, BCoV, and HCoV-OC43 entry and systematically studied the attachment and entry receptor utilized by these viruses.
Collapse
Affiliation(s)
- Artur Szczepanski
- Microbiology Department, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland.
- Virogenetics Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, 30-387 Krakow, Poland.
| | - Katarzyna Owczarek
- Microbiology Department, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland.
- Virogenetics Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, 30-387 Krakow, Poland.
| | - Monika Bzowska
- Department of Cell Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland.
| | - Katarzyna Gula
- Virogenetics Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, 30-387 Krakow, Poland.
| | - Inga Drebot
- Virogenetics Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, 30-387 Krakow, Poland.
| | - Marek Ochman
- Department of Cardiac, Vascular and Endovascular Surgery and Transplantology, Medical University of Silesia in Katowice, Silesian Centre for Heart Diseases, Marii Curie Sklodowskiej 9, 41-800 Zabrze, Poland.
| | - Beata Maksym
- Department of Pharmacology, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia in Katowice, ul. Jordana 19, 41-808 Zabrze, Poland.
| | - Zenon Rajfur
- Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Sciences, Jagiellonian University, Lojasiewicza 11, 30-348 Krakow, Poland.
| | - Judy A Mitchell
- Department of Pathology and Pathogen Biology, The Royal Veterinary College, Hatfield, Hertfordshire AL9 7TA, UK.
| | - Krzysztof Pyrc
- Virogenetics Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, 30-387 Krakow, Poland.
| |
Collapse
|
17
|
Discovery of a novel canine respiratory coronavirus support genetic recombination among betacoronavirus1. Virus Res 2017; 237:7-13. [PMID: 28506792 PMCID: PMC7114567 DOI: 10.1016/j.virusres.2017.05.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 05/01/2017] [Accepted: 05/10/2017] [Indexed: 01/22/2023]
Abstract
Although canine respiratory coronavirus (CRCoV) is an important respiratory pathogen that is prevalent in many countries, only one complete genome sequence of CRCoV (South Korea strain K37) has been obtained to date. Genome-wide analyses and recombination have rarely been conducted, as small numbers of samples and limited genomic characterization have previously prevented further analyses. Herein, we report a unique CRCoV strain, denoted strain BJ232, derived from a CRCoV-positive dog with a mild respiratory infection. Phylogenetic analysis based on complete genome of all available coronaviruses consistently show that CRCoV BJ232 is most closely related to human coronavirus OC43 (HCoV-OC43) and BCoV, forming a separate clade that split off early from other Betacoronavirus 1. Based on the phylogenetic and SimPlot analysis we propose that CRCoV-K37 was derived from genetic recombination between CRCoV-BJ232 and BCoV. In detail, spike (S) gene of CRCoV-K37 clustered with CRCoV-BJ232. However orf1ab, membrane (M) and nucleocapsid (N) genes were more related to Bovine coronavirus (BCoV) than CRCoV-B232. Molecular epidemic analysis confirmed the prevalence of CRCoV-BJ232 lineage around the world for a long time. Recombinant events among Betacoronavirus 1 may have implications for CRCoV transmissibility. All these findings provide further information regarding the origin of CRCoV.
Collapse
|
18
|
Abuelo A, Perez‐Santos M. A winter dysentery (coronavirus infection) outbreak in a dairy herd in Galicia (northwestern Spain). VETERINARY RECORD CASE REPORTS 2016. [DOI: 10.1136/vetreccr-2016-000328] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Angel Abuelo
- School of Animal & Veterinary SciencesCharles Sturt UniversityWagga WaggaNew South WalesAustralia
| | | |
Collapse
|
19
|
|
20
|
Abstract
Bovine coronaviruses, like other animal coronaviruses, have a predilection for intestinal and respiratory tracts. The viruses responsible for enteric and respiratory symptoms are closely related antigenically and genetically. Only 4 bovine coronavirus isolates have been completely sequenced and thus, the information about the genetics of the virus is still limited. This article reviews the clinical syndromes associated with bovine coronavirus, including pneumonia in calves and adult cattle, calf diarrhea, and winter dysentery; diagnostic methods; prevention using vaccination; and treatment, with adjunctive immunotherapy.
Collapse
Affiliation(s)
- Mélanie J Boileau
- Food Animal Medicine and Surgery, Department of Veterinary Clinical Sciences, Oklahoma State University Center for Veterinary Health Sciences, Stillwater, OK 74078, USA.
| | | |
Collapse
|
21
|
Erles K, Brownlie J. Canine respiratory coronavirus: an emerging pathogen in the canine infectious respiratory disease complex. Vet Clin North Am Small Anim Pract 2008; 38:815-25, viii. [PMID: 18501280 PMCID: PMC7114852 DOI: 10.1016/j.cvsm.2008.02.008] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Infectious respiratory disease in dogs is a constant challenge because of the involvement of several pathogens and environmental factors. Canine respiratory coronavirus (CRCoV) is a new coronavirus of dogs, which is widespread in North America, Japan, and several European countries. CRCoV has been associated with respiratory disease, particularly in kenneled dog populations. The virus is genetically and antigenically distinct from enteric canine coronavirus; therefore, specific tests are required for diagnosis.
Collapse
Affiliation(s)
- Kerstin Erles
- Department of Pathology and Infectious Diseases, The Royal Veterinary College, Hawkshead Lane, Hatfield, AL9 7TA, UK.
| | | |
Collapse
|
22
|
Decaro N, Buonavoglia C. An update on canine coronaviruses: viral evolution and pathobiology. Vet Microbiol 2008; 132:221-34. [PMID: 18635322 PMCID: PMC7117484 DOI: 10.1016/j.vetmic.2008.06.007] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2008] [Revised: 05/30/2008] [Accepted: 06/06/2008] [Indexed: 12/19/2022]
Abstract
The emergence of human severe acute respiratory syndrome incited renewed interest in animal coronaviruses (CoVs) as potential agents of direct and indirect zoonoses. The reinforced epidemiological surveillance on CoVs has led to the identification of new viruses, genotypes, pathotypes and host variants in animals and humans. In dogs, a CoV associated with mild enteritis, canine coronavirus (CCoV), has been known since 1970s. CoV strains with different biological and genetic properties with respect to classical CCoV strains have been identified in dogs in the last few years, leading to a full reconsideration of the CoV-induced canine diseases. The genetic evolution of dog CoVs is paradigmatic of how CoVs evolve through accumulation of point mutations, insertions or deletions in the viral genome, that led to the emergence of new genotypes (CCoV type I), biotypes (pantropic CCoV) and host variants (canine respiratory coronavirus). This paper is a review of the current literature on the recent genetic evolution of CCoV and emergence of new CoVs in the dog. The significances of the newly acquired information for the canine health status and prophylaxis programmes are also discussed.
Collapse
Affiliation(s)
- Nicola Decaro
- Department of Public Health and Animal Sciences, Faculty of Veterinary Medicine of Bari, Strada per Casamassima km 3, 70010 Valenzano, Bari, Italy.
| | | |
Collapse
|