1
|
Ticinesi A, Siniscalchi C, Meschi T, Nouvenne A. Gut microbiome and bone health: update on mechanisms, clinical correlations, and possible treatment strategies. Osteoporos Int 2025; 36:167-191. [PMID: 39643654 DOI: 10.1007/s00198-024-07320-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 11/12/2024] [Indexed: 12/09/2024]
Abstract
The intestinal microbiome is increasingly regarded as a relevant modulator of the pathophysiology of several age-related conditions, including frailty, sarcopenia, and cognitive decline. Aging is in fact associated with alteration of the equilibrium between symbiotic bacteria and opportunistic pathogens, leading to dysbiosis. The microbiome is able to regulate intestinal permeability and systemic inflammation, has a central role in intestinal amino acid metabolism, and produces a large number of metabolites and byproducts, with either beneficial or detrimental consequences for the host physiology. Recent evidence, from both preclinical animal models and clinical studies, suggests that these microbiome-centered pathways could contribute to bone homeostasis, regulating the balance between osteoblast and osteoclast function. In this systematic review, we provide an overview of the mechanisms involved in the gut-bone axis, with a particular focus on microbiome function and microbiome-derived mediators including short-chain fatty acids. We also review the current evidence linking gut microbiota dysbiosis with osteopenia and osteoporosis, and the results of the intervention studies on pre-, pro-, or post-biotics targeting bone mineral density loss in both animal models and human beings, indicating knowledge gaps and highlighting possible avenues for future research.
Collapse
Affiliation(s)
- Andrea Ticinesi
- Department of Medicine and Surgery, University of Parma, Via Antonio Gramsci 14, 43126, Parma, Italy.
- Microbiome Research Hub, University of Parma, Parma, Italy.
- Department of Continuity of Care and Multicomplexity, Parma University-Hospital, Parma, Italy.
| | - Carmine Siniscalchi
- Department of Continuity of Care and Multicomplexity, Parma University-Hospital, Parma, Italy
| | - Tiziana Meschi
- Department of Medicine and Surgery, University of Parma, Via Antonio Gramsci 14, 43126, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
- Department of Continuity of Care and Multicomplexity, Parma University-Hospital, Parma, Italy
| | - Antonio Nouvenne
- Department of Medicine and Surgery, University of Parma, Via Antonio Gramsci 14, 43126, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
- Department of Continuity of Care and Multicomplexity, Parma University-Hospital, Parma, Italy
| |
Collapse
|
2
|
Zheng Y, Cheng S, Li H, Sun Y, Guo L, Man C, Zhang Y, Zhang W, Jiang Y. Lacticaseibacillus paracasei JM053 alleviates osteoporosis in rats by increasing the content of soy isoflavone aglycones in fermented soymilk. Food Funct 2024; 15:12118-12133. [PMID: 39575987 DOI: 10.1039/d4fo04381b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
Abstract
Lacticaseibacillus paracasei JM053 has a significant ability to convert soy isoflavones and can be used as a fermentation strain to ferment soymilk, thereby increasing the content of free aglycones in soymilk and thus providing an effective method to alleviate osteoporosis symptoms. This study aims to establish a rat model of osteoporosis induced by dexamethasone (DEX) and clarify the alleviating effect of soymilk fermented with Lacticaseibacillus paracasei JM053 on osteoporosis. Research has shown that fermented soymilk with Lacticaseibacillus paracasei JM053 can inhibit weight loss in rats caused by DEX, regulate the expression of inflammatory factors such as tumor necrosis factor-α (TNF-α) towards normal levels, and increase levels of alkaline phosphatase (ALP) and osteocalcin (OCN) to promote bone synthesis. By observing the microstructure of bone tissue through microCT and Goldner staining, it was found that, compared with the model group, fermented soymilk with Lacticaseibacillus paracasei JM053 can alleviate the damage to bone tissue structure caused by DEX by increasing the number of bone trabeculae and reducing fracture. Fermented soymilk with Lacticaseibacillus paracasei JM053 can alleviate bone metabolism disorders by regulating gut microbiota and metabolite content. This study provides theoretical and data-based support for developing functional products that can alleviate osteoporosis.
Collapse
Affiliation(s)
- Yaping Zheng
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, China.
| | - Shasha Cheng
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, China.
| | - Hongxuan Li
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, China.
| | - Yilin Sun
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, China.
| | - Ling Guo
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, China.
- Food Laboratory of Zhongyuan, Luohe, Henan, 462300, China
| | - Chaoxin Man
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, China.
| | - Yu Zhang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, China.
| | - Wei Zhang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, China.
| | - Yujun Jiang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, China.
- Food Laboratory of Zhongyuan, Luohe, Henan, 462300, China
| |
Collapse
|
3
|
Chen J, Ng S, Xu P, Chen S, Li S, Chen X, Xie L, Ge J. Herbal formula xuling-jiangu improves bone metabolic balance in rats with ovariectomy-induced osteoporosis via the gut-bone axis. Front Pharmacol 2024; 15:1505231. [PMID: 39605913 PMCID: PMC11598424 DOI: 10.3389/fphar.2024.1505231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 11/01/2024] [Indexed: 11/29/2024] Open
Abstract
Introduction The XuLing JianGu recipe (XLJGR) is an empirical traditional Chinese medicine formula used for the treatment of osteoporosis. This study aims to explore the effects of XLJGR on the intestinal microbiota composition and endogenous metabolites in ovariectomized (OVX) rats. Methods An OVX rat model was established to evaluate the intervention effects of XLJGR. The measured indicators included bone density, serum bone metabolism markers, and an analysis of the types and abundances of intestinal microbiota, along with changes in endogenous metabolites. Additionally, MC3T3-E1 cells were used to validate the differential metabolites. Results XLJGR significantly reduced the abundance of Bacteroides, Butyricicoccus, and other bacterial strains in the gut. KEGG metabolic pathway enrichment analysis showed that XLJGR intervention led to notable changes in pathways such as peptidoglycan biosynthesis, carbapenem biosynthesis, and vancomycin resistance. Moreover, XLJGR significantly upregulated key intestinal microbiota metabolites, including gabapentin(GAB), camphoric acid(CAA), and nonanedioic acid(AZA), thereby promoting the proliferation and osteogenic differentiation of MC3T3-E1 cells. Discussion This study highlights the potential biomedical applications of XLJGR in promoting bone health by positively affecting intestinal microbiota and metabolic characteristics. These findings suggest that XLJGR may serve as a viable alternative in the treatment of osteoporosis, warranting further exploration of its therapeutic mechanisms and clinical applications.
Collapse
Affiliation(s)
- Juan Chen
- Fujian Key Laboratory of Integrated Traditional Chinese and Western Medicine for the Prevention and Treatment of Osteoporosis, Fujian Academy of Chinese Medical Sciences, Fuzhou, China
| | - Szetuen Ng
- Department of Orthopedics and Traumatology, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Pengchao Xu
- Department of Orthopedics and Traumatology, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Sainan Chen
- Fujian Key Laboratory of Integrated Traditional Chinese and Western Medicine for the Prevention and Treatment of Osteoporosis, Fujian Academy of Chinese Medical Sciences, Fuzhou, China
| | - Shengqiang Li
- Fujian Key Laboratory of Integrated Traditional Chinese and Western Medicine for the Prevention and Treatment of Osteoporosis, Fujian Academy of Chinese Medical Sciences, Fuzhou, China
| | - Xuan Chen
- Fujian Key Laboratory of Integrated Traditional Chinese and Western Medicine for the Prevention and Treatment of Osteoporosis, Fujian Academy of Chinese Medical Sciences, Fuzhou, China
| | - Lihua Xie
- Fujian Key Laboratory of Integrated Traditional Chinese and Western Medicine for the Prevention and Treatment of Osteoporosis, Fujian Academy of Chinese Medical Sciences, Fuzhou, China
| | - Jirong Ge
- Fujian Key Laboratory of Integrated Traditional Chinese and Western Medicine for the Prevention and Treatment of Osteoporosis, Fujian Academy of Chinese Medical Sciences, Fuzhou, China
| |
Collapse
|
4
|
Wang J, Pu X, Gu Z. Clotrimazole-induced shifts in vaginal bacteriome and lipid metabolism: insights into recovery mechanisms in vulvovaginal candidiasis. J Appl Microbiol 2024; 135:lxae269. [PMID: 39419780 DOI: 10.1093/jambio/lxae269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/14/2024] [Accepted: 10/17/2024] [Indexed: 10/19/2024]
Abstract
AIMS Vulvovaginal candidiasis (VVC) is a prevalent condition affecting a significant proportion of women worldwide, with recurrent episodes leading to detrimental effects on quality of life. While treatment with clotrimazole is common, the specific alterations it evokes in the vaginal bacteriome and metabolome were previously underexplored. METHODS AND RESULTS In this prospective study, we enrolled reproductive-age women diagnosed with single VVC and conducted comprehensive analyses of vaginal fungi, bacteriome, and metabolome before and after local clotrimazole treatment. We observed a significant reduction in Candida albicans and notable improvements in vaginal cleanliness. Advanced sequencing revealed substantial shifts in the vaginal bacteriome, with an increase in Lactobacillus-dominant communities post-treatment. Our findings identified 17 differentially abundant bacterial species, including notable decreases in pathogenic anaerobes such as Gardnerella vaginalis, Dialister micraerophilus, and Aerococcus christensenii, suggesting a restoration of a healthier microbial balance. Furthermore, metabolomic analysis revealed significant changes in 230 metabolites, particularly within lipid metabolism pathways, with marked downregulation of lipid-related compounds linked to inflammation. Correlation studies indicated a strong interplay between lipid metabolites and specific bacterial species, emphasizing the influence of clotrimazole treatment on microbial and metabolic interactions. Importantly, predictive models using microbiota and metabolite signatures demonstrated high accuracy in distinguishing pre- and post-treatment states. CONCLUSIONS This research highlights clotrimazole's dual role in effectively clearing Candida infection and promoting a healthier vaginal microenvironment, paving the way for novel microbial and metabolomic-based diagnostic approaches to enhance VVC management and understand its underlying mechanisms.
Collapse
Affiliation(s)
- Jingjing Wang
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, No. 2699 West Gaoke Road, Shanghai 201204, China
| | - Xiaowen Pu
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, No. 2699 West Gaoke Road, Shanghai 201204, China
| | - Zhengrong Gu
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, No. 2699 West Gaoke Road, Shanghai 201204, China
| |
Collapse
|
5
|
Qiao X, Li X, Wang Z, Feng Y, Wei X, Li L, Pan Y, Zhang K, Zhou R, Yan L, Li P, Xu C, Lv Z, Tian Z. Gut microbial community and fecal metabolomic signatures in different types of osteoporosis animal models. Aging (Albany NY) 2024; 16:1192-1217. [PMID: 38284894 PMCID: PMC10866450 DOI: 10.18632/aging.205396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/13/2023] [Indexed: 01/30/2024]
Abstract
BACKGROUND The gut microbiota (GM) constitutes a critical factor in the maintenance of physiological homeostasis. Numerous studies have empirically demonstrated that the GM is closely associated with the onset and progression of osteoporosis (OP). Nevertheless, the characteristics of the GM and its metabolites related to different forms of OP are poorly understood. In the present study, we examined the changes in the GM and its metabolites associated with various types of OP as well as the correlations among them. METHODS We simultaneously established rat postmenopausal, disuse-induced, and glucocorticoid-induced OP models. We used micro-CT and histological analyses to observe bone microstructure, three-point bending tests to measure bone strength, and enzyme-linked immunosorbent assay (ELISA) to evaluate the biochemical markers of bone turnover in the three rat OP models and the control. We applied 16s rDNA to analyze GM abundance and employed untargeted metabolomics to identify fecal metabolites in all four treatment groups. We implemented multi-omics methods to explore the relationships among OP, the GM, and its metabolites. RESULTS The 16S rDNA sequencing revealed that both the abundance and alterations of the GM significantly differed among the OP groups. In the postmenopausal OP model, the bacterial genera g__Bacteroidetes_unclassified, g__Firmicutes_unclassified, and g__Eggerthella had changed. In the disuse-induced and glucocorticoid-induced OP models, g__Akkermansia and g__Rothia changed, respectively. Untargeted metabolomics disclosed that the GM-derived metabolites significantly differed among the OP types. However, a Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed that it was mainly metabolites implicated in lipid and amino acid metabolism that were altered in all cases. An association analysis indicated that the histidine metabolism intermediate 4-(β-acetylaminoethyl) imidazole was common to all OP forms and was strongly correlated with all bone metabolism-related bacterial genera. Hence, 4-(β-acetylaminoethyl) imidazole might play a vital role in OP onset and progression. CONCLUSIONS The present work revealed the alterations in the GM and its metabolites that are associated with OP. It also disclosed the changes in the GM that are characteristic of each type of OP. Future research should endeavor to determine the causal and regulatory effects of the GM and the metabolites typical of each form of OP.
Collapse
Affiliation(s)
- Xiaochen Qiao
- Second Clinical Medical College, Shanxi Medical University, Taiyuan 030001, Shanxi, P.R. China
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key laboratory of Bone and Soft Tissue Injury Repair, Taiyuan 030001, Shanxi, P.R. China
- Department of Orthopedics, Jinzhong Hospital Affiliated to Shanxi Medical University, Jinzhong 030600, Shanxi, P.R. China
| | - Xiaoyan Li
- Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan 030013, Shanxi, P.R. China
| | - Zhichao Wang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan 030032, Shanxi, China
| | - Yi Feng
- Second Clinical Medical College, Shanxi Medical University, Taiyuan 030001, Shanxi, P.R. China
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key laboratory of Bone and Soft Tissue Injury Repair, Taiyuan 030001, Shanxi, P.R. China
| | - Xiaochun Wei
- Second Clinical Medical College, Shanxi Medical University, Taiyuan 030001, Shanxi, P.R. China
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key laboratory of Bone and Soft Tissue Injury Repair, Taiyuan 030001, Shanxi, P.R. China
| | - Lu Li
- Second Clinical Medical College, Shanxi Medical University, Taiyuan 030001, Shanxi, P.R. China
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key laboratory of Bone and Soft Tissue Injury Repair, Taiyuan 030001, Shanxi, P.R. China
| | - Yongchun Pan
- Department of Orthopedics, Third People’s Hospital of Datong City, Datong 037006, Shanxi, P.R. China
| | - Kun Zhang
- Second Clinical Medical College, Shanxi Medical University, Taiyuan 030001, Shanxi, P.R. China
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key laboratory of Bone and Soft Tissue Injury Repair, Taiyuan 030001, Shanxi, P.R. China
| | - Ruhao Zhou
- Second Clinical Medical College, Shanxi Medical University, Taiyuan 030001, Shanxi, P.R. China
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key laboratory of Bone and Soft Tissue Injury Repair, Taiyuan 030001, Shanxi, P.R. China
| | - Lei Yan
- Second Clinical Medical College, Shanxi Medical University, Taiyuan 030001, Shanxi, P.R. China
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key laboratory of Bone and Soft Tissue Injury Repair, Taiyuan 030001, Shanxi, P.R. China
| | - Pengcui Li
- Second Clinical Medical College, Shanxi Medical University, Taiyuan 030001, Shanxi, P.R. China
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key laboratory of Bone and Soft Tissue Injury Repair, Taiyuan 030001, Shanxi, P.R. China
| | - Chaojian Xu
- Second Clinical Medical College, Shanxi Medical University, Taiyuan 030001, Shanxi, P.R. China
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key laboratory of Bone and Soft Tissue Injury Repair, Taiyuan 030001, Shanxi, P.R. China
| | - Zhi Lv
- Second Clinical Medical College, Shanxi Medical University, Taiyuan 030001, Shanxi, P.R. China
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key laboratory of Bone and Soft Tissue Injury Repair, Taiyuan 030001, Shanxi, P.R. China
| | - Zhi Tian
- Second Clinical Medical College, Shanxi Medical University, Taiyuan 030001, Shanxi, P.R. China
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key laboratory of Bone and Soft Tissue Injury Repair, Taiyuan 030001, Shanxi, P.R. China
| |
Collapse
|
6
|
Long Noncoding RNA NORAD Promotes Fracture Healing through Interacting with Osteoblast Differentiation via Targeting miR-26a. BIOMED RESEARCH INTERNATIONAL 2023; 2023:9950037. [PMID: 36726840 PMCID: PMC9886463 DOI: 10.1155/2023/9950037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 12/21/2022] [Accepted: 12/26/2022] [Indexed: 01/25/2023]
Abstract
The present study was designed to evaluate the dynamic expression of lncRNA NORAD in fracture healing of patients with brittle fractures and explore the function and mechanism of NORAD in regulating osteoblastic proliferation, differentiation, and apoptosis. The expression level of NORAD was detected by quantitative real-time PCR. The proliferation, differentiation, and apoptosis of osteoblasts were analyzed by MTT assay, ELISA, and flow cytometry. Luciferase report analysis was used to confirm the interaction between NORAD and its target ceRNA miR-26a. This study showed no significant differences in serum NORAD expression on the 7th day during fracture healing in patients, but increased expression of NORAD was certified on the 14, 21, and 28 days after fixation. Overexpression of NORAD promoted the proliferation and differentiation of osteoblasts and suppressed the apoptosis of osteoblasts. miR-26a proved to be the target gene of NORAD and was inhibited by overexpression of NORAD in osteoblasts. The enhanced expression of miR-26a was negatively linked to the lessened expression of NORAD. NORAD could accelerate the proliferation and differentiation of osteoblasts and inhibit apoptosis, thereby promoting fracture healing.
Collapse
|
7
|
Qiao X, Zhang K, Li X, Lv Z, Wei W, Zhou R, Yan L, Pan Y, Yang S, Sun X, Li P, Xu C, Feng Y, Tian Z. Gut microbiota and fecal metabolic signatures in rat models of disuse-induced osteoporosis. Front Cell Infect Microbiol 2022; 12:1018897. [PMID: 36590590 PMCID: PMC9798431 DOI: 10.3389/fcimb.2022.1018897] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 11/07/2022] [Indexed: 12/23/2022] Open
Abstract
Background Assessing the correlation between gut microbiota (GM) and bone homeostasis has increasingly attracted research interest. Meanwhile, GM dysbiosis has been found to be associated with abnormal bone metabolism. However, the function of GM in disuse-induced osteoporosis (DIO) remains poorly understood. In our research, we evaluated the characteristics of GM and fecal metabolomics to explore their potential correlations with DIO pathogenesis. Methods DIO rat models and controls (CON) underwent micro-CT, histological analyses, and three-point bending tests; subsequently, bone microstructures and strength were observed. ELISAs were applied for the measurement of the biochemical markers of bone turnover while GM abundance was observed using 16S rDNA sequencing. Metabolomic analyses were used to analyze alterations fecal metabolites. The potential correlations between GM, metabolites, and bone loss were then assessed. Results In the DIO group, the abundance of GM was significantly altered compared to that in the CON group. Moreover, DIO significantly altered fecal metabolites. More specifically, an abnormally active pathway associated with bile acid metabolism, as well as differential bacterial genera related to bone/tissue volume (BV/TV), were identified. Lithocholic acid, which is the main secondary bile acid produced by intestinal bacteria, was then found to have a relationship with multiple differential bacterial genera. Alterations in the intestinal flora and metabolites in feces, therefore, may be responsible for DIO-induced bone loss. Conclusions The results indicated that changes in the abundance of GM abundance and fecal metabolites were correlated with DIO-induced bone loss, which might provide new insights into the DIO pathogenesis. The detailed regulatory role of GM and metabolites in DIO-induced bone loss needs to be explored further.
Collapse
Affiliation(s)
- Xiaochen Qiao
- Second Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi, China
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, Shanxi, China
- Department of Orthopedics, JinZhong Hospital Affiliated to Shanxi Medical University, Jinzhong, Shanxi, China
| | - Kun Zhang
- Second Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi, China
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, Shanxi, China
| | - Xiaoyan Li
- Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi, China
| | - Zhi Lv
- Second Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi, China
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, Shanxi, China
| | - Wenhao Wei
- Second Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi, China
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, Shanxi, China
| | - Ruhao Zhou
- Second Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi, China
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, Shanxi, China
| | - Lei Yan
- Second Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi, China
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, Shanxi, China
| | - Yongchun Pan
- Department of Orthopedics, Third People’s Hospital of Datong City, Datong, Shanxi, China
| | - Sen Yang
- Department of Orthopedics, The Second People’s Hospital of Changzhi, Changzhi, Shanxi, China
| | - Xiaojuan Sun
- Second Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi, China
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, Shanxi, China
| | - Pengcui Li
- Second Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi, China
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, Shanxi, China
| | - Chaojian Xu
- Second Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi, China
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, Shanxi, China
| | - Yi Feng
- Second Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi, China
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, Shanxi, China
| | - Zhi Tian
- Second Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi, China
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, Shanxi, China
| |
Collapse
|
8
|
Intervention Effects of Okra Extract on Brain-Gut Peptides and Intestinal Microorganisms in Sleep Deprivation Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:9855411. [PMID: 36193125 PMCID: PMC9526647 DOI: 10.1155/2022/9855411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 08/13/2022] [Indexed: 11/18/2022]
Abstract
Objective Okra, possessing various bioactive components, is used to treat different diseases. This study sought to estimate the intervention effects of okra extract (OE) on brain-gut peptides (BGPs) and intestinal microorganisms in sleep deprivation (SD) rats. Methods SD rat models were established using the modified multiple platform method and then treated with normal saline, diazepam tablets, or different doses of OE. Body weight and average daily water consumption of rats were recorded. Depressive behaviors of rats were assessed by the open field test and sucrose preference test. Serum levels of noradrenaline, melatonin, inflammatory factors (IL-1β/IL-6/TNF-α/IL-4/IL-10), and BGP indexes, including gastrin (GAS), motilin (MTL), 5-hydroxytryptamine (5-HT), cholecystokinin (CCK), and vasoactive intestinal peptide (VIP) were measured by ELISA. Additionally, the DNA relative contents of representative intestinal microorganisms in the collected rat feces were determined using RT-qPCR. Results SD decreased body weight and average daily water consumption and induced depressive behaviors as well as stress and inflammatory responses in rats. SD rats exhibited lowered GAS, MTL, 5-HT, and VIP but elevated CCK and showed diminished DNA relative contents of Bacteroidetes and probiotics (Bifidobacteria and Lactobacilli) but increased Clostridium perfringens. OE at different doses ameliorated the depressive behaviors and mitigated the stress and inflammatory responses in SD rats, raised the serum contents of GAS, MTL, 5-HT, and VIP, reduced CCK level, elevated the DNA relative contents of Bacteroidetes and probiotics, but diminished Clostridium perfringens. OE exhibited similar intervention effects to diazepam tablets (positive control). Conclusion OE exerts intervention effects on BGPs and intestinal microorganisms in SD rats.
Collapse
|
9
|
Sun Y, Zhang HJ, Chen R, Lee WH, Zhao HB. 16S rDNA analysis of osteoporotic rats treated with osteoking. J Med Microbiol 2022; 71. [PMID: 35737512 DOI: 10.1099/jmm.0.001552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Introduction. Osteoporosis (OP) is characterized by microstructural degeneration of bone tissue, low bone mass, bone fragility and even brittle fracture (osteoporotic fracture, OPF). OP and OPF are common and there are many disadvantages to the current medications for OP/OPF. Osteoking is a traditional Chinese medicine (TCM) originating from the Yi nationality (Yunnan, China) that has been used to treat bone diseases for decades.Hypothesis/Gap Statement. This study will reveal the changes in the intestinal microbiota of OP rats after 70 days of osteoking treatment.Method. With duplication of sham and OP rats, eight groups were established, with six rats in each group. The intestinal microbiotas were analysed by 16S rDNA sequencing.Results. The results showed that osteoking changed the intestinal microbiota of sham rats and OP rats. The mechanism by which osteoking improves OP is related to the functions of the intestinal microbiota. After 70 days of treatment with osteoking, the contents of Pseudonocardia, Pedomicrobium, Variovorax, Niastella and Actinosynnema were decreased in OP rats. The functions of the above intestinal microbiota related to iron metabolism affected calcifediol and 25(OH)D, and measuring these bone metabolic indicators is required for further study.Conclusion. Osteoking changes the intestinal microbiota to improve OP, and further study which reveals these intestinal microbiota and mechanism is needed.
Collapse
Affiliation(s)
- Yan Sun
- The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, 650500, PR China.,Key Laboratory of Bio-active Peptides of Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, Kunming Institute of Zoology, Kunming, Yunnan, 650032, PR China.,Pharmaceutical College & Key Laboratory of Pharmacology for Natural Products of Yunnan Province, Kunming Medical University, Kunming, 650032, Yunnan, PR China
| | - Hui-Jie Zhang
- Key Laboratory of Bio-active Peptides of Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, Kunming Institute of Zoology, Kunming, Yunnan, 650032, PR China
| | - Ran Chen
- The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650000, PR China
| | - Wen-Hui Lee
- Key Laboratory of Bio-active Peptides of Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, Kunming Institute of Zoology, Kunming, Yunnan, 650032, PR China
| | - Hong-Bin Zhao
- The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, 650500, PR China
| |
Collapse
|