1
|
Kim MK, Koh SH, Kim TK. Effects of Walking and Barre Exercise on CES-D, Stress Hormones, hs-CRP, and Immunoglobulins in Elderly Women. J Clin Med 2025; 14:1777. [PMID: 40095921 PMCID: PMC11901002 DOI: 10.3390/jcm14051777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 03/04/2025] [Accepted: 03/05/2025] [Indexed: 03/19/2025] Open
Abstract
Objectives: This study explored the impact of a 12-week walking and barre exercise program on depression levels (CES-D), stress hormones (dopamine, epinephrine, norepinephrine, cortisol, serotonin), high-sensitivity C-reactive protein (hs-CRP), and immunoglobulins (IgA, IgG, IgM) in women aged 65 and above. Methods: Twenty-seven participants were divided into a walking exercise group (WG), barre exercise group (BG) and control group (CG), each comprising nine individuals. Sessions lasted 50 min, thrice weekly, with intensity progressing every 4 weeks. Two-way repeated measures of ANOVA assessed time-group interactions and main effects, and paired t-tests and one-way ANOVA were used post hoc with significance set at 0.05. Results: The CES-D scores demonstrated significant interaction (p < 0.001), decreasing significantly in the BG and WG (p < 0.01) while rising in the CG (p < 0.05). Post hoc analysis revealed significantly lower depression levels in the BG compared to the CG (p < 0.01). Stress hormones epinephrine and cortisol showed a main effect of time (p < 0.05), with epinephrine increasing significantly in the BG (p < 0.05) and cortisol decreasing in the BG and WG (p < 0.05). An interaction effect emerged in hs-CRP levels (p < 0.05), while IgA and IgM displayed interaction effects (p < 0.05 and p < 0.01, respectively), both significantly increasing in the BG (p < 0.05). Conclusions: In summary, regular exercise positively impacted depression, stress hormones, and immune functions in older women.
Collapse
Affiliation(s)
| | - Su-Han Koh
- Department of Physical Education, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea;
| | - Tae-Kyu Kim
- Department of Physical Education, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea;
| |
Collapse
|
2
|
Zhao R. Can exercise benefits be harnessed with drugs? A new way to combat neurodegenerative diseases by boosting neurogenesis. Transl Neurodegener 2024; 13:36. [PMID: 39049102 PMCID: PMC11271207 DOI: 10.1186/s40035-024-00428-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 07/01/2024] [Indexed: 07/27/2024] Open
Abstract
Adult hippocampal neurogenesis (AHN) is affected by multiple factors, such as enriched environment, exercise, ageing, and neurodegenerative disorders. Neurodegenerative disorders can impair AHN, leading to progressive neuronal loss and cognitive decline. Compelling evidence suggests that individuals engaged in regular exercise exhibit higher production of proteins that are essential for AHN and memory. Interestingly, specific molecules that mediate the effects of exercise have shown effectiveness in promoting AHN and cognition in different transgenic animal models. Despite these advancements, the precise mechanisms by which exercise mimetics induce AHN remain partially understood. Recently, some novel exercise molecules have been tested and the underlying mechanisms have been proposed, involving intercommunications between multiple organs such as muscle-brain crosstalk, liver-brain crosstalk, and gut-brain crosstalk. In this review, we will discuss the current evidence regarding the effects and potential mechanisms of exercise mimetics on AHN and cognition in various neurological disorders. Opportunities, challenges, and future directions in this research field are also discussed.
Collapse
Affiliation(s)
- Renqing Zhao
- College of Physical Education, Yangzhou University, 88 South Daxue Road, Yangzhou, 225009, China.
| |
Collapse
|
3
|
Čechová B, Jurčovičová J, Petríková I, Vaculín Š, Šandera Š, Šlamberová R. Impact of altered environment and early postnatal methamphetamine exposure on serotonin levels in the rat hippocampus during adolescence. Lab Anim Res 2024; 40:1. [PMID: 38308379 PMCID: PMC10835812 DOI: 10.1186/s42826-024-00192-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/17/2024] [Accepted: 01/30/2024] [Indexed: 02/04/2024] Open
Abstract
BACKGROUND Methamphetamine (MA) is a highly abused psychostimulant across all age groups including pregnant women. Because developing brain is vulnerable by the action of drugs, or other noxious stimuli, the aim of our study was to examine the effect of early postnatal administration of MA alone or in combination with enriched environment (EE) and/or stress of separate housing, on the levels of serotonin (5HT) in the hippocampus of male rat pups at three stages of adolescence (postnatal day (PND) 28, 35 and 45). MA (5 mg/kg/ml) was administered subcutaneously (sc) to pups (direct administration), or via mothers' milk between PND1 and PND12 (indirect administration). Controls were exposed saline (SA). Pups were exposed to EE and/or to separation from the weaning till the end of the experiment. RESULTS On PND 28, in sc-treated series, EE significantly increased the muted 5HT in SA pups after separation and restored the pronounced inhibition of 5HT by MA. No beneficial effect of EE was present in pups exposed to combination of MA and separation. 5HT development declined over time; EE, MA and separation had different effects on 5HT relative to adolescence stage. CONCLUSIONS Present study shows that MA along with environment or housing affect 5HT levels, depending on both the age and the method of application (direct or indirect). These findings extend the knowledge on the effects of MA alone and in combination with different housing conditions on the developing brain and highlight the increased sensitivity to MA during the first few months after birth.
Collapse
Affiliation(s)
- Barbora Čechová
- Department of Physiology, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jana Jurčovičová
- Department of Physiology, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Ivana Petríková
- Department of Physiology, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Šimon Vaculín
- Department of Physiology, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Štěpán Šandera
- Department of Physiology, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Romana Šlamberová
- Department of Physiology, Third Faculty of Medicine, Charles University, Prague, Czech Republic.
| |
Collapse
|
4
|
Kim TW, Park SS, Kim SH, Kim MK, Shin MS, Kim SH. Exercise before pregnancy exerts protective effect on prenatal stress-induced impairment of memory, neurogenesis, and mitochondrial function in offspring. J Exerc Rehabil 2024; 20:2-10. [PMID: 38433854 PMCID: PMC10902695 DOI: 10.12965/jer.2448068.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 01/25/2024] [Accepted: 02/02/2024] [Indexed: 03/05/2024] Open
Abstract
Stress during pregnancy has a negative effect on the fetus. However, maternal exercise has a positive effect on the cognitive function of the fetus and alleviates the negative effects of stress. This study aimed to demonstrate whether exercise before pregnancy has a protective effect on prenatal stress-induced impairment of memory, neurogenesis and mitochondrial function in mice offspring. In this experiment, immunohistochemistry, Western blot, measurement of mitochondria oxygen respiration, and behavior tests were performed. Spatial memory and short-term memory of the offspring from the prenatal stress with exercise were increased compared to the offspring from the prenatal stress. The numbers of doublecortin-positive and 5-bromo-2'-deoxyuridine-positive cells in the hippocampal dentate gyrus of the offspring from the prenatal stress with exercise were higher compared to the offspring from the prenatal stress. The expressions of brain-derived neurotrophic factor, postsynaptic density 95 kDa, and synaptophysin in the hippocampus of the offspring from the prenatal stress with exercise were enhanced compared to the offspring from the prenatal stress. Oxygen consumption of the offspring from the prenatal stress with exercise were higher compared to the offspring from the prenatal stress. Exercise before pregnancy alleviated prenatal stress-induced impairment of memory, neurogenesis, and mitochondrial function. Therefore, exercise before pregnancy may have a protective effect against prenatal stress of the offspring.
Collapse
Affiliation(s)
- Tae-Woon Kim
- Department of Human Health Care, Gyeongsang National University, Jinju,
Korea
| | - Sang-Seo Park
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul,
Korea
| | - Sang-Hoon Kim
- Department of Sport and Health Sciences, College of Art and Culture, Sangmyung University, Seoul,
Korea
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ,
USA
| | - Myung-Ki Kim
- College of Culture and Sports, Division of Global Sport Studies, Korea University, Sejong,
Korea
| | - Mal-Soon Shin
- College of Culture and Sports, Division of Global Sport Studies, Korea University, Sejong,
Korea
| | - Seong-Hyun Kim
- Department of Kinesiology, Michigan State University, East Lansing, MI,
USA
| |
Collapse
|
5
|
Tian J, Du E, Guo L. Mitochondrial Interaction with Serotonin in Neurobiology and Its Implication in Alzheimer's Disease. J Alzheimers Dis Rep 2023; 7:1165-1177. [PMID: 38025801 PMCID: PMC10657725 DOI: 10.3233/adr-230070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 08/16/2023] [Indexed: 12/01/2023] Open
Abstract
Alzheimer's disease (AD) is a lethal neurodegenerative disorder characterized by severe brain pathologies and progressive cognitive decline. While the exact cause of this disease remains unknown, emerging evidence suggests that dysregulation of neurotransmitters contributes to the development of AD pathology and symptoms. Serotonin, a critical neurotransmitter in the brain, plays a pivotal role in regulating various brain processes and is implicated in neurological and psychiatric disorders, including AD. Recent studies have shed light on the interplay between mitochondrial function and serotonin regulation in brain physiology. In AD, there is a deficiency of serotonin, along with impairments in mitochondrial function, particularly in serotoninergic neurons. Additionally, altered activity of mitochondrial enzymes, such as monoamine oxidase, may contribute to serotonin dysregulation in AD. Understanding the intricate relationship between mitochondria and serotonin provides valuable insights into the underlying mechanisms of AD and identifies potential therapeutic targets to restore serotonin homeostasis and alleviate AD symptoms. This review summarizes the recent advancements in unraveling the connection between brain mitochondria and serotonin, emphasizing their significance in AD pathogenesis and underscoring the importance of further research in this area. Elucidating the role of mitochondria in serotonin dysfunction will promote the development of therapeutic strategies for the treatment and prevention of this neurodegenerative disorder.
Collapse
Affiliation(s)
- Jing Tian
- Department of Pharmacology and Toxicology, University of Kansas, Lawrence, KS, USA
| | - Eric Du
- Department of Pharmacology and Toxicology, University of Kansas, Lawrence, KS, USA
- Blue Valley West High School, Overland Park, KS, USA
| | - Lan Guo
- Department of Pharmacology and Toxicology, University of Kansas, Lawrence, KS, USA
| |
Collapse
|
6
|
Shekarchian M, Peeri M, Azarbayjani MA. Physical activity in a swimming pool attenuates memory impairment by reducing glutamate and inflammatory cytokines and increasing BDNF in the brain of mice with type 2 diabetes. Brain Res Bull 2023; 201:110725. [PMID: 37543294 DOI: 10.1016/j.brainresbull.2023.110725] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 07/01/2023] [Accepted: 08/02/2023] [Indexed: 08/07/2023]
Abstract
Type 2 diabetes is a risk factor for the development of cognitive impairment. Increasing evidence suggests that regular exercise is beneficial for the treatment of clinical symptoms in diabetic patients. The current study aimed to evaluate whether increasing physical activity through swimming training can reduce memory impairment in an animal model of type 2 diabetes. Diabetes and non-diabetes mice underwent swimming training for four weeks, and then working, spatial, and recognition memory were evaluated using three behavioral tests. Body weight, glucose, and insulin resistance were monitored. We also measured inflammatory cytokines (interleukin (IL)- 6, IL-1β, and tumor-necrosis-factor (TNF)-α), an anti-inflammatory cytokine (IL-10), and brain-derived-neurotrophic-factor (BDNF), and glutamate levels in the hippocampus or prefrontal cortex of mice. The findings showed that diabetes increased body weight, glucose, and insulin resistance, impaired working, spatial and recognition memory, increased levels of IL-6, IL-1β, TNF-α, and glutamate levels, and decreased BDNF in the hippocampus of diabetic mice. While higher physical activity was associated with reduced body weight, glucose, and insulin resistance, attenuated memory impairment, IL-6, IL-1β, TNF-α, and glutamate, and increased BDNF levels in the hippocampus and prefrontal cortex of diabetic mice. This study shows that swimming training can normalize body weight and glucose-insulin axis and reduce inflammation and glutamate in the hippocampus and enhance the neurotrophic system in both the hippocampus and prefrontal cortex of diabetic mice. This study also suggests that higher physical activity through swimming training can improve cognitive impairment in a mouse model of type 2 diabetes.
Collapse
Affiliation(s)
- Mandana Shekarchian
- Department of Exercise Physiology, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Maghsoud Peeri
- Department of Exercise Physiology, Central Tehran Branch, Islamic Azad University, Tehran, Iran.
| | | |
Collapse
|
7
|
Barzegari A, Mahdirejei HA, Hanani M, Esmaeili MH, Salari AA. Adolescent swimming exercise following maternal valproic acid treatment improves cognition and reduces stress-related symptoms in offspring mice: Role of sex and brain cytokines. Physiol Behav 2023; 269:114264. [PMID: 37295664 DOI: 10.1016/j.physbeh.2023.114264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 05/20/2023] [Accepted: 06/06/2023] [Indexed: 06/12/2023]
Abstract
Valproic acid (VPA) treatment during pregnancy is a risk factor for developing autism spectrum disorder, cognitive deficits, and stress-related disorders in children. No effective therapeutic strategies are currently approved to treat or manage core symptoms of autism. Active lifestyles and physical activity are closely associated with health and quality of life during childhood and adulthood. This study aimed to evaluate whether swimming exercise during adolescence can prevent the development of cognitive dysfunction and stress-related disorders in prenatally VPA-exposed mice offspring. Pregnant mice received VPA, afterwards, offspring were subjected to swimming exercise. We assessed neurobehavioral performances and inflammatory cytokines (interleukin-(IL)6, tumor-necrosis-factor-(TNF)α, interferon-(IFN)γ, and IL-17A) in the hippocampus and prefrontal cortex of offspring. Prenatal VPA treatment increased anxiety-and anhedonia-like behavior and decreased social behavior in male and female offspring. Prenatal VPA exposure also increased behavioral despair and reduced working and recognition memory in male offspring. Although prenatal VPA increased hippocampal IL-6 and IFN-γ, and prefrontal IFN-γ and IL-17 in males, it only increased hippocampal TNF-α and IFN-γ in female offspring. Adolescent exercise made VPA-treated male and female offspring resistant to anxiety-and anhedonia-like behavior in adulthood, whereas it only made VPA-exposed male offspring resistant to behavioral despair, social and cognitive deficits in adulthood. Exercise reduced hippocampal IL-6, TNF-α, IFN-γ, and IL-17, and prefrontal IFN-γ and IL-17 in VPA-treated male offspring, whereas it reduced hippocampal TNF-α and IFN-γ in VPA-treated female offspring. This study suggests that adolescent exercise may prevents the development of stress-related symptoms, cognitive deficits, and neuroinflammation in prenatally VPA-exposed offspring mice.
Collapse
Affiliation(s)
- Ali Barzegari
- Department of Exercise Physiology, Payame Noor University (PNU), Tehran, Iran
| | | | - Masoumeh Hanani
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, Kish International Campus, University of Tehran, Kish, Iran
| | | | - Ali-Akbar Salari
- Salari Institute of Cognitive and Behavioral Disorders (SICBD), Karaj, Alborz, Iran; Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
8
|
Swimming exercise strain-dependently affects maternal care and depression-related behaviors through gestational corticosterone and brain serotonin in postpartum dams. Brain Res Bull 2022; 188:122-130. [DOI: 10.1016/j.brainresbull.2022.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 11/18/2022]
|
9
|
Grigoryan GA, Pavlova IV, Zaichenko MI. Effects of Social Isolation on the Development of Anxiety and Depression-Like Behavior in Model Experiments in Animals. NEUROSCIENCE AND BEHAVIORAL PHYSIOLOGY 2022; 52:722-738. [PMID: 36119650 PMCID: PMC9471030 DOI: 10.1007/s11055-022-01297-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 03/02/2021] [Indexed: 11/24/2022]
Abstract
This review describes the role of social isolation in the development of anxiety and depression-like behavior in rodents. The duration of social isolation, age from onset of social isolation, sex, species, and strain of animals, the nature of the model used, and other factors have been shown to have influences. The molecular-cellular mechanisms of development of anxiety and depression-like behavior under the influence of social isolation and the roles of the HHAS, oxidative and nitrosative stress, neuroinflammation, BDNF, neurogenesis, synaptic plasticity, as well as monoamines in these mechanisms are discussed. This review presents data on sex differences in the effects of social isolation, along with the effects of interactions with other types of stress, and the roles of an enriched environment and other factors in ameliorating the negative sequelae of social isolation.
Collapse
Affiliation(s)
- G. A. Grigoryan
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| | - I. V. Pavlova
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| | - M. I. Zaichenko
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
10
|
Park SS, Kim TW, Kim BK, Kim SH, Park JS, Shin MS. The effects of exercise and diet on mental status, insulin signaling pathway, and microbiome in obese mice. J Exerc Rehabil 2022; 18:171-178. [PMID: 35846233 PMCID: PMC9271650 DOI: 10.12965/jer.2244278.139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/03/2022] [Indexed: 11/22/2022] Open
Abstract
The aim of this study was to investigate the effects of exercise and diet on mental status, insulin signaling pathway, serotonin synthesis, and microbiome in high-fat-induced obesity mice. Before the start of this experiment, obesity groups made obese mice by administering a high-fat diet containing 60% fat for 12 weeks. In the obesity with exercise group, after a high-fat diet for 12 weeks, exercise was performed with high-fat diet for 8 weeks. In the obesity with diet group, a high-fat diet for 12 weeks followed by a normal diet for 8 weeks. Depression and anxiety were determined by open field test and elevated plus maze test. Immunohistochemistry for tryptophan hydroxylase (TPH) in the dorsal raphe, western blot analysis for phosphorylated protein kinase B (p-ATK), total AKT (t-AKT), phosphorylated phosphoinositide 3-kinase (p-PI3K), and total PI3K (t-PI3K) in the hippocampus were performed. Analysis of microbiome was also conducted. Obesity-induced depression and anxiety status, suppressed ratio of p-AKT/t-AKT and p-PI3K/t-PI3K, and inhibited TPH synthesis. Exercise and diet improved depression and anxiety status, activated p-AKT/t-AKT and p-PI3K/t-PI3K, and increased TPH synthesis. Exercise and diet improved depression and anxiety status by increasing the insulin signaling pathway and promoting serotonin production. These effects of exercise and diet were almost similar. In addition, exercise and diet regulated the composition of gut microbiota.
Collapse
Affiliation(s)
- Sang-Seo Park
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Tae-Woon Kim
- Department of Human Health Care, Gyeongsang National University, Jinju, Korea
| | - Bo-Kyun Kim
- Department of Emergency Technology, College of Health Science, Gachon University, Incheon, Korea
| | - Seong-Hyun Kim
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, Korea
- College of Culture and Sports, Division of Global Sport Studies, Korea University, Sejong, Korea
| | - Jong-Suk Park
- College of Culture and Sports, Division of Global Sport Studies, Korea University, Sejong, Korea
| | - Mal-Soon Shin
- College of Culture and Sports, Division of Global Sport Studies, Korea University, Sejong, Korea
- Corresponding author: Mal-Soon Shin, College of Culture and Sports, Division of Global Sport Studies, Korea University, 2511 Sejong-ro, Sejong 30019, Korea,
| |
Collapse
|
11
|
Effects of Treadmill Exercise on Social Behavior in Rats Exposed to Thimerosal with Respect to the Hippocampal Level of GluN1, GluN2A, and GluN2B. J Mol Neurosci 2022; 72:1345-1357. [PMID: 35597884 DOI: 10.1007/s12031-022-02027-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/09/2022] [Indexed: 10/18/2022]
Abstract
Thimerosal (THIM) kills brain neurons via induction of apoptosis and necrosis and induces the pathological features of autism spectrum disorder (ASD) in rats. THIM also affects the function of glutamatergic receptors. On the other hand, exercise induces both improvement and impairment effects on memory, depending on intensity, type, and duration. Treadmill exercise can also alter the expression of glutamatergic receptors. In this study, we aimed to investigate the effect of THIM and three protocols of treadmill exercise on social interaction memory and hippocampal expression of GluN1, GluN2A, and GluN2B in rats. THIM was injected intramuscularly at the dose of 300 µg/kg. The three-chamber apparatus was used to evaluate social interaction memory, and western blotting was used to assess protein expression. The results showed that THIM impaired social memory. Exercise 1 impaired social affiliation in controls. Social memory was impaired in all exercise groups of controls. Exercise 1 + 2 impaired social affiliation in THIM rats. Social memory was impaired in all groups of THIM rats. Exercises 2 and 1 + 2 decreased the expression of GluN1, and exercise 1 increased the expression of GluN2A and GluN2B in controls. THIM increased the expression of GluN2B, while exercise 1 reversed this effect. All exercise protocols increased the expression of GluN2A, and exercises 2 and 1 + 2 increased the expression of GluN1 in THIM rats. In conclusion, both THIM and exercise impaired social memory. Of note, the results did not show a separate and influential role for glutamatergic subunits in modulating memory processes following THIM injection or exercise.
Collapse
|
12
|
Ebrahimnejad M, Azizi P, Alipour V, Zarrindast MR, Vaseghi S. Complicated Role of Exercise in Modulating Memory: A Discussion of the Mechanisms Involved. Neurochem Res 2022; 47:1477-1490. [PMID: 35195832 DOI: 10.1007/s11064-022-03552-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 02/03/2022] [Accepted: 02/05/2022] [Indexed: 12/15/2022]
Abstract
Evidence has shown the beneficial effects of exercise on learning and memory. However, many studies have reported controversial results, indicating that exercise can impair learning and memory. In this article, we aimed to review basic studies reporting inconsistent complicated effects of exercise on memory in rodents. Also, we discussed the mechanisms involved in the effects of exercise on memory processes. In addition, we tried to find scientific answers to justify the inconsistent results. In this article, the role of brain-derived neurotrophic factor (BDNF) and tropomyosin receptor kinase B (involved in synaptic plasticity and neurogenesis), and vascular endothelial growth factor, nerve growth factor, insulin-like growth factor 1, inflammatory markers, apoptotic factors, and antioxidant system was discussed in the modulation of exercise effects on memory. The role of intensity and duration of exercise, and type of memory task was also investigated. We also mentioned to the interaction of exercise with the function of neurotransmitter systems, which complicates the prediction of exercise effect via altering the level of BDNF. Eventually, we suggested that changes in the function of neurotransmitter systems following different types of exercise (depending on exercise intensity or age of onset) should be investigated in further studies. It seems that exercise-induced changes in the function of neurotransmitter systems may have a stronger role than age, type of memory task, or exercise intensity in modulating memory. Importantly, high levels of interactions between neurotransmitter systems and BDNF play a critical role in the modulation of exercise effects on memory performance.
Collapse
Affiliation(s)
- Mahshid Ebrahimnejad
- Department of Physiology, Faculty of Veterinary Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Paniz Azizi
- School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Vahide Alipour
- Department of Physical Education and Sport Sciences, Faculty of Humanities, Rasht Branch, Islamic Azad University, Rasht, Iran
| | - Mohammad-Reza Zarrindast
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Salar Vaseghi
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, P.O. Box: 1419815477, Karaj, Iran.
| |
Collapse
|
13
|
Alghamdi BS. The Effect of Melatonin and Exercise on Social Isolation-Related Behavioral Changes in Aged Rats. Front Aging Neurosci 2022; 14:828965. [PMID: 35211007 PMCID: PMC8861461 DOI: 10.3389/fnagi.2022.828965] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 01/06/2022] [Indexed: 12/12/2022] Open
Abstract
Social isolation (SI) is well established as an environmental factor that negatively influences different behavioral parameters, including cognitive function, anxiety, and social interaction, depending on the age of isolation. Aging is a physiological process that is associated with changes in cognitive function, locomotor activity, anxiety and emotional responses. Few studies have investigated the effect of SI in senescence, or possible interventions. In the current study, we investigated the possible complementary effects of melatonin (MLT) and exercise (Ex) in improving SI-related behavioral changes in aged rats. Forty aged Wistar rats (24 months old) were randomly divided into five groups (n = 8 per group): Control (group housing), SI (individual housing for 7 weeks), SI + MLT (SI rats treated with 0.4 mg MLT/ml in drinking water), SI + Ex (SI rats treated with 60 min of swimming), and SI + MLT + Ex (SI rats treated with both MLT and Ex). Different behavioral tasks were conducted in the following sequence: open field test, elevated plus maze test, sucrose preference test, Y maze test, and Morris water maze test. Locomotor activities measured by total distance moved and velocity revealed that SI + Ex (P = 0.0038; P = 0.0015) and SI + MLT + Ex (P = 0.0001; P = 0.0003) significantly improved the locomotor activity compared with SI rats but SI + MLT (P = 0.0599; P = 0.0627) rats showed no significant change. Anxiety index score was significantly improved in SI + MLT + Ex (P = 0.0256) compared with SI rats while SI + MLT (P > 0.9999) and SI + Ex (P = 0.2943) rats showed no significant change. Moreover, latency to reach the platform in Morris water maze was significantly reduced at day 5 in SI + MLT + Ex (P = 0.0457) compared with SI rats but no change was detected in SI + MLT (P = 0.7314) or SI + Ex (P = 0.1676) groups. In conclusion, this study supports the possible potential of MLT in combination with Ex in improving physical activity, anxiety, and cognitive functions in aging population.
Collapse
Affiliation(s)
- Badrah Saeed Alghamdi
- Department of Physiology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- *Correspondence: Badrah Saeed Alghamdi, ; orcid.org/0000-0002-9411-3609
| |
Collapse
|
14
|
Multiple Applications of Different Exercise Modalities with Rodents. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:3898710. [PMID: 34868454 PMCID: PMC8639251 DOI: 10.1155/2021/3898710] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/14/2021] [Accepted: 11/12/2021] [Indexed: 12/29/2022]
Abstract
A large proportion of chronic diseases can be derived from a sedentary lifestyle. Raising physical activity awareness is indispensable, as lack of exercise is the fourth most common cause of death worldwide. Animal models in different research fields serve as important tools in the study of acute or chronic noncommunicable disorders. With the help of animal-based exercise research, exercise-mediated complex antioxidant and inflammatory pathways can be explored, which knowledge can be transferred to human studies. Whereas sustained physical activity has an enormous number of beneficial effects on many organ systems, these animal models are easily applicable in several research areas. This review is aimed at providing an overall picture of scientific research studies using animal models with a focus on different training modalities. Without wishing to be exhaustive, the most commonly used forms of exercise are presented.
Collapse
|
15
|
Preischemic Treadmill Exercise Ameliorates Memory Impairment and Microvasculature Damage in Rat Model of Chronic Cerebral Hypoperfusion. Int Neurourol J 2021; 25:S72-80. [PMID: 34844389 PMCID: PMC8654316 DOI: 10.5213/inj.2142340.170] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 10/29/2021] [Indexed: 12/11/2022] Open
Abstract
Purpose Silent information regulator 1 (SIRT1) in the brain is essential for maintaining cellular homeostasis and plays a neuroprotective role in cerebral ischemia and neurodegenerative disorders. The effect of preischemic treadmill exercise on chronic cerebral hypoperfusion (CCH)-induced spatial learning memory impairment, microvascular injury, and blood-brain barrier (BBB) disruption in relation with SIRT1 expression was evaluated. Methods Prior to bilateral common carotid artery occlusion (BCCAO) surgery, the rats in the exercise groups performed low-intensity treadmill running for 30 minutes once daily during 8 weeks. BCCAO surgery was performed on male Wistar rats at 12 weeks of age. Spatial learning memory was measured using the Morris water maze test. Neuronal nuclear antigen, SIRT1, and rat endothelial cells antigen 1 were determined by immunohistochemistry and platelet-derived growth factor receptor beta was determined by immunofluorescence. Results Preischemic treadmill exercise ameliorated spatial learning memory impairment and enhanced SIRT1 expression in the BCCAO rats. Preischemic treadmill exercise ameliorated BCCAO-induced damage to microvasculature and pericytes that make up the BBB. The effect of preischemic treadmill exercise was lost with sirtinol treatment. Conclusions These results can apply treadmill exercise prior to cerebral ischemia as a rational preventive and therapeutic intervention strategy to improve cognitive dysfunction in CCH patients.
Collapse
|
16
|
Resistance Exercise Improves Spatial Learning Ability Through Phosphorylation of 5'-Adenosine Monophosphate-Activated Protein Kinase in Parkinson Disease Mice. Int Neurourol J 2021; 25:S55-62. [PMID: 34844387 PMCID: PMC8654314 DOI: 10.5213/inj.2142336.168] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 10/20/2021] [Indexed: 12/29/2022] Open
Abstract
Purpose Exercise is a representative noninvasive treatment that can be applied to various diseases. We studied the effect of resistance exercise on motor function and spatial learning ability in Parkinson disease (PD) mice. Methods The rotarod test and beam walking test were conducted to evaluate the effect of resistance exercise on motor function, and the Morris water maze test was conducted to examine the effect of resistance exercise on spatial learning ability. The effect of resistance exercise on brain-derived neurotrophic factor (BDNF) and tropomyosin receptor kinase B (TrkB) expression and 5’-adenosine monophosphate-activated protein kinase (AMPK) phosphorylation was investigated by Western blot analysis. New cell generation was confirmed by immunohistochemistry for 5-bromo-2’-deoxyuridine. Results Resistance exercise improved coordination, balance, and spatial learning ability in PD mice. Resistance exercise enhanced new cell production, BDNF and TrkB expression, and AMPK phosphorylation in PD mice. The effect of such resistance exercise was similar to that of levodopa application. Conclusions In PD-induced mice, resistance exercise enhanced AMPK phosphorylation to increase BDNF expression and new neuron generation, thereby improving spatial learning ability. Resistance exercise is believed to help improve symptoms of PD.
Collapse
|
17
|
Taheri Zadeh Z, Rahmani S, Alidadi F, Joushi S, Esmaeilpour K. Depresssion, anxiety and other cognitive consequences of social isolation: Drug and non-drug treatments. Int J Clin Pract 2021; 75:e14949. [PMID: 34614276 DOI: 10.1111/ijcp.14949] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 10/04/2021] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVE During the COVID-19 pandemic, quarantine and staying at home is advised. The social relationship between people has become deficient, and human social isolation (SI) has become the consequence of this situation. It was shown that SI has made changes in hippocampal neuroplasticity, which will lead to poor cognitive function and behavioural abnormalities. There is a connection between SI, learning, and memory impairments. In addition, anxiety-like behaviour and increased aggressive mood in long-term isolation have been revealed during the COVID-19 outbreak. METHODS Term searches was done in Google Scholar, Scopus, ScienceDirect, Web of Science and PubMed databases as well as hand searching in key resource journals from 1979 to 2020. RESULTS Studies have shown that some drug administrations may positively affect or even prevent social isolation consequences in animal models. These drug treatments have included opioid drugs, anti-depressants, Antioxidants, and herbal medications. In addition to drug interventions, there are non-drug treatments that include an enriched environment, regular exercise, and music. CONCLUSION This manuscript aims to review improved cognitive impairments induced by SI during COVID-19.
Collapse
Affiliation(s)
- Zahra Taheri Zadeh
- Student Research Committee, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Shayan Rahmani
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Sara Joushi
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Khadijeh Esmaeilpour
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
- Department of Physics and Astronomy, University of Waterloo, Waterloo, Canada
| |
Collapse
|
18
|
Vaseghi S, Arjmandi-Rad S, Eskandari M, Ebrahimnejad M, Kholghi G, Zarrindast MR. Modulating role of serotonergic signaling in sleep and memory. Pharmacol Rep 2021; 74:1-26. [PMID: 34743316 DOI: 10.1007/s43440-021-00339-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 01/02/2023]
Abstract
Serotonin is an important neurotransmitter with various receptors and wide-range effects on physiological processes and cognitive functions including sleep, learning, and memory. In this review study, we aimed to discuss the role of serotonergic receptors in modulating sleep-wake cycle, and learning and memory function. Furthermore, we mentioned to sleep deprivation, its effects on memory function, and the potential interaction with serotonin. Although there are thousands of research articles focusing on the relationship between sleep and serotonin; however, the pattern of serotonergic function in sleep deprivation is inconsistent and it seems that serotonin has not a certain role in the effects of sleep deprivation on memory function. Also, we found that the injection type of serotonergic agents (systemic or local), the doses of these drugs (dose-dependent effects), and up- or down-regulation of serotonergic receptors during training with various memory tasks are important issues that can be involved in the effects of serotonergic signaling on sleep-wake cycle, memory function, and sleep deprivation-induced memory impairments. This comprehensive review was conducted in the PubMed, Scopus, and ScienceDirect databases in June and July 2021, by searching keywords sleep, sleep deprivation, memory, and serotonin.
Collapse
Affiliation(s)
- Salar Vaseghi
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran.
| | - Shirin Arjmandi-Rad
- Institute for Cognitive and Brain Sciences, Shahid Beheshti University, Tehran, Iran
| | - Maliheh Eskandari
- Faculty of Basic Sciences, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Mahshid Ebrahimnejad
- Department of Physiology, Faculty of Veterinary Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Gita Kholghi
- Department of Psychology, Faculty of Human Sciences, Islamic Azad University, Tonekabon Branch, Tonekabon, Iran
| | - Mohammad-Reza Zarrindast
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
19
|
Shirenova SD, Khlebnikova NN, Krupina NA. Long-Term Social Isolation Reduces Expression of the BDNF Precursor and Prolyl Endopeptidase in the Rat Brain. BIOCHEMISTRY (MOSCOW) 2021; 86:704-715. [PMID: 34225593 DOI: 10.1134/s0006297921060080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Early-life stress is a risk factor for the development of behavioral and cognitive disorders in humans and animals. Such stressful situations include social isolation in early postnatal ontogenesis. Behavioral and cognitive impairments associated with neuroplastic changes in brain structures. We have found that after ten weeks of social isolation, male Wistar rats show behavioral abnormalities and cognitive deficit, accompanied by an increase in the relative expression of gene encoding serine protease prolyl endopeptidase (PREP, EC 3.4.21.26) in the brain frontal cortex. The present study aimed to assess synaptophysin (SYP), brain-derived neurotrophic factor precursor (proBDNF), and PREP expression using Western blot in the brain structures - the hippocampus, frontal cortex, and striatum of the rats subjected to prolonged social isolation compared with group-housed animals. Twenty Wistar rats were used for this study (10 males and 10 females). Experimental animals (5 males and 5 females) were kept one per cage for nine months, starting from the age of one month. Ten-month-old socially isolated rats showed memory deficit in passive avoidance paradigm and Morris Water Maze and reactivity to novelty reduction. We used monoclonal antibodies for the Western blot analysis of the expression of SYP, proBDNF, and PREP in the rat brain structures. Social isolation caused a proBDNF expression reduction in the frontal cortex in females and a reduction in PREP expression in the striatum in males. These data suppose that neurotrophic factors and PREP are involved in the mechanisms of behavioral and cognitive impairments observed in the rats subjected to prolonged social isolation with an early life onset.
Collapse
Affiliation(s)
- Sofie D Shirenova
- Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, Moscow, 125315, Russia.
| | - Nadezhda N Khlebnikova
- Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, Moscow, 125315, Russia
| | - Nataliya A Krupina
- Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, Moscow, 125315, Russia
| |
Collapse
|
20
|
Kim SH, Ko YJ, Kim JY, Sim YJ. Treadmill Running Improves Spatial Learning Memory Through Inactivation of Nuclear Factor Kappa B/Mitogen-Activated Protein Kinase Signaling Pathway in Amyloid-β-Induced Alzheimer Disease Rats. Int Neurourol J 2021; 25:S35-43. [PMID: 34053209 PMCID: PMC8171239 DOI: 10.5213/inj.2142164.082] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 04/27/2021] [Indexed: 02/08/2023] Open
Abstract
PURPOSE Exercise is known to reduce proinflammatory cytokines production and apoptosis. We investigated the effect of treadmill running on spatial learning memory in terms of activation of nuclear factor kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathway in Alzheimer disease (AD) rats. We also evaluated the effect of treadmill running on proinflammatory cytokine production and apoptosis. METHODS Using the stereotaxic frame, amyloid-β (Aβ) was injected into the lateral ventricle of the brain. The rats belong to treadmill running groups were forced to run on a motorized treadmill for 30 minutes per a day during 4 weeks, starting 3 days after Aβ injection. Morris water maze task was done for the determination of spatial learning memory. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay, immunohistochemistry for cleaved caspase-3, and western blot for NF-κB, inhibitory protein of NF-κB (IκB), MAPK signaling pathway, tumor necrosis factor (TNF)-α, interleukin (IL)-1β were done. RESULTS Induction of AD increased proinflammatory cytokine secretion by activating the NF-κB/MAPK signaling pathway. These changes induced apoptosis in the hippocampus and reduced spatial learning memory. In contrast, treadmill running inactivated the NF-κB/MAPK signaling pathway and suppressed proinflammatory cytokine production. These changes inhibited apoptosis and improved spatial learning memory. CONCLUSION Current results showed that treadmill running promoted spatial learning memory through suppressing proinflammatory cytokine production and apoptosis via inactivation of NF-κB/MAPK signaling pathway. Treadmill exercise can be considered an effective intervention for symptom relieve of AD.
Collapse
Affiliation(s)
- Sang-Hoon Kim
- Department of Sport & Health Sciences, College of Art & Culture, Sangmyung University, Seoul, Korea
| | - Young Jun Ko
- Major in Sport Service Practice, College of Welfare Convergence, Kangnam University, Youngin, Korea
| | - Jee-Youn Kim
- School of Global Sport Studies, Korea University, Sejong, Korea
| | - Young-Je Sim
- Department of Physical Education, Kunsan National University, Gunsan, Korea
| |
Collapse
|
21
|
Wanner NM, Colwell M, Drown C, Faulk C. Developmental cannabidiol exposure increases anxiety and modifies genome-wide brain DNA methylation in adult female mice. Clin Epigenetics 2021; 13:4. [PMID: 33407853 PMCID: PMC7789000 DOI: 10.1186/s13148-020-00993-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 12/16/2020] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Use of cannabidiol (CBD), the primary non-psychoactive compound found in cannabis, has recently risen dramatically, while relatively little is known about the underlying molecular mechanisms of its effects. Previous work indicates that direct CBD exposure strongly impacts the brain, with anxiolytic, antidepressant, antipsychotic, and other effects being observed in animal and human studies. The epigenome, particularly DNA methylation, is responsive to environmental input and can direct persistent patterns of gene regulation impacting phenotype. Epigenetic perturbation is particularly impactful during embryogenesis, when exogenous exposures can disrupt critical resetting of epigenetic marks and impart phenotypic effects lasting into adulthood. The impact of prenatal CBD exposure has not been evaluated; however, studies using the psychomimetic cannabinoid Δ9-tetrahydrocannabinol (THC) have identified detrimental effects on psychological outcomes in developmentally exposed adult offspring. We hypothesized that developmental CBD exposure would have similar negative effects on behavior mediated in part by the epigenome. Nulliparous female wild-type Agouti viable yellow (Avy) mice were exposed to 20 mg/kg CBD or vehicle daily from two weeks prior to mating through gestation and lactation. Coat color shifts, a readout of DNA methylation at the Agouti locus in this strain, were measured in F1 Avy/a offspring. Young adult F1 a/a offspring were then subjected to tests of working spatial memory and anxiety/compulsive behavior. Reduced-representation bisulfite sequencing was performed on both F0 and F1 cerebral cortex and F1 hippocampus to identify genome-wide changes in DNA methylation for direct and developmental exposure, respectively. RESULTS F1 offspring exposed to CBD during development exhibited increased anxiety and improved memory behavior in a sex-specific manner. Further, while no significant coat color shift was observed in Avy/a offspring, thousands of differentially methylated loci (DMLs) were identified in both brain regions with functional enrichment for neurogenesis, substance use phenotypes, and other psychologically relevant terms. CONCLUSIONS These findings demonstrate for the first time that despite positive effects of direct exposure, developmental CBD is associated with mixed behavioral outcomes and perturbation of the brain epigenome.
Collapse
Affiliation(s)
- Nicole M Wanner
- Department of Veterinary and Biomedical Sciences, University of Minnesota, 1334 Eckles Avenue, St. Paul, MN, USA
| | - Mathia Colwell
- Department of Animal Science, University of Minnesota, 1334 Eckles Avenue, 225 Food Science, St. Paul, MN, 55018, USA
| | - Chelsea Drown
- Department of Animal Science, University of Minnesota, 1334 Eckles Avenue, 225 Food Science, St. Paul, MN, 55018, USA
| | - Christopher Faulk
- Department of Animal Science, University of Minnesota, 1334 Eckles Avenue, 225 Food Science, St. Paul, MN, 55018, USA.
| |
Collapse
|
22
|
Kim TW, Park SS, Shin MS, Park HS, Baek SS. Treadmill exercise ameliorates social isolation-induced memory impairment by enhancing silent information regulator-1 expression in rats. J Exerc Rehabil 2020; 16:227-233. [PMID: 32724779 PMCID: PMC7365728 DOI: 10.12965/jer.2040400.200] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 05/28/2020] [Indexed: 12/14/2022] Open
Abstract
The effect of treadmill exercise on the social isolation-induced memory impairment in relation with the silent information regulator-1 (SIRT-1) was investigated. The rats in the control groups lived four in the stan-dard cages for 8 weeks. The rats in the social isolation groups lived alone in the small cages for 8 weeks. The rats in the treadmill exercise groups were subjected to run on a treadmill for 30 min once a day for 8 weeks. We used step-through avoidance test for short-term memory and Morris water maze task for spatial working memory. Immunohisto-chemistry for SIRT-1 and western blot analysis for Bax, Bcl-2, cleaved caspase-3, brain-derived neurotrophic factor (BDNF), and tropomyosin receptor kinase B (TrkB) were performed. The rats in the social isolation group showed a decrease in short-term memory and spatial working memory. Treadmill exercise alleviated short-term memory and spatial working memory in the social isolation rats. SIRT-1 expression in the hippocampus was decreased in the rats of social isolation group. Treadmill exercise increased SIRT-1 expression in the social isolation rats. Bax expression was increased, Bcl-2 expression was decreased, and cleaved caspase-3 expression in the hippocampus was increased in the rats of social isolation group. Treadmill exercise decreased Bax expression, increased Bcl-2 expression, and decreased cleaved caspase-3 expression in the social isolation rats. Hippocampal BDNF and TrkB expression was decreased in the rats of social isolation group. Treadmill exercise increased BDNF and TrkB expression in the social isolation rats.
Collapse
Affiliation(s)
- Tae-Woon Kim
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, Korea.,Department of Sport & Health Care, College of Art & Culture, Sangmyung University, Seoul, Korea
| | - Sang-Seo Park
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Mal-Soon Shin
- School of Global Sport Studies, Korea University, Sejong, Korea
| | - Hye-Sang Park
- Department of Kinesiology, College of Public Health and Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Seung-Soo Baek
- Department of Sport & Health Care, College of Art & Culture, Sangmyung University, Seoul, Korea
| |
Collapse
|