1
|
Nguyen HT, Nguyen BT, Tran AV, Nguyen TT, Ngo LH, Vo T, Nhung Thai TH, Mai LD, Tran TS, Nguyen TV, Ho-Pham LT. A predictive nomogram for selective screening of asymptomatic vertebral fractures: The Vietnam Osteoporosis Study. Osteoporos Sarcopenia 2025; 11:9-14. [PMID: 40256357 PMCID: PMC12009111 DOI: 10.1016/j.afos.2024.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 11/25/2024] [Accepted: 12/31/2024] [Indexed: 04/22/2025] Open
Abstract
Objectives Vertebral fractures are associated with disability and mortality, but most vertebral fractures are asymptomatic. The present study aimed to determine the incidence of and develop a predictive nomogram for asymptomatic vertebral fractures in Vietnamese adults. Methods This cohort study as a part of the Vietnam Osteoporosis Study involved 168 men and 287 women aged 50 years and older without a clinically diagnosed vertebral fracture. Their spine x-rays were taken at the recruitment and subsequent 2-year visit. Vertebral fractures were ascertained using the Genant's semi-quantitative method. We employed the Bayesian Model Averaging method to search for the optimal model for predicting asymptomatic vertebral fractures. A predictive nomogram was also developed to facilitate risk prediction. Results During a median of 2.38 years of follow-up, 13 men and 16 women developed an asymptomatic vertebral fracture, yielding the overall incidence rate of 28 fractures per 1000 person-years, or 33 fractures/1000 person-years in men and 24 fractures/1000 person-years in women, respectively. Most asymptomatic vertebral fractures were moderate, almost 1.5 times more common than mild fractures. The optimal model for predicting incident asymptomatic vertebral fractures included age, male sex and lower femoral neck T-score. The area under the receiver's operating characteristic curve was 0.91, with 95% CI ranging from 0.86 to 0.96. Conclusions Asymptomatic vertebral fractures were relatively common among adults in Vietnam. A simple model with sex, age and femoral neck T-score is helpful for selective screening of asymptomatic vertebral fractures in Vietnamese individuals.
Collapse
Affiliation(s)
- Hoa T. Nguyen
- Can Tho University of Medicine and Pharmacy, 902510, Vietnam
- University of Medicine and Pharmacy, Hue University, 530000, Vietnam
- Saigon Precise Medicine Research Center, 70000, Vietnam
| | - Bao T. Nguyen
- Can Tho University of Medicine and Pharmacy, 902510, Vietnam
| | - An V. Tran
- Can Tho University of Medicine and Pharmacy, 902510, Vietnam
| | - Tan T. Nguyen
- Can Tho University of Medicine and Pharmacy, 902510, Vietnam
| | - Long H. Ngo
- Can Tho University of Medicine and Pharmacy, 902510, Vietnam
| | - Tam Vo
- University of Medicine and Pharmacy, Hue University, 530000, Vietnam
| | | | - Linh D. Mai
- Saigon Precise Medicine Research Center, 70000, Vietnam
- Biomedicine Research Center Pham Ngoc Thach University of Medicine, 70000, Vietnam
| | - Thach S. Tran
- Saigon Precise Medicine Research Center, 70000, Vietnam
- School of Biomedical Engineering, University of Technology Sydney, 2007, Australia
| | - Tuan V. Nguyen
- School of Biomedical Engineering, University of Technology Sydney, 2007, Australia
| | - Lan T. Ho-Pham
- Saigon Precise Medicine Research Center, 70000, Vietnam
- Biomedicine Research Center Pham Ngoc Thach University of Medicine, 70000, Vietnam
| |
Collapse
|
2
|
Li Y, Liang Z, Li Y, Cao Y, Zhang H, Dong B. Machine learning value in the diagnosis of vertebral fractures: A systematic review and meta-analysis. Eur J Radiol 2024; 181:111714. [PMID: 39241305 DOI: 10.1016/j.ejrad.2024.111714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/28/2024] [Accepted: 08/30/2024] [Indexed: 09/09/2024]
Abstract
PURPOSE To evaluate the diagnostic accuracy of machine learning (ML) in detecting vertebral fractures, considering varying fracture classifications, patient populations, and imaging approaches. METHOD A systematic review and meta-analysis were conducted by searching PubMed, Embase, Cochrane Library, and Web of Science up to December 31, 2023, for studies using ML for vertebral fracture diagnosis. Bias risk was assessed using QUADAS-2. A bivariate mixed-effects model was used for the meta-analysis. Meta-analyses were performed according to five task types (vertebral fractures, osteoporotic vertebral fractures, differentiation of benign and malignant vertebral fractures, differentiation of acute and chronic vertebral fractures, and prediction of vertebral fractures). Subgroup analyses were conducted by different ML models (including ML and DL) and modeling methods (including CT, X-ray, MRI, and clinical features). RESULTS Eighty-one studies were included. ML demonstrated a diagnostic sensitivity of 0.91 and specificity of 0.95 for vertebral fractures. Subgroup analysis showed that DL (SROC 0.98) and CT (SROC 0.98) performed best overall. For osteoporotic fractures, ML showed a sensitivity of 0.93 and specificity of 0.96, with DL (SROC 0.99) and X-ray (SROC 0.99) performing better. For differentiating benign from malignant fractures, ML achieved a sensitivity of 0.92 and specificity of 0.93, with DL (SROC 0.96) and MRI (SROC 0.97) performing best. For differentiating acute from chronic vertebral fractures, ML showed a sensitivity of 0.92 and specificity of 0.93, with ML (SROC 0.96) and CT (SROC 0.97) performing best. For predicting vertebral fractures, ML had a sensitivity of 0.76 and specificity of 0.87, with ML (SROC 0.80) and clinical features (SROC 0.86) performing better. CONCLUSIONS ML, especially DL models applied to CT, MRI, and X-ray, shows high diagnostic accuracy for vertebral fractures. ML also effectively predicts osteoporotic vertebral fractures, aiding in tailored prevention strategies. Further research and validation are required to confirm ML's clinical efficacy.
Collapse
Affiliation(s)
- Yue Li
- Pain Ward of Rehabilitation Department, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710054, PR China
| | - Zhuang Liang
- Pain Ward of Rehabilitation Department, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710054, PR China
| | - Yingchun Li
- Pain Ward of Rehabilitation Department, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710054, PR China
| | - Yang Cao
- Pain Ward of Rehabilitation Department, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710054, PR China
| | - Hui Zhang
- Pain Ward of Rehabilitation Department, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710054, PR China
| | - Bo Dong
- Pain Ward of Rehabilitation Department, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710054, PR China.
| |
Collapse
|
3
|
Zhang J, Xia L, Zhang X, Liu J, Tang J, Xia J, Liu Y, Zhang W, Liang Z, Tang G, Zhang L. Development and validation of a predictive model for vertebral fracture risk in osteoporosis patients. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2024; 33:3242-3260. [PMID: 38955868 DOI: 10.1007/s00586-024-08235-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/22/2024] [Accepted: 03/17/2024] [Indexed: 07/04/2024]
Abstract
OBJECTIVE This study aimed to develop and validate a predictive model for osteoporotic vertebral fractures (OVFs) risk by integrating demographic, bone mineral density (BMD), CT imaging, and deep learning radiomics features from CT images. METHODS A total of 169 osteoporosis-diagnosed patients from three hospitals were randomly split into OVFs (n = 77) and Non-OVFs (n = 92) groups for training (n = 135) and test (n = 34). Demographic data, BMD, and CT imaging details were collected. Deep transfer learning (DTL) using ResNet-50 and radiomics features were fused, with the best model chosen via logistic regression. Cox proportional hazards models identified clinical factors. Three models were constructed: clinical, radiomics-DTL, and fusion (clinical-radiomics-DTL). Performance was assessed using AUC, C-index, Kaplan-Meier, and calibration curves. The best model was depicted as a nomogram, and clinical utility was evaluated using decision curve analysis (DCA). RESULTS BMD, CT values of paravertebral muscles (PVM), and paravertebral muscles' cross-sectional area (CSA) significantly differed between OVFs and Non-OVFs groups (P < 0.05). No significant differences were found between training and test cohort. Multivariate Cox models identified BMD, CT values of PVM, and CSAPS reduction as independent OVFs risk factors (P < 0.05). The fusion model exhibited the highest predictive performance (C-index: 0.839 in training, 0.795 in test). DCA confirmed the nomogram's utility in OVFs risk prediction. CONCLUSION This study presents a robust predictive model for OVFs risk, integrating BMD, CT data, and radiomics-DTL features, offering high sensitivity and specificity. The model's visualizations can inform OVFs prevention and treatment strategies.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Radiology, Shanghai Tenth People's Hospital, Clinical Medical College of Nanjing Medical University, 301 Middle Yanchang Road, Shanghai, 200072, People's Republic of China
- Department of Radiology, Sir Run Run Hospital, Nanjing Medical University, 109 Longmian Road, Nanjing, 211002, Jiangsu, People's Republic of China
| | - Liang Xia
- Department of Radiology, Sir Run Run Hospital, Nanjing Medical University, 109 Longmian Road, Nanjing, 211002, Jiangsu, People's Republic of China.
| | - Xueli Zhang
- Department of Radiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Shanghai, 200072, People's Republic of China
| | - Jiayi Liu
- Department of Radiology, Sir Run Run Hospital, Nanjing Medical University, 109 Longmian Road, Nanjing, 211002, Jiangsu, People's Republic of China
| | - Jun Tang
- Department of Radiology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, 366 Taihu Road, Taizhou, 225300, Jiangsu, People's Republic of China
| | - Jianguo Xia
- Department of Radiology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, 366 Taihu Road, Taizhou, 225300, Jiangsu, People's Republic of China.
| | - Yongkang Liu
- Department of Radiology, The Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Nanjing, 210004, Jiangsu, People's Republic of China
| | - Weixiao Zhang
- Department of Radiology, Sir Run Run Hospital, Nanjing Medical University, 109 Longmian Road, Nanjing, 211002, Jiangsu, People's Republic of China
| | - Zhipeng Liang
- Department of Radiology, Sir Run Run Hospital, Nanjing Medical University, 109 Longmian Road, Nanjing, 211002, Jiangsu, People's Republic of China
| | - Guangyu Tang
- Department of Radiology, Shanghai Tenth People's Hospital, Clinical Medical College of Nanjing Medical University, 301 Middle Yanchang Road, Shanghai, 200072, People's Republic of China.
- Department of Radiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Shanghai, 200072, People's Republic of China.
| | - Lin Zhang
- Department of Radiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Shanghai, 200072, People's Republic of China.
| |
Collapse
|