1
|
Khavandegar A, Ahmadi NS, Mousavi MA, Ramezani Z, Khodadoust E, Hasan Zadeh Tabatabaei MS, Hasanpour Segherlou Z, Zeinaddini-Meymand A, Nasehi F, Moafi M, RayatSanati K, Masoomi R, Hamidi S, Pourkhodadad S, Rahimi-Movaghar V. The potential role of RhoA/ROCK-inhibition on locomotor recovery after spinal cord injury: a systematic review of in-vivo studies. Spinal Cord 2025; 63:95-126. [PMID: 39956860 DOI: 10.1038/s41393-025-01064-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 01/27/2025] [Accepted: 02/06/2025] [Indexed: 02/18/2025]
Abstract
STUDY DESIGN Systematic Review. OBJECTIVES To thoroughly assess the existing literature regarding the impact of anti-RhoA/ROCK agents or procedures on functional recovery in animal models of SCI. SETTING Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences. METHODS A comprehensive search was conducted in Ovid MEDLINE, Embase, Scopus, and Web of Science Core Collection utilizing a combination of keywords. All in-vivo animal studies of acute or chronic SCI that evaluated the pharmacological effects of Rho/ROCK inhibitors in English literature were included in this study. RESULTS Totally, 2320 articles were identified, of which, 60 papers were included for further analysis. A total of 47 (78%) studies were conducted merely on rats, 9 (15%) on mice, 3 (5%) used both, and the remaining used other animals. Y-27632, Fasudil, C3 Transferase and its derivatives (C3-05/PEP-C3/CT04/C3bot154-182/C3bot26mer(156-181)), Ibuprofen, Electroacupuncture (EA), SiRhoA, miR-133b, miR-135-5p, miR-381, miR-30b, Statins, 17β-estradiol, β-elemene, Lentivirus-mediated PGC-1a, Repulsive guidance molecule (RGMa), Local profound hypothermia, Jisuikang (JSK), Hyperbaric oxygen (HBO), Lv-shRhoA (Notch-1 inhibitor), Anti-Ryk antibody, LINGO-antagonist, BA-210, p21Cip1/WAF1, ORL-1 antagonist, Epigallocatechin-3-gallate (EGCG), Tamsulosin, AAV.ULK1.DN, and Indomethacin were the 28 reported agents/procedures with anti-RhoA/ROCK effects. The pooled SMD for BBB scores was 0.41 (p = 0.048) in the first week, 0.85 (p < 0.001) in the second week, 1.22 (p = 0.010) in the third week, and 1.53 (p = 0.001) in the fourth week. CONCLUSION Of the 28 identified anti-RhoA/ROCK agents, all but two (C3bot and its derivatives and EGCG) demonstrated promising results. The results of the meta-analysis cautiously indicate a significant increase in BBB scores over time after SCI.
Collapse
Affiliation(s)
- Armin Khavandegar
- Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Negar Sadat Ahmadi
- Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Alsadat Mousavi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Ramezani
- Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Elaheh Khodadoust
- Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | | | - Fatemeh Nasehi
- Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Maral Moafi
- Cell Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kimia RayatSanati
- Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Rasool Masoomi
- Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Sorour Hamidi
- Department of Neurosurgery, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Soheila Pourkhodadad
- Department of Pharmacy and Chemical Biology, Emory University, School of Medicine, Atlanta, GA, USA
| | - Vafa Rahimi-Movaghar
- Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
An J, Chen B, Zhang R, Tian D, Shi K, Zhang L, Zhang G, Wang J, Yang H. Therapeutic Potential of Mesenchymal Stem Cell-Derived Exosomes in Spinal Cord Injury. Mol Neurobiol 2025; 62:1291-1315. [PMID: 39312070 DOI: 10.1007/s12035-024-04490-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 09/10/2024] [Indexed: 01/04/2025]
Abstract
Spinal cord injury (SCI) can lead to severe motor and sensory dysfunction, with a high rate of disability and mortality. Due to the complicated pathological process of SCI, there is no effective clinical treatment strategy at present. Although mesenchymal stem cells (MSCs) are effective in the treatment of SCI, their application is limited by factors such as low survival rate, cell dedifferentiation, tumorigenesis, blood-brain barrier, and immune rejection. Fortunately, there is growing evidence that most of the biological and therapeutic effects of MSCs may be mediated by the release of paracrine factors, which are extracellular vesicles called exosomes. Exosomes are small endosomal vesicles with bilaminar membranes that have recently been recognized as key mediators for communication between cells and tissues through the transfer of proteins, lipids, nucleic acids, cytokines, and growth factors. Mesenchymal stem cell-derived exosomes (MSC-exos) play a critical role in SCI repair by promoting angiogenesis and axonal growth, regulating inflammation and immune response, inhibiting apoptosis, and maintaining the integrity of the blood-spinal cord barrier. Furthermore, they can be used to transport genetic material or drugs to target cells, and their relatively small size allows them to permeate the blood-brain barrier. Studies have demonstrated that some exosomal miRNAs derived from MSCs play a significant role in the treatment of SCI. In this review, we summarize recent research advances in MSC-exos and exosomal miRNAs in SCI therapy to better understand this emerging cell-free therapeutic strategy and discuss the advantages and challenges of MSC-exos in future clinical applications.
Collapse
Affiliation(s)
- Jing An
- Translational Medicine Centre, Honghui Hospital, Xi'an Jiaotong University, Beilin District, 555 East Youyi Road, Xi'an, 710054, Shaanxi, China
| | - Bo Chen
- Translational Medicine Centre, Honghui Hospital, Xi'an Jiaotong University, Beilin District, 555 East Youyi Road, Xi'an, 710054, Shaanxi, China.
| | - Rui Zhang
- Department of Medical Technology, Guiyang Healthcare Vocational University, Guiyang, 550081, Guizhou, China
| | - Ding Tian
- Translational Medicine Centre, Honghui Hospital, Xi'an Jiaotong University, Beilin District, 555 East Youyi Road, Xi'an, 710054, Shaanxi, China
| | - Kuohao Shi
- Translational Medicine Centre, Honghui Hospital, Xi'an Jiaotong University, Beilin District, 555 East Youyi Road, Xi'an, 710054, Shaanxi, China
| | - Lingling Zhang
- Translational Medicine Centre, Honghui Hospital, Xi'an Jiaotong University, Beilin District, 555 East Youyi Road, Xi'an, 710054, Shaanxi, China
| | - Gaorong Zhang
- Translational Medicine Centre, Honghui Hospital, Xi'an Jiaotong University, Beilin District, 555 East Youyi Road, Xi'an, 710054, Shaanxi, China
| | - Jingchao Wang
- Translational Medicine Centre, Honghui Hospital, Xi'an Jiaotong University, Beilin District, 555 East Youyi Road, Xi'an, 710054, Shaanxi, China
| | - Hao Yang
- Translational Medicine Centre, Honghui Hospital, Xi'an Jiaotong University, Beilin District, 555 East Youyi Road, Xi'an, 710054, Shaanxi, China.
| |
Collapse
|
3
|
Nakazaki M, Yokoyama T, Lankford KL, Hirota R, Kocsis JD, Honmou O. Mesenchymal Stem Cells and Their Extracellular Vesicles: Therapeutic Mechanisms for Blood-Spinal Cord Barrier Repair Following Spinal Cord Injury. Int J Mol Sci 2024; 25:13460. [PMID: 39769223 PMCID: PMC11677717 DOI: 10.3390/ijms252413460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/12/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
Spinal cord injury (SCI) disrupts the blood-spinal cord barrier (BSCB) exacerbating damage by allowing harmful substances and immune cells to infiltrate spinal neural tissues from the vasculature. This leads to inflammation, oxidative stress, and impaired axonal regeneration. The BSCB, essential for maintaining spinal cord homeostasis, is structurally similar to the blood-brain barrier. Its restoration is a key therapeutic target for improving outcomes in SCI. Mesenchymal stromal/stem cells (MSCs) and their secreted extracellular vesicles (MSC-EVs) have gained attention for their regenerative, immunomodulatory, and anti-inflammatory properties in promoting BSCB repair. MSCs enhance BSCB integrity by improving endothelial-pericyte association, restoring tight junction proteins, and reducing inflammation. MSC-EVs, which deliver bioactive molecules, replicate many of MSCs' therapeutic effects, and offer a promising cell-free alternative. Preclinical studies have shown that both MSCs and MSC-EVs can reduce BSCB permeability, promote vascular stability, and support functional recovery. While MSC therapy is advancing in clinical trials, MSC-EV therapies require further optimization in terms of production, dosing, and delivery protocols. Despite these challenges, both therapeutic approaches represent significant potential for treating SCI by targeting BSCB repair and improving patient outcomes.
Collapse
Affiliation(s)
- Masahito Nakazaki
- Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo 060-8556, Hokkaido, Japan
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06510, USA
- Center for Neuroscience and Regeneration Research, VA Connecticut Healthcare System, West Haven, CT 06516, USA
| | - Takahiro Yokoyama
- Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo 060-8556, Hokkaido, Japan
| | - Karen L. Lankford
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06510, USA
- Center for Neuroscience and Regeneration Research, VA Connecticut Healthcare System, West Haven, CT 06516, USA
| | - Ryosuke Hirota
- Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo 060-8556, Hokkaido, Japan
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06510, USA
- Center for Neuroscience and Regeneration Research, VA Connecticut Healthcare System, West Haven, CT 06516, USA
| | - Jeffery D. Kocsis
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06510, USA
- Center for Neuroscience and Regeneration Research, VA Connecticut Healthcare System, West Haven, CT 06516, USA
| | - Osamu Honmou
- Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo 060-8556, Hokkaido, Japan
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06510, USA
- Center for Neuroscience and Regeneration Research, VA Connecticut Healthcare System, West Haven, CT 06516, USA
| |
Collapse
|
4
|
Su H, Chen Y, Tang B, Xiao F, Sun Y, Chen J, Deng L, He A, Li G, Luo Y, Li H. Natural and bio-engineered stem cell-derived extracellular vesicles for spinal cord injury repair: A meta-analysis with trial sequential analysis. Neuroscience 2024; 562:135-147. [PMID: 39490519 DOI: 10.1016/j.neuroscience.2024.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/06/2024] [Accepted: 10/08/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND Stem-cell derived extracellular vesicles (EVs) have shown promise in preclinical spinal cord injury (SCI) models but lack a comprehensive literature review for clinical translation guidance. METHODS This meta-analysis with trial sequential analysis systematically search PubMed, Web of Science, Embase, and Cochrane Library databases. Prespecified inclusion criteria were studies reporting on measurable outcomes relevant to SCI repair. Risk of bias and quality of reporting were assessed. Random-effects meta-analyses and subgroup analyses comparing natural and bio-engineered EVs were performed. The study was registered with PROSPERO (CRD42024512122). FINDINGS The search identified 3935 records, of which 39 studies were included, totaling 1801 animals. Administration of EVs significantly improved locomotor function as measured by Basso-Beattie-Bresnahan or Basso-Mouse-Scale scores at 1 week (natural EVs: SMD 1.50, 95 % CI 1.06-1.95; bio-engineered EVs: SMD 1.93, 95 % CI 1.34-2.52) and 3 weeks (natural EVs: SMD 2.57, 95 % CI 1.96-3.17; bio-engineered EVs: SMD 3.16, 95 % CI 2.29-4.02) post-injury. Subgroup analyses indicated surface modification approaches were most effective among bio-engineered EV strategies. EVs also promoted nerve growth (SMD 2.95, 95 % CI 2.12-3.78), enhanced neuron conductivity (MD 0.75, 95 %CI 0.59-0.90), alleviated inflammation (SMD -3.12, 95 % CI -4.15--2.10), and reduced lesion size (SMD -2.90, 95 % CI -3.87--1.93). CONCLUSIONS Both natural and bio-engineered EVs improve functional and pathological outcomes in animal models of SCI. The enhanced benefits observed with bio-engineered EVs, particularly those utilizing surface modification approaches, highlight the importance of continued exploration into bio-engineering techniques to optimize EVs' therapeutic efficacy for SCI repair. Protocol Registration CRD42024512122.
Collapse
Affiliation(s)
- Hankun Su
- Department of Reproductive Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China; Clinical Research Center for Women's Reproductive Health in Hunan Province, Changsha, Hunan Province 410008, China; Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Yixin Chen
- Department of Rehabilitation Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Boya Tang
- Department of Reproductive Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China; Clinical Research Center for Women's Reproductive Health in Hunan Province, Changsha, Hunan Province 410008, China; Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Fen Xiao
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Yuanyuan Sun
- Department of Reproductive Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China; Clinical Research Center for Women's Reproductive Health in Hunan Province, Changsha, Hunan Province 410008, China
| | - Jingjing Chen
- Department of Reproductive Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China; Clinical Research Center for Women's Reproductive Health in Hunan Province, Changsha, Hunan Province 410008, China
| | - Li Deng
- Department of Reproductive Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China; Clinical Research Center for Women's Reproductive Health in Hunan Province, Changsha, Hunan Province 410008, China
| | - Aihua He
- Department of Reproductive Medicine, Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Ge Li
- Department of Reproductive Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China; Clinical Research Center for Women's Reproductive Health in Hunan Province, Changsha, Hunan Province 410008, China
| | - Yan Luo
- Department of Reproductive Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China; Clinical Research Center for Women's Reproductive Health in Hunan Province, Changsha, Hunan Province 410008, China
| | - Hui Li
- Department of Reproductive Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China; Clinical Research Center for Women's Reproductive Health in Hunan Province, Changsha, Hunan Province 410008, China.
| |
Collapse
|
5
|
Wang Y, Tan PC, Xu X, Zhou S. Protective function of adipocyte-derived extracellular vesicles and adipose stem cells in damage repair and regeneration. CHINESE JOURNAL OF PLASTIC AND RECONSTRUCTIVE SURGERY 2024. [DOI: 10.1016/j.cjprs.2024.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
6
|
Wang H, Zhao C, Rong Q, Cao J, Chen H, Li R, Zhang B, Xu P. The Role of Exosomes from Mesenchymal Stem Cells in Spinal Cord Injury: A Systematic Review. Int J Stem Cells 2024; 17:236-252. [PMID: 38016704 PMCID: PMC11361850 DOI: 10.15283/ijsc23092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/07/2023] [Accepted: 09/18/2023] [Indexed: 11/30/2023] Open
Abstract
Spinal cord injury (SCI) is a serious nervous system disease that usually leads to the impairment of the motor, sensory, and autonomic nervous functions of the spinal cord, and it places a heavy burden on families and healthcare systems every year. Due to the complex pathophysiological mechanism of SCI and the poor ability of neurons to regenerate, the current treatment scheme has very limited effects on the recovery of spinal cord function. In addition, due to their unique advantages, exosomes can be used as carriers for cargo transport. In recent years, some studies have confirmed that treatment with mesenchymal stem cells (MSCs) can promote the recovery of SCI nerve function. The therapeutic effect of MSCs is mainly related to exosomes secreted by MSCs, and exosomes may have great potential in SCI therapy. In this review, we summarized the repair mechanism of mesenchymal stem cells-derived exosomes (MSCs-Exos) in SCI treatment and discussed the microRNAs related to SCI treatment based on MSCs-Exos and their mechanism of action, which is helpful to further understand the role of exosomes in SCI.
Collapse
Affiliation(s)
- Haoyu Wang
- Department of Neurology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
| | - Chunxia Zhao
- Department of Neurology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
| | - Qingqing Rong
- Department of Neurology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
| | - Jinghe Cao
- Department of Reproduce, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
| | - Hongyi Chen
- Department of Gastrointestinal Surgery, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
| | - Ruolin Li
- Department of Neurology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
| | - Bin Zhang
- Institute of Forensic Medicine and Laboratory Medicine, Jining Medical University, Jining, China
| | - Peng Xu
- Department of Neurology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
| |
Collapse
|
7
|
Li K, Chen Z, Chang X, Xue R, Wang H, Guo W. Wnt signaling pathway in spinal cord injury: from mechanisms to potential applications. Front Mol Neurosci 2024; 17:1427054. [PMID: 39114641 PMCID: PMC11303303 DOI: 10.3389/fnmol.2024.1427054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/15/2024] [Indexed: 08/10/2024] Open
Abstract
Spinal cord injury (SCI) denotes damage to both the structure and function of the spinal cord, primarily manifesting as sensory and motor deficits caused by disruptions in neural transmission pathways, potentially culminating in irreversible paralysis. Its pathophysiological processes are complex, with numerous molecules and signaling pathways intricately involved. Notably, the pronounced upregulation of the Wnt signaling pathway post-SCI holds promise for neural regeneration and repair. Activation of the Wnt pathway plays a crucial role in neuronal differentiation, axonal regeneration, local neuroinflammatory responses, and cell apoptosis, highlighting its potential as a therapeutic target for treating SCI. However, excessive activation of the Wnt pathway can also lead to negative effects, highlighting the need for further investigation into its applicability and significance in SCI. This paper provides an overview of the latest research advancements in the Wnt signaling pathway in SCI, summarizing the recent progress in treatment strategies associated with the Wnt pathway and analyzing their advantages and disadvantages. Additionally, we offer insights into the clinical application of the Wnt signaling pathway in SCI, along with prospective avenues for future research direction.
Collapse
Affiliation(s)
| | | | | | | | - Huaibo Wang
- Department of Spine Surgery, The Second Hospital Affiliated to Guangdong Medical University, Zhanjiang, China
| | | |
Collapse
|
8
|
Padinharayil H, Varghese J, Wilson C, George A. Mesenchymal stem cell-derived exosomes: Characteristics and applications in disease pathology and management. Life Sci 2024; 342:122542. [PMID: 38428567 DOI: 10.1016/j.lfs.2024.122542] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/25/2024] [Accepted: 02/27/2024] [Indexed: 03/03/2024]
Abstract
Mesenchymal stem cells (MSCs) possess a role in tissue regeneration and homeostasis because of inherent immunomodulatory capacity and the production of factors that encourage healing. There is substantial evidence that MSCs' therapeutic efficacy is primarily determined by their paracrine function including in cancers. Extracellular vesicles (EVs) are basic paracrine effectors of MSCs that reside in numerous bodily fluids and cell homogenates and play an important role in bidirectional communication. MSC-derived EVs (MSC-EVs) offer a wide range of potential therapeutic uses that exceed cell treatment, while maintaining protocell function and having less immunogenicity. We describe characteristics and isolation methods of MSC-EVs, and focus on their therapeutic potential describing its roles in tissue repair, anti-fibrosis, and cancer with an emphasis on the molecular mechanism and immune modulation and clinical trials. We also explain current understanding and challenges in the clinical applications of MSC-EVs as a cell free therapy.
Collapse
Affiliation(s)
- Hafiza Padinharayil
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur 05, Kerala, India; PG & Research Department of Zoology, St. Thomas College, Kozhencherry, Pathanamthitta, Kerala 689641, India
| | - Jinsu Varghese
- PG & Research Department of Zoology, St. Thomas College, Kozhencherry, Pathanamthitta, Kerala 689641, India
| | - Cornelia Wilson
- Canterbury Christ Church University, Natural Applied Sciences, Life Science Industry Liaison Lab, Discovery Park, Sandwich CT139FF, United Kingdom.
| | - Alex George
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur 05, Kerala, India.
| |
Collapse
|
9
|
Chen Y, Zhang H, Hu X, Cai W, Jiang L, Wang Y, Wu Y, Wang X, Ni W, Zhou K. Extracellular Vesicles: Therapeutic Potential in Central Nervous System Trauma by Regulating Cell Death. Mol Neurobiol 2023; 60:6789-6813. [PMID: 37482599 DOI: 10.1007/s12035-023-03501-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 07/11/2023] [Indexed: 07/25/2023]
Abstract
CNS (central nervous system) trauma, which is classified as SCI (spinal cord injury) and TBI (traumatic brain injury), is gradually becoming a major cause of accidental death and disability worldwide. Many previous studies have verified that the pathophysiological mechanism underlying cell death and the subsequent neuroinflammation caused by cell death are pivotal factors in the progression of CNS trauma. Simultaneously, EVs (extracellular vesicles), membrane-enclosed particles produced by almost all cell types, have been proven to mediate cell-to-cell communication, and cell death involves complex interactions among molecules. EVs have also been proven to be effective carriers of loaded bioactive components to areas of CNS trauma. Therefore, EVs are promising therapeutic targets to cure CNS trauma. However, the link between EVs and various types of cell death in the context of CNS trauma remains unknown. Therefore, in this review, we summarize the mechanism underlying EV effects, the relationship between EVs and cell death and the pathophysiology underlying EV effects on the CNS trauma based on information in published papers. In addition, we discuss the prospects of applying EVs to the CNS as feasible therapeutic strategies for CNS trauma in the future.
Collapse
Affiliation(s)
- Yituo Chen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
| | - Haojie Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
| | - Xinli Hu
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Wanta Cai
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
| | - Liting Jiang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
| | - Yongli Wang
- Department of Orthopedics, Huzhou Central Hospital, Huzhou, 313099, China
- Department of Orthopedics, Huzhou Basic and Clinical Translation of Orthopaedics Key Laboratory, Huzhou, 313099, China
| | - Yanqing Wu
- The Institute of Life Sciences, Wenzhou University, Wenzhou, 325035, China
| | - Xiangyang Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
| | - Wenfei Ni
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China.
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China.
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 West Xueyuan Road, Wenzhou, Zhejiang, 325000, China.
| | - Kailiang Zhou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China.
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China.
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 West Xueyuan Road, Wenzhou, Zhejiang, 325000, China.
| |
Collapse
|
10
|
Caliani Carrera AL, Minto BW, Malard P, Brunel HDSS. The Role of Mesenchymal Stem Cell Secretome (Extracellular Microvesicles and Exosomes) in Animals' Musculoskeletal and Neurologic-Related Disorders. Vet Med Int 2023; 2023:8819506. [PMID: 38023428 PMCID: PMC10645499 DOI: 10.1155/2023/8819506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/23/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023] Open
Abstract
The advances in regenerative medicine are very important for the development of medicine and the discovery of stem cells has shown a greater capacity to raise the level of therapeutic quality while their use becomes more accessible, especially in their mesenchymal form. In veterinary medicine, it is not different. The use of those cells, as well as recent advances related to the use of their extracellular vesicles, demonstrates a great opportunity to enhance therapeutic methods and ensure more life quality for patients, which can be in clinical or surgical treatments. Knowing the advances in these modalities and the growing clinical and surgery research and demands for innovations in orthopedic and neurology medicines, this paper aimed to review the literature about the methodologies of use and applications such as the pathways of action and the advances that were postulated for microvesicles and exosomes derived from mesenchymal stem cells in veterinary medicine, especially for musculoskeletal disorders and related injuries.
Collapse
Affiliation(s)
- Alefe Luiz Caliani Carrera
- Department of Clinical and Veterinary Surgery, São Paulo State University (UNESP), Av Paulo Donato Castelane s/n, Jaboticabal, São Paulo, Brazil
| | - Bruno Watanabe Minto
- Department of Clinical and Veterinary Surgery, São Paulo State University (UNESP), Av Paulo Donato Castelane s/n, Jaboticabal, São Paulo, Brazil
| | - Patrícia Malard
- Catholic University of Brasilia, Brasília, Federal District, Brazil
| | | |
Collapse
|
11
|
Yang Z, Liang Z, Rao J, Lin F, Lin Y, Xu X, Wang C, Chen C. Mesenchymal stem cell-derived extracellular vesicles therapy in traumatic central nervous system diseases: a systematic review and meta-analysis. Neural Regen Res 2023; 18:2406-2412. [PMID: 37282470 PMCID: PMC10360088 DOI: 10.4103/1673-5374.371376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023] Open
Abstract
Although there are challenges in treating traumatic central nervous system diseases, mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) have recently proven to be a promising non-cellular therapy. We comprehensively evaluated the efficacy of mesenchymal stem cell-derived extracellular vesicles in traumatic central nervous system diseases in this meta-analysis based on preclinical studies. Our meta-analysis was registered at PROSPERO (CRD42022327904, May 24, 2022). To fully retrieve the most relevant articles, the following databases were thoroughly searched: PubMed, Web of Science, The Cochrane Library, and Ovid-Embase (up to April 1, 2022). The included studies were preclinical studies of mesenchymal stem cell-derived extracellular vesicles for traumatic central nervous system diseases. The Systematic Review Centre for Laboratory Animal Experimentation (SYRCLE)'s risk of bias tool was used to examine the risk of publication bias in animal studies. After screening 2347 studies, 60 studies were included in this study. A meta-analysis was conducted for spinal cord injury (n = 52) and traumatic brain injury (n = 8). The results indicated that mesenchymal stem cell-derived extracellular vesicles treatment prominently promoted motor function recovery in spinal cord injury animals, including rat Basso, Beattie and Bresnahan locomotor rating scale scores (standardized mean difference [SMD]: 2.36, 95% confidence interval [CI]: 1.96-2.76, P < 0.01, I2 = 71%) and mouse Basso Mouse Scale scores (SMD = 2.31, 95% CI: 1.57-3.04, P = 0.01, I2 = 60%) compared with controls. Further, mesenchymal stem cell-derived extracellular vesicles treatment significantly promoted neurological recovery in traumatic brain injury animals, including the modified Neurological Severity Score (SMD = -4.48, 95% CI: -6.12 to -2.84, P < 0.01, I2 = 79%) and Foot Fault Test (SMD = -3.26, 95% CI: -4.09 to -2.42, P = 0.28, I2 = 21%) compared with controls. Subgroup analyses showed that characteristics may be related to the therapeutic effect of mesenchymal stem cell-derived extracellular vesicles. For Basso, Beattie and Bresnahan locomotor rating scale scores, the efficacy of allogeneic mesenchymal stem cell-derived extracellular vesicles was higher than that of xenogeneic mesenchymal stem cell-derived extracellular vesicles (allogeneic: SMD = 2.54, 95% CI: 2.05-3.02, P = 0.0116, I2 = 65.5%; xenogeneic: SMD: 1.78, 95%CI: 1.1-2.45, P = 0.0116, I2 = 74.6%). Mesenchymal stem cell-derived extracellular vesicles separated by ultrafiltration centrifugation combined with density gradient ultracentrifugation (SMD = 3.58, 95% CI: 2.62-4.53, P < 0.0001, I2 = 31%) may be more effective than other EV isolation methods. For mouse Basso Mouse Scale scores, placenta-derived mesenchymal stem cell-derived extracellular vesicles worked better than bone mesenchymal stem cell-derived extracellular vesicles (placenta: SMD = 5.25, 95% CI: 2.45-8.06, P = 0.0421, I2 = 0%; bone marrow: SMD = 1.82, 95% CI: 1.23-2.41, P = 0.0421, I2 = 0%). For modified Neurological Severity Score, bone marrow-derived MSC-EVs worked better than adipose-derived MSC-EVs (bone marrow: SMD = -4.86, 95% CI: -6.66 to -3.06, P = 0.0306, I2 = 81%; adipose: SMD = -2.37, 95% CI: -3.73 to -1.01, P = 0.0306, I2 = 0%). Intravenous administration (SMD = -5.47, 95% CI: -6.98 to -3.97, P = 0.0002, I2 = 53.3%) and dose of administration equal to 100 μg (SMD = -5.47, 95% CI: -6.98 to -3.97, P < 0.0001, I2 = 53.3%) showed better results than other administration routes and doses. The heterogeneity of studies was small, and sensitivity analysis also indicated stable results. Last, the methodological quality of all trials was mostly satisfactory. In conclusion, in the treatment of traumatic central nervous system diseases, mesenchymal stem cell-derived extracellular vesicles may play a crucial role in promoting motor function recovery.
Collapse
Affiliation(s)
- Zhelun Yang
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
| | - Zeyan Liang
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
| | - Jian Rao
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
| | - Fabin Lin
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
| | - Yike Lin
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
| | - Xiongjie Xu
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
| | - Chunhua Wang
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
| | - Chunmei Chen
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
| |
Collapse
|
12
|
Wang S, Du C, Li G. Mesenchymal stem cell-derived extracellular vesicles: emerging concepts in the treatment of spinal cord injury. Am J Transl Res 2023; 15:4425-4438. [PMID: 37560238 PMCID: PMC10408507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 06/09/2023] [Indexed: 08/11/2023]
Abstract
Spinal cord injury (SCI) is a prevalent central nervous system disease with a high disability rate, leading to the loss of motor and sensory nerve function. Due to the complex pathophysiology of SCI, more effective clinical treatment strategies are needed. Research has indicated the considerable potential of extracellular vesicles (EVs) derived from mesenchymal stem cells (MSC-EVs) as a cell-free therapy in SCI repair and regeneration due to their ability to regulate immune cell activity and stimulate damaged neuron regeneration. Moreover, applying MSCs and engineered EVs can fully exploit the potential of MSC-EVs in spinal cord repair. Here, we outline the pathological process of SCI and its current clinical treatment status, summarize the latest MSC-EVs research and its pretreatment and engineering strategies in SCI treatment, and explore MSC-EVs application prospects.
Collapse
Affiliation(s)
- Shujun Wang
- School of Physical Education, Liaocheng UniversityLiaocheng, Shandong, China
| | - Chengzhe Du
- School of Physical Education, Liaocheng UniversityLiaocheng, Shandong, China
| | - Guilan Li
- School of Life Sciences, Liaocheng UniversityLiaocheng, Shandong, China
| |
Collapse
|
13
|
Zhou H, He Y, Xiong W, Jing S, Duan X, Huang Z, Nahal GS, Peng Y, Li M, Zhu Y, Ye Q. MSC based gene delivery methods and strategies improve the therapeutic efficacy of neurological diseases. Bioact Mater 2023; 23:409-437. [PMCID: PMC9713256 DOI: 10.1016/j.bioactmat.2022.11.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/08/2022] [Accepted: 11/13/2022] [Indexed: 12/05/2022] Open
|
14
|
Hedayat M, Ahmadi M, Shoaran M, Rezaie J. Therapeutic application of mesenchymal stem cells derived exosomes in neurodegenerative diseases: A focus on non-coding RNAs cargo, drug delivery potential, perspective. Life Sci 2023; 320:121566. [PMID: 36907326 DOI: 10.1016/j.lfs.2023.121566] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023]
Abstract
Despite the massive efforts advanced over recent years in emerging therapies for neurodegenerative diseases, effective treatment for these diseases is still an urgent need. The application of mesenchymal stem cells (MSCs) derived exosomes (MSCs-Exo) as a novel therapy for neurodegenerative diseases holds great promise. A growing body of data now suggests that an innovative cell-free therapy, MSCs-Exo, may establish a fascinating alternative therapy due to their unique advantages over MSCs. Notable, MSCs-Exo can infiltrate the blood-brain barrier and then well distribute non-coding RNAs into injured tissues. Research shows that non-coding RNAs of MSCs-Exo are vital effectors that participate in the treatment of neurodegenerative diseases through neurogeneration and neurite outgrowth, modulation of the immune system, reducing neuroinflammation, repairmen of damaged tissue, and promotion of neuroangiogenesis. In addition, MSCs-Exo can serve as a drug delivery system for delivering non-coding RNAs to neurons in neurodegenerative conditions. In this review, we summarize the recent progress in the therapeutic role of non-coding RNAs of MSCs-Exo for various neurodegenerative diseases. This study also discusses the potential drug delivery role of MSCs-Exo and challenges and opportunities in the clinical translation of MSCs-Exo-based therapies for neurodegenerative diseases in the future.
Collapse
Affiliation(s)
- Mohaddeseh Hedayat
- Experimental and Applied Pharmaceutical Sciences Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Mahdi Ahmadi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Shoaran
- Pediatric Health Research Center,Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jafar Rezaie
- Solid Tumor Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
15
|
Bai Z, Shou Z, Hu K, Yu J, Meng H, Chen C. Melatonin protects human nucleus pulposus cells from pyroptosis by regulating Nrf2 via melatonin membrane receptors. Bone Joint Res 2023; 12:202-211. [PMID: 37051810 PMCID: PMC10032228 DOI: 10.1302/2046-3758.123.bjr-2022-0199.r1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/28/2023] Open
Abstract
This study was performed to explore the effect of melatonin on pyroptosis in nucleus pulposus cells (NPCs) and the underlying mechanism of that effect. This experiment included three patients diagnosed with lumbar disc herniation who failed conservative treatment. Nucleus pulposus tissue was isolated from these patients when they underwent surgical intervention, and primary NPCs were isolated and cultured. Western blotting, reverse transcription polymerase chain reaction, fluorescence staining, and other methods were used to detect changes in related signalling pathways and the ability of cells to resist pyroptosis. Western blot analysis confirmed the expression of cleaved CASP-1 and melatonin receptor (MT-1A-R) in NPCs. The cultured NPCs were identified by detecting the expression of CD24, collagen type II, and aggrecan. After treatment with hydrogen peroxide, the pyroptosis-related proteins NLR family pyrin domain containing 3 (NLRP3), cleaved CASP-1, N-terminal fragment of gasdermin D (GSDMD-N), interleukin (IL)-18, and IL-1β in NPCs were upregulated, and the number of propidium iodide (PI)-positive cells was also increased, which was able to be alleviated by pretreatment with melatonin. The protective effect of melatonin on pyroptosis was blunted by both the melatonin receptor antagonist luzindole and the nuclear factor erythroid 2-related factor 2 (Nrf2) inhibitor ML385. In addition, the expression of the transcription factor Nrf2 was up- or downregulated when the melatonin receptor was activated or blocked by melatonin or luzindole, respectively. Melatonin protects NPCs against reactive oxygen species-induced pyroptosis by upregulating the transcription factor Nrf2 via melatonin receptors.
Collapse
Affiliation(s)
- Zhibiao Bai
- Department of Orthopaedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Wenzhou Medical University, Wenzhou, China
| | - Zeyu Shou
- Department of Orthopaedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Wenzhou Medical University, Wenzhou, China
| | - Kai Hu
- Department of Orthopaedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Wenzhou Medical University, Wenzhou, China
| | - Jiahuan Yu
- Department of Orthopaedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Wenzhou Medical University, Wenzhou, China
| | - Hongming Meng
- Department of Orthopaedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Wenzhou Medical University, Wenzhou, China
| | - Chun Chen
- Department of Orthopaedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Intelligent Treatment and Life Support for Critical Diseases of Zhejiang Province, Wenzhou, China
- Zhejiang Engineering Research Center for Hospital Emergency and Process Digitization, Wenzhou, China
| |
Collapse
|
16
|
Li RY, Hu Q, Shi X, Luo ZY, Shao DH. Crosstalk between exosomes and autophagy in spinal cord injury: fresh positive target for therapeutic application. Cell Tissue Res 2023; 391:1-17. [PMID: 36380098 PMCID: PMC9839811 DOI: 10.1007/s00441-022-03699-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 11/04/2022] [Indexed: 11/17/2022]
Abstract
Spinal cord injury (SCI) is a very serious clinical traumatic illness with a very high disability rate. It not only causes serious functional disorders below the injured segment, but also causes unimaginable economic burden to social development. Exosomes are nano-sized cellular communication carriers that exist stably in almost all organisms and cell types. Because of their capacity to transport proteins, lipids, and nucleic acids, they affect various physiological and pathological functions of recipient cells and parental cells. Autophagy is a process that relies on the lysosomal pathway to degrade cytoplasmic proteins and organelles and involves a variety of pathophysiological processes. Exosomes and autophagy play critical roles in cellular homeostasis following spinal cord injury. Presently, the coordination mechanism of exosomes and autophagy has attracted much attention in the early efficacy of spinal cord injury. In this review, we discussed the interaction of autophagy and exosomes from the perspective of molecular mechanisms, which might provide novel insights for the early therapeutic application of spinal cord injury.
Collapse
Affiliation(s)
- Rui-yu Li
- Anqing First People’s Hospital of Anhui Medical University, Anqing, 246000 Anhui Province, China
| | - Qi Hu
- Jiangsu University, Zhenjiang, 212001 Jiangsu Province, China
| | - Xu Shi
- Jiangsu University, Zhenjiang, 212001 Jiangsu Province, China
| | - Zhen-yu Luo
- Jiangsu University, Zhenjiang, 212001 Jiangsu Province, China
| | - Dong-hua Shao
- Jiangsu University, Zhenjiang, 212001 Jiangsu Province, China
| |
Collapse
|
17
|
Multiple strategies enhance the efficacy of MSCs transplantation for spinal cord injury. Biomed Pharmacother 2023; 157:114011. [PMID: 36410123 DOI: 10.1016/j.biopha.2022.114011] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/05/2022] [Accepted: 11/11/2022] [Indexed: 11/19/2022] Open
Abstract
Spinal cord injury (SCI) is a serious complication of the central nervous system (CNS) after spine injury, often resulting in severe sensory, motor, and autonomic dysfunction below the level of injury. To date, there is no effective treatment strategy for SCI. Recently, stem cell therapy has brought hope to patients with neurological diseases. Mesenchymal stem cells (MSCs) are considered to be the most promising source of cellular therapy after SCI due to their immunomodulatory, neuroprotective and angiogenic potential. Considering the limited therapeutic effect of MSCs due to the complex pathophysiological environment following SCI, this paper not only reviews the specific mechanism of MSCs to facilitate SCI repair, but also further discusses the research status of these pluripotent stem cells combined with other therapeutic approaches to promote anatomical and functional recovery post-SCI.
Collapse
|
18
|
Kimura T, Horikoshi Y. MicroRNA-based targeting of the Rho/ROCK pathway in therapeutic strategies after spinal cord injury. Neural Regen Res 2023; 18:311-312. [PMID: 35900410 PMCID: PMC9396497 DOI: 10.4103/1673-5374.346480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
19
|
Mech D, Korgol K, Kurowska A, Adamski B, Miazga M, Biala G, Kruk-Slomka M. Promising Advances in Pharmacotherapy for Patients with Spinal Cord Injury-A Review of Studies Performed In Vivo with Modern Drugs. J Clin Med 2022; 11:jcm11226685. [PMID: 36431161 PMCID: PMC9698573 DOI: 10.3390/jcm11226685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/02/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022] Open
Abstract
Spinal cord injury (SCI) is a pathological neurological condition that leads to significant motor dysfunction. It is a condition that occurs as a result of tragic accidents, violent acts, or as a consequence of chronic diseases or degenerative changes. The current treatments for patients with SCI have moderate efficacy. They improve the quality of life of patients, but they are still doomed to long-term disability. In response to the modern directions of research on possible therapeutic methods that allow for the recovery of patients with SCI, a scientific review publication is needed to summarize the recent developments in this topic. The following review is focused on the available pharmacological treatments for SCIs and the problems that patients face depending on the location of the injury. In the following review, the research team describes problems related to spasticity and neuropathic pain; possible therapeutic pathways are also described for neuroprotection and the improvement of neurotransmission within the injured spinal cord, and the review focuses on issues related to oxidative stress.
Collapse
Affiliation(s)
- Dominika Mech
- Student Clubs and Organizations, Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Chodzki 4a Street, 20-093 Lublin, Poland
| | - Katarzyna Korgol
- Student Clubs and Organizations, Department of Pharmacognosy and Pharmaceutical Botany, Medical University of Lublin, Chodzki 1 Street, 20-400 Lublin, Poland
| | - Antonina Kurowska
- Student Clubs and Organizations, Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Chodzki 4a Street, 20-093 Lublin, Poland
| | - Bartlomiej Adamski
- Student Clubs and Organizations, Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Chodzki 4a Street, 20-093 Lublin, Poland
| | - Malgorzata Miazga
- Student Clubs and Organizations, Department of Pharmacognosy and Pharmaceutical Botany, Medical University of Lublin, Chodzki 1 Street, 20-400 Lublin, Poland
| | - Grazyna Biala
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Chodzki 4a Street, 20-093 Lublin, Poland
| | - Marta Kruk-Slomka
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Chodzki 4a Street, 20-093 Lublin, Poland
- Correspondence: ; Tel.: +48-8-1448-7258; Fax: +48-8-1448-7252
| |
Collapse
|
20
|
Kou M, Huang L, Yang J, Chiang Z, Chen S, Liu J, Guo L, Zhang X, Zhou X, Xu X, Yan X, Wang Y, Zhang J, Xu A, Tse HF, Lian Q. Mesenchymal stem cell-derived extracellular vesicles for immunomodulation and regeneration: a next generation therapeutic tool? Cell Death Dis 2022; 13:580. [PMID: 35787632 PMCID: PMC9252569 DOI: 10.1038/s41419-022-05034-x] [Citation(s) in RCA: 254] [Impact Index Per Article: 84.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/08/2022] [Accepted: 06/22/2022] [Indexed: 02/06/2023]
Abstract
Mesenchymal stem cells (MSCs) can be widely isolated from various tissues including bone marrow, umbilical cord, and adipose tissue, with the potential for self-renewal and multipotent differentiation. There is compelling evidence that the therapeutic effect of MSCs mainly depends on their paracrine action. Extracellular vesicles (EVs) are fundamental paracrine effectors of MSCs and play a crucial role in intercellular communication, existing in various body fluids and cell supernatants. Since MSC-derived EVs retain the function of protocells and have lower immunogenicity, they have a wide range of prospective therapeutic applications with advantages over cell therapy. We describe some characteristics of MSC-EVs, and discuss their role in immune regulation and regeneration, with emphasis on the molecular mechanism and application of MSC-EVs in the treatment of fibrosis and support tissue repair. We also highlight current challenges in the clinical application of MSC-EVs and potential ways to overcome the problem of quality heterogeneity.
Collapse
Affiliation(s)
- Meng Kou
- Cord Blood Bank Centre, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, China
| | - Li Huang
- Cord Blood Bank Centre, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, China
| | - Jinjuan Yang
- Cord Blood Bank Centre, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, China
| | - Zhixin Chiang
- Department of Allied Health Sciences Faculty of Science, Tunku Abdul Rahman University, Ipoh, Malaysia
| | - Shaoxiang Chen
- Cord Blood Bank Centre, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, China
| | - Jie Liu
- State Key Laboratory of Pharmaceutical Biotechnology, the University of Hong Kong, Hong Kong SAR, China
- Department of Medicine, the University of Hong Kong, Hong Kong SAR, China
| | - Liyan Guo
- Cord Blood Bank Centre, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, China
| | - Xiaoxian Zhang
- Cord Blood Bank Centre, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, China
| | - Xiaoya Zhou
- Cord Blood Bank Centre, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, China
| | - Xiang Xu
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Xiaomei Yan
- Department of Chemical Biology, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Yan Wang
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Jinqiu Zhang
- Cord Blood Bank Centre, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, China
| | - Aimin Xu
- State Key Laboratory of Pharmaceutical Biotechnology, the University of Hong Kong, Hong Kong SAR, China
- Department of Medicine, the University of Hong Kong, Hong Kong SAR, China
| | - Hung-Fat Tse
- Department of Medicine, the University of Hong Kong, Hong Kong SAR, China
- HKUMed Laboratory of Cellular Therapeutics, the University of Hong Kong, Hong Kong SAR, China
| | - Qizhou Lian
- Cord Blood Bank Centre, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, China.
- State Key Laboratory of Pharmaceutical Biotechnology, the University of Hong Kong, Hong Kong SAR, China.
- Department of Medicine, the University of Hong Kong, Hong Kong SAR, China.
- HKUMed Laboratory of Cellular Therapeutics, the University of Hong Kong, Hong Kong SAR, China.
- Department of Surgery, Shenzhen Hong Kong University Hospital, Shenzhen, 518053, China.
| |
Collapse
|
21
|
Qiu L, Cai J, Zhang N, Ma L, Fan FY, Li XM. Effect of miR-381-3p/FGF7 axis on the osteogenic differentiation of bone marrow mesenchymal stem cells through MEK/ERK signaling pathway. Tissue Cell 2022; 76:101791. [PMID: 35427886 DOI: 10.1016/j.tice.2022.101791] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 03/17/2022] [Accepted: 03/29/2022] [Indexed: 01/15/2023]
Abstract
Although microRNAs (miRNAs) exert an important role in the osteogenesis of mesenchymal stem cells (MSCs), the effect of miR-381-3p on the osteogenic differentiation in MBD‑MSCs is still unclear. The BMMSCs from patients with MBD (MBD‑MSC) or normal participants (Normal‑MSC) were isolated and induced to differentiation with dexamethasone. BMMSCs were transfected with miR-381-3p mimic, miR-381-3p inhibitor, and FGF7 siRNA to regulate the expression of miR-381-3p or FGF7. The direct binding between miR-381-3p and FGF7 was predicted and confirmed by bioinformatics prediction and luciferase reporter assay. The effect of miR-381-3p on the osteogenic differentiation of BMMSCs was assessed by RT‑qPCR, alizarin Red S staining and western blot assays. Isolated BMMSCs showed the regular morphology, and were positive for CD44, CD90 and CD105 but negative for CD34 and CD45 markers. The calcium deposition and the relative mRNA expression levels of ALP, OC and OPN after induction were markedly enhanced. MiR-381-3p was upregulated in BMMSCs. Also, inhibition of miR-381-3p notably promoted osteogenic differentiation, vice versa. Besides, miR-381-3p could directly target FGF7 and negatively modulate the expression of FGF7. Moreover, inhibition of FGF7 attenuated the increase of the calcium deposition, and the relative mRNA expression of ALP, OC and OPN caused by the downregulation of miR-381-3p. In addition, the miR-381-3p inhibitor-induced the enhancement of the relative protein expressions of FGFR2, p-MEK and p-ERK1/2 were significantly reduced by the co-transfection of si-FGF7. Furthermore, the application of LY3214996, the inhibitor of ERK also verified these outcomes. MiR-381-3p directly targeting FGF7 modulated the osteogenic differentiation via MEK/ERK signaling pathway in BMMSCs.
Collapse
Affiliation(s)
- Ling Qiu
- Department of Hematology, Southwest Medical University, Luzhou, China; Department of Hematology and Hematopoietic Stem Cell Transplantation Centre, General Hospital of the Chinese People's Liberation Army Western Theater, Chengdu, China
| | - Jiao Cai
- Department of Hematology and Hematopoietic Stem Cell Transplantation Centre, General Hospital of the Chinese People's Liberation Army Western Theater, Chengdu, China
| | - Nan Zhang
- Department of Hematology and Hematopoietic Stem Cell Transplantation Centre, General Hospital of the Chinese People's Liberation Army Western Theater, Chengdu, China
| | - Lei Ma
- Department of Hematology and Hematopoietic Stem Cell Transplantation Centre, General Hospital of the Chinese People's Liberation Army Western Theater, Chengdu, China
| | - Fang-Yi Fan
- Department of Hematology and Hematopoietic Stem Cell Transplantation Centre, General Hospital of the Chinese People's Liberation Army Western Theater, Chengdu, China.
| | - Xiao-Ming Li
- Department of Hematology, Southwest Medical University, Luzhou, China.
| |
Collapse
|
22
|
Abstract
This review provides a concise outline of the advances made in the care of patients and to the quality of life after a traumatic spinal cord injury (SCI) over the last century. Despite these improvements reversal of the neurological injury is not yet possible. Instead, current treatment is limited to providing symptomatic relief, avoiding secondary insults and preventing additional sequelae. However, with an ever-advancing technology and deeper understanding of the damaged spinal cord, this appears increasingly conceivable. A brief synopsis of the most prominent challenges facing both clinicians and research scientists in developing functional treatments for a progressively complex injury are presented. Moreover, the multiple mechanisms by which damage propagates many months after the original injury requires a multifaceted approach to ameliorate the human spinal cord. We discuss potential methods to protect the spinal cord from damage, and to manipulate the inherent inhibition of the spinal cord to regeneration and repair. Although acute and chronic SCI share common final pathways resulting in cell death and neurological deficits, the underlying putative mechanisms of chronic SCI and the treatments are not covered in this review.
Collapse
Affiliation(s)
- Stuart Stokes
- Spinal Unit, Department of Neurosurgery, Hull Royal Infirmary, Hull, UK
| | - Martin Drozda
- Spinal Unit, Department of Neurosurgery, Hull Royal Infirmary, Hull, UK
| | - Christopher Lee
- Spinal Unit, Department of Neurosurgery, Hull Royal Infirmary, Hull, UK
| |
Collapse
|
23
|
Yang ZL, Rao J, Lin FB, Liang ZY, Xu XJ, Lin YK, Chen XY, Wang CH, Chen CM. The Role of Exosomes and Exosomal Noncoding RNAs From Different Cell Sources in Spinal Cord Injury. Front Cell Neurosci 2022; 16:882306. [PMID: 35518647 PMCID: PMC9062236 DOI: 10.3389/fncel.2022.882306] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Abstract
Spinal cord injury (SCI) not only affects the quality of life of patients but also poses a heavy burden on their families. Therefore, it is essential to prevent the occurrence of SCI; for unpreventable SCI, it is critical to develop effective treatments. In recent years, various major breakthroughs have been made in cell therapy to protect and regenerate the damaged spinal cord via various mechanisms such as immune regulation, paracrine signaling, extracellular matrix (ECM) modification, and lost cell replacement. Nevertheless, many recent studies have shown that the cell therapy has many disadvantages, such as tumorigenicity, low survival rate, and immune rejection. Because of these disadvantages, the clinical application of cell therapy is limited. In recent years, the role of exosomes in various diseases and their therapeutic potential have attracted much attention. The same is true for exosomal noncoding RNAs (ncRNAs), which do not encode proteins but affect transcriptional and translational processes by targeting specific mRNAs. This review focuses on the mechanism of action of exosomes obtained from different cell sources in the treatment of SCI and the regulatory role and therapeutic potential of exosomal ncRNAs. This review also discusses the future opportunities and challenges, proposing that exosomes and exosomal ncRNAs might be promising tools for the treatment of SCI.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Chun-Hua Wang
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Chun-Mei Chen
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, China
| |
Collapse
|
24
|
Hu M, Cao Z, Jiang D. The Effect of miRNA-Modified Exosomes in Animal Models of Spinal Cord Injury: A meta-Analysis. Front Bioeng Biotechnol 2022; 9:819651. [PMID: 35071220 PMCID: PMC8770826 DOI: 10.3389/fbioe.2021.819651] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 12/07/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Spinal cord injury (SCI) is currently not completely curable. Exosomes have been widely used in preclinical studies of spinal cord injury. Here, in this meta-analysis, we focused on evaluating the overall efficacy of therapies based on miRNA-modified exosomes on functional recovery in animal models of SCI. Methods: PubMed, embase and Web of Science library databases were searched. Relevant literature was included, and the random effects model was used to assess the overall effect of the intervention, with outcomes expressed as SMD. The primary outcome included motor function scores. Risk of bias (ROB) was assessed using the ROB tool of the Systematic Review Centre for Laboratory Animal Experimentation (SYRCLE). R version 4.1.1software and Review Manager software were used for meta-analysis. Results: A total of 11 preclinical studies were included. The meta-analysis revealed that miRNA-modified exosome therapy was effective in improving motor function scores compared with exosomes alone or control therapy (standardized mean difference: 4.21; 95% confidence interval: 3.39-5.04). There was significant asymmetry in the funnel plot, and trim-and-fill analysis revealed four unpublished studies of motor scores. The quality of all included studies was evaluated with SYRCLE's ROB tool. The SCI model, administration time and dose had an impact on the effect of the treatment. Conclusion: MiRNA-modified exosomes have shown great potential in the treatment of SCI. Moreover, the efficacy of miRNA-modified exosomes was superior to that of exosomes alone.
Collapse
Affiliation(s)
- Mengdie Hu
- Department of Orthopedics, The Affiliated Central Hospital, Chongqing University, Chongqing, China
| | - Zhidong Cao
- Department of Orthopedics, The Affiliated Central Hospital, Chongqing University, Chongqing, China
| | - Dianming Jiang
- Department of Orthopedics, The Third Affiliated Hospital, Chongqing Medical University, Chongqing, China
| |
Collapse
|
25
|
Kimura T, Horikoshi Y, Kuriyagawa C, Niiyama Y. Rho/ROCK Pathway and Noncoding RNAs: Implications in Ischemic Stroke and Spinal Cord Injury. Int J Mol Sci 2021; 22:ijms222111573. [PMID: 34769004 PMCID: PMC8584200 DOI: 10.3390/ijms222111573] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/21/2021] [Accepted: 10/24/2021] [Indexed: 01/18/2023] Open
Abstract
Ischemic strokes (IS) and spinal cord injuries (SCI) are major causes of disability. RhoA is a small GTPase protein that activates a downstream effector, ROCK. The up-regulation of the RhoA/ROCK pathway contributes to neuronal apoptosis, neuroinflammation, blood-brain barrier dysfunction, astrogliosis, and axon growth inhibition in IS and SCI. Noncoding RNAs (ncRNAs), such as microRNAs (miRNAs) and long noncoding RNAs (lncRNAs), were previously considered to be non-functional. However, they have attracted much attention because they play an essential role in regulating gene expression in physiological and pathological conditions. There is growing evidence that ROCK inhibitors, such as fasudil and VX-210, can reduce injury in IS and SCI in animal models and clinical trials. Recently, it has been reported that miRNAs are decreased in IS and SCI, while lncRNAs are increased. Inhibiting the Rho/ROCK pathway with miRNAs alleviates apoptosis, neuroinflammation, oxidative stress, and axon growth inhibition in IS and SCI. Further studies are required to explore the significance of ncRNAs in IS and SCI and to establish new strategies for preventing and treating these devastating diseases.
Collapse
Affiliation(s)
- Tetsu Kimura
- Correspondence: ; Tel.: +81-18-884-6175; Fax: +81-18-884-6448
| | | | | | | |
Collapse
|