1
|
Jiang D, Yue H, Liang WT, Wu Z. Developmental endothelial locus 1: the present and future of an endogenous factor in vessels. Front Physiol 2024; 15:1347888. [PMID: 39206385 PMCID: PMC11350114 DOI: 10.3389/fphys.2024.1347888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 07/25/2024] [Indexed: 09/04/2024] Open
Abstract
Developmental Endothelial Locus-1 (DEL-1), also known as EGF-like repeat and discoidin I-like domain-3 (EDIL3), is increasingly recognized for its multifaceted roles in immunoregulation and vascular biology. DEL-1 is a protein that is mainly produced by endothelial cells. It interacts with various integrins to regulate the behavior of immune cells, such as preventing unnecessary recruitment and inflammation. DEL-1 also helps in resolving inflammation by promoting efferocytosis, which is the process of clearing apoptotic cells. Its potential as a therapeutic target in immune-mediated blood disorders, cardiovascular diseases, and cancer metastasis has been spotlighted due to its wide-ranging implications in vascular integrity and pathology. However, there are still unanswered questions about DEL-1's precise functions and mechanisms. This review provides a comprehensive examination of DEL-1's activity across different vascular contexts and explores its potential clinical applications. It underscores the need for further research to resolve existing controversies and establish the therapeutic viability of DEL-1 modulation.
Collapse
Affiliation(s)
| | | | - Wei-Tao Liang
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhong Wu
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
2
|
Naito T, Yamanaka Y, Tokuda K, Sato N, Tajima T, Tsukamoto M, Suzuki H, Kawasaki M, Nakamura E, Sakai A. Effects of metformin on knee joint capsule fibrosis in a diabetic mouse model. Bone Joint Res 2024; 13:321-331. [PMID: 38955349 PMCID: PMC11219202 DOI: 10.1302/2046-3758.137.bjr-2023-0384.r1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/04/2024] Open
Abstract
Aims The antidiabetic agent metformin inhibits fibrosis in various organs. This study aims to elucidate the effects of hyperglycaemia and metformin on knee joint capsule fibrosis in mice. Methods Eight-week-old wild-type (WT) and type 2 diabetic (db/db) mice were divided into four groups without or with metformin treatment (WT met(-/+), Db met(-/+)). Mice received daily intraperitoneal administration of metformin and were killed at 12 and 14 weeks of age. Fibrosis morphology and its related genes and proteins were evaluated. Fibroblasts were extracted from the capsules of 14-week-old mice, and the expression of fibrosis-related genes in response to glucose and metformin was evaluated in vitro. Results The expression of all fibrosis-related genes was higher in Db met(-) than in WT met(-) and was suppressed by metformin. Increased levels of fibrosis-related genes, posterior capsule thickness, and collagen density were observed in the capsules of db/db mice compared with those in WT mice; these effects were suppressed by metformin. Glucose addition increased fibrosis-related gene expression in both groups of mice in vitro. When glucose was added, metformin inhibited the expression of fibrosis-related genes other than cellular communication network factor 2 (Ccn2) in WT mouse cells. Conclusion Hyperglycaemia promotes fibrosis in the mouse knee joint capsule, which is inhibited by metformin. These findings can help inform the development of novel strategies for treating knee joint capsule fibrosis.
Collapse
Affiliation(s)
- Toichiro Naito
- Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Yoshiaki Yamanaka
- Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Kotaro Tokuda
- Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Naohito Sato
- Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Takafumi Tajima
- Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Manabu Tsukamoto
- Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Hitoshi Suzuki
- Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Makoto Kawasaki
- Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Eiichiro Nakamura
- Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Akinori Sakai
- Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| |
Collapse
|
3
|
Park SS, Cho W, Lim DS, Gwon HJ, Choi SW, Abd El-Aty AM, Aydemir HA, Jeong JH, Jung TW. AMPK/autophagy-mediated alleviation of tendinopathy by IL-38: A novel strategy for the treatment of obesity-related tendinopathy. Tissue Cell 2024; 88:102392. [PMID: 38643674 DOI: 10.1016/j.tice.2024.102392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/14/2024] [Accepted: 04/18/2024] [Indexed: 04/23/2024]
Abstract
The effect of interleukin-38 (IL-38), a recently identified member of the IL-1 family with potential applications in various inflammation-related conditions, on ER stress has not been explored. Furthermore, its role in obesity-associated tendinopathy has not been investigated. In this study, human primary tenocytes were treated with palmitate (200 or 400 μM) and palmitate plus IL-38 (0-50 ng/mL) for 24 h. Western blotting was used to assess ER stress and tendinopathogenic markers in tenocytes. Monodansylcadaverine (MDC) staining was used to evaluate autophagosomes. Apoptosis was determined by cell viability assays, caspase 3 activity assays and TUNEL assays. Cell migration was evaluated by a cell scratch assay. Small interfering (si) RNA transfection was used for target gene silencing. Treatment of tenocytes with IL-38 attenuated apoptosis, restored the balance between MMPs and TIMP-1, and alleviated ER stress under palmitate conditions. IL-38 treatment enhanced AMPK phosphorylation and promoted the expression of autophagy markers related to LC3 conversion, p62 degradation, and autophagosome formation in cultured tenocytes. The effects of IL-38 on ER stress, apoptosis, and MMP-9, MMP-13, and TIMP-1 expression in palmitate-treated tenocytes were abrogated by AMPK siRNA or 3-methyladenine (3MA). These results suggest that IL-38 alleviates ER stress through the AMPK/autophagy pathway, thereby reducing apoptosis and preventing extracellular matrix (ECM) degradation in tenocytes under hyperlipidemic conditions. This study provides a promising therapeutic avenue for treating obesity-related tendinopathy using an endogenous compound such as IL-38.
Collapse
Affiliation(s)
- Sung Su Park
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, the Republic of Korea
| | - Wonjun Cho
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, the Republic of Korea
| | - Do Su Lim
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, the Republic of Korea
| | - Hyeon Ji Gwon
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, the Republic of Korea
| | - Sung Woo Choi
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, the Republic of Korea
| | - A M Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt; Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum 25240, Turkey.
| | - Hacı Ahmet Aydemir
- Dr. Filiz Dolunay Family Health Center, Unit Number:59, Yakutiye, Erzurum, Turkey
| | - Ji Hoon Jeong
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, the Republic of Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, the Republic of Korea
| | - Tae Woo Jung
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, the Republic of Korea.
| |
Collapse
|
4
|
Sun JL, Cho W, Oh H, Abd El-Aty AM, Hong SA, Jeong JH, Jung TW. Interleukin-38 alleviates hepatic steatosis through AMPK/autophagy-mediated suppression of endoplasmic reticulum stress in obesity models. J Cell Physiol 2024; 239:e31184. [PMID: 38197464 DOI: 10.1002/jcp.31184] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/05/2023] [Accepted: 12/12/2023] [Indexed: 01/11/2024]
Abstract
Interleukin-38 (IL-38), recently recognized as a cytokine with anti-inflammatory properties that mitigate type 2 diabetes, has been associated with indicators of insulin resistance and nonalcoholic fatty liver disease (NAFLD). This study investigated the impact of IL-38 on hepatic lipid metabolism and endoplasmic reticulum (ER) stress. We assessed protein expression levels using Western blot analysis, while monodansylcadaverine staining was employed to detect autophagosomes in hepatocytes. Oil red O staining was utilized to examine lipid deposition. The study revealed elevated serum IL-38 levels in high-fat diet (HFD)-fed mice and IL-38 secretion from mouse keratinocytes. IL-38 treatment attenuated lipogenic lipid accumulation and ER stress markers in hepatocytes exposed to palmitate. Furthermore, IL-38 treatment increased AMP-activated protein kinase (AMPK) phosphorylation and autophagy. The effects of IL-38 on lipogenic lipid deposition and ER stress were nullified in cultured hepatocytes by suppressing AMPK through small interfering (si) RNA or 3-methyladenine (3MA). In animal studies, IL-38 administration mitigated hepatic steatosis by suppressing the expression of lipogenic proteins and ER stress markers while reversing AMPK phosphorylation and autophagy markers in the livers of HFD-fed mice. Additionally, AMPK siRNA, but not 3MA, mitigated IL-38-enhanced fatty acid oxidation in hepatocytes. In summary, IL-38 alleviates hepatic steatosis through AMPK/autophagy signaling-dependent attenuation of ER stress and enhancement of fatty acid oxidation via the AMPK pathway, suggesting a therapeutic strategy for treating NAFLD.
Collapse
Affiliation(s)
- Jaw Long Sun
- Department of Pharmacology, Chung-Ang University, Seoul, Republic of Korea
| | - Wonjun Cho
- Department of Pharmacology, Chung-Ang University, Seoul, Republic of Korea
| | - Heeseung Oh
- Department of Pharmacology, Chung-Ang University, Seoul, Republic of Korea
| | - A M Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
- Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum, Turkey
| | - Soon Auck Hong
- Department of Pathology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Ji Hoon Jeong
- Department of Pharmacology, Chung-Ang University, Seoul, Republic of Korea
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, Republic of Korea
| | - Tae Woo Jung
- Department of Pharmacology, Chung-Ang University, Seoul, Republic of Korea
| |
Collapse
|
5
|
Cho W, Oh H, Choi SW, Abd El-Aty AM, Birdal O, Jeong JH, Song JH, Jung TW. CTRP4 attenuates apoptosis and epithelial-mesenchymal transition markers in podocytes through an AMPK/autophagy-dependent pathway. Biochem Biophys Res Commun 2023; 682:104-110. [PMID: 37806247 DOI: 10.1016/j.bbrc.2023.10.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 09/28/2023] [Accepted: 10/01/2023] [Indexed: 10/10/2023]
Abstract
Hyperglycemia, characterized by high blood glucose levels resulting from pancreatic beta cell dysfunction or impaired insulin signaling, is a contributing factor in the development of diabetic nephropathy. This study aimed to investigate the effects of C1q/TNF-related protein 4 (CTRP4), known for its anti-obesity and anti-inflammatory properties in various disease models, on podocyte apoptosis and endoplasmic reticulum (ER) stress in the presence of elevated glucose levels. The expression levels of various proteins in podocytes and adipocytes were evaluated by Western blotting. Autophagosomes in podocytes were stained by MDC. Chromatin condensation in podocytes was examined by Hoechst staining. The research revealed increased expression of CTRP4 in 3T3-L1 adipocytes and CIHP-1 podocytes exposed to high glucose (HG) conditions. Treatment with CTRP4 effectively mitigated HG-induced apoptosis and ER stress and normalized epithelial-to-mesenchymal transition (EMT) markers in CIHP-1 cells. Furthermore, elevated levels of AMPK phosphorylation and autophagy were observed in CIHP-1 cells treated with CTRP4. Silencing of AMPK or the use of 3-methyl adenine (3 MA) reduced the impacts of CTRP4 on apoptosis, EMT markers and ER stress in CIHP-1 cells. In conclusion, these findings suggest that CTRP4 alleviates ER stress in podocytes under hyperglycemic conditions, leading to the suppression of apoptosis and the restoration of EMT through AMPK/autophagy-mediated signaling. These insights provide valuable information for the development of therapeutic strategies for diabetic nephropathy.
Collapse
Affiliation(s)
- Wonjun Cho
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Heeseung Oh
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Sung Woo Choi
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - A M Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, 12211, Giza, Egypt; Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum, 25240, Turkey.
| | - Oğuzhan Birdal
- Department of Cardiology, Medical Faculty, Ataturk University, Erzurum, 25240, Turkey
| | - Ji Hoon Jeong
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, Republic of Korea
| | - Jin-Ho Song
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea.
| | - Tae Woo Jung
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea.
| |
Collapse
|
6
|
Tan J, Liu X, Zhou M, Wang F, Ma L, Tang H, He G, Kang X, Bian X, Tang K. Effect of treadmill training on fibrocartilage complex repair in tendon-bone insertion healing in the postinflammatory stage. Bone Joint Res 2023; 12:339-351. [PMID: 37219405 PMCID: PMC10204653 DOI: 10.1302/2046-3758.125.bjr-2022-0340.r2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/24/2023] Open
Abstract
Aims Mechanical stimulation is a key factor in the development and healing of tendon-bone insertion. Treadmill training is an important rehabilitation treatment. This study aims to investigate the benefits of treadmill training initiated on postoperative day 7 for tendon-bone insertion healing. Methods A tendon-bone insertion injury healing model was established in 92 C57BL/6 male mice. All mice were divided into control and training groups by random digital table method. The control group mice had full free activity in the cage, and the training group mice started the treadmill training on postoperative day 7. The quality of tendon-bone insertion healing was evaluated by histology, immunohistochemistry, reverse transcription quantitative polymerase chain reaction, Western blotting, micro-CT, micro-MRI, open field tests, and CatWalk gait and biomechanical assessments. Results Our results showed a significantly higher tendon-bone insertion histomorphological score in the training group, and the messenger RNA and protein expression levels of type II collagen (COL2A1), SOX9, and type X collagen (COL10A1) were significantly elevated. Additionally, tendon-bone insertion resulted in less scar hyperplasia after treadmill training, the bone mineral density (BMD) and bone volume/tissue volume (BV/TV) were significantly improved, and the force required to induce failure became stronger in the training group. Functionally, the motor ability, limb stride length, and stride frequency of mice with tendon-bone insertion injuries were significantly improved in the training group compared with the control group. Conclusion Treadmill training initiated on postoperative day 7 is beneficial to tendon-bone insertion healing, promoting biomechanical strength and motor function. Our findings are expected to guide clinical rehabilitation training programmes.
Collapse
Affiliation(s)
- Jindong Tan
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of Orthopaedics/Sports Medicine Center, First Affiliated Hospital of Army Medical University, Chongqing, China
| | - Xiao Liu
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of Orthopaedics/Sports Medicine Center, First Affiliated Hospital of Army Medical University, Chongqing, China
| | - Mei Zhou
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of Orthopaedics/Sports Medicine Center, First Affiliated Hospital of Army Medical University, Chongqing, China
| | - Feng Wang
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of Orthopaedics/Sports Medicine Center, First Affiliated Hospital of Army Medical University, Chongqing, China
| | - Lin Ma
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of Orthopaedics/Sports Medicine Center, First Affiliated Hospital of Army Medical University, Chongqing, China
| | - Hong Tang
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of Orthopaedics/Sports Medicine Center, First Affiliated Hospital of Army Medical University, Chongqing, China
| | - Gang He
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of Orthopaedics/Sports Medicine Center, First Affiliated Hospital of Army Medical University, Chongqing, China
| | - Xia Kang
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of Orthopaedics/Sports Medicine Center, First Affiliated Hospital of Army Medical University, Chongqing, China
| | - Xuting Bian
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of Orthopaedics/Sports Medicine Center, First Affiliated Hospital of Army Medical University, Chongqing, China
| | - Kanglai Tang
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of Orthopaedics/Sports Medicine Center, First Affiliated Hospital of Army Medical University, Chongqing, China
| |
Collapse
|