1
|
Abdullah M, Hulleck AA, Katmah R, Khalaf K, El-Rich M. Multibody dynamics-based musculoskeletal modeling for gait analysis: a systematic review. J Neuroeng Rehabil 2024; 21:178. [PMID: 39369227 PMCID: PMC11452939 DOI: 10.1186/s12984-024-01458-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/03/2024] [Indexed: 10/07/2024] Open
Abstract
Beyond qualitative assessment, gait analysis involves the quantitative evaluation of various parameters such as joint kinematics, spatiotemporal metrics, external forces, and muscle activation patterns and forces. Utilizing multibody dynamics-based musculoskeletal (MSK) modeling provides a time and cost-effective non-invasive tool for the prediction of internal joint and muscle forces. Recent advancements in the development of biofidelic MSK models have facilitated their integration into clinical decision-making processes, including quantitative diagnostics, functional assessment of prosthesis and implants, and devising data-driven gait rehabilitation protocols. Through an extensive search and meta-analysis of over 116 studies, this PRISMA-based systematic review provides a comprehensive overview of different existing multibody MSK modeling platforms, including generic templates, methods for personalization to individual subjects, and the solutions used to address statically indeterminate problems. Additionally, it summarizes post-processing techniques and the practical applications of MSK modeling tools. In the field of biomechanics, MSK modeling provides an indispensable tool for simulating and understanding human movement dynamics. However, limitations which remain elusive include the absence of MSK modeling templates based on female anatomy underscores the need for further advancements in this area.
Collapse
Affiliation(s)
- Muhammad Abdullah
- Department of Mechanical and Nuclear Engineering, Khalifa University, Abu Dhabi, UAE
| | - Abdul Aziz Hulleck
- Department of Mechanical and Nuclear Engineering, Khalifa University, Abu Dhabi, UAE
| | - Rateb Katmah
- Department of Biomedical and Biotechnology Engineering, Khalifa University, Abu Dhabi, UAE
| | - Kinda Khalaf
- Department of Biomedical and Biotechnology Engineering, Khalifa University, Abu Dhabi, UAE
| | - Marwan El-Rich
- Department of Mechanical and Nuclear Engineering, Khalifa University, Abu Dhabi, UAE.
| |
Collapse
|
2
|
Yan M, Liang T, Zhao H, Bi Y, Wang T, Yu T, Zhang Y. Model Properties and Clinical Application in the Finite Element Analysis of Knee Joint: A Review. Orthop Surg 2024; 16:289-302. [PMID: 38174410 PMCID: PMC10834231 DOI: 10.1111/os.13980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/21/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024] Open
Abstract
The knee is the most complex joint in the human body, including bony structures like the femur, tibia, fibula, and patella, and soft tissues like menisci, ligaments, muscles, and tendons. Complex anatomical structures of the knee joint make it difficult to conduct precise biomechanical research and explore the mechanism of movement and injury. The finite element model (FEM), as an important engineering analysis technique, has been widely used in many fields of bioengineering research. The FEM has advantages in the biomechanical analysis of objects with complex structures. Researchers can use this technology to construct a human knee joint model and perform biomechanical analysis on it. At the same time, finite element analysis can effectively evaluate variables such as stress, strain, displacement, and rotation, helping to predict injury mechanisms and optimize surgical techniques, which make up for the shortcomings of traditional biomechanics experimental research. However, few papers introduce what material properties should be selected for each anatomic structure of knee FEM to meet different research purposes. Based on previous finite element studies of the knee joint, this paper summarizes various modeling strategies and applications, serving as a reference for constructing knee joint models and research design.
Collapse
Affiliation(s)
- Mingyue Yan
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao, China
- Institute of Sports Medicine and Health, Qingdao University, Qingdao, China
| | - Ting Liang
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao, China
- Institute of Sports Medicine and Health, Qingdao University, Qingdao, China
| | - Haibo Zhao
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao, China
- Institute of Sports Medicine and Health, Qingdao University, Qingdao, China
| | - Yanchi Bi
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao, China
- Institute of Sports Medicine and Health, Qingdao University, Qingdao, China
| | - Tianrui Wang
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Tengbo Yu
- Institute of Sports Medicine and Health, Qingdao University, Qingdao, China
- Department of Orthopedic Surgery, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, China
| | - Yingze Zhang
- Department of Orthopedics, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
3
|
Huo Z, Hao K, Fan C, Li K, Li M, Wang F, Niu Y. The larger patellar tilt angle and lower intercondylar notch angle might increase posterior cruciate ligament injury risk: a retrospective comparative study. BMC Musculoskelet Disord 2023; 24:933. [PMID: 38041089 PMCID: PMC10691109 DOI: 10.1186/s12891-023-07054-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 11/21/2023] [Indexed: 12/03/2023] Open
Abstract
BACKGROUND Posterior cruciate ligament (PCL) injuries are common ligament injuries of the knee, and previous studies often focused on the associations between the morphology of the knee and PCL injuries. Studies on the correlation between PCL injuries and patellofemoral alignment are limited. METHODS This retrospective study included 92 patients with PCL injured and 92 patients with PCL intact. Measurement parameters were compared between the two groups, including patellar tilt angle, congruence angle, patellar height, hip-knee-ankle angle, lateral trochlear inclination, femoral condyle ratio, bicondylar width, intercondylar notch width and index, notch angle, trochlear facet asymmetry, and trochlear sulcus depth and angle. Independent risk factors associated with PCL injuries were identified by logistic regression analyses. RESULTS In the PCL injured group, the patellar tilt angle was significantly larger (13.19 ± 5.90° vs. 10.02 ± 4.95°, P = 0.04); the intercondylar notch angle was significantly lower (60.97 ± 7.83° vs. 67.01 ± 6.00°, P = 0.004); the medial and lateral femoral condyle ratio were significantly larger (0.63 ± 0.64 vs. 0.60 ± 0.56, P = 0.031; 0.65 ± 0.60 vs. 0.58 ± 0.53, P = 0.005) than in the PCL intact group. There were 11 patients with patellar dislocation in the PCL injured group, accounting for 12%. In these patients, the patellar height was higher (1.39 ± 0.17 vs. 1.09 ± 0.25, P = 0.009); the trochlear sulcus angle was larger (157.70 ± 8.7° vs. 141.80 ± 8.78°, P < 0.001); and the trochlear sulcus depth was shallower (3.10 ± 1.20mm vs. 5.11 ± 1.48mm, P = 0.003) than those in the patients without patellar dislocation. Multivariate analyses showed that patellar tilt angle (each increase 1 degree, OR = 1.14) and intercondylar notch angle (each increase 1 degree, OR = 0.90) were independent risk factors for PCL injuries. CONCLUSION The patients with PCL injuries had larger patellar tilt angles, lower intercondylar notch angles, and longer posterior femoral condyles than patients with PCL intact. The larger patellar tilt angle and lower intercondylar notch angle might be risk factors for PCL injuries.
Collapse
Affiliation(s)
- Zhenhui Huo
- Department of Orthopaedic Surgery, Third Hospital of Hebei Medical University, 139 Ziqiang Road, Shijiazhuang, 050051, Hebei, People's Republic of China
| | - Kuo Hao
- Department of Orthopaedic Surgery, Third Hospital of Hebei Medical University, 139 Ziqiang Road, Shijiazhuang, 050051, Hebei, People's Republic of China
| | - Chongyi Fan
- Department of Orthopaedic Surgery, Third Hospital of Hebei Medical University, 139 Ziqiang Road, Shijiazhuang, 050051, Hebei, People's Republic of China
| | - Kehan Li
- Department of Orthopaedic Surgery, Third Hospital of Hebei Medical University, 139 Ziqiang Road, Shijiazhuang, 050051, Hebei, People's Republic of China
| | - Ming Li
- Department of Orthopaedic Surgery, Third Hospital of Hebei Medical University, 139 Ziqiang Road, Shijiazhuang, 050051, Hebei, People's Republic of China
| | - Fei Wang
- Department of Orthopaedic Surgery, Third Hospital of Hebei Medical University, 139 Ziqiang Road, Shijiazhuang, 050051, Hebei, People's Republic of China.
| | - Yingzhen Niu
- Department of Orthopaedic Surgery, Third Hospital of Hebei Medical University, 139 Ziqiang Road, Shijiazhuang, 050051, Hebei, People's Republic of China.
| |
Collapse
|
4
|
Donno L, Galluzzo A, Pascale V, Sansone V, Frigo CA. Walking with a Posterior Cruciate Ligament Injury: A Musculoskeletal Model Study. Bioengineering (Basel) 2023; 10:1178. [PMID: 37892908 PMCID: PMC10604140 DOI: 10.3390/bioengineering10101178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/05/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
The understanding of the changes induced in the knee's kinematics by a Posterior Cruciate Ligament (PCL) injury is still rather incomplete. This computational study aimed to analyze how the internal loads are redistributed among the remaining ligaments when the PCL is lesioned at different degrees and to understand if there is a possibility to compensate for a PCL lesion by changing the hamstring's contraction in the second half of the swing phase. A musculoskeletal model of the knee joint was used for simulating a progressive PCL injury by gradually reducing the ligament stiffness. Then, in the model with a PCL residual stiffness at 15%, further dynamic simulations of walking were performed by progressively reducing the hamstring's force. In each condition, the ligaments tension, contact force and knee kinematics were analyzed. In the simulated PCL-injured knee, the Medial Collateral Ligament (MCL) became the main passive stabilizer of the tibial posterior translation, with synergistic recruitment of the Lateral Collateral Ligament. This resulted in an enhancement of the tibial-femoral contact force with respect to the intact knee. The reduction in the hamstring's force limited the tibial posterior sliding and, consequently, the tension of the ligaments compensating for PCL injury decreased, as did the tibiofemoral contact force. This study does not pretend to represent any specific population, since our musculoskeletal model represents a single subject. However, the implemented model could allow the non-invasive estimation of load redistribution in cases of PCL injury. Understanding the changes in the knee joint biomechanics could help clinicians to restore patients' joint stability and prevent joint degeneration.
Collapse
Affiliation(s)
- Lucia Donno
- Movement Biomechanics and Motor Control Lab, Department of Electronics, Information and Bioengineering, Politecnico di Milano, I-20133 Milan, Italy;
| | - Alessandro Galluzzo
- IRCCS Istituto Ortopedico Galeazzi, I-20161 Milan, Italy; (A.G.); (V.P.); (V.S.)
- Residency Program in Orthopaedics and Traumatology, University of Milan, I-20122 Milan, Italy
| | - Valerio Pascale
- IRCCS Istituto Ortopedico Galeazzi, I-20161 Milan, Italy; (A.G.); (V.P.); (V.S.)
- Department of Biomedical Sciences for Health, University of Milan, I-20122 Milan, Italy
| | - Valerio Sansone
- IRCCS Istituto Ortopedico Galeazzi, I-20161 Milan, Italy; (A.G.); (V.P.); (V.S.)
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, I-20122 Milan, Italy
| | - Carlo Albino Frigo
- Movement Biomechanics and Motor Control Lab, Department of Electronics, Information and Bioengineering, Politecnico di Milano, I-20133 Milan, Italy;
| |
Collapse
|
5
|
van Kuijk KSR, Reijman M, Bierma-Zeinstra SMA, Meuffels DE. Smaller intercondylar notch size and smaller ACL volume increase posterior cruciate ligament rupture risk. Knee Surg Sports Traumatol Arthrosc 2023; 31:449-454. [PMID: 35840764 PMCID: PMC9898422 DOI: 10.1007/s00167-022-07049-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 06/09/2022] [Indexed: 02/06/2023]
Abstract
PURPOSE Little is known about risk factors for sustaining a posterior cruciate ligament (PCL) rupture. Identifying risk factors is the first step in preventing a PCL rupture from occurring. The morphology of the knee in patients who ruptured their PCL may differ from that of control patients. The hypothesis was that the intercondylar notch dimensions, 3-D volumes of the intercondylar notch and, the 3-D volumes of both the ACL and the PCL were correlated to the presence of a PCL rupture. METHODS The magnetic resonance imaging (MRI) scans of 30 patients with a proven PCL rupture were compared to 30 matched control patients with proven intact ACL and PCL. Control patients were selected from patients with knee trauma during sports but without cruciate ligament injury. Patients have been matched for age, height, weight, BMI, and sex. The volumes of the intercondylar notch and both the ACL and PCL were measured on 3D reconstructions. Second, the bicondylar width, the notch width, and the notch width index were measured of all subjects. The relationship between our measurements and the presence of a PCL rupture was analysed. RESULTS The results show a significant difference in the volumes of the intercondylar notch and the ACL between patients with a ruptured PCL and control patients. Patients with a PCL rupture have smaller intercondylar notch volumes and smaller ACL volumes. There were no significant differences in the bicondylar width, notch width, and notch width index. In the control patients, a significant correlation between the volume of the PCL and the volume of the ACL was found (0.673, p < 0.001). CONCLUSION Patients with a PCL rupture have smaller intercondylar volumes and smaller ACL volumes when compared to control patients. Second, patients with smaller ACL volumes have smaller PCL volumes. This study shows, for the first time, that there are significant size and volume differences in the shape of the knee between patients with a PCL rupture and control patients. LEVEL OF EVIDENCE IV.
Collapse
Affiliation(s)
- K S R van Kuijk
- Department of Orthopedic Surgery and Sports Medicine, Erasmus MC University Medical Center Rotterdam, Doctor Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
- Department of Radiology, Albert Schweitzer Hospital, Dordrecht, The Netherlands
| | - M Reijman
- Department of Orthopedic Surgery and Sports Medicine, Erasmus MC University Medical Center Rotterdam, Doctor Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - S M A Bierma-Zeinstra
- Department of Orthopedic Surgery and Sports Medicine, Erasmus MC University Medical Center Rotterdam, Doctor Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
- Department of General Practice, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - D E Meuffels
- Department of Orthopedic Surgery and Sports Medicine, Erasmus MC University Medical Center Rotterdam, Doctor Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands.
| |
Collapse
|
6
|
PCL insufficient patients with increased translational and rotational passive knee joint laxity have no increased range of anterior-posterior and rotational tibiofemoral motion during level walking. Sci Rep 2022; 12:13232. [PMID: 35918487 PMCID: PMC9345965 DOI: 10.1038/s41598-022-17328-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 07/25/2022] [Indexed: 11/17/2022] Open
Abstract
Passive translational tibiofemoral laxity has been extensively examined in posterior cruciate ligament (PCL) insufficient patients and belongs to the standard clinical assessment. However, objective measurements of passive rotational knee laxity, as well as range of tibiofemoral motion during active movements, are both not well understood. None of these are currently quantified in clinical evaluations of patients with PCL insufficiency. The objective of this study was to quantify passive translational and rotational knee laxity as well as range of anterior–posterior and rotational tibiofemoral motion during level walking in a PCL insufficient patient cohort as a basis for any later clinical evaluation and therapy. The laxity of 9 patient knees with isolated PCL insufficiency or additionally posterolateral corner (PLC) insufficiency (8 males, 1 female, age 36.78 ± 7.46 years) were analysed and compared to the contralateral (CL) knees. A rotometer device with a C-arm fluoroscope was used to assess the passive tibiofemoral rotational laxity while stress radiography was used to evaluate passive translational tibiofemoral laxity. Functional gait analysis was used to examine the range of anterior–posterior and rotational tibiofemoral motion during level walking. Passive translational laxity was significantly increased in PCL insufficient knees in comparison to the CL sides (15.5 ± 5.9 mm vs. 3.7 ± 1.9 mm, p < 0.01). Also, passive rotational laxity was significantly higher compared to the CL knees (26.1 ± 8.2° vs. 20.6 ± 5.6° at 90° knee flexion, p < 0.01; 19.0 ± 6.9° vs. 15.5 ± 5.9° at 60° knee flexion, p = 0.04). No significant differences were observed for the rotational (16.3 ± 3.7° vs. 15.2 ± 3.6°, p = 0.43) and translational (17.0 ± 5.4 mm vs. 16.1 ± 2.8 mm, p = 0.55) range of anterior–posterior and rotational tibiofemoral motion during level walking conditions for PCL insufficient knees compared to CL knees respectively. The present study illustrates that patients with PCL insufficiency show a substantial increased passive tibiofemoral laxity, not only in tibiofemoral translation but also in tibiofemoral rotation. Our data indicate that this increased passive multiplanar knee joint laxity can be widely compensated during level walking. Further studies should investigate progressive changes in knee joint laxity and kinematics post PCL injury and reconstruction to judge the individual need for therapy and effects of physiotherapy such as quadriceps force training on gait patterns in PCL insufficient patients.
Collapse
|
7
|
Kwon HM, Lee JA, Koh YG, Park KK, Kang KT. Computational analysis of tibial slope adjustment with fixed-bearing medial unicompartmental knee arthroplasty in ACL- and PCL-deficient models. Bone Joint Res 2022; 11:494-502. [PMID: 35818859 PMCID: PMC9350696 DOI: 10.1302/2046-3758.117.bjr-2022-0138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
AIMS A functional anterior cruciate ligament (ACL) or posterior cruciate ligament (PCL) has been assumed to be required for patients undergoing unicompartmental knee arthroplasty (UKA). However, this assumption has not been thoroughly tested. Therefore, this study aimed to assess the biomechanical effects exerted by cruciate ligament-deficient knees with medial UKAs regarding different posterior tibial slopes. METHODS ACL- or PCL-deficient models with posterior tibial slopes of 1°, 3°, 5°, 7°, and 9° were developed and compared to intact models. The kinematics and contact stresses on the tibiofemoral joint were evaluated under gait cycle loading conditions. RESULTS Anterior translation increased in ACL-deficient UKA cases compared with intact models. In contrast, posterior translation increased in PCL-deficient UKA cases compared with intact models. As the posterior tibial slope increased, anterior translation of ACL-deficient UKA increased significantly in the stance phase, and posterior translation of PCL-deficient UKA increased significantly in the swing phase. Furthermore, as the posterior tibial slope increased, contact stress on the other compartment increased in cruciate ligament-deficient UKAs compared with intact UKAs. CONCLUSION Fixed-bearing medial UKA is a viable treatment option for patients with cruciate ligament deficiency, providing a less invasive procedure and allowing patient-specific kinematics to adjust posterior tibial slope. Patient selection is important, and while AP kinematics can be compensated for by posterior tibial slope adjustment, rotational stability is a prerequisite for this approach. ACL- or PCL-deficient UKA that adjusts the posterior tibial slope might be an alternative treatment option for a skilled surgeon. Cite this article: Bone Joint Res 2022;11(7):494-502.
Collapse
Affiliation(s)
- Hyuck M Kwon
- Department of Orthopedic Surgery, Yonsei University College of Medicine, Seoul, South Korea
| | | | - Yong-Gon Koh
- Joint Reconstruction Center, Department of Orthopaedic Surgery, Yonsei Sarang Hospital, Seoul, South Korea
| | - Kwan K Park
- Department of Orthopedic Surgery, Yonsei University College of Medicine, Seoul, South Korea
| | | |
Collapse
|
8
|
A musculoskeletal finite element model of rat knee joint for evaluating cartilage biomechanics during gait. PLoS Comput Biol 2022; 18:e1009398. [PMID: 35657996 PMCID: PMC9166403 DOI: 10.1371/journal.pcbi.1009398] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 04/26/2022] [Indexed: 12/02/2022] Open
Abstract
Abnormal loading of the knee due to injuries or obesity is thought to contribute to the development of osteoarthritis (OA). Small animal models have been used for studying OA progression mechanisms. However, numerical models to study cartilage responses under dynamic loading in preclinical animal models have not been developed. Here we present a musculoskeletal finite element model of a rat knee joint to evaluate cartilage biomechanical responses during a gait cycle. The rat knee joint geometries were obtained from a 3-D MRI dataset and the boundary conditions regarding loading in the joint were extracted from a musculoskeletal model of the rat hindlimb. The fibril-reinforced poroelastic (FRPE) properties of the rat cartilage were derived from data of mechanical indentation tests. Our numerical results showed the relevance of simulating anatomical and locomotion characteristics in the rat knee joint for estimating tissue responses such as contact pressures, stresses, strains, and fluid pressures. We found that the contact pressure and maximum principal strain were virtually constant in the medial compartment whereas they showed the highest values at the beginning of the gait cycle in the lateral compartment. Furthermore, we found that the maximum principal stress increased during the stance phase of gait, with the greatest values at midstance. We anticipate that our approach serves as a first step towards investigating the effects of gait abnormalities on the adaptation and degeneration of rat knee joint tissues and could be used to evaluate biomechanically-driven mechanisms of the progression of OA as a consequence of joint injury or obesity. Osteoarthritis is a disease of the musculoskeletal system which is characterized by the degradation of articular cartilage. Changes in the knee loading after injuries or obesity contribute to the development of cartilage degeneration. Since injured cartilage cannot be reversed back to intact conditions, small animal models have been widely used for investigating osteoarthritis progression mechanisms. Moreover, experimental studies have been complemented with numerical models to overcome inherent limitations such as cost, difficulties to obtain accurate measures and replicate degenerative situations in the knee joint. However, computational models to study articular cartilage responses under dynamic loading in small animal models have not been developed. Thus, here we present a musculoskeletal finite element model (MSFE) of a rat knee joint to evaluate cartilage biomechanical responses during gait. Our computational model considers both the anatomical and locomotion characteristics of the rat knee joint for estimating mechanical responses in the articular cartilage. We suggest that our approach can be used to investigate tissue adaptations based on the mechanobiological responses of the cartilage to prevent the progression of osteoarthritis.
Collapse
|
9
|
Hu J, Xiong R, Chen X, Chen Z, Jin Z. Effect of components mal-alignment on biomechanics in fixed unicompartmental knee arthroplasty using multi-body dynamics model during a walking cycle. Med Eng Phys 2022; 100:103747. [DOI: 10.1016/j.medengphy.2021.103747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 11/23/2021] [Accepted: 12/21/2021] [Indexed: 11/27/2022]
|
10
|
Farshidfar SS, Cadman J, Deng D, Appleyard R, Dabirrahmani D. The effect of modelling parameters in the development and validation of knee joint models on ligament mechanics: A systematic review. PLoS One 2022; 17:e0262684. [PMID: 35085320 PMCID: PMC8794118 DOI: 10.1371/journal.pone.0262684] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/30/2021] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND The ligaments in the knee are prone to injury especially during dynamic activities. The resulting instability can have a profound impact on a patient's daily activities and functional capacity. Musculoskeletal knee modelling provides a non-invasive tool for investigating ligament force-strain behaviour in various dynamic scenarios, as well as potentially complementing existing pre-planning tools to optimise surgical reconstructions. However, despite the development and validation of many musculoskeletal knee models, the effect of modelling parameters on ligament mechanics has not yet been systematically reviewed. OBJECTIVES This systematic review aimed to investigate the results of the most recent studies using musculoskeletal modelling techniques to create models of the native knee joint, focusing on ligament mechanics and modelling parameters in various simulated movements. DATA SOURCES PubMed, ScienceDirect, Google Scholar, and IEEE Xplore. ELIGIBILITY CRITERIA FOR SELECTING STUDIES Databases were searched for articles containing any numerical ligament strain or force data on the intact, ACL-deficient, PCL-deficient, or lateral extra-articular reconstructed (LER) knee joints. The studies had to derive these results from musculoskeletal modelling methods. The dates of the publications were between 1 January 1995 and 30 November 2021. METHOD A customised data extraction form was created to extract each selected study's critical musculoskeletal model development parameters. Specific parameters of the musculoskeletal knee model development used in each eligible study were independently extracted, including the (1) musculoskeletal model definition (i.e., software used for modelling, knee type, source of geometry, the inclusion of cartilage and menisci, and articulating joints and joint boundary conditions (i.e., number of degrees of freedom (DoF), subjects, type of activity, collected data and type of simulation)), (2) specifically ligaments modelling techniques (i.e., ligament bundles, attachment points, pathway, wrapping surfaces and ligament material properties such as stiffness and reference length), (3) sensitivity analysis, (4) validation approaches, (5) predicted ligament mechanics (i.e., force, length or strain) and (6) clinical applications if available. The eligible papers were then discussed quantitatively and qualitatively with respect to the above parameters. RESULTS AND DISCUSSION From the 1004 articles retrieved by the initial electronic search, only 25 met all inclusion criteria. The results obtained by aggregating data reported in the eligible studies indicate that considerable variability in the predicted ligament mechanics is caused by differences in geometry, boundary conditions and ligament modelling parameters. CONCLUSION This systematic review revealed that there is currently a lack of consensus on knee ligament mechanics. Despite this lack of consensus, some papers highlight the potential of developing translational tools using musculoskeletal modelling. Greater consistency in model design, incorporation of sensitivity assessment of the model outcomes and more rigorous validation methods should lead to better agreement in predictions for ligament mechanics between studies. The resulting confidence in the musculoskeletal model outputs may lead to the development of clinical tools that could be used for patient-specific treatments.
Collapse
Affiliation(s)
- Sara Sadat Farshidfar
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Joseph Cadman
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Danny Deng
- Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Richard Appleyard
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Danè Dabirrahmani
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| |
Collapse
|
11
|
Rodríguez-Sanz J, Pérez-Bellmunt A, López-de-Celis C, Hidalgo-García C, Koppenhaver SL, Canet-Vintró M, Fernández-de-Las-Peñas C. Accuracy and safety of dry needling placement in the popliteus muscle: A cadaveric study. Int J Clin Pract 2021; 75:e14669. [PMID: 34324778 DOI: 10.1111/ijcp.14669] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 07/26/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The popliteus muscle attaches posteriorly to the joint capsule of the knee. Although it is an important rotational stabiliser and has been implicated in various knee pathologies, research on its treatment with dry needling is scarce. OBJECTIVE To determine if a needle accurately and safely penetrates the popliteus muscle during the clinical application of dry needling. METHODS A cadaveric descriptive study was conducted. Needling insertion of the popliteus muscle was conducted in 11 cryopreserved cadavers with a 50-mm needle. The needle was inserted at upper third of the posterior part of the tibia closest to the knee towards the popliteus. The needle was advanced into the muscle based upon clinician judgement. Cross-sectional anatomical dissections were photographed and analysed by photometry. Safety of the intervention was assessed by calculating the distance from the tip of the needle to the proximate neurovascular structures. RESULTS Accurate needle penetration of the popliteus muscle was observed in 10 out of 11 (91%) of the cadavers (mean needle penetration: 25.7 ± 6.7mm, 95% CI 21.3-30.3 mm). The distances from the tip of the needle were 17±6mm (95% CI 13-21 mm) to the tibial nerve and 15 ± 0.7mm (95% CI 10-20 mm) to the popliteus vascular bundle. CONCLUSION The results from this cadaveric study support the notion that needling of the popliteus can be accurately and safely conducted by an experienced clinician. Future studies investigating the clinical effectiveness of these interventions are needed.
Collapse
Affiliation(s)
- Jacobo Rodríguez-Sanz
- Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya (UIC-Barcelona), Barcelona, Spain
- ACTIUM Functional Anatomy Group, Barcelona, Spain
| | - Albert Pérez-Bellmunt
- Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya (UIC-Barcelona), Barcelona, Spain
- ACTIUM Functional Anatomy Group, Barcelona, Spain
| | - Carlos López-de-Celis
- Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya (UIC-Barcelona), Barcelona, Spain
- ACTIUM Functional Anatomy Group, Barcelona, Spain
| | | | | | - Max Canet-Vintró
- Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya (UIC-Barcelona), Barcelona, Spain
- ACTIUM Functional Anatomy Group, Barcelona, Spain
| | - César Fernández-de-Las-Peñas
- Department of Physical Therapy, Occupational Therapy, Physical Medicine and Rehabilitation, Universidad Rey Juan Carlos (URJC), Alcorcón, Madrid, Spain
- Cátedra Institucional en Docencia, Clínica e Investigación en Fisioterapia: Terapia Manual, Punción Seca y Ejercicio Terapéutico, Universidad Rey Juan Carlos, Alcorcón, Madrid, Spain
| |
Collapse
|
12
|
Asayama A, Tateuchi H, Yamagata M, Ichihashi N. Influence of stance width and toe direction on medial knee contact force during bodyweight squats. J Biomech 2021; 129:110824. [PMID: 34717162 DOI: 10.1016/j.jbiomech.2021.110824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 10/13/2021] [Accepted: 10/15/2021] [Indexed: 10/20/2022]
Abstract
Squats are frequently performed to strengthen the quadriceps (Quad) and gluteus maximus (GM) in sports and clinical fields. Since the squat itself produces a large knee contact force, clarifying the relationship between the squat techniques and the knee contact force is important. However, the influence of different squat techniques on the medial knee contact force (KCFmed), which would result in knee disease, remains unclear. This study aimed to investigate the influence of various squat techniques on KCFmed during bodyweight squats. Since muscle strengthening by the squat is inevitable, we additionally aimed to explore the effect of a different squat technique on the quadriceps (Quad) and gluteus maximus (GM) forces. Twelve healthy adults performed squats with different stance widths (narrow stance, NS; middle stance, MS; and wide stance, WS) and different toe directions (0° of forefoot abduction - NEUT and 30°forefoot abduction - OUT). The KCFmed, Quad force, and GM force were computed using a musculoskeletal model with marker trajectories and ground reaction forces. The KCFmed in NS was significantly larger than that in MS and WS, and KCFmed in OUT was significantly larger than that in NEUT. The Quad force in OUT was significantly larger than that in the NEUT, and the GM force significantly became larger as the stance width became narrower. These findings suggest that squats in MS and NEUT may be suitable for reducing KCFmed while maintaining the Quad and GM forces.
Collapse
Affiliation(s)
- Akihiro Asayama
- Human Health Sciences, Graduate School of Medicine, Kyoto University, Japan.
| | - Hiroshige Tateuchi
- Human Health Sciences, Graduate School of Medicine, Kyoto University, Japan
| | - Momoko Yamagata
- Human Health Sciences, Graduate School of Medicine, Kyoto University, Japan; Department of Human Development, Graduate School of Human Development and Environment, Kobe University, Japan; Research Fellow of Japan Society for the Promotion of Science Kojimachi Business Center Building, Japan
| | - Noriaki Ichihashi
- Human Health Sciences, Graduate School of Medicine, Kyoto University, Japan
| |
Collapse
|
13
|
Cui L, Dale B, Allison G, Li M. Design and Development of An Instrumented Knee Joint for Quantifying Ligament Displacements. J Med Device 2021. [DOI: 10.1115/1.4051440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Abstract
Recently, robotic assistive leg exoskeletons have gained popularity because an increased number of people crave for powered devices to run faster and longer or carry heavier loads. However, these powered devices have the potential to impair knee ligaments. This work was aimed to develop an instrumented knee joint via rapid prototyping that measures the displacements of the four major knee ligaments—the anterior cruciate ligament (ACL), posterior crucial ligament (PCL), medial collateral ligament (MCL), and lateral collateral ligament (LCL)—to quantify the strain experienced by these ligaments. The knee model consists of a femur, lateral and medial menisci, and a tibia-fibula, which were printed from three dimensional (3D) imaging scans. Nonstretchable cords served as main fiber bundles of the ligaments with their desired stiffnesses provided by springs. The displacement of each cord was obtained via a rotary encoder mechanism, and the leg flexion angle was acquired via a closed-loop four-bar linkage of a diamond shape. The displacements were corroborated by published data, demonstrating the profiles of the displacement curves agreed with known results. The paper shows the feasibility of developing a subject-specific knee joint via rapid prototyping that is capable of quantifying the ligament strain via rapid prototyping.
Collapse
Affiliation(s)
- Lei Cui
- School of Civil and Mechanical Engineering, Curtin University, Perth, Western Australia 6845, Australia
| | - Brody Dale
- School of Civil and Mechanical Engineering, Curtin University, Perth, Western Australia 6845, Australia
| | - Garry Allison
- Curtin Graduate Research School Curtin University, Perth, Western Australia 6845, Australia
| | - Min Li
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
14
|
Abstract
Posterior cruciate ligament (PCL) injuries are often encountered in the setting of other knee pathology and sometimes in isolation. A thorough understanding of the native PCL anatomy is crucial in the successful treatment of these injuries. The PCL consists of two independent bundles that function in a codominant relationship to perform the primary role of resisting posterior tibial translation relative to the femur. A secondary role of the PCL is to provide rotatory stability. The anterolateral (AL) bundle has a more vertical orientation when compared with the posteromedial (PM) bundle. The AL bundle has a more anterior origin than the PM bundle on the lateral wall of the medial femoral condyle. The tibial insertion of AL bundle on the PCL facet is medial and anterior to the PM bundle. The AL and PM bundles are 12-mm apart at the center of the femoral origins, while the tibial insertions are more tightly grouped. The different spatial orientation of the two bundles and large distance between the femoral centers is responsible for the codominance of the PCL bundles. The AL bundle is the dominant restraint to posterior tibial translation throughout midrange flexion, while the PM bundle is the primary restraint in extension and deep flexion. Biomechanical testing has shown independent reconstruction of the two bundles that better reproduces native knee biomechanics, while significant differences in clinical outcomes remain to be seen. Stress X-rays may play an important role in clinical decision-making process for operative versus nonoperative management of isolated PCL injuries. Strong understanding of PCL anatomy and biomechanics can aid surgical management.
Collapse
Affiliation(s)
- Thomas B Lynch
- San Antonio Military Medical Center, Fort Sam Houston, Texas
| | - Jorge Chahla
- Rush University Medical Center Midwest Orthopaedics at Rush, Chicago, Illinois
| | - Clayton W Nuelle
- Missouri Orthopaedic Institute, University of Missouri, Columbia, Missouri
| |
Collapse
|
15
|
Koh YG, Hong HT, Lee HY, Kim HJ, Kang KT. Influence of Variation in Sagittal Placement of the Femoral Component after Cruciate-Retaining Total Knee Arthroplasty. J Knee Surg 2021; 34:444-451. [PMID: 31499566 DOI: 10.1055/s-0039-1696958] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Prosthetic alignment is an important factor for long-term survival in cruciate-retaining (CR) total knee arthroplasty (TKA). The purpose of this study is to investigate the influence of sagittal placement of the femoral component on tibiofemoral (TF) kinematics and kinetics in CR-TKA. Five sagittal placements of femoral component models with -3, 0, 3, 5, and 7 degrees of flexion are developed. The TF joint kinematics, quadriceps force, patellofemoral contact force, and posterior cruciate ligament force are evaluated using the models under deep knee-bend loading. The kinematics of posterior TF translation is found to occur with the increase in femoral-component flexion. The quadriceps force and patellofemoral contact force decrease with the femoral-component flexion increase. In addition, extension of the femoral component increases with the increase in posterior cruciate ligament force. The flexed femoral component in CR-TKA provides a positive biomechanical effect compared with a neutral position. Slight flexion could be an effective alternative technique to enable positive biomechanical effects with TKA prostheses.
Collapse
Affiliation(s)
- Yong-Gon Koh
- Department of Orthopaedic Surgery, Joint Reconstruction Center, Yonsei Sarang Hospital, Seocho-gu, Seoul, Republic of Korea
| | - Hyoung-Taek Hong
- Department of Mechanical Engineering, Yonsei University, Seodaemun-gu, Seoul, Republic of Korea
| | - Hwa-Yong Lee
- Department of Mechanical Engineering, Yonsei University, Seodaemun-gu, Seoul, Republic of Korea
| | - Hyo-Jeong Kim
- Department of Sport and Healthy Aging, Korea National Sport University, Seoul, Republic of Korea
| | - Kyoung-Tak Kang
- Department of Mechanical Engineering, Yonsei University, Seodaemun-gu, Seoul, Republic of Korea
| |
Collapse
|
16
|
Hosseini Nasab SH, Smith C, Schütz P, Postolka B, Ferguson S, Taylor WR, List R. Elongation Patterns of the Posterior Cruciate Ligament after Total Knee Arthroplasty. J Clin Med 2020; 9:E2078. [PMID: 32630654 PMCID: PMC7408829 DOI: 10.3390/jcm9072078] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/18/2020] [Accepted: 06/29/2020] [Indexed: 12/15/2022] Open
Abstract
This study aimed to understand the ability of fixed-bearing posterior cruciate ligament (PCL)-retaining implants to maintain functionality of the PCL in vivo. To achieve this, elongation of the PCL was examined in six subjects with good clinical and functional outcomes using 3D kinematics reconstructed from video-fluoroscopy, together with multibody modelling of the knee. Here, length-change patterns of the ligament bundles were tracked throughout complete cycles of level walking and stair descent. Throughout both activities, elongation of the anterolateral bundle exhibited a flexion-dependent pattern with more stretching during swing than stance phase (e.g., at 40° flexion, anterolateral bundle experienced 3.9% strain during stance and 9.1% during swing phase of stair descent). The posteromedial bundle remained shorter than its reference length (defined at heel strike of the level gait cycle) during both activities. Compared with loading patterns of the healthy ligament, postoperative elongation patterns indicate a slackening of the ligament at early flexion followed by peak ligament lengths at considerably smaller flexion angles. The reported data provide a novel insight into in vivo PCL function during activities of daily living that has not been captured previously. The findings support previous investigations reporting difficulties in achieving a balanced tension in the retained PCL.
Collapse
Affiliation(s)
- Seyyed Hamed Hosseini Nasab
- Institute for Biomechanics, ETH Zurich, 8093 Zurich, Switzerland; (S.H.H.N.); (C.S.); (P.S.); (B.P.); (S.F.); (R.L.)
| | - Colin Smith
- Institute for Biomechanics, ETH Zurich, 8093 Zurich, Switzerland; (S.H.H.N.); (C.S.); (P.S.); (B.P.); (S.F.); (R.L.)
| | - Pascal Schütz
- Institute for Biomechanics, ETH Zurich, 8093 Zurich, Switzerland; (S.H.H.N.); (C.S.); (P.S.); (B.P.); (S.F.); (R.L.)
| | - Barbara Postolka
- Institute for Biomechanics, ETH Zurich, 8093 Zurich, Switzerland; (S.H.H.N.); (C.S.); (P.S.); (B.P.); (S.F.); (R.L.)
| | - Stephen Ferguson
- Institute for Biomechanics, ETH Zurich, 8093 Zurich, Switzerland; (S.H.H.N.); (C.S.); (P.S.); (B.P.); (S.F.); (R.L.)
| | - William R. Taylor
- Institute for Biomechanics, ETH Zurich, 8093 Zurich, Switzerland; (S.H.H.N.); (C.S.); (P.S.); (B.P.); (S.F.); (R.L.)
| | - Renate List
- Institute for Biomechanics, ETH Zurich, 8093 Zurich, Switzerland; (S.H.H.N.); (C.S.); (P.S.); (B.P.); (S.F.); (R.L.)
- Human Performance Lab, Schulthess Clinic, 8008 Zurich, Switzerland
| |
Collapse
|
17
|
Enhanced In-Silico Polyethylene Wear Simulation of Total Knee Replacements During Daily Activities. Ann Biomed Eng 2020; 49:322-333. [PMID: 32607843 DOI: 10.1007/s10439-020-02555-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 06/19/2020] [Indexed: 10/24/2022]
Abstract
A computational wear simulator is an efficient tool for evaluating the wear of artificial knee joints. The classical Archard's wear law-based simulator has questionable accuracy and is focused on walking. In this study, an in silico polyethylene wear simulation of total knee replacements was developed considering the various highly demanding daily activities. A good predicted accuracy (error = 8.1%) was found through comparison of the experimental results. A relatively larger averaged wear loss was found under the loading condition (1.53 mg/mc) of daily activities compared with the walking condition (1.32 mg/mc). The squatting movement (2.57 mg/mc) produces the highest overall wear rate. In addition, a relatively larger amount of wear was found on the medial side knee prosthesis than that on the lateral side. The enhanced in silico polyethylene wear simulator provides an accurate and comprehensive tool for wear prediction in preclinical wear testing.
Collapse
|
18
|
Dejtiar DL, Dzialo CM, Pedersen PH, Jensen KK, Fleron MK, Andersen MS. Development and Evaluation of a Subject-Specific Lower Limb Model With an Eleven-Degrees-of-Freedom Natural Knee Model Using Magnetic Resonance and Biplanar X-Ray Imaging During a Quasi-Static Lunge. J Biomech Eng 2020; 142:061001. [PMID: 31314894 DOI: 10.1115/1.4044245] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Indexed: 12/31/2022]
Abstract
Musculoskeletal (MS) models can be used to study the muscle, ligament, and joint mechanics of natural knees. However, models that both capture subject-specific geometry and contain a detailed joint model do not currently exist. This study aims to first develop magnetic resonance image (MRI)-based subject-specific models with a detailed natural knee joint capable of simultaneously estimating in vivo ligament, muscle, tibiofemoral (TF), and patellofemoral (PF) joint contact forces and secondary joint kinematics. Then, to evaluate the models, the predicted secondary joint kinematics were compared to in vivo joint kinematics extracted from biplanar X-ray images (acquired using slot scanning technology) during a quasi-static lunge. To construct the models, bone, ligament, and cartilage structures were segmented from MRI scans of four subjects. The models were then used to simulate lunges based on motion capture and force place data. Accurate estimates of TF secondary joint kinematics and PF translations were found: translations were predicted with a mean difference (MD) and standard error (SE) of 2.13 ± 0.22 mm between all trials and measures, while rotations had a MD ± SE of 8.57 ± 0.63 deg. Ligament and contact forces were also reported. The presented modeling workflow and the resulting knee joint model have potential to aid in the understanding of subject-specific biomechanics and simulating the effects of surgical treatment and/or external devices on functional knee mechanics on an individual level.
Collapse
Affiliation(s)
- David Leandro Dejtiar
- Department of Materials and Production, Aalborg University, Fibigestræde 16, Aalborg DK-9220, Denmark
| | - Christine Mary Dzialo
- Department of Materials and Production, Aalborg University, Fibigestræde 16, Aalborg DK-9220, Denmark; Anybody Technology A/S, Niels Jernes Vej 10, Aalborg DK-9220, Denmark
| | - Peter Heide Pedersen
- Department of Orthopedic Surgery, Aalborg University Hospital, Hobrovej 18-22, Aalborg DK-9000, Denmark
| | - Kenneth Krogh Jensen
- Department of Radiology, Aalborg University Hospital, Hobrovej 18-22, Aalborg DK-9000, Denmark
| | - Martin Kokholm Fleron
- Department of Health Science and Technology, Aalborg University, Frederik Bajers Vej 7, Aalborg DK-9220, Denmark
| | - Michael Skipper Andersen
- Department of Materials and Production, Aalborg University, Fibigestræde 16, Aalborg DK-9220, Denmark
| |
Collapse
|
19
|
Finite Element Study on the Preservation of Normal Knee Kinematics with Respect to the Prosthetic Design in Patient-Specific Medial Unicompartmental Knee Arthroplasty. BIOMED RESEARCH INTERNATIONAL 2020; 2020:1829385. [PMID: 32258105 PMCID: PMC7109557 DOI: 10.1155/2020/1829385] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 01/07/2020] [Accepted: 02/13/2020] [Indexed: 11/17/2022]
Abstract
Alterations in native knee kinematics in medial unicompartmental knee arthroplasty (UKA) are caused by the nonanatomic articular surface of conventional implants. Technology for an anatomy mimetic patient-specific (PS) UKA has been introduced. However, there have been no studies on evaluating the preservation of native knee kinematics with respect to different prosthetic designs in PS UKA. The purpose of this study was to evaluate the preservation of native knee kinematics with respect to different UKA designs using a computational simulation. We evaluated three different UKA designs: a nonconforming design, an anatomy mimetic design, and a conforming design for use under gait and squat loading conditions. The results show that the anatomy mimetic UKA design achieves closer kinematics to those of a native knee compared to the other two UKA designs under such conditions. The anatomy memetic UKA design exhibited a 0.39 mm and 0.36° decrease in the translation and rotation, respectively, in the swing phase compared with those of the natural knee. In addition, under the gait and squat loading conditions, the conforming UKA design shows limited kinematics compared to the nonconforming UKA design. Our results show that the conformity of each component in PS UKA is an important factor in knee joint kinematics; however, the anatomy mimetic UKA design cannot restore perfect native kinematics.
Collapse
|
20
|
Kang KT, Koh YG, Lee JA, Lee JJ, Kwon SK. Biomechanical effect of a lateral hinge fracture for a medial opening wedge high tibial osteotomy: finite element study. J Orthop Surg Res 2020; 15:63. [PMID: 32085786 PMCID: PMC7035662 DOI: 10.1186/s13018-020-01597-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 02/13/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND This study aimed to investigate the biomechanical effect on the Takeuchi classification of lateral hinge fracture (LHF) after an opening wedge high tibial osteotomy (HTO). METHODS We performed an FE simulation for type I, type II, and type III in accordance with the Takeuchi classification. The stresses on the bone and plate, wedge micromotion, and forces on ligaments were evaluated to investigate stress-shielding effect, plate stability, and biomechanical change, respectively, in three different types of LHF HTO and with the HTO without LHF model (non-LHF) models. RESULTS The greatest stress-shielding effect and wedge micromotion were observed in type II LHF (distal portion fracture). The type II and type III (lateral plateau fracture) models exhibited a reduction in ACL force and an increase in PCL force compared with the HTO without LHF model. However, the type I (osteotomy line fracture) and HTO without LHF models did not exhibit a significant biomechanical effect. This study demonstrates that Takeuchi type II and type III LHF models provide unstable structures compared with the type I and HTO without LHF models. CONCLUSIONS HTO should be performed while considering a medial opening wedge HTO to avoid a type II and type III LHF as a potential complication.
Collapse
Affiliation(s)
- Kyoung-Tak Kang
- Department of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Yong-Gon Koh
- Joint Reconstruction Center, Department of Orthopaedic Surgery, Yonsei Sarang Hospital, 10 Hyoryeong-ro, Seocho-gu, Seoul, 06698, Republic of Korea
| | - Jin-Ah Lee
- Department of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jae Jung Lee
- Joint Reconstruction Center, Department of Orthopaedic Surgery, Yonsei Sarang Hospital, 10 Hyoryeong-ro, Seocho-gu, Seoul, 06698, Republic of Korea
| | - Sae Kwang Kwon
- Joint Reconstruction Center, Department of Orthopaedic Surgery, Yonsei Sarang Hospital, 10 Hyoryeong-ro, Seocho-gu, Seoul, 06698, Republic of Korea.
| |
Collapse
|
21
|
Kang KT, Koh YG, Park KM, Choi CH, Jung M, Shin J, Kim SH. The anterolateral ligament is a secondary stabilizer in the knee joint: A validated computational model of the biomechanical effects of a deficient anterior cruciate ligament and anterolateral ligament on knee joint kinematics. Bone Joint Res 2019; 8:509-517. [PMID: 31832170 PMCID: PMC6888742 DOI: 10.1302/2046-3758.811.bjr-2019-0103.r1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Objectives The aim of this study was to investigate the biomechanical effect of the anterolateral ligament (ALL), anterior cruciate ligament (ACL), or both ALL and ACL on kinematics under dynamic loading conditions using dynamic simulation subject-specific knee models. Methods Five subject-specific musculoskeletal models were validated with computationally predicted muscle activation, electromyography data, and previous experimental data to analyze effects of the ALL and ACL on knee kinematics under gait and squat loading conditions. Results Anterior translation (AT) significantly increased with deficiency of the ACL, ALL, or both structures under gait cycle loading. Internal rotation (IR) significantly increased with deficiency of both the ACL and ALL under gait and squat loading conditions. However, the deficiency of ALL was not significant in the increase of AT, but it was significant in the increase of IR under the squat loading condition. Conclusion The results of this study confirm that the ALL is an important lateral knee structure for knee joint stability. The ALL is a secondary stabilizer relative to the ACL under simulated gait and squat loading conditions.Cite this article: Bone Joint Res 2019;8:509-517.
Collapse
Affiliation(s)
- Kyoung-Tak Kang
- Department of Mechanical Engineering, Department of Mechanical Engineering, Yonsei University, Seoul, South Korea
| | - Yong-Gon Koh
- Joint Reconstruction Center, Department of Orthopaedic Surgery, Yonsei Sarang Hospital, Seoul, South Korea
| | - Kyoung-Mi Park
- Department of Mechanical Engineering, Yonsei University, Seoul, South Korea
| | - Chong-Hyuck Choi
- Department of Orthopedic Surgery, Arthroscopy and Joint Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Min Jung
- Department of Orthopedic Surgery, Arthroscopy and Joint Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Jucheol Shin
- Department of Orthopedic Surgery, Arthroscopy and Joint Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Sung-Hwan Kim
- Department of Orthopedic Surgery, Arthroscopy and Joint Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
22
|
Koh YG, Lee JA, Chun HJ, Kang KT. Biomechanical simulation for cartilage regeneration of knee joint osteoarthritis with composite scaffold using ply angle optimization. J Biomater Appl 2019; 34:1019-1027. [PMID: 31739728 DOI: 10.1177/0885328219886195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Yong-Gon Koh
- Joint Reconstruction Center and Department of Orthopaedic Surgery, Yonsei Sarang Hospital, Seoul, Republic of Korea
| | - Jin-Ah Lee
- Department of Mechanical Engineering, Yonsei University, Seoul, Republic of Korea
| | - Heoung-Jae Chun
- Department of Mechanical Engineering, Yonsei University, Seoul, Republic of Korea
| | - Kyoung-Tak Kang
- Department of Mechanical Engineering, Yonsei University, Seoul, Republic of Korea
| |
Collapse
|
23
|
Hampp EL, Sodhi N, Scholl L, Deren ME, Yenna Z, Westrich G, Mont MA. Less iatrogenic soft-tissue damage utilizing robotic-assisted total knee arthroplasty when compared with a manual approach: A blinded assessment. Bone Joint Res 2019; 8:495-501. [PMID: 31728189 PMCID: PMC6825049 DOI: 10.1302/2046-3758.810.bjr-2019-0129.r1] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Objectives The use of the haptically bounded saw blades in robotic-assisted total knee arthroplasty (RTKA) can potentially help to limit surrounding soft-tissue injuries. However, there are limited data characterizing these injuries for cruciate-retaining (CR) TKA with the use of this technique. The objective of this cadaver study was to compare the extent of soft-tissue damage sustained through a robotic-assisted, haptically guided TKA (RATKA) versus a manual TKA (MTKA) approach. Methods A total of 12 fresh-frozen pelvis-to-toe cadaver specimens were included. Four surgeons each prepared three RATKA and three MTKA specimens for cruciate-retaining TKAs. A RATKA was performed on one knee and a MTKA on the other. Postoperatively, two additional surgeons assessed and graded damage to 14 key anatomical structures in a blinded manner. Kruskal–Wallis hypothesis tests were performed to assess statistical differences in soft-tissue damage between RATKA and MTKA cases. Results Significantly less damage occurred to the PCLs in the RATKA versus the MTKA specimens (p < 0.001). RATKA specimens had non-significantly less damage to the deep medial collateral ligaments (p = 0.149), iliotibial bands (p = 0.580), poplitei (p = 0.248), and patellar ligaments (p = 0.317). The remaining anatomical structures had minimal soft-tissue damage in all MTKA and RATKA specimens. Conclusion The results of this study indicate that less soft-tissue damage may occur when utilizing RATKA compared with MTKA. These findings are likely due to the enhanced preoperative planning with the robotic software, the real-time intraoperative feedback, and the haptically bounded saw blade, all of which may help protect the surrounding soft tissues and ligaments. Cite this article: Bone Joint Res 2019;8:495–501.
Collapse
Affiliation(s)
- Emily L Hampp
- Implant and Robotic Research, Stryker, Mahwah, New Jersey, USA
| | - Nipun Sodhi
- Department of Orthopaedic Surgery, Lenox Hill Hospital, Northwell Health, New York, New York, USA
| | - Laura Scholl
- Implant and Robotic Research, Stryker, Mahwah, New Jersey, USA
| | - Matthew E Deren
- UMass Memorial Medical Center, Worcester, Massachusetts, USA
| | - Zachary Yenna
- Department of Orthopaedic Surgery, Davis Orthopedics & Sports Medicine, Layton, Utah, USA
| | - Geoffrey Westrich
- Department of Orthopaedic Surgery, Hospital for Special Surgery, New York, New York, USA
| | - Michael A Mont
- Department of Orthopaedic Surgery, Lenox Hill Hospital, Northwell Health, New York, New York, USA
| |
Collapse
|
24
|
Koh YG, Lee JA, Chun HJ, Baek C, Kang KT. Effect of insert material on forces on quadriceps, collateral ligament, and patellar tendon after rotating platform mobile-bearing total knee arthroplasty. Asian J Surg 2019; 43:742-749. [PMID: 31648867 DOI: 10.1016/j.asjsur.2019.09.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/18/2019] [Accepted: 09/26/2019] [Indexed: 10/25/2022] Open
Abstract
BACKGROUND There is a gradual increase in the number of patients for total knee arthroplasty (TKA), and TKA demonstrates reliable clinical outcomes. The orthopaedic biomaterials community continuously attempted over the past decades to improve the longevity of UHMWPE in TKA by using various improved technologies. Polyetheretherketone (PEEK) and carbon fiber reinforced-PEEK(CFR-PEEK) are suggested as potential tibial insert materials to replace UHMWPE in some applications. The aim of this study involves evaluating the biomechanical effects of UHMWPE and CFR-PEEK tibial materials on mobile-bearing TKA. METHODS The finite element (FE) model was obtained by conducting computed tomography and magnetic resonance imaging. The FE investigation included three types of loading conditions corresponding to the loads used in the experiments for FE model validation and model predictions under deep-knee bend loading conditions. We investigated forces on quadriceps, collateral ligament and patellar tendon with UHMWPE and CCFR-PEEK tibial insert materials under the deep-knee-bend condition. RESULTS Quadriceps force decreased with flexion for CFR-PEEK when compared to that for UHMWPE. A similar trend was observed in terms of the patellar tendon force. An opposite trend was observed in the collateral ligament. Medial collateral ligament force in the CFR-PEEK exceeded that in the UHMWPE, and lateral collateral ligament force in the UHMWPE exceeded that in the CFR-PEEK. CONCLUSION The CFR-PEEK represents an alternative insert material given its superior biomechanical effect after mobile-bearing total knee arthroplasty. However, a balance between the medial and lateral ligaments is considered as an important factor in the CFR-PEEK tibial insert due to its opposite biomechanical effect.
Collapse
Affiliation(s)
- Yong-Gon Koh
- Joint Reconstruction Center, Department of Orthopaedic Surgery, Yonsei Sarang Hospital, 10 Hyoryeong-ro, Seocho-gu, Seoul, 06698, Republic of Korea
| | - Jin-Ah Lee
- Department of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Heoung-Jae Chun
- Department of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Changhyun Baek
- Department of Mechanical and Control Engineering, The Cyber University of Korea, 106 Bukchon-ro, Jongnogu, Seoul, 03051, Republic of Korea
| | - Kyoung-Tak Kang
- Department of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| |
Collapse
|
25
|
van Kuijk KSR, Reijman M, Bierma-Zeinstra SMA, Waarsing JH, Meuffels DE. Posterior cruciate ligament injury is influenced by intercondylar shape and size of tibial eminence. Bone Joint J 2019; 101-B:1058-1062. [PMID: 31474133 DOI: 10.1302/0301-620x.101b9.bjj-2018-1567.r1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
AIMS Little is known about the risk factors that predispose to a rupture of the posterior cruciate ligament (PCL). Identifying risk factors is the first step in trying to prevent a rupture of the PCL from occurring. The morphology of the knee in patients who rupture their PCL may differ from that of control patients. The purpose of this study was to identify any variations in bone morphology that are related to a PCL. PATIENTS AND METHODS We compared the anteroposterior (AP), lateral, and Rosenberg view radiographs of 94 patients with a ruptured PCL to a control group of 168 patients matched by age, sex, and body mass index (BMI), but with an intact PCL after a knee injury. Statistical shape modelling software was used to assess the shape of the knee and determine any difference in anatomical landmarks. RESULTS We found shape variants on the AP and Rosenberg view radiographs to be significantly different between patients who tore their PCL and those with an intact PCL after a knee injury. Overall, patients who ruptured their PCL have smaller intercondylar notches and smaller tibial eminences than control patients. CONCLUSION This study shows that differences in the shape of the knee are associated with the presence of a PCL rupture after injury. A smaller and more sharply angled intercondylar notch and a more flattened tibial eminence are related to PCL rupture. This suggests that the morphology of the knee is a risk factor for sustaining a PCL rupture. Cite this article: Bone Joint J 2019;101-B:1058-1062.
Collapse
Affiliation(s)
- K S R van Kuijk
- Department of Orthopedic Surgery, Erasmus MC University Medical Centre, Rotterdam, The Netherlands.,Department of Radiology, Albert Schweitzer Hospital, Dordrecht, The Netherlands
| | - M Reijman
- Department of Orthopedic Surgery, Erasmus MC University Medical Centre, Rotterdam, The Netherlands
| | - S M A Bierma-Zeinstra
- Department of General Practice, Erasmus MC University Medical Centre, Rotterdam, The Netherlands
| | - J H Waarsing
- Department of Orthopedic Surgery, Erasmus MC University Medical Centre, Rotterdam, The Netherlands
| | - D E Meuffels
- Department of Orthopedic Surgery, Erasmus MC University Medical Centre, Rotterdam, The Netherlands
| |
Collapse
|
26
|
Putame G, Terzini M, Bignardi C, Beale B, Hulse D, Zanetti E, Audenino A. Surgical Treatments for Canine Anterior Cruciate Ligament Rupture: Assessing Functional Recovery Through Multibody Comparative Analysis. Front Bioeng Biotechnol 2019; 7:180. [PMID: 31448269 PMCID: PMC6691022 DOI: 10.3389/fbioe.2019.00180] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 07/11/2019] [Indexed: 11/27/2022] Open
Abstract
Anterior cruciate ligament (ACL) deficiency can result in serious degenerative stifle injuries. Although tibial plateau leveling osteotomy (TPLO) is a common method for the surgical treatment of ACL deficiency, alternative osteotomies, such as a leveling osteotomy based on the center of rotation of angulation (CBLO) are described in the literature. However, whether a CBLO could represent a viable alternative to a TPLO remains to be established. The aim of this study is to compare TPLO and CBLO effectiveness in treating ACL rupture. First, a computational multibody model of a physiological stifle was created using three-dimensional surfaces of a medium-sized canine femur, tibia, fibula and patella. Articular contacts were modeled by means of a formulation describing the contact force as function of the interpenetration between surfaces. Moreover, ligaments were represented by vector forces connecting origin and insertion points. The lengths of the ligaments at rest were optimized simulating the drawer test. The ACL-deficient model was obtained by deactivating the ACL related forces in the optimized physiological one. Then, TPLO and CBLO treatments were virtually performed on the pathological stifle. Finally, the drawer test and a weight-bearing squat movement were performed to compare the treatments effectiveness in terms of tibial anteroposterior translation, patellar ligament force, intra-articular compressive force and quadriceps force. Results from drawer test simulations showed that ACL-deficiency causes an increase of the anterior tibial translation by up to 5.2 mm, while no remarkable differences between CBLO and TPLO were recorded. Overall, squat simulations have demonstrated that both treatments lead to an increase of all considered forces compared to the physiological model. Specifically, CBLO and TPLO produce an increase in compressive forces of 54% and 37%, respectively, at 90° flexion. However, TPLO produces higher compressive forces (up to 16%) with respect to CBLO for wider flexion angles ranging from 135° to 117°. Conversely, TPLO generates lower forces in patellar ligament and quadriceps muscle, compared to CBLO. In light of the higher intra-articular compressive force over the physiological walking range of flexion, which was observed to result from TPLO in the current study, the use of this technique should be carefully considered.
Collapse
Affiliation(s)
- Giovanni Putame
- PolitoMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Mara Terzini
- PolitoMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Cristina Bignardi
- PolitoMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Brian Beale
- Gulf Coast Veterinary Specialists, Houston, TX, United States
| | - Don Hulse
- Austin Veterinary Emergency and Specialty Center, Austin, TX, United States
| | - Elisabetta Zanetti
- Department of Industrial Engineering, Università di Perugia, Perugia, Italy
| | - Alberto Audenino
- PolitoMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| |
Collapse
|
27
|
Kang KT, Koh YG, Park KM, Lee JS, Kwon SK. Biomechanical analysis of a changed posterior condylar offset under deep knee bend loading in cruciate-retaining total knee arthroplasty. Biomed Mater Eng 2019; 30:157-169. [PMID: 30741664 DOI: 10.3233/bme-191041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND The conservation of the joint anatomy is an important factor in total knee arthroplasty (TKA). The restoration of the femoral posterior condylar offset (PCO) has been well known to influence the clinical outcome after TKA. OBJECTIVE The purpose of this study was to determine the mechanism of PCO in finite element models with conservation of subject anatomy and different PCO of ±1, ±2, ±3 mm in posterior direction using posterior cruciate ligament-retaining TKA. METHODS Using a computational simulation, we investigated the influence of the changes in PCO on the contact stress in the polyethylene (PE) insert and patellar button, on the forces on the collateral and posterior cruciate ligament, and on the quadriceps muscle and patellar tendon forces. The computational simulation loading condition was deep knee bend. RESULTS The contact stresses on the PE insert increased, whereas those on the patellar button decreased as posterior condylar offset translated to the posterior direction. The forces exerted on the posterior cruciate ligament and collateral ligaments increased as PCO translated to the posterior direction. The translation of PCO in the anterior direction, in an equivalent flexion angle, required a greater quadriceps muscle force. CONCLUSIONS Translations of the PCO in the posterior and anterior directions resulted in negative effects in the PE insert and ligament, and the quadriceps muscle force, respectively. Our findings suggest that orthopaedic surgeons should be careful with regard to the intraoperative conservation of PCO, because an excessive change in PCO may lead to quadriceps weakness and an increase in posterior cruciate ligament tension.
Collapse
Affiliation(s)
- Kyoung-Tak Kang
- Department of Mechanical Engineering, Yonsei University, Seoul, Republic of Korea
| | - Yong-Gon Koh
- Department of Orthopaedic Surgery, Joint Reconstruction Center, Yonsei Sarang Hospital, Seoul, Republic of Korea
| | - Kyoung-Mi Park
- Department of Mechanical Engineering, Yonsei University, Seoul, Republic of Korea
| | - Jun-Sang Lee
- Department of Orthopaedic Surgery, Joint Reconstruction Center, Yonsei Sarang Hospital, Seoul, Republic of Korea
| | - Sae Kwang Kwon
- Department of Orthopaedic Surgery, Joint Reconstruction Center, Yonsei Sarang Hospital, Seoul, Republic of Korea
| |
Collapse
|
28
|
Park KK, Koh YG, Park KM, Park JH, Kang KT. Biomechanical effect with respect to the sagittal positioning of the femoral component in unicompartmental knee arthroplasty. Biomed Mater Eng 2019; 30:171-182. [PMID: 30741665 DOI: 10.3233/bme-191042] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Component malalignment in unicompartmental knee arthroplasty (UKA) has been related to the concentration in tibiofemoral joint of contact stress and to poor post-operative outcomes. Few studies investigated a biomechanical effect of femur component position in sagittal plane. The purpose of this study was to evaluate the biomechanical effect of the femoral components on the sagittal alignment under flexion and extension conditions using computational simulations. METHODS The flexion and extension conditions of the femoral component were analyzed from 10° extension to 10° flexion in 1° increments. We considered the contact stresses in the polyethylene (PE) inserts and articular cartilage, and the force on the collateral ligament, under gait cycle conditions. RESULTS The contact stress on the PE insert increased as flexion of the femoral component increased, but there was not a remarkable difference in the amount of increased contact stress upon extension. There was no difference in the contact stress on the articular cartilage upon extension of the femoral component, but it increased in flexion during stance and double support periods. The forces on the medial collateral ligaments increased with the extension and decreased with the flexion of the femoral component, whereas the forces on the lateral collateral ligaments showed opposite trends. CONCLUSIONS Surgeons should be concerned with femoral component position on UKA not only in frontal plane but also in the sagittal plane, because flexion or extension of the femoral component may impact the PE or opposite compartment along with the surrounding ligaments around knee joint.
Collapse
Affiliation(s)
- Kwan Kyu Park
- Department of Orthopedic Surgery, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yong-Gon Koh
- Department of Orthopaedic Surgery, Joint Reconstruction Center, Yonsei Sarang Hospital, Seoul, Republic of Korea
| | - Kyoung-Mi Park
- Department of Mechanical Engineering, Yonsei University, Seoul, Republic of Korea
| | - Joon-Hee Park
- Department of Anesthesiology and Pain Medicine, Hallym University College of Medicine, Kangdong Sacred Heart Hospital, Seoul, Republic of Korea
| | - Kyoung-Tak Kang
- Department of Mechanical Engineering, Yonsei University, Seoul, Republic of Korea
| |
Collapse
|
29
|
Kang KT, Park JH, Koh YG, Shin J, Park KK. Biomechanical effects of posterior tibial slope on unicompartmental knee arthroplasty using finite element analysis. Biomed Mater Eng 2019; 30:133-144. [PMID: 30741662 DOI: 10.3233/bme-191039] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND The effects of the posterior slope of the tibial prosthesis on unicompartmental knee arthroplasty have not been fully evaluated and controversies still exist. OBJECTIVE This study evaluates the effects of the posterior slope of the tibia on contact stresses in polyethylene inserts and articular cartilage using finite element analysis. METHODS We generated a computational model followed by the development of a posterior tibial slope (PTS) from -1° to 15° cases with increments of 2° PTS models. Using a validated finite element (FE) model, we investigated the influence of the changes in PTS on the contact stress in the medial polyethylene insert and lateral cartilage. The FE model's loading condition is level walking, a normal daily activity. RESULTS The contact stress increased on the lateral articular cartilage as the PTS increased. The contact stress on the polyethylene insert differed from the contact stress on the lateral articular cartilage, and it generally increased as the PTS decreased. However, in the initial stance phase when an axial force was exerted, it increased as the PTS increased. CONCLUSIONS Our results show that an offset of ±2° from the initial anatomical tibial slope does not biomechanically affect the outcome.
Collapse
Affiliation(s)
- Kyoung-Tak Kang
- Department of Mechanical Engineering, Yonsei University, Seoul, Republic of Korea
| | - Joon-Hee Park
- Department of Anesthesiology & Pain Medicine, Kangdong Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Republic of Korea
| | - Yong-Gon Koh
- Joint Reconstruction Center, Department of Orthopaedic Surgery, Yonsei Sarang Hospital, Seoul, Republic of Korea
| | - Jaewon Shin
- Department of Orthopedic Surgery, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Kwan Kyu Park
- Department of Orthopedic Surgery, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
30
|
Koh YG, Park KM, Kang KT. The biomechanical effect of tibiofemoral conformity design for patient-specific cruciate retainging total knee arthroplasty using computational simulation. J Exp Orthop 2019; 6:23. [PMID: 31161463 PMCID: PMC6546798 DOI: 10.1186/s40634-019-0192-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 05/23/2019] [Indexed: 11/28/2022] Open
Abstract
Background Alterations to normal knee kinematics performed during conventional total knee arthroplasty (TKA) focus on the nonanatomic articular surface. Patient-specific TKA was introduced to provide better normal knee kinematics than conventional TKA. However, no study on tibiofemoral conformity has been performed after patient-specific TKA. The purpose of this study was to compare the biomechanical effect of cruciate-retaining (CR) implants after patient-specific TKA and conventional TKA under gait and deep-knee-bend conditions. Methods The examples of patient-specific TKA were categorized into conforming patient-specific TKA, medial pivot patient-specific TKA and anatomy mimetic articular surface patient-specific TKA. We investigated kinematics and quadriceps force of three patient-specific TKA and conventional TKA using validated computational model. The femoral component designs in patient specific TKA were all identical. Results The anatomy mimetic articular surface patient-specific TKA provided knee kinematics that was closer to normal than the others under the gait and deep-knee-bend conditions. However, the other two patient-specific TKA designs could not preserve the normal knee kinematics. In addition, the closest normal quadriceps force was found for the anatomic articular surface patient-specific TKA. Conclusions Our results showed that the anatomy mimetic articular surface patient-specific TKA provided close-to-normal knee mechanics. Other clinical and biomechanical studies are required to determine whether anatomy mimetic articular surface patient-specific TKA restores more normal knee mechanics and provides improved patient satisfaction.
Collapse
Affiliation(s)
- Yong-Gon Koh
- Joint Reconstruction Center, Department of Orthopaedic Surgery, Yonsei Sarang Hospital, 10 Hyoryeong-ro, Seocho-gu, Seoul, 06698, Republic of Korea
| | - Kyoung-Mi Park
- Department of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Kyoung-Tak Kang
- Department of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| |
Collapse
|
31
|
Kang KT, Koh YG, Nam JH, Jung M, Kim SJ, Kim SH. Biomechanical evaluation of the influence of posterolateral corner structures on cruciate ligaments forces during simulated gait and squatting. PLoS One 2019; 14:e0214496. [PMID: 30947292 PMCID: PMC6448852 DOI: 10.1371/journal.pone.0214496] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 03/14/2019] [Indexed: 01/12/2023] Open
Abstract
Posterolateral corner (PLC) structures of the knee joint comprise complex anatomical soft tissues that support static and dynamic functional movements of the knee. Most previous studies analyzed posterolateral stability in vitro under static loading conditions. This study aimed to evaluate the contributions of the lateral (fibular) collateral ligament (LCL), popliteofibular ligament (PFL), and popliteus tendon (PT) to cruciate ligament forces under simulated dynamic loading conditions by using selective individual resection. We combined medical imaging and motion capture of healthy subjects (four males and one female) to develop subject-specific knee models that simulated the 12 degrees of freedom of tibiofemoral and patellofemoral joint behaviors. These computational models were validated by comparing electromyographic (EMG) data with muscle activation data and were based on previous experimental studies. A rigid multi-body dynamics simulation using a lower extremity musculoskeletal model was performed to incorporate intact and selective resection of ligaments, based on a novel force-dependent kinematics method, during gait (walking) and squatting. Deficiency of the PLC structures resulted in increased loading on the posterior cruciate ligament and anterior cruciate ligament. Among PLC structures, the PT is the most influential on cruciate ligament forces under dynamic loading conditions.
Collapse
Affiliation(s)
- Kyoung-Tak Kang
- Department of Mechanical Engineering, Yonsei University, Seoul, Republic of Korea
| | - Yong-Gon Koh
- Joint Reconstruction Center, Department of Orthopaedic Surgery, Yonsei Sarang Hospital, Seoul, Republic of Korea
| | - Ji-Hoon Nam
- Department of Mechanical Engineering, Yonsei University, Seoul, Republic of Korea
| | | | - Sung-Jae Kim
- Joint Reconstruction Center, Department of Orthopaedic Surgery, Yonsei Sarang Hospital, Seoul, Republic of Korea
| | - Sung-Hwan Kim
- Department of Orthopedic Surgery, Arthroscopy and Joint Research Institute, Yonsei University College of Medicine, Gangnam Severance Hospital, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
32
|
Ardestani MM, ZhenXian C, Noori-Dokht H, Moazen M, Jin Z. Computational analysis of knee joint stability following total knee arthroplasty. J Biomech 2019; 86:17-26. [PMID: 30718067 DOI: 10.1016/j.jbiomech.2019.01.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 01/14/2019] [Accepted: 01/16/2019] [Indexed: 10/27/2022]
Abstract
The overall objective of this study was to introduce knee joint power as a potential measure to investigate knee joint stability following total knee arthroplasty (TKA). Specific aims were to investigate whether weakened knee joint stabilizers cause abnormal kinematics and how it influences the knee joint kinetic (i.e., power) in response to perturbation. Patient-specific musculoskeletal models were simulated with experimental gait data from six TKA patients (baseline models). Muscle strength and ligament force parameter were reduced by up to 30% to simulate weak knee joint stabilizers (weak models). Two different muscle recruitment criteria were tested to examine whether altered muscle recruitment pattern can mask the influence of weakened stabilizers on the knee joint kinematics and kinetics. Level-walking knee joint kinematics and kinetics were calculated though force-dependent kinematic and inverse dynamic analyses. Bode analysis was then recruited to estimate the knee joint power in response to a simulated perturbation. Weak models resulted in larger anterior-posterior (A-P) displacement and internal-external (I-E) rotation compared to baseline (I-E: 18.4 ± 8.5 vs. 11.6 ± 5.7 (deg), A-P: 9.7 ± 5.6 vs. 5.5 ± 4.1 (mm)). Changes in muscle recruitment criterion however altered the results such that A-P and I-E were not notably different from baseline models. In response to the simulated perturbation, weak models versus baseline models generated a delayed power response with unbounded magnitudes. Perturbed power behavior of the knee remained unaltered regardless of the muscle recruitment criteria. In conclusion, impairment at the knee joint stabilizers may or may not lead to excessive joint motions but it notably affects the knee joint power in response to a perturbation. Whether perturbed knee joint power is associated with the patient-reported outcome requires further investigation.
Collapse
Affiliation(s)
- Marzieh M Ardestani
- Department of Physical Medicine and Rehabilitation, School of Medicine, Indiana University, IN, USA.
| | - Chen ZhenXian
- School of Mechanical Engineering, Southwest Jiaotong University, Chengdu, China
| | - Hessam Noori-Dokht
- School of Mechanical and Energy Engineering, Purdue University, Indianapolis, IN, USA
| | - Mehran Moazen
- Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE, UK
| | - Zhongmin Jin
- School of Mechanical Engineering, Southwest Jiaotong University, Chengdu, China; School of Mechanical Engineering, Xian Jiaotong University, Xian, China; School of Mechanical Engineering, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
33
|
Roussot MA, Haddad FS. The evolution and role of patellofemoral joint arthroplasty: The road less travelled, but not forgotten. Bone Joint Res 2019; 7:636-638. [PMID: 30662710 PMCID: PMC6318750 DOI: 10.1302/2046-3758.712.bjr-2018-0303] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Affiliation(s)
- M A Roussot
- University College London Hospitals and The Princess Grace Hospital, London, UK and Department of Orthopaedic Surgery, University of Cape Town, South Africa
| | - F S Haddad
- The Bone & Joint Journal, Professor of Orthopaedic Surgery, University College London Hospitals, The Princess Grace Hospital, and The NIHR Biomedical Research Centre at UCLH, University College London Hospitals and The Princess Grace Hospital, London, UK
| |
Collapse
|
34
|
Kang KT, Kwon SK, Kwon OR, Lee JS, Koh YG. Comparison of the biomechanical effect of posterior condylar offset and kinematics between posterior cruciate-retaining and posterior-stabilized total knee arthroplasty. Knee 2019; 26:250-257. [PMID: 30577956 DOI: 10.1016/j.knee.2018.11.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 07/26/2018] [Accepted: 11/29/2018] [Indexed: 02/02/2023]
Abstract
BACKGROUND The effect of the changes in the femoral posterior condylar offset (PCO) on anterior-posterior (AP) translation and internal-external (IE) rotation in cruciate-retaining (CR) and posterior-stabilized (PS) total knee arthroplasty (TKA) remains unknown. The purpose of this study was to compare the kinematics in CR and PS TKA with respect to the difference in prosthetic design and PCO change through a computational simulation. METHODS We developed three-dimensional finite element models with the different PCOs of ±1, ±2 and ±3 mm in the posterior direction using CR and PS TKA. We performed the simulation with different PCOs under a deep knee bend condition and evaluated the kinematics for the AP and IE in CR and PS TKA. RESULTS The more tibiofemoral (TF) translation in the posterior direction was found as PCO translated in posterior direction for both CR and PS TKA compared to the neutral position. However, the change of the AP translation with respect to the PCO change in CR TKA was greater than PS TKA. The more TF external rotation was found as PCO translated in the anterior direction for both CR and PS TKA compared to the neutral position. However, unlike the TF translation, the TF rotation was not influenced by the PCO change in both CR and PS TKA. CONCLUSION The PCO magnitude was influenced by a postoperative change in the kinematics in CR TKA although a relatively smaller effect was observed in PS TKA. Hence, surgeons should be aware of the PCO change, especially for CR TKA.
Collapse
Affiliation(s)
- Kyoung-Tak Kang
- Department of Mechanical Engineering, Yonsei University, Seodaemun-gu, Seoul, Republic of Korea
| | - Sae Kwang Kwon
- Joint Reconstruction Center, Department of Orthopaedic Surgery, Yonsei Sarang Hospital, Seocho-gu, Seoul, Republic of Korea
| | - Oh-Ryong Kwon
- Joint Reconstruction Center, Department of Orthopaedic Surgery, Yonsei Sarang Hospital, Seocho-gu, Seoul, Republic of Korea
| | - Jun-Sang Lee
- Joint Reconstruction Center, Department of Orthopaedic Surgery, Yonsei Sarang Hospital, Seocho-gu, Seoul, Republic of Korea
| | - Yong-Gon Koh
- Joint Reconstruction Center, Department of Orthopaedic Surgery, Yonsei Sarang Hospital, Seocho-gu, Seoul, Republic of Korea.
| |
Collapse
|
35
|
Koh YG, Nam JH, Kang KT. Effect of geometric variations on tibiofemoral surface and post-cam design of normal knee kinematics restoration. J Exp Orthop 2018; 5:53. [PMID: 30578465 PMCID: PMC6303222 DOI: 10.1186/s40634-018-0167-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 11/29/2018] [Indexed: 11/29/2022] Open
Abstract
Background Restoration of natural knee kinematics for a designed mechanism in knee implants is required to achieve full knee function in total knee arthroplasty (TKA). In different posterior-stabilized TKAs, there are wide variations in tibiofemoral surfaces and post-cam design. However, it is not known whether these design variations preserve natural knee kinematics. The purpose of this study was to determine the most appropriate tibiofemoral surface and post-cam designs to restore natural knee kinematics of the TKA. Methods A subject-specific finite element knee modal was used to evaluate tibiofemoral surface and post-cam design. Three different posts in convex, straight, and concave geometries were considered with a fixed circular cam design in this study. In addition, this post-cam design was applied to three different surface conformities for conforming, medial pivot, and subject anatomy mimetic tibiofemoral surfaces. We evaluated the femoral rollback, internal-external rotation, and quadriceps muscle force under a deep-knee-bend condition. Results The three different tibiofemoral conformities showed that the convex post provided the most natural-knee-like femoral rollback. This was also observed in internal rotation. In surface conformity, subject anatomy mimetic tibiofemoral surfaces showed the most natural -knee-like kinematics and quadriceps force. Conclusions This study confirmed that convex post design and subject anatomy mimetic tibiofemoral surfaces provided the most natural-knee-like kinematics. This study suggested that post-cam design and tibiofemoral surface conformity should be considered in conventional and customized TKA.
Collapse
Affiliation(s)
- Yong-Gon Koh
- Joint Reconstruction Center, Department of Orthopaedic Surgery, Yonsei Sarang Hospital, 10 Hyoryeong-ro, Seocho-gu, Seoul, 06698, Republic of Korea
| | - Ji-Hoon Nam
- Department of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Kyoung-Tak Kang
- Department of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| |
Collapse
|
36
|
Koh YG, Lee JA, Chung PK, Kang KT. Computational analysis of customized cruciate retaining total knee arthroplasty restoration of native knee joint biomechanics. Artif Organs 2018; 43:504-514. [PMID: 30375662 DOI: 10.1111/aor.13382] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 10/17/2018] [Accepted: 10/25/2018] [Indexed: 01/20/2023]
Abstract
The purpose of this study was to verify if customized prosthesis better preserves the native knee joint kinematics and provides lower contact stress on the polyethylene (PE) insert owing to the wider bone preservation than that of standard off-the-shelf prosthesis in posterior cruciate-retaining type total knee arthroplasty (TKA). Validated finite element (FE) models for were developed to evaluate the knee joint kinematics and contact stress on the PE insert after TKA with customized and standard off-the-shelf (OTS) prostheses as well as in normal healthy knee through FE analysis under dynamic loading conditions. The contact stresses on the customized prosthesis decreased by 18% and 8% under gait cycle loading conditions, and 24% and 9% under deep-knee-bend loading conditions, in the medial and lateral sides of the PE insert, respectively, compared with the standard OTS prosthesis. The anterior-posterior translation and internal-external (IE) rotation in customized TKA were more similar to native knee joint behaviors compared with standard OTS TKA under gait loading conditions. The difference from normal knee kinematics was lower for femoral rollback and IE rotation in customized TKA than in standard OTS TKA in the deep-knee-bend condition. In general, customized prostheses achieve kinematics that are close to those of the native healthy knee joint and have better contact stresses than standard OTS prostheses in gait and deep-knee-bend loading conditions.
Collapse
Affiliation(s)
- Yong-Gon Koh
- Joint Reconstruction Center, Department of Orthopaedic Surgery, Yonsei Sarang Hospital, Seoul, Republic of Korea
| | - Jin-Ah Lee
- Department of Mechanical Engineering, Yonsei University, Seoul, Republic of Korea
| | - Pill Ku Chung
- Joint Reconstruction Center, Department of Orthopaedic Surgery, Yonsei Sarang Hospital, Seoul, Republic of Korea
| | - Kyoung-Tak Kang
- Department of Mechanical Engineering, Yonsei University, Seoul, Republic of Korea
| |
Collapse
|
37
|
Koh YG, Son J, Kwon OR, Kwon SK, Kang KT. Patient-specific design for articular surface conformity to preserve normal knee mechanics in posterior stabilized total knee arthroplasty. Biomed Mater Eng 2018; 29:401-414. [PMID: 30282339 DOI: 10.3233/bme-180998] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND Contemporary total knee arthroplasty (TKA) provides remarkable clinical benefits. However, the normal function of the knee is not fully restored. Recent improvements in imaging and manufacturing have utilized the development of customized design to fit the unique shape of individual patients. OBJECTIVE The purpose of the present study is to investigate the preservation of normal knee biomechanics by using specific articular surface conformity in customized posterior stabilized (PS)-TKA. METHODS This includes customized PS-TKA, PS-TKA with conforming conformity (CPS-TKA), medial pivot conformity with PS-TKA (MPS-TKA), and PS-TKA with mimetic anatomy femoral and tibial articular surface (APS-TKA). In this study, kinematics, collateral ligament force and quadriceps force were evaluated using a computational simulation under a deep knee bend condition. RESULTS A conventional TKA did not provide the normal internal tibial rotation with flexion leading to abnormal femoral rollback. The APS-TKA exhibited normal-like femoral rollback kinematics but did not exhibit normal internal tibial rotation. However, APS-TKA exhibited the most normal-like collateral ligament and quadriceps forces. CONCLUSIONS Although the APS-TKA exhibited more normal-like biomechanics, it did not restore normal knee biomechanics owing to the absence of the cruciate ligament and post-cam mechanism.
Collapse
Affiliation(s)
- Yong-Gon Koh
- Joint Reconstruction Center, Department of Orthopaedic Surgery, Yonsei Sarang Hospital, Seoul, Republic of Korea
| | - Juhyun Son
- Department of Mechanical Engineering, Yonsei University, Seoul, Republic of Korea
| | - Oh-Ryong Kwon
- Joint Reconstruction Center, Department of Orthopaedic Surgery, Yonsei Sarang Hospital, Seoul, Republic of Korea
| | - Sae Kwang Kwon
- Joint Reconstruction Center, Department of Orthopaedic Surgery, Yonsei Sarang Hospital, Seoul, Republic of Korea
| | - Kyoung-Tak Kang
- Department of Mechanical Engineering, Yonsei University, Seoul, Republic of Korea
| |
Collapse
|
38
|
Effects of posterior condylar offset and posterior tibial slope on mobile-bearing total knee arthroplasty using computational simulation. Knee 2018; 25:903-914. [PMID: 29980426 DOI: 10.1016/j.knee.2018.06.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 05/10/2018] [Accepted: 06/08/2018] [Indexed: 02/02/2023]
Abstract
BACKGROUND Postoperative changes of the femoral posterior condylar offset (PCO) and posterior tibial slope (PTS) affect the biomechanics of the knee joint after fixed-bearing total knee arthroplasty (TKA). However, the biomechanics of mobile-bearing is not well known. Therefore, the aim of this study was to investigate whether alterations to the PCO and PTS affect the biomechanics for mobile-bearing TKA. METHODS We used a computational model for a knee joint that was validated using in vivo experiment data to evaluate the effects of the PCO and PTS on the tibiofemoral (TF) joint kinematics, patellofemoral (PF) contact stress, collateral ligament force and quadriceps force, for mobile-bearing TKA. The computational model was developed using ±1-, ±2- and ±3-mm PCO models in the posterior direction and -3°, 0°, +3°, and +6° PTS models based on each of the PCO models. RESULTS The maximum PF contact stress, collateral ligament force and quadriceps force decreased as the PTS increased. In addition, the maximum PF contact stress and quadriceps force decreased, and the collateral ligament force increased as PCO translated in the posterior direction. This trend is consistent with that observed in any PCO and PTS. CONCLUSIONS Our findings show the various effects of postoperative alterations in the PCO and PTS on the biomechanical results of mobile-bearing TKA. Based on the computational simulation, we suggest that orthopaedic surgeons intraoperatively conserve the patient's own anatomical PCO and PTS in mobile-bearing TKA.
Collapse
|
39
|
Kang KT, Kwon SK, Son J, Kwon OR, Lee JS, Koh YG. The increase in posterior tibial slope provides a positive biomechanical effect in posterior-stabilized total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 2018; 26:3188-3195. [PMID: 29623377 DOI: 10.1007/s00167-018-4925-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Accepted: 03/28/2018] [Indexed: 11/28/2022]
Abstract
PURPOSE This study aims to clarify the influence of the posterior tibial slope (PTS) on knee joint biomechanics after posterior-stabilized (PS) total knee arthroplasty (TKA) using a computer simulation. METHODS A validated TKA computational model was used to evaluate and quantify the effects of an increased PTS. In order to conduct a squat simulation, models with a - 3° to 15° PTS using increments of 3° were developed. Forces on the quadriceps and collateral ligament, a tibial posterior translation, contact point on a polyethylene (PE) insert, and contact stress on the patellofemoral (PF) joint and post in a PE insert were compared. RESULTS The maximum force on the quadriceps and the PF contact stress decreased with increases in the PTS. The kinematics on the tibiofemoral (TF) joint translated in an increasingly posterior manner, and the medial and lateral contact points on a PE insert were located in posterior regions with increases in the PTS. Additionally, increases in the PTS decreased the force on the collateral ligament and increased the contact stress on the post in a PE insert. A higher force on the quadriceps is required when the PTS decreases with an equivalent flexion angle. CONCLUSIONS A surgeon should be prudent in terms of determining the PTS because an excessive increase in the PTS may lead to the progressive loosening of the TF joint due to a reduction in collateral ligament tension and failure of the post in a PE insert. Thus, we support a more individualized approach of optimal PTS determination given the findings of the study.
Collapse
Affiliation(s)
- Kyoung-Tak Kang
- Department of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Sae Kwang Kwon
- Department of Orthopaedic Surgery, Joint Reconstruction Center, Yonsei Sarang Hospital, 10 Hyoryeong-ro, Seocho-gu, Seoul, 06698, Republic of Korea
| | - Juhyun Son
- Department of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Oh-Ryong Kwon
- Department of Orthopaedic Surgery, Joint Reconstruction Center, Yonsei Sarang Hospital, 10 Hyoryeong-ro, Seocho-gu, Seoul, 06698, Republic of Korea
| | - Jun-Sang Lee
- Department of Orthopaedic Surgery, Joint Reconstruction Center, Yonsei Sarang Hospital, 10 Hyoryeong-ro, Seocho-gu, Seoul, 06698, Republic of Korea
| | - Yong-Gon Koh
- Department of Orthopaedic Surgery, Joint Reconstruction Center, Yonsei Sarang Hospital, 10 Hyoryeong-ro, Seocho-gu, Seoul, 06698, Republic of Korea.
| |
Collapse
|
40
|
Effect of Post-Cam Design for Normal Knee Joint Kinematic, Ligament, and Quadriceps Force in Patient-Specific Posterior-Stabilized Total Knee Arthroplasty by Using Finite Element Analysis. BIOMED RESEARCH INTERNATIONAL 2018; 2018:2438980. [PMID: 30327775 PMCID: PMC6169244 DOI: 10.1155/2018/2438980] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 07/22/2018] [Indexed: 11/21/2022]
Abstract
The purpose of this study is to investigate post-cam design via finite element analysis to evaluate the most normal-like knee mechanics. We developed five different three-dimensional computational models of customized posterior-stabilized (PS) total knee arthroplasty (TKA) involving identical surfaces with the exception of the post-cam geometry. They include flat-and-flat, curve-and-curve (concave), curve-and-curve (concave and convex), helical, and asymmetrical post-cam designs. We compared the kinematics, collateral ligament force, and quadriceps force in the customized PS-TKA with five different post-cam designs and conventional PS-TKA to those of a normal knee under deep-knee-bend conditions. The results indicated that femoral rollback in curve-and-curve (concave) post-cam design exhibited the most normal-like knee kinematics, although the internal rotation was the closest to that of a normal knee in the helical post-cam design. The curve-and-curve (concave) post-cam design showed a femoral rollback of 4.4 mm less than the normal knee, and the helical post-cam design showed an internal rotation of 5.6° less than the normal knee. Lateral collateral ligament and quadriceps forces in curve-and-curve (concave) post-cam design, and medial collateral ligament forces in helical post-cam design were the closest to that of a normal knee. The curve-and-curve (concave) post-cam design showed 20% greater lateral collateral ligament force than normal knee, and helical post-cam design showed medial collateral ligament force 14% greater than normal knee. The results revealed the variation in each design that provided the most normal-like biomechanical effect. The present biomechanical data are expected to provide useful information to improve post-cam design to restore normal-like knee mechanics in customized PS-TKA.
Collapse
|
41
|
Effect of Dropping Height on the Forces of Lower Extremity Joints and Muscles during Landing: A Musculoskeletal Modeling. JOURNAL OF HEALTHCARE ENGINEERING 2018; 2018:2632603. [PMID: 30079173 PMCID: PMC6051254 DOI: 10.1155/2018/2632603] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 03/18/2018] [Accepted: 05/10/2018] [Indexed: 11/24/2022]
Abstract
The objective of this study was to investigate the effect of dropping height on the forces of joints and muscles in lower extremities during landing. A total of 10 adult subjects were required to landing from three different heights (32 cm, 52 cm, and 72 cm), and the ground reaction force and kinematics of lower extremities were measured. Then, the experimental data were input into the AnyBody Modeling System, in which software the musculoskeletal system of each subject was modeled. The reverse dynamic analysis was done to calculate the joint and muscle forces for each landing trial, and the effect of dropping-landing on the results was evaluated. The computational simulation showed that, with increasing of dropping height, the vertical forces of all the hip, knee, and ankle joints, and the forces of rectus femoris, gluteus maximus, gluteus medius, vastii, biceps femoris and adductor magnus were all significantly increased. The increased dropping height also resulted in earlier activation of the iliopsoas, rectus femoris, gluteus medius, gluteus minimus, and soleus, but latter activation of the tibialis anterior. The quantitative joint and muscle forces can be used as loading conditions in finite element analysis to calculate stress and strain and energy absorption processes in various tissues of the lower limbs.
Collapse
|
42
|
Comparison of Kinematics in Cruciate Retaining and Posterior Stabilized for Fixed and Rotating Platform Mobile-Bearing Total Knee Arthroplasty with respect to Different Posterior Tibial Slope. BIOMED RESEARCH INTERNATIONAL 2018; 2018:5139074. [PMID: 29992149 PMCID: PMC6016153 DOI: 10.1155/2018/5139074] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 04/23/2018] [Accepted: 05/08/2018] [Indexed: 12/23/2022]
Abstract
Reconstructed posterior tibial slope (PTS) plays a significant role in kinematics restoration after total knee arthroplasty (TKA). However, the effect of increased and decreased PTS on prosthetic type and design has not yet been investigated. We used a finite element model, validated using in vitro data, to evaluate the effect of PTS on knee kinematics in cruciate-retaining (CR) and posterior-stabilized (PS) fixed TKA and rotating platform mobile-bearing TKA. Anterior-posterior tibial translation and internal-external tibial rotation were investigated for PTS ranging from -3° to 15°, with increments of 1°, for three different designs of TKA. Tibial posterior translation and external rotation increased as the PTS increased in both CR and PS TKAs. In addition, there was no remarkable difference in external rotation between CR and PS TKAs. However, for the mobile-bearing TKA, PTS had less effect on the kinematics. Based on our computational simulation, PTS is the critical factor that influences kinematics in TKA, especially in the CR TKA. Therefore, the surgeon should be careful in choosing the PTS in CR TKAs.
Collapse
|
43
|
Affiliation(s)
- N D Clement
- Department of Orthopaedics, Freeman Hospital, High Heaton, Newcastle-upon-Tyne, UK
| | - D J Deehan
- Department of Orthopaedics, Freeman Hospital, High Heaton, Newcastle-upon-Tyne, UK
| |
Collapse
|
44
|
Hu J, Chen Z, Xin H, Zhang Q, Jin Z. Musculoskeletal multibody dynamics simulation of the contact mechanics and kinematics of a natural knee joint during a walking cycle. Proc Inst Mech Eng H 2018; 232:508-519. [DOI: 10.1177/0954411918767695] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Detailed knowledge of the in vivo loading and kinematics in the knee joint is essential to understand its normal functions and the aetiology of osteoarthritis. Computer models provide a viable non-invasive solution for estimating joint loading and kinematics during different physiological activities. However, the joint loading and kinematics of the tibiofemoral and patellofemoral joints during a gait cycle were not typically investigated concurrently in previous computational simulations. In this study, a natural knee architecture was incorporated into a lower extremity musculoskeletal multibody dynamics model based on a force-dependent kinematics approach to investigate the contact mechanics and kinematics of a natural knee joint during a walking cycle. Specifically, the contact forces between the femoral/tibial articular cartilages and menisci and between the femoral and tibial/patellar articular cartilages were quantified. The contact forces and kinematics of the tibiofemoral and patellofemoral joints and the muscle activations and ligament forces were predicted simultaneously with a reasonable level of accuracy. The developed musculoskeletal multibody dynamics model with a natural knee architecture can serve as a potential platform for assisting clinical decision-making and postoperative rehabilitation planning.
Collapse
Affiliation(s)
- Jiayu Hu
- State Key Laboratory for Manufacturing System Engineering, School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an, China
| | - Zhenxian Chen
- Key Laboratory of Road Construction Technology and Equipment (Ministry of Education), School of Mechanical Engineering, Chang’an University, Xi’an, China
| | - Hua Xin
- State Key Laboratory for Manufacturing System Engineering, School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an, China
| | - Qida Zhang
- State Key Laboratory for Manufacturing System Engineering, School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an, China
| | - Zhongmin Jin
- State Key Laboratory for Manufacturing System Engineering, School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an, China
- Tribology Research Institute, School of Mechanical Engineering, Southwest Jiaotong University, Chengdu, China
- Institute of Medical and Biological Engineering, School of Mechanical Engineering, University of Leeds, Leeds, UK
| |
Collapse
|
45
|
Femoral component alignment in unicompartmental knee arthroplasty leads to biomechanical change in contact stress and collateral ligament force in knee joint. Arch Orthop Trauma Surg 2018; 138:563-572. [PMID: 29356941 DOI: 10.1007/s00402-018-2884-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Indexed: 11/27/2022]
Abstract
BACKGROUND In recent years, the popularity of unicompartmental knee arthroplasty (UKA) has increased. However, the effect of femoral component positioning in UKA continues to invite a considerable debate. The purpose of this study involved assessing the biomechanical effect of mal-alignment in femoral components in UKA under dynamic loading conditions using a computational simulation. METHODS A validated finite element model was used to evaluate contact stresses in polyethylene (PE) inserts and lateral compartment and force on collateral ligament in the femoral component ranging from 9° of varus to 9° of valgus. RESULTS The results indicated that contact stress on the PE insert increased with increases in the valgus femoral alignment when compared to the neutral position while contact stress on the lateral compartment increased with increases in the varus femoral alignment. The forces on medial and lateral collateral ligaments increased with increases in valgus femoral alignments when compared to the neutral position. However, there was no change in popliteofibular and anterior lateral ligaments with respect to the malpositioning of femoral component. CONCLUSION The results of the study confirm the importance of conservation in post-operative accuracy of the femoral component since the valgus and varus femoral malalignments affect the collateral ligament and lateral compartment, respectively. Our results suggest that surgeons should avoid valgus malalignment in the femoral component and especially malalignment exceeding 9°, which may induce higher medial collateral ligament forces.
Collapse
|
46
|
Kang KT, Kwon OR, Son J, Suh DS, Kwon SK, Koh YG. Effect of joint line preservation on mobile-type bearing unicompartmental knee arthroplasty: finite element analysis. AUSTRALASIAN PHYSICAL & ENGINEERING SCIENCES IN MEDICINE 2018; 41:201-208. [PMID: 29492834 DOI: 10.1007/s13246-018-0630-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 01/30/2018] [Indexed: 10/17/2022]
Abstract
In this study, we performed a virtual mobile-bearing unicompartmental knee arthroplasty (UKA) on the contact pressure in the tibial insert and articular cartilage by using finite element (FE) analysis to understand clinical observations and elaborate on the potential risks associated with a joint line preservation such as wear on tibial insert and osteoarthritis on other compartment. Neutral position of the knee joint was defined in 0 mm joint line, and contact pressure between tibial insert and articular cartilage varies with respect to changes of joint line. Therefore, evaluation of contact pressure may provide the degree of joint line preservation. The FE model for the joint line was developed using a perpendicular projection line from the medial tibial plateau to the anatomical axis. Seven FE models for joint lines in cases corresponding to ± 6, ± 4, ± 2, and 0 mm were modeled and analyzed in normal level walking conditions. The maximum contact pressure on the superior and inferior surfaces of the polyethylene insert increased when the joint line became positive while the maximum contact pressure on the articular cartilage increased when the joint line became negative. The increase in the maximum contact pressure in the positive joint line exceeded that in the negative joint line, and this lead to an unsymmetrical maximum contact pressure distribution with respect to the joint line from a 0 reference. The joint line elevation was sensitive to increases or decreases in maximum contact pressures in the mobile-bearing UKA. The findings of the study determined that postoperative joint line preservation is important in mobile-type bearing UKA.
Collapse
Affiliation(s)
- Kyoung-Tak Kang
- Department of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Oh-Ryong Kwon
- Joint Reconstruction Center, Department of Orthopaedic Surgery, Yonsei Sarang Hospital, 10 Hyoryeong-ro, Seocho-gu, Seoul, 06698, Republic of Korea
| | - Juhyun Son
- Department of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Dong-Suk Suh
- Joint Reconstruction Center, Department of Orthopaedic Surgery, Yonsei Sarang Hospital, 10 Hyoryeong-ro, Seocho-gu, Seoul, 06698, Republic of Korea
| | - Sae Kwang Kwon
- Joint Reconstruction Center, Department of Orthopaedic Surgery, Yonsei Sarang Hospital, 10 Hyoryeong-ro, Seocho-gu, Seoul, 06698, Republic of Korea
| | - Yong-Gon Koh
- Joint Reconstruction Center, Department of Orthopaedic Surgery, Yonsei Sarang Hospital, 10 Hyoryeong-ro, Seocho-gu, Seoul, 06698, Republic of Korea.
| |
Collapse
|
47
|
Kang KT, Koh YG, Son J, Jung M, Oh S, Kim SJ, Kim SH. Biomechanical influence of deficient posterolateral corner structures on knee joint kinematics: A computational study. J Orthop Res 2018; 36:2202-2209. [PMID: 29436742 DOI: 10.1002/jor.23871] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 01/24/2018] [Indexed: 02/04/2023]
Abstract
The posterolateral corner (PLC) structures including the popliteofibular ligament (PFL), popliteus tendon (PT) and lateral collateral ligament (LCL) are important soft tissues for posterior translational, external rotational, and varus angulation knee joint instabilities. The purpose of this study was to determine the effects of deficient PLC structures on the kinematics of the knee joint under gait and squat loading conditions. We developed subject-specific computational models with full 12-degree-of-freedom tibiofemoral and patellofemoral joints for four male subjects and one female subject. The subject-specific knee joint models were validated with computationally predicted muscle activation, electromyography data, and experimental data from previous study. According to our results, deficiency of the PFL did not significantly influence knee joint kinematics compared to an intact model under gait loading conditions. Compared with an intact model under gait and squat loading conditions, deficiency of the PT led to significant increases in external rotation and posterior translation, while LCL deficiency increased varus angulation. Deficiency of all PLC structures led to the greatest increases in external rotation, varus angulation, and posterior translation. These results suggest that the PT is an important structure for external rotation and posterior translation, while the LCL is important for varus angulation under dynamic loading conditions. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 9999:1-8, 2018.
Collapse
Affiliation(s)
- Kyoung-Tak Kang
- Department of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Yong-Gon Koh
- Department of Orthopaedic Surgery, Joint Reconstruction Center, Yonsei Sarang Hospital, 10 Hyoryeong-ro, Seocho-gu, Seoul, 06698, Republic of Korea
| | - Juhyun Son
- Department of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Moonki Jung
- AnyBody Technology A/S, 10 Niels Jernes Vej, Aalborg, 9220, Denmark
| | - Sangyun Oh
- Department of Orthopedic Surgery, Gangnam Severance Hospital, Arthroscopy and Joint Research Institute, Yonsei University College of Medicine, 211 Eonju-ro, Gangnam-gu, Seoul, 06273, Republic of Korea
| | - Sung-Jae Kim
- Department of Orthopedic Surgery, Gangnam Severance Hospital, Arthroscopy and Joint Research Institute, Yonsei University College of Medicine, 211 Eonju-ro, Gangnam-gu, Seoul, 06273, Republic of Korea
| | - Sung-Hwan Kim
- Department of Orthopedic Surgery, Gangnam Severance Hospital, Arthroscopy and Joint Research Institute, Yonsei University College of Medicine, 211 Eonju-ro, Gangnam-gu, Seoul, 06273, Republic of Korea
| |
Collapse
|
48
|
Orozco GA, Tanska P, Mononen ME, Halonen KS, Korhonen RK. The effect of constitutive representations and structural constituents of ligaments on knee joint mechanics. Sci Rep 2018; 8:2323. [PMID: 29396466 PMCID: PMC5797142 DOI: 10.1038/s41598-018-20739-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 01/23/2018] [Indexed: 12/26/2022] Open
Abstract
Ligaments provide stability to the human knee joint and play an essential role in restraining motion during daily activities. Compression-tension nonlinearity is a well-known characteristic of ligaments. Moreover, simpler material representations without this feature might give reasonable results because ligaments are primarily in tension during loading. However, the biomechanical role of different constitutive representations and their fibril-reinforced poroelastic properties is unknown. A numerical knee model which considers geometric and material nonlinearities of meniscus and cartilages was applied. Five different constitutive models for the ligaments (spring, elastic, hyperelastic, porohyperelastic, and fibril-reinforced porohyperelastic (FRPHE)) were implemented. Knee joint forces for the models with elastic, hyperelastic and porohyperelastic properties showed similar behavior throughout the stance, while the model with FRPHE properties exhibited lower joint forces during the last 50% of the stance phase. The model with ligaments as springs produced the lowest joint forces at this same stance phase. The results also showed that the fibril network contributed substantially to the knee joint forces, while the nonfibrillar matrix and fluid had small effects. Our results indicate that simpler material models of ligaments with similar properties in compression and tension can be used when the loading is directed primarily along the ligament axis in tension.
Collapse
Affiliation(s)
- Gustavo A Orozco
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland.
| | - Petri Tanska
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Mika E Mononen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Kimmo S Halonen
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Rami K Korhonen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
49
|
Kang KT, Koh YG, Son J, Kwon OR, Lee JS, Kwon SK. Influence of Increased Posterior Tibial Slope in Total Knee Arthroplasty on Knee Joint Biomechanics: A Computational Simulation Study. J Arthroplasty 2018; 33:572-579. [PMID: 29017801 DOI: 10.1016/j.arth.2017.09.025] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 08/28/2017] [Accepted: 09/14/2017] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND The reconstructed posterior tibial slope (PTS) plays a significant role in restoring knee kinematics in cruciate-retaining-total knee arthroplasty (TKA). A few studies have reported the effect of the PTS on biomechanics. METHODS This study investigates the effect of the PTS on tibiofemoral (TF) kinematics, patellofemoral (PF) contact stress, and forces at the quadriceps, posterior cruciate ligament (PCL) and collateral ligament after cruciate-retaining-TKA using computer simulations. The simulation for the validated TKA finite element model was performed under deep knee bend condition. All analyses were repeated from -3° to 15° PTS in increments of 3°. RESULTS The kinematics on the TF joint translated increasingly posteriorly when the PTS increased. Medial and lateral contact points translated in posterior direction in extension and flexion as PTS increased. The maximum contact stress on the PF joint and quadriceps, and collateral ligament force decreased when the PTS increased. An implantation of the tibial plate with increased PTS reduced the PCL load. Physiologic insert movement led to an increasingly posterior position of the femur and reduced quadriceps force especially for knee flexion angles above high flexion (120°) when compared to TKA with a decreased slope of the tibial base plate. CONCLUSION An increase in the PTS increased medial and lateral movements without paradoxical motion. However, an excessive PTS indicated progressive loosening of the TF joint gap due to a reduction in collateral ligament tension during flexion.
Collapse
Affiliation(s)
- Kyoung-Tak Kang
- Department of Mechanical Engineering, Yonsei University, Seoul, Republic of Korea
| | - Yong-Gon Koh
- Joint Reconstruction Center, Department of Orthopaedic Surgery, Yonsei Sarang Hospital, Seoul, Republic of Korea
| | - Juhyun Son
- Department of Mechanical Engineering, Yonsei University, Seoul, Republic of Korea
| | - Oh-Ryong Kwon
- Joint Reconstruction Center, Department of Orthopaedic Surgery, Yonsei Sarang Hospital, Seoul, Republic of Korea
| | - Jun-Sang Lee
- Joint Reconstruction Center, Department of Orthopaedic Surgery, Yonsei Sarang Hospital, Seoul, Republic of Korea
| | - Sae-Kwang Kwon
- Joint Reconstruction Center, Department of Orthopaedic Surgery, Yonsei Sarang Hospital, Seoul, Republic of Korea
| |
Collapse
|
50
|
Kang KT, Son J, Suh DS, Kwon SK, Kwon OR, Koh YG. Patient-specific medial unicompartmental knee arthroplasty has a greater protective effect on articular cartilage in the lateral compartment: A Finite Element Analysis. Bone Joint Res 2018; 7:20-27. [PMID: 29305427 PMCID: PMC5805830 DOI: 10.1302/2046-3758.71.bjr-2017-0115.r2] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVES Patient-specific (PS) implantation surgical technology has been introduced in recent years and a gradual increase in the associated number of surgical cases has been observed. PS technology uses a patient's own geometry in designing a medical device to provide minimal bone resection with improvement in the prosthetic bone coverage. However, whether PS unicompartmental knee arthroplasty (UKA) provides a better biomechanical effect than standard off-the-shelf prostheses for UKA has not yet been determined, and still remains controversial in both biomechanical and clinical fields. Therefore, the aim of this study was to compare the biomechanical effect between PS and standard off-the-shelf prostheses for UKA. METHODS The contact stresses on the polyethylene (PE) insert, articular cartilage and lateral meniscus were evaluated in PS and standard off-the-shelf prostheses for UKA using a validated finite element model. Gait cycle loading was applied to evaluate the biomechanical effect in the PS and standard UKAs. RESULTS The contact stresses on the PE insert were similar for both the PS and standard UKAs. Compared with the standard UKA, the PS UKA did not show any biomechanical effect on the medial PE insert. However, the contact stresses on the articular cartilage and the meniscus in the lateral compartment following the PS UKA exhibited closer values to the healthy knee joint compared with the standard UKA. CONCLUSION The PS UKA provided mechanics closer to those of the normal knee joint. The decreased contact stress on the opposite compartment may reduce the overall risk of progressive osteoarthritis.Cite this article: K-T. Kang, J. Son, D-S. Suh, S. K. Kwon, O-R. Kwon, Y-G. Koh. Patient-specific medial unicompartmental knee arthroplasty has a greater protective effect on articular cartilage in the lateral compartment: A Finite Element Analysis. Bone Joint Res 2018;7:20-27. DOI: 10.1302/2046-3758.71.BJR-2017-0115.R2.
Collapse
Affiliation(s)
- K-T. Kang
- Department of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, South Korea
| | - J. Son
- Department of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, South Korea
| | - D-S. Suh
- Department of Orthopaedic Surgery, Joint Reconstruction Center, Yonsei Sarang Hospital, 10 Hyoryeong-ro, Seocho-gu, Seoul 06698, South Korea
| | - S. K. Kwon
- Department of Orthopaedic Surgery, Joint Reconstruction Center, Yonsei Sarang Hospital, 10 Hyoryeong-ro, Seocho-gu, Seoul 06698, South Korea
| | - O-R. Kwon
- Department of Orthopaedic Surgery, Joint Reconstruction Center, Yonsei Sarang Hospital, 10 Hyoryeong-ro, Seocho-gu, Seoul 06698, South Korea
| | - Y-G. Koh
- Department of Orthopaedic Surgery, Joint Reconstruction Center, Yonsei Sarang Hospital, 10 Hyoryeong-ro, Seocho-gu, Seoul 06698, South Korea
| |
Collapse
|