1
|
Zhang J, Zhang W, Yue W, Qin W, Zhao Y, Xu G. Research Progress of Bone Grafting: A Comprehensive Review. Int J Nanomedicine 2025; 20:4729-4757. [PMID: 40255675 PMCID: PMC12009056 DOI: 10.2147/ijn.s510524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 04/08/2025] [Indexed: 04/22/2025] Open
Abstract
Bone tissue, the second most transplanted tissue after blood, is utilized in over 2.2 million bone grafts annually to address various bone-related conditions including fractures, tumors, bone infections, scoliosis, congenital defects, osteoporosis, osteoarthritis, and osteogenesis imperfecta. According to incomplete statistics, $4.3 billion was spent on bone graft materials in 2015 alone, with projections suggesting this figure may reach $66 billion by 2026. The limited availability of autogenous bone graft considered the gold standard due to their three critical biological properties: osteoconduction, osteoinduction, and osteogenesis-alongside the increasing global aging population, may be contributing to this rising expenditure. Furthermore, advancements in biomaterials and engineering technologies have created opportunities for the exploration of new bone graft substitutes. In this review, we will examine the fundamental structure of natural bone and the characteristics of ideal bone graft, highlighting common bone graft materials currently available, such as true bone ceramics, decalcified bone matrix, freeze-dried bone and demineralized freeze-dried bone, bioactive glasses, bone marrow aspirate concentrate, polymer nanocomposites, which have different characteristics in osteogenic, osteoconductivity, osteoinductivity, biocompatibility, mechanical properties, and resorption. How to utilize its advantages to maximize the osteogenic effect will be the focus of this review, and some of the current challenges in the field of bone grafting will be identified, outlining potential directions for future development. In conclusion, the choice of bone graft is critical to bone repair and regeneration, and a comprehensive understanding of the advantages and disadvantages of bone graft materials can improve the effectiveness of related surgical interventions.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Orthopaedics, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, People’s Republic of China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopaedic Diseases, Dalian, Liaoning Province, 116011, People’s Republic of China
| | - Wanhao Zhang
- Department of Orthopaedics, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, People’s Republic of China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopaedic Diseases, Dalian, Liaoning Province, 116011, People’s Republic of China
| | - Wenjie Yue
- Department of Orthopaedics, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, People’s Republic of China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopaedic Diseases, Dalian, Liaoning Province, 116011, People’s Republic of China
| | - Wenhe Qin
- Department of Orthopaedics, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, People’s Republic of China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopaedic Diseases, Dalian, Liaoning Province, 116011, People’s Republic of China
| | - Yantao Zhao
- Senior Department of Orthopedics, the Fourth Medical Center of PLA General Hospital, Beijing, 100048, People’s Republic of China
- Beijing Engineering Research Center of Orthopaedic Implants, Beijing, 100048, People’s Republic of China
| | - Gang Xu
- Department of Orthopaedics, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, People’s Republic of China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopaedic Diseases, Dalian, Liaoning Province, 116011, People’s Republic of China
| |
Collapse
|
2
|
Li Z, Ren K, Chen J, Zhuang Y, Dong S, Wang J, Liu H, Ding J. Bioactive hydrogel formulations for regeneration of pathological bone defects. J Control Release 2025; 380:686-714. [PMID: 39880040 DOI: 10.1016/j.jconrel.2025.01.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 01/18/2025] [Accepted: 01/21/2025] [Indexed: 01/31/2025]
Abstract
Bone defects caused by osteoporosis, infection, diabetes, post-tumor resection, and nonunion often cause severe pain and markedly increase morbidity and mortality, which remain a significant challenge for orthopedic surgeons. The precise local treatments for these pathological complications are essential to avoid poor or failed bone repair. Hydrogel formulations serve as injectable innovative platforms that overcome microenvironmental obstacles and as delivery systems for controlled release of various bioactive substances to bone defects in a targeted manner. Additionally, hydrogel formulations can be tailored for specific mechanical strengths and degradation profiles by adjusting their physical and chemical properties, which are crucial for prolonged drug retention and effective bone repair. This review summarizes recent advances in bioactive hydrogel formulations as three-dimensional scaffolds that support cell proliferation and differentiation. It also highlights their role as smart drug-delivery systems with capable of continuously releasing antibacterial agents, anti-inflammatory drugs, chemotherapeutic agents, and osteogenesis-related factors to enhance bone regeneration in pathological areas. Furthermore, the limitations of hydrogel formulations in pathological bone repair are discussed, and future development directions are proposed, which is expected to pave the way for the repair of pathological bone defects.
Collapse
Affiliation(s)
- Zuhao Li
- Orthopaedic Medical Center, The Second Hospital of Jilin University, 4026 Yatai Street, Changchun 130041, China
| | - Kaixuan Ren
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China; Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Jiajia Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China; The First Outpatient Department, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, 6822 Jinhu Road, Changchun 130021, China
| | - Yaling Zhuang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
| | - Shujun Dong
- The First Outpatient Department, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, 6822 Jinhu Road, Changchun 130021, China
| | - Jincheng Wang
- Orthopaedic Medical Center, The Second Hospital of Jilin University, 4026 Yatai Street, Changchun 130041, China
| | - He Liu
- Orthopaedic Medical Center, The Second Hospital of Jilin University, 4026 Yatai Street, Changchun 130041, China.
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
| |
Collapse
|
3
|
Yin Q, Chen X, Du S, Wei X, Wu Y, Bu F. Bone marrow fluid enhances the osteogenic activity of induced membrane leading to spontaneous osteogenesis: experimental validation and application in tibiofibular fusion for support reconstruction of segmental tibial defects. J Transl Med 2025; 23:239. [PMID: 40016829 PMCID: PMC11869740 DOI: 10.1186/s12967-024-05840-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 10/31/2024] [Indexed: 03/01/2025] Open
Abstract
BACKGROUND Managing large bone defects remains a significant clinical problem. We enhanced the osteogenic activity of the induced membrane (IM) by incorporating bone marrow fluid, leading to spontaneous osteogenesis (SO). We aimed to explore the application of this method in tibiofibular fusion (TFF) for reconstructing segmental tibial defects. METHODS Forty-two rats with femoral defects were divided into seven groups (n = 6). Defects in groups A1-3 and B1-3 were filled with polymethylmethacrylate spacers while Group B4 was the control. Kirschner wires were used in Groups A1 and B1, plating was used in Groups A3 and B3-4, while the medullary canal was sealed in Groups A2 and B2. In Group A, osteogenic activity was measured using immunohistochemistry, W-B, and qRT-PCR. In Group B, the osteogenic results were measured using X-ray and gross examinations. Ten patients with 4-10 cm segmental defects of the middle and distal tibia underwent reconstruction using the IM technique, and IM and bone marrow fluid-induced SO for TFF, whose effects were assessed. RESULTS At five weeks, Group A1 showed higher levels of BMSCs and expression of BMP-2 and TGF-β1 than Groups A2 and A3 (p < 0.05). After 12 weeks, Group B1 had more new bone at the bone end than Group B3 (p = 0.009) whereas Groups B2 and B4 did not. All tibial defects and TFF healed. The TFF site and posterior tibia healed faster than the other sides and showed quicker clinical healing (p < 0.05). All patients could fully bear weight before tibial clinical healing, with an excellent-to-good functional rate of 80% (Paley's criterion) at the 13 - to 36-month follow-up. CONCLUSION Bone marrow fluid enhances the osteogenic activity of IMs leading to SO. TFF by SO progresses faster than tibial clinical healing, making the IM technique an effective stabilizer for faster and better functional recovery after reconstruction of segmental defects of the middle and distal tibia.
Collapse
Affiliation(s)
- Qudong Yin
- Department of Orthopaedics, Wuxi Ninth People's Hospital Affiliated to Soochow University, No. 999 Liangxi Road, Wuxi, Jiangsu 214062, China
| | - Xueming Chen
- Department of Orthopaedics, Wuxi Ninth People's Hospital Affiliated to Soochow University, No. 999 Liangxi Road, Wuxi, Jiangsu 214062, China
| | - Shihao Du
- Department of Orthopaedics, Wuxi Ninth People's Hospital Affiliated to Soochow University, No. 999 Liangxi Road, Wuxi, Jiangsu 214062, China
| | - Xuming Wei
- Department of Orthopaedics, Wuxi Xinwu District Xinrui Hospital, Wuxi, 214060, China
| | - Yongwei Wu
- Department of Orthopaedics, Wuxi Ninth People's Hospital Affiliated to Soochow University, No. 999 Liangxi Road, Wuxi, Jiangsu 214062, China
| | - Fanyu Bu
- Department of Orthopaedics, Wuxi Ninth People's Hospital Affiliated to Soochow University, No. 999 Liangxi Road, Wuxi, Jiangsu 214062, China.
| |
Collapse
|
4
|
Lana JF, Purita J, Jeyaraman M, de Souza BF, Rodrigues BL, Huber SC, Caliari C, Santos GS, da Fonseca LF, Dallo I, Navani A, De Andrade MAP, Everts PA. Innovative Approaches in Knee Osteoarthritis Treatment: A Comprehensive Review of Bone Marrow-Derived Products. Biomedicines 2024; 12:2812. [PMID: 39767717 PMCID: PMC11672900 DOI: 10.3390/biomedicines12122812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/05/2024] [Accepted: 11/09/2024] [Indexed: 01/06/2025] Open
Abstract
Knee osteoarthritis (OA) is a chronic articular disease characterized by the progressive degeneration of cartilage and bone tissue, leading to the appearance of subchondral cysts, osteophyte formation, and synovial inflammation. Conventional treatments consist of non-steroidal anti-inflammatory drugs (NSAIDs), analgesics, and glucocorticoids. However, the prolonged use of these drugs causes adverse effects. NSAIDs, for instance, are known to be nephrotoxic, increasing the damage to articular cartilage. New therapies capable of accelerating the process of tissue regeneration and repair are being discussed, such as the use of orthobiologics that are naturally found in the body and obtained through minimally invasive collection and/or laboratory manipulations. Bone marrow aspirate (BMA) and bone marrow aspirate concentrate (BMAC) are both rich in hematopoietic stem cells, mesenchymal stem cells (MSCs), and growth factors (GFs) that can be used in the healing process due to their anabolic and anti-inflammatory effects. The aim of this literature review is to assess the efficacy of BMA and BMAC in the treatment of knee OA based on the favorable results that researchers have obtained with the use of both orthobiologics envisaging an accelerated healing process and the prevention of OA progression.
Collapse
Affiliation(s)
- José Fábio Lana
- Medical School, Max Planck University Center (UniMAX), Indaiatuba 13343-060, SP, Brazil; (J.F.L.); (J.P.); (I.D.); (A.N.); (P.A.E.)
- Department of Orthopedics, Brazilian Institute of Regenerative Medicine (BIRM), Indaiatuba 13334-170, SP, Brazil;
- Regenerative Medicine, Orthoregen International Course, Indaiatuba 13334-170, SP, Brazil; (M.J.); (B.L.R.); (S.C.H.); (L.F.d.F.)
- Medical School, Jaguariúna University Center (UniFAJ), Jaguariúna13911-094, SP, Brazil
- Clinical Research, Anna Vitória Lana Institute (IAVL), Indaiatuba 13334-170, SP, Brazil
| | - Joseph Purita
- Medical School, Max Planck University Center (UniMAX), Indaiatuba 13343-060, SP, Brazil; (J.F.L.); (J.P.); (I.D.); (A.N.); (P.A.E.)
- Regenerative Medicine, Orthoregen International Course, Indaiatuba 13334-170, SP, Brazil; (M.J.); (B.L.R.); (S.C.H.); (L.F.d.F.)
| | - Madhan Jeyaraman
- Regenerative Medicine, Orthoregen International Course, Indaiatuba 13334-170, SP, Brazil; (M.J.); (B.L.R.); (S.C.H.); (L.F.d.F.)
- Department of Orthopedics, ACS Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai 600077, Tamil Nadu, India
| | - Bianca Freitas de Souza
- Department of Orthopedics, Brazilian Institute of Regenerative Medicine (BIRM), Indaiatuba 13334-170, SP, Brazil;
| | - Bruno Lima Rodrigues
- Regenerative Medicine, Orthoregen International Course, Indaiatuba 13334-170, SP, Brazil; (M.J.); (B.L.R.); (S.C.H.); (L.F.d.F.)
| | - Stephany Cares Huber
- Regenerative Medicine, Orthoregen International Course, Indaiatuba 13334-170, SP, Brazil; (M.J.); (B.L.R.); (S.C.H.); (L.F.d.F.)
| | - Carolina Caliari
- Cell Therapy, In Situ Terapia Celular, Ribeirão Preto 14056-680, SP, Brazil;
| | - Gabriel Silva Santos
- Department of Orthopedics, Brazilian Institute of Regenerative Medicine (BIRM), Indaiatuba 13334-170, SP, Brazil;
- Regenerative Medicine, Orthoregen International Course, Indaiatuba 13334-170, SP, Brazil; (M.J.); (B.L.R.); (S.C.H.); (L.F.d.F.)
| | - Lucas Furtado da Fonseca
- Regenerative Medicine, Orthoregen International Course, Indaiatuba 13334-170, SP, Brazil; (M.J.); (B.L.R.); (S.C.H.); (L.F.d.F.)
| | - Ignacio Dallo
- Medical School, Max Planck University Center (UniMAX), Indaiatuba 13343-060, SP, Brazil; (J.F.L.); (J.P.); (I.D.); (A.N.); (P.A.E.)
- Regenerative Medicine, Orthoregen International Course, Indaiatuba 13334-170, SP, Brazil; (M.J.); (B.L.R.); (S.C.H.); (L.F.d.F.)
| | - Annu Navani
- Medical School, Max Planck University Center (UniMAX), Indaiatuba 13343-060, SP, Brazil; (J.F.L.); (J.P.); (I.D.); (A.N.); (P.A.E.)
- Regenerative Medicine, Orthoregen International Course, Indaiatuba 13334-170, SP, Brazil; (M.J.); (B.L.R.); (S.C.H.); (L.F.d.F.)
- Comprehensive Spine & Sports Center, Campbell, CA 95008, USA
| | | | - Peter Albert Everts
- Medical School, Max Planck University Center (UniMAX), Indaiatuba 13343-060, SP, Brazil; (J.F.L.); (J.P.); (I.D.); (A.N.); (P.A.E.)
- Regenerative Medicine, Orthoregen International Course, Indaiatuba 13334-170, SP, Brazil; (M.J.); (B.L.R.); (S.C.H.); (L.F.d.F.)
| |
Collapse
|
5
|
Wu N, Li J, Li X, Wang R, Zhang L, Liu Z, Jiao T. 3D printed biopolymer/black phosphorus nanoscaffolds for bone implants: A review. Int J Biol Macromol 2024; 279:135227. [PMID: 39218178 DOI: 10.1016/j.ijbiomac.2024.135227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/20/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
Bone implantation is one of the recognized and effective means of treating bone defects, but osteoporosis and bone tumor-related bone abnormalities have a series of problems such as susceptibility to infection, difficulty in healing, and poor therapeutic effect, which poses a great challenge to clinical medicine. Three-dimensional things may be printed using 3D printing. Researchers can feed materials through the printer layer by layer to create the desired shape for a 3D structure. It is widely employed in the healing of bone defects, and it is an improved form of additive manufacturing technology with prospective future applications. This review's objective is to provide an overview of the findings reports pertaining to 3D printing biopolymers in recent years, provide an overview of biopolymer materials and their composites with black phosphorus for 3D printing bone implants, and the characterization methods of composite materials are also summarized. In addition, summarizes 3D printing methods based on ink printing and laser printing, pointing out their special features and advantages, and provide a combination strategy of photothermal therapy and bone regeneration materials for black phosphorus-based materials. Finally, the associations between bone implant materials and immune cells, the bio-environment, as well as the 3D printing bone implants prospects are outlined.
Collapse
Affiliation(s)
- Nannan Wu
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nanobiotechnology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao 066004, China
| | - Jinghong Li
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nanobiotechnology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao 066004, China.
| | - Xinyu Li
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nanobiotechnology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao 066004, China
| | - Ran Wang
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nanobiotechnology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao 066004, China
| | - Lexin Zhang
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nanobiotechnology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao 066004, China
| | - Zhiwei Liu
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nanobiotechnology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao 066004, China
| | - Tifeng Jiao
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nanobiotechnology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao 066004, China.
| |
Collapse
|
6
|
Kalbali N, Hashemi-Najafabadi S, Bagheri F. Improving pore size of electrospun gelatin scaffolds containing graphene oxide using PEG as a sacrificial agent for bone tissue engineering. INT J POLYM MATER PO 2024; 73:1068-1077. [DOI: 10.1080/00914037.2023.2243370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 07/28/2023] [Indexed: 01/06/2025]
Affiliation(s)
- Najmeh Kalbali
- Biomedical Engineering Department, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | - Sameereh Hashemi-Najafabadi
- Biomedical Engineering Department, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Bagheri
- Biotechnology Department, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
7
|
Ren Y, Zhang C, Liu Y, Kong W, Yang X, Niu H, Qiang L, Yang H, Yang F, Wang C, Wang J. Advances in 3D Printing of Highly Bioadaptive Bone Tissue Engineering Scaffolds. ACS Biomater Sci Eng 2024; 10:255-270. [PMID: 38118130 DOI: 10.1021/acsbiomaterials.3c01129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
The number of patients with bone defects caused by trauma, bone tumors, and osteoporosis has increased considerably. The repair of irregular, recurring, and large bone defects poses a great challenge to clinicians. Bone tissue engineering is emerging as an appropriate strategy to replace autologous bone grafting in the repair of critically sized bone defects. However, the suitability of bone tissue engineering scaffolds in terms of structure, mechanics, degradation, and the microenvironment is inadequate. Three-dimensional (3D) printing is an advanced additive-manufacturing technology widely used for bone repair. 3D printing constructs personalized structurally adapted scaffolds based on 3D models reconstructed from CT images. The contradiction between the mechanics and degradation is resolved by altering the stacking structure. The local microenvironment of the implant is improved by designing an internal pore structure and a spatiotemporal factor release system. Therefore, there has been a boom in the 3D printing of personalized bone repair scaffolds. In this review, successful research on the preparation of highly bioadaptive bone tissue engineering scaffolds using 3D printing is presented. The mechanisms of structural, mechanical, degradation, and microenvironmental adaptations of bone prostheses and their interactions were elucidated to provide a feasible strategy for constructing highly bioadaptive bone tissue engineering scaffolds.
Collapse
Affiliation(s)
- Ya Ren
- School of Rehabilitation Medicine, Weifang Medical University, Shandong 261041, China
- Southwest JiaoTong University College of Medicine, No. 111 North first Section of Second Ring Road, Chengdu 610036, China
- Shanghai Key Laboratory of Orthopaedic Implant, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital Affiliated Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China
| | - Changru Zhang
- Shanghai Key Laboratory of Orthopaedic Implant, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital Affiliated Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China
| | - Yihao Liu
- Shanghai Key Laboratory of Orthopaedic Implant, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital Affiliated Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China
| | - Weiqing Kong
- Department of Spinal Surgery, The Affiliated Hospital of Qingdao University, No. 59 Haier Road, Qingdao 266000, Shandong Province, China
| | - Xue Yang
- Southwest JiaoTong University College of Medicine, No. 111 North first Section of Second Ring Road, Chengdu 610036, China
| | - Haoyi Niu
- Shanghai Key Laboratory of Orthopaedic Implant, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital Affiliated Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China
| | - Lei Qiang
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China
| | - Han Yang
- Med-X Research Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
| | - Fei Yang
- Shanghai Key Laboratory of Orthopaedic Implant, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital Affiliated Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China
| | - Chengwei Wang
- Shanghai Key Laboratory of Orthopaedic Implant, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital Affiliated Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China
| | - Jinwu Wang
- School of Rehabilitation Medicine, Weifang Medical University, Shandong 261041, China
- Southwest JiaoTong University College of Medicine, No. 111 North first Section of Second Ring Road, Chengdu 610036, China
- Shanghai Key Laboratory of Orthopaedic Implant, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital Affiliated Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China
| |
Collapse
|
8
|
Laubach M, Bessot A, McGovern J, Saifzadeh S, Gospos J, Segina DN, Kobbe P, Hildebrand F, Wille ML, Bock N, Hutmacher DW. An in vivo study to investigate an original intramedullary bone graft harvesting technology. Eur J Med Res 2023; 28:349. [PMID: 37715198 PMCID: PMC10503043 DOI: 10.1186/s40001-023-01328-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 08/28/2023] [Indexed: 09/17/2023] Open
Abstract
BACKGROUND Harvesting bone graft (BG) from the intramedullary canal to treat bone defects is largely conducted using the Reamer-Irrigator-Aspirator (RIA) system. The RIA system uses irrigation fluid during harvesting, which may result in washout of osteoinductive factors. Here, we propose a new harvesting technology dedicated to improving BG collection without the potential washout effect of osteoinductive factors associated with irrigation fluid. This novel technology involves the conceptual approach of first aspirating the bone marrow (BM) with a novel aspirator prototype, followed by reaming with standard reamers and collecting the bone chips with the aspirator (reaming-aspiration method, R-A method). The aim of this study was to assess the harvesting efficacy and osteoinductive profile of the BG harvested with RIA 2 system (RIA 2 group) compared to the novel harvesting concept (aspirator + R-A method, ARA group). METHODS Pre-planning computed tomography (CT) imaging was conducted on 16 sheep to determine the femoral isthmus canal diameter. In this non-recovery study, sheep were divided into two groups: RIA 2 group (n = 8) and ARA group (n = 8). We measured BG weight collected from left femur and determined femoral cortical bone volume reduction in postoperative CT imaging. Growth factor and inflammatory cytokine amounts of the BGs were quantified using enzyme-linked immunosorbent assay (ELISA) methods. RESULTS The use of the stand-alone novel aspirator in BM collection, and in harvesting BG when the aspirator is used in conjunction with sequential reaming (R-A method) was proven feasible. ELISA results showed that the collected BG contained relevant amounts of growth factors and inflammatory cytokines in both the RIA 2 and the ARA group. CONCLUSIONS Here, we present the first results of an innovative concept for harvesting intramedullary BG. It is a prototype of a novel aspirator technology that enables the stepwise harvesting of first BM and subsequent bone chips from the intramedullary canal of long bones. Both the BG collected with the RIA 2 system and the aspirator prototype had the capacity to preserve the BG's osteoinductive microenvironment. Future in vivo studies are required to confirm the bone regenerative capacity of BG harvested with the innovative harvesting technology.
Collapse
Affiliation(s)
- Markus Laubach
- Australian Research Council (ARC) Training Centre for Multiscale 3D Imaging, Modelling, and Manufacturing (M3D Innovation), Queensland University of Technology, Brisbane, QLD, 4000, Australia.
- Centre for Biomedical Technologies, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD, 4059, Australia.
- Department of Orthopaedics, Trauma and Reconstructive Surgery, RWTH Aachen University Hospital, Pauwelsstraße 30, 52074, Aachen, Germany.
| | - Agathe Bessot
- Max Planck Queensland Centre (MPQC) for the Materials Science of Extracellular Matrices, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- Centre for Biomedical Technologies, School of Biomedical Sciences, Faculty of Health, and Translational Research Institute (TRI), Queensland University of Technology (QUT), Brisbane, QLD, 4102, Australia
| | - Jacqui McGovern
- Max Planck Queensland Centre (MPQC) for the Materials Science of Extracellular Matrices, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- Centre for Biomedical Technologies, School of Biomedical Sciences, Faculty of Health, and Translational Research Institute (TRI), Queensland University of Technology (QUT), Brisbane, QLD, 4102, Australia
- ARC Training Centre for Cell and Tissue Engineering Technologies, Queensland University of Technology (QUT), Brisbane, QLD, 4000, Australia
| | - Siamak Saifzadeh
- Australian Research Council (ARC) Training Centre for Multiscale 3D Imaging, Modelling, and Manufacturing (M3D Innovation), Queensland University of Technology, Brisbane, QLD, 4000, Australia
- Medical Engineering Research Facility, Queensland University of Technology, Chermside, QLD, 4032, Australia
| | - Jonathan Gospos
- Centre for Biomedical Technologies, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD, 4059, Australia
- Max Planck Queensland Centre (MPQC) for the Materials Science of Extracellular Matrices, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Daniel N Segina
- Department of Orthopaedics, Holmes Regional Trauma Center, Melbourne, FL, USA
| | - Philipp Kobbe
- Department of Trauma and Reconstructive Surgery, BG Klinikum Bergmannstrost, Halle, Germany
- Department of Trauma and Reconstructive Surgery, University Hospital Halle, Halle, Germany
| | - Frank Hildebrand
- Department of Orthopaedics, Trauma and Reconstructive Surgery, RWTH Aachen University Hospital, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Marie-Luise Wille
- Australian Research Council (ARC) Training Centre for Multiscale 3D Imaging, Modelling, and Manufacturing (M3D Innovation), Queensland University of Technology, Brisbane, QLD, 4000, Australia
- Centre for Biomedical Technologies, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD, 4059, Australia
- Max Planck Queensland Centre (MPQC) for the Materials Science of Extracellular Matrices, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Nathalie Bock
- Australian Research Council (ARC) Training Centre for Multiscale 3D Imaging, Modelling, and Manufacturing (M3D Innovation), Queensland University of Technology, Brisbane, QLD, 4000, Australia
- Max Planck Queensland Centre (MPQC) for the Materials Science of Extracellular Matrices, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- Centre for Biomedical Technologies, School of Biomedical Sciences, Faculty of Health, and Translational Research Institute (TRI), Queensland University of Technology (QUT), Brisbane, QLD, 4102, Australia
| | - Dietmar W Hutmacher
- Australian Research Council (ARC) Training Centre for Multiscale 3D Imaging, Modelling, and Manufacturing (M3D Innovation), Queensland University of Technology, Brisbane, QLD, 4000, Australia.
- Centre for Biomedical Technologies, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD, 4059, Australia.
- Max Planck Queensland Centre (MPQC) for the Materials Science of Extracellular Matrices, Queensland University of Technology, Brisbane, QLD, 4000, Australia.
- ARC Training Centre for Cell and Tissue Engineering Technologies, Queensland University of Technology (QUT), Brisbane, QLD, 4000, Australia.
| |
Collapse
|
9
|
Lana JF, Purita J, Everts PA, De Mendonça Neto PAT, de Moraes Ferreira Jorge D, Mosaner T, Huber SC, Azzini GOM, da Fonseca LF, Jeyaraman M, Dallo I, Santos GS. Platelet-Rich Plasma Power-Mix Gel (ppm)-An Orthobiologic Optimization Protocol Rich in Growth Factors and Fibrin. Gels 2023; 9:553. [PMID: 37504432 PMCID: PMC10379106 DOI: 10.3390/gels9070553] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/29/2023] Open
Abstract
Platelet- and fibrin-rich orthobiologic products, such as autologous platelet concentrates, have been extensively studied and appreciated for their beneficial effects on multiple conditions. Platelet-rich plasma (PRP) and its derivatives, including platelet-rich fibrin (PRF), have demonstrated encouraging outcomes in clinical and laboratory settings, particularly in the treatment of musculoskeletal disorders such as osteoarthritis (OA). Although PRP and PRF have distinct characteristics, they share similar properties. The relative abundance of platelets, peripheral blood cells, and molecular components in these orthobiologic products stimulates numerous biological pathways. These include inflammatory modulation, augmented neovascularization, and the delivery of pro-anabolic stimuli that regulate cell recruitment, proliferation, and differentiation. Furthermore, the fibrinolytic system, which is sometimes overlooked, plays a crucial role in musculoskeletal regenerative medicine by regulating proteolytic activity and promoting the recruitment of inflammatory cells and mesenchymal stem cells (MSCs) in areas of tissue regeneration, such as bone, cartilage, and muscle. PRP acts as a potent signaling agent; however, it diffuses easily, while the fibrin from PRF offers a durable scaffolding effect that promotes cell activity. The combination of fibrin with hyaluronic acid (HA), another well-studied orthobiologic product, has been shown to improve its scaffolding properties, leading to more robust fibrin polymerization. This supports cell survival, attachment, migration, and proliferation. Therefore, the administration of the "power mix" containing HA and autologous PRP + PRF may prove to be a safe and cost-effective approach in regenerative medicine.
Collapse
Affiliation(s)
- José Fábio Lana
- OrthoRegen Group, Max-Planck University, Indaiatuba 13343-060, Brazil
| | | | | | | | | | - Tomas Mosaner
- Brazilian Institute of Regenerative Medicine (BIRM), Indaiatuba 13334-170, Brazil
| | - Stephany Cares Huber
- Brazilian Institute of Regenerative Medicine (BIRM), Indaiatuba 13334-170, Brazil
| | | | | | - Madhan Jeyaraman
- Department of Orthopaedics, Faculty of Medicine, Sri Lalithambigai Medical College and Hospital, Tamil Nadu 600095, India
| | - Ignacio Dallo
- SportMe Medical Center, Department of Orthopaedic Surgery and Sports Medicine, Unit of Biological Therapies and MSK Interventionism, 41013 Seville, Spain
| | - Gabriel Silva Santos
- Brazilian Institute of Regenerative Medicine (BIRM), Indaiatuba 13334-170, Brazil
| |
Collapse
|
10
|
Wei Y, Chen M, Li M, Wang D, Cai K, Luo Z, Hu Y. Aptamer/Hydroxyapatite-Functionalized Titanium Substrate Promotes Implant Osseointegration via Recruiting Mesenchymal Stem Cells. ACS APPLIED MATERIALS & INTERFACES 2022; 14:42915-42930. [PMID: 36107718 DOI: 10.1021/acsami.2c10809] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Endowing bone regeneration materials with both stem cell recruitment and osteoinduction properties is a key factor in promoting osseointegration of titanium (Ti) implants. In this study, Apt19s-grafted oxidized hyaluronic acid (OHA) was deposited onto a protein-mediated biomineralization hydroxyapatite (HAp) coating of Ti. HAp was achieved by the treatment of lysozyme and tris(2-carboxyethyl) phosphonate mixture and then soaked in calcium ion (Ca2+) solution to obtain functional Ti substrate (Ti/HAp/OHA-Apt). In vitro studies confirmed that Ti/HAp/OHA-Apt could effectively maintain the sustained release of Apt19s from Ti for 7 days. The released Apt19s significantly enhanced the migration of bone marrow mesenchymal stem cells (MSCs), which was reflected by the experiment of transwell assay, wound healing, and zymogram detection. Compared with pure Ti, Ti/HAp/OHA-Apt was able to adjust the adsorption of functional proteins at the Ti-based interface to expose their active sites, which significantly increased the expression of adhesion-associated proteins (vinculin and tensin) in MSCs to promote their adhesion on Ti-based interface. In vitro cell experiments of alkaline phosphatase activity staining, mineralization detection, and expression of osteogenesis-related genes showed that Ti/HAp/OHA-Apt significantly enhanced the osteogenic differentiation ability of MSCs, which may be highly related to the porous structure of hydroxyapatite on Ti interface. In vivo test of Micro-CT, H&E staining, and histochemical staining further confirmed that Ti/HAp/OHA-Apt was able to promote MSC recruitment at the peri-implant interface to form new bone. This work provides a new approach to develop functional Ti-based materials for bone defect repair.
Collapse
Affiliation(s)
- Yujia Wei
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Maohua Chen
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Menghuan Li
- School of Life Sciences, Chongqing University, Chongqing 400044, China
| | - Dong Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Zhong Luo
- School of Life Sciences, Chongqing University, Chongqing 400044, China
| | - Yan Hu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| |
Collapse
|
11
|
Affiliation(s)
- Shao-Ting J. Tsang
- Department of Orthopaedic Surgery, University of Edinburgh, Edinburgh, UK
- Department of Trauma and Orthopaedics, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - Nando Ferreira
- Division Orthopaedic Surgery Department of Surgical Sciences, Faculty of Medicine and Health Sciences Stellenbosch University, Cape Town, South Africa
| | | |
Collapse
|
12
|
Zheng S, Zhong H, Cheng H, Li X, Zeng G, Chen T, Zou Y, Liu W, Sun C. Engineering Multifunctional Hydrogel With Osteogenic Capacity for Critical-Size Segmental Bone Defect Repair. Front Bioeng Biotechnol 2022; 10:899457. [PMID: 35615472 PMCID: PMC9124794 DOI: 10.3389/fbioe.2022.899457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 04/01/2022] [Indexed: 12/15/2022] Open
Abstract
Treating critical-size segmental bone defects is an arduous challenge in clinical work. Preparation of bone graft substitutes with notable osteoinductive properties is a feasible strategy for critical-size bone defects. Herein, a biocompatible hydrogel was designed by dynamic supramolecular assembly of polyvinyl alcohol (PVA), sodium tetraborate (Na2B4O7), and tetraethyl orthosilicate (TEOS). The characteristics of the supramolecular hydrogel were evaluated by rheological analysis, swelling ratio, degradation experiments, and scanning electron microscopy (SEM). In in vitro experiments, this TEOS-hydrogel had self-healing property, low swelling rate, degradability, good biocompatibility, and induced osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) by upregulating the expression of Runx-2, Col-1, OCN, and osteopontin (OPN). In segmental bone defect rabbit models, the TEOS-containing hydrogel accelerated bone regeneration, thus restoring the continuity of bone and recanalization of the medullary cavity. The abovementioned results demonstrated that this TEOS-hydrogel has the potential to realize bone healing in critical-size segmental bone defects.
Collapse
Affiliation(s)
- Shaowei Zheng
- Department of Orthopaedic, Huizhou First Hospital, Guangdong Medical University, Huizhou, China
- Department of Orthopaedic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Haobo Zhong
- Department of Orthopaedic, Huizhou First Hospital, Guangdong Medical University, Huizhou, China
| | - Hao Cheng
- Department of Orthopaedic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xu Li
- Department of Orthopaedic, Huizhou First Hospital, Guangdong Medical University, Huizhou, China
| | - Guowei Zeng
- Graduate School, Guangdong Medical University, Zhanjiang, China
| | - Tianyu Chen
- Department of Orthopedics, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Yucong Zou
- Department of Orthopedics, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Weile Liu
- Department of Orthopaedic, Huizhou First Hospital, Guangdong Medical University, Huizhou, China
| | - Chunhan Sun
- Department of Orthopaedic, Huizhou First Hospital, Guangdong Medical University, Huizhou, China
| |
Collapse
|
13
|
Cohen T, Kossover O, Peled E, Bick T, Hasanov L, Chun TT, Cool S, Lewinson D, Seliktar D. A combined cell and growth factor delivery for the repair of a critical size tibia defect using biodegradable hydrogel implants. J Tissue Eng Regen Med 2022; 16:380-395. [PMID: 35119200 PMCID: PMC9303443 DOI: 10.1002/term.3285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 12/09/2021] [Accepted: 01/11/2022] [Indexed: 11/16/2022]
Abstract
The ability to repair critical‐sized long‐bone injuries using growth factor and cell delivery was investigated using hydrogel biomaterials. Physiological doses of the recombinant human bone morphogenic protein‐2 (rhBMP2) were delivered in a sustained manner from a biodegradable hydrogel containing peripheral human blood‐derived endothelial progenitor cells (hEPCs). The biodegradable implants made from polyethylene glycol (PEG) and denatured fibrinogen (PEG‐fibrinogen, PF) were loaded with 7.7 μg/ml of rhBMP2 and 2.5 × 106 cells/ml hEPCs. The safety and efficacy of the implant were tested in a rodent model of a critical‐size long‐bone defect. The hydrogel implants were formed ex‐situ and placed into defects in the tibia of athymic nude rats and analyzed for bone repair after 13 weeks following surgery. The hydrogels containing a combination of 7.7 μg/ml of rhBMP2 and 2.5 × 106 cells/ml hEPCs were compared to control hydrogels containing 7.7 μg/ml of rhBMP2 only, 2.5 × 106 cells/ml hEPCs only, or bare hydrogels. Assessments of bone repair include histological analysis, bone formation at the site of implantation using quantitative microCT, and assessment of implant degradation. New bone formation was detected in all treated animals, with the highest amounts found in the treatments that included animals that combined the PF implant with rhBMP2. Moreover, statistically significant increases in the tissue mineral density (TMD), trabecular number and trabecular thickness were observed in defects treated with rhBMP2 compared to non‐rhBMP2 defects. New bone formation was significantly higher in the hEPC‐treated defects compared to bare hydrogel defects, but there were no significant differences in new bone formation, trabecular number, trabecular thickness or TMD at 13 weeks when comparing the rhBMP2 + hEPCs‐treated defects to rhBMP2‐treated defects. The study concludes that the bone regeneration using hydrogel implants containing hEPCs are overshadowed by enhanced osteogenesis associated with sustained delivery of rhBMP2.
Collapse
Affiliation(s)
- Talia Cohen
- The Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Olga Kossover
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Eli Peled
- The Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.,Department of Orthopedic Surgery, Rambam Medical Center, Haifa, Israel
| | - Tova Bick
- The Institute of Research of Bone Healing, the Rambam Healthcare Campus, Haifa, Israel
| | - Lena Hasanov
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Tan Tuan Chun
- Glycotherapeutics Group, Institute of Molecular and Cell Biology, A*STAR, Singapore, Singapore
| | - Simon Cool
- Glycotherapeutics Group, Institute of Molecular and Cell Biology, A*STAR, Singapore, Singapore
| | - Dina Lewinson
- The Institute of Research of Bone Healing, the Rambam Healthcare Campus, Haifa, Israel
| | - Dror Seliktar
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
14
|
Salamanna F, Contartese D, Borsari V, Pagani S, Barbanti Brodano G, Griffoni C, Ricci A, Gasbarrini A, Fini M. Two Hits for Bone Regeneration in Aged Patients: Vertebral Bone Marrow Clot as a Biological Scaffold and Powerful Source of Mesenchymal Stem Cells. Front Bioeng Biotechnol 2022; 9:807679. [PMID: 35118056 PMCID: PMC8804319 DOI: 10.3389/fbioe.2021.807679] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/20/2021] [Indexed: 12/26/2022] Open
Abstract
Recently, the use of a new formulation of bone marrow aspirate (BMA), the BMA clot, has been described. This product entails a naturally formed clot from the harvested bone marrow, which retains all the BMA components preserved in a matrix biologically molded by the clot. Even though its beneficial effects were demonstrated by some studies, the impact of aging and aging-associated processes on biological properties and the effect of BMA cell-based therapy are currently unknown. The purpose of our study was to compare selected parameters and properties of clotted BMA and BMA-derived mesenchymal stem cells (MSCs) from younger (<45 years) and older (>65 years) female donors. Clotted BMA growth factors (GFs) expression, MSCs morphology and viability, doubling time, surface marker expression, clonogenic potential, three-lineage differentiation, senescence-associated factors, and Klotho synthesis from younger and older donors were analyzed. Results indicated that donor age does not affect tissue-specific BMA clot regenerative properties such as GFs expression and MSCs morphology, viability, doubling time, surface antigens expression, colony-forming units, osteogenic and adipogenic differentiation, and Klotho and senescence-associated gene expression. Only few differences, i.e., increased platelet-derived growth factor-AB (PDGF-AB) synthesis and MSCs Aggrecan (ACAN) expression, were detected in younger donors in comparison with older ones. However, these differences do not interfere with all the other BMA clot biological properties. These results demonstrated that BMA clot can be applied easily, without any sample processing and avoiding potential contamination risks as well as losing cell viability, proliferation, and differentiation ability, for autologous transplantation in aged patients. The vertebral BMA clot showed two successful hits since it works as a biological scaffold and as a powerful source of mesenchymal stem cells, thus representing a novel and advanced therapeutic alternative for the treatment of orthopedic injuries.
Collapse
Affiliation(s)
- Francesca Salamanna
- Complex Structure Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Deyanira Contartese
- Complex Structure Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
- *Correspondence: Deyanira Contartese,
| | - Veronica Borsari
- Complex Structure Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Stefania Pagani
- Complex Structure Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Giovanni Barbanti Brodano
- Department of Oncological and Degenerative Spine Surgery, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Cristiana Griffoni
- Department of Oncological and Degenerative Spine Surgery, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Alessandro Ricci
- Anesthesia-Resuscitation and Intensive Care, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Alessandro Gasbarrini
- Department of Oncological and Degenerative Spine Surgery, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Milena Fini
- Complex Structure Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| |
Collapse
|
15
|
Tan Y, Zhang L, Rajoka MSR, Mai Z, Bahadur A, Mehwish HM, Umair M, Zhao L, Wu Y, Song X. Jawbones Scaffold Constructed by TGF-β1 and BMP-2 Loaded Chitosan Microsphere Combining with Alg/HA/ICol for Osteogenic-Induced Differentiation. Polymers (Basel) 2021; 13:3079. [PMID: 34577981 PMCID: PMC8466595 DOI: 10.3390/polym13183079] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 12/15/2022] Open
Abstract
Bone scaffolds based on multi-components are the leading trend to address the multifaceted prerequisites to repair various bone defects. Chitosan is the most useable biopolymer, having excellent biological applications. Therefore, in the present study, the chitosan microsphere was prepared by the ion-gel method; transforming growth factor β (TGF-β1) and bone morphogenetic protein 2 (BMP-2) were loaded onto it and then combined with alginate/hyaluronic acid/collagen (Alg/HA/ICol) to construct a jawbones scaffold. The Alg/HA/ICol scaffolds were characterized by FTIR and SEM, and the water content, porosity, tensile properties, biocompatibility, and osteogenic-induced differentiation ability of the Alg/HA/ICol jawbones scaffolds were studied. The results indicate that a three-dimensional porous jawbone scaffold was successfully constructed having 100-250 μm of pore size and >90% of porosity without cytotoxicity against adipose-derived stem cells (ADSCs). Its ALP quantification, osteocalcin expression, and Von Kossamineralized nodule staining was higher than the control group. The jawbones scaffold constructed by TGF-β1 and BMP-2 loaded chitosan microsphere combining with Alg/HA/ICol has potential biomedical application in the future.
Collapse
Affiliation(s)
- Yongxin Tan
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China; (Y.T.); (M.S.R.R.); (Z.M.); (M.U.)
| | - Liqun Zhang
- Department of Stomatology, Shenzhen Union Medical Hospital of Huazhong University of Science and Technology (Sixth Affiliated Hospital of Shenzhen University), Shenzhen 518060, China;
| | - Muhammad Shahid Riaz Rajoka
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China; (Y.T.); (M.S.R.R.); (Z.M.); (M.U.)
- School of Pharmaceutical Science, Health Science Center, Shenzhen University, Shenzhen 518060, China;
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Zhanhua Mai
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China; (Y.T.); (M.S.R.R.); (Z.M.); (M.U.)
| | - Ali Bahadur
- Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 16229, Korea;
| | - Hafiza Mahreen Mehwish
- School of Pharmaceutical Science, Health Science Center, Shenzhen University, Shenzhen 518060, China;
| | - Muhammad Umair
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China; (Y.T.); (M.S.R.R.); (Z.M.); (M.U.)
| | - Liqing Zhao
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China; (Y.T.); (M.S.R.R.); (Z.M.); (M.U.)
| | - Yiguang Wu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China; (Y.T.); (M.S.R.R.); (Z.M.); (M.U.)
| | - Xun Song
- School of Pharmaceutical Science, Health Science Center, Shenzhen University, Shenzhen 518060, China;
| |
Collapse
|
16
|
Fracture nonunion in long bones: A literature review of risk factors and surgical management. Injury 2021; 52 Suppl 2:S3-S11. [PMID: 33221036 DOI: 10.1016/j.injury.2020.11.029] [Citation(s) in RCA: 131] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 11/06/2020] [Accepted: 11/10/2020] [Indexed: 02/02/2023]
Abstract
Nonunion following a long bone fracture causes considerable morbidity when it occurs. Risk factors depend on specific fractures but there is a complex interplay of injury severity, comorbidities, patient medication and infection. The majority of nonunions occur after long bone fractures with the tibia, femur, forearm, humerus and clavicle predominating. Despite interest in the biological augmentation of fracture healing, the majority of nonunions can be effectively managed with conventional surgical techniques. In this review we present a review of risk factors for nonunion and the outcome following surgical management.
Collapse
|
17
|
Zou Z, Wang L, Zhou Z, Sun Q, Liu D, Chen Y, Hu H, Cai Y, Lin S, Yu Z, Tan B, Guo W, Ling Z, Zou X. Simultaneous incorporation of PTH(1-34) and nano-hydroxyapatite into Chitosan/Alginate Hydrogels for efficient bone regeneration. Bioact Mater 2021; 6:1839-1851. [PMID: 33336115 PMCID: PMC7723774 DOI: 10.1016/j.bioactmat.2020.11.021] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/21/2020] [Accepted: 11/13/2020] [Indexed: 12/19/2022] Open
Abstract
Tissue regeneration based on the utilization of artificial soft materials is considered a promising treatment for bone-related diseases. Here, we report cranial bone regeneration promoted by hydrogels that contain parathyroid hormone (PTH) peptide PTH(1-34) and nano-hydroxyapatite (nHAP). A combination of the positively charged natural polymer chitosan (CS) and negatively charged sodium alginate led to the formation of hydrogels with porous structures, as shown by scanning electron microscopy. Rheological characterizations revealed that the mechanical properties of the hydrogels were almost maintained upon the addition of nHAP and PTH(1-34). In vitro experiments showed that the hydrogel containing nHAP and PTH(1-34) exhibited strong biocompatibility and facilitated osteogenic differentiation of rat bone marrow mesenchymal stem cells (rBMSCs) via the Notch signaling pathway, as shown by the upregulated expression of osteogenic-related proteins. We found that increasing the content of PTH(1-34) in the hydrogels resulted in enhanced osteogenic differentiation of BMSCs. Implantation of the complex hydrogel into a rat cranial defect model led to efficient bone regeneration compared to the rats treated with the hydrogel alone or with nHAP, indicating the simultaneous therapeutic effect of nHAP and PTH during the treatment process. Both the in vitro and in vivo results demonstrated that simultaneously incorporating nHAP and PTH into hydrogels shows promise for bone regeneration, suggesting a new strategy for tissue engineering and regeneration in the future.
Collapse
Affiliation(s)
- Zhiyuan Zou
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Le Wang
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Zhifei Zhou
- Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Qing Sun
- Department of Pathology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou 510120, China
| | - Delong Liu
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
- Department of Orthopaedics, Hunan Provincial People's Hospital, Changsha 410002, China
| | - Yan Chen
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Hao Hu
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Yu Cai
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Sixiong Lin
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Zhengran Yu
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Bizhi Tan
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Wei Guo
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Zemin Ling
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Xuenong Zou
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
18
|
Lana JF, da Fonseca LF, Azzini G, Santos G, Braga M, Cardoso Junior AM, Murrell WD, Gobbi A, Purita J, Percope de Andrade MA. Bone Marrow Aspirate Matrix: A Convenient Ally in Regenerative Medicine. Int J Mol Sci 2021; 22:ijms22052762. [PMID: 33803231 PMCID: PMC7963152 DOI: 10.3390/ijms22052762] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/17/2021] [Accepted: 02/24/2021] [Indexed: 02/06/2023] Open
Abstract
The rise in musculoskeletal disorders has prompted medical experts to devise novel effective alternatives to treat complicated orthopedic conditions. The ever-expanding field of regenerative medicine has allowed researchers to appreciate the therapeutic value of bone marrow-derived biological products, such as the bone marrow aspirate (BMA) clot, a potent orthobiologic which has often been dismissed and regarded as a technical complication. Numerous in vitro and in vivo studies have contributed to the expansion of medical knowledge, revealing optimistic results concerning the application of autologous bone marrow towards various impactful disorders. The bone marrow accommodates a diverse family of cell populations and a rich secretome; therefore, autologous BMA-derived products such as the “BMA Matrix”, may represent a safe and viable approach, able to reduce the costs and some drawbacks linked to the expansion of bone marrow. BMA provides —it eliminates many hurdles associated with its preparation, especially in regards to regulatory compliance. The BMA Matrix represents a suitable alternative, indicated for the enhancement of tissue repair mechanisms by modulating inflammation and acting as a natural biological scaffold as well as a reservoir of cytokines and growth factors that support cell activity. Although promising, more clinical studies are warranted in order to further clarify the efficacy of this strategy.
Collapse
Affiliation(s)
- José Fábio Lana
- IOC—Instituto do Osso e da Cartilagem, 1386 Presidente Kennedy Avenue, Indaiatuba 13334-170, Brazil; (J.F.L.); (G.A.)
| | | | - Gabriel Azzini
- IOC—Instituto do Osso e da Cartilagem, 1386 Presidente Kennedy Avenue, Indaiatuba 13334-170, Brazil; (J.F.L.); (G.A.)
| | - Gabriel Santos
- IOC—Instituto do Osso e da Cartilagem, 1386 Presidente Kennedy Avenue, Indaiatuba 13334-170, Brazil; (J.F.L.); (G.A.)
- Correspondence:
| | - Marcelo Braga
- Hospital São Judas Tadeu, 150 Cel. João Notini St, Divinópolis 35500-017, Brazil;
| | - Alvaro Motta Cardoso Junior
- Núcleo Avançado de Estudos em Ortopedia e Neurocirurgia, 2144 Ibirapuera Avenue, São Paulo 04028-001, Brazil;
| | - William D. Murrell
- Abu Dhabi Knee and Sports Medicine, Healthpoint Hospital, Zayed Sports City, Between Gate 1 and 6, Abu Dhabi 00000 (P. O. Box No. 112308), United Arab Emirates;
- 411th Hospital Center, Bldg 938, Birmingham Ave, Naval Air Station, Jacksonville, FL 32212, USA
| | - Alberto Gobbi
- O.A.S.I. Bioresearch Foundation Gobbi Onlus, 20133 Milano, Italy;
| | - Joseph Purita
- Institute of Regenerative Medicine, Boca Raton, FL 33432, USA;
| | | |
Collapse
|
19
|
Shen J, Sun D, Yu S, Fu J, Wang X, Wang S, Xie Z. Radiological and clinical outcomes using induced membrane technique combined with bone marrow concentrate in the treatment of chronic osteomyelitis of immature patients. Bone Joint Res 2021; 10:31-40. [PMID: 33380210 PMCID: PMC7845462 DOI: 10.1302/2046-3758.101.bjr-2020-0229.r1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Aims Treatment of chronic osteomyelitis (COM) for young patients remains a challenge. Large bone deficiencies secondary to COM can be treated using induced membrane technique (IMT). However, it is unclear which type of bone graft is optimal. The goal of the study was to determine the clinical effectiveness of bone marrow concentrator modified allograft (BMCA) versus bone marrow aspirate mixed allograft (BMAA) for children with COM of long bones. Methods Between January 2013 and December 2017, 26 young patients with COM were enrolled. Different bone grafts were applied to repair bone defects secondary to IMT procedure for infection eradication. Group BMCA was administered BMCA while Group BMAA was given BMAA. The results of this case-control study were retrospectively analyzed. Results Patient infection in both groups was eradicated after IMT surgery. As for reconstruction surgery, no substantial changes in the operative period (p = 0.852), intraoperative blood loss (p = 0.573), or length of hospital stay (p = 0.362) were found between the two groups. All patients were monitored for 12 to 60 months. The median time to bone healing was 4.0 months (interquartile range (IQR) 3.0 to 5.0; range 3 to 7) and 5.0 months (IQR 4.0 to 7.0; range 3 to 10) in Groups BMCA and BMAA, respectively. The time to heal in Group BMCA versus Group BMAA was substantially lower (p = 0.024). Conclusion IMT with BMCA or BMAA may attain healing in large bone defects secondary to COM in children. The bone healing time was significantly shorter for BMCA, indicating that this could be considered as a new strategy for bone defect after COM treatment. Cite this article: Bone Joint Res 2021;10(1):31–40.
Collapse
Affiliation(s)
- Jie Shen
- National & Regional United Engineering Laboratory of Tissue Engineering, Department of Orthopaedics, Southwest Hospital, Army Medical University, Chongqing, China
| | - Dong Sun
- National & Regional United Engineering Laboratory of Tissue Engineering, Department of Orthopaedics, Southwest Hospital, Army Medical University, Chongqing, China
| | - Shengpeng Yu
- National & Regional United Engineering Laboratory of Tissue Engineering, Department of Orthopaedics, Southwest Hospital, Army Medical University, Chongqing, China.,Department of Orthopaedics, Dujiangyan Medical Center, Dujiangyan, Sichuan, China
| | - Jingshu Fu
- National & Regional United Engineering Laboratory of Tissue Engineering, Department of Orthopaedics, Southwest Hospital, Army Medical University, Chongqing, China
| | - Xiaohua Wang
- National & Regional United Engineering Laboratory of Tissue Engineering, Department of Orthopaedics, Southwest Hospital, Army Medical University, Chongqing, China
| | - Shulin Wang
- National & Regional United Engineering Laboratory of Tissue Engineering, Department of Orthopaedics, Southwest Hospital, Army Medical University, Chongqing, China
| | - Zhao Xie
- National & Regional United Engineering Laboratory of Tissue Engineering, Department of Orthopaedics, Southwest Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
20
|
Bone marrow aspirate clot: A feasible orthobiologic. J Clin Orthop Trauma 2020; 11:S789-S794. [PMID: 32999557 PMCID: PMC7503156 DOI: 10.1016/j.jcot.2020.07.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 07/05/2020] [Indexed: 12/29/2022] Open
Abstract
Musculoskeletal disorders are one of the major health burdens and a leading source of disability worldwide, affecting both juvenile and elderly populations either as a consequence of ageing or extrinsic factors such as physical injuries. This condition often involves a group of locomotor structures such as the bones, joints and muscles and may therefore cause significant economic and emotional impact. Some pharmacological and non-pharmacological treatments have been considered as potential solutions, however, these alternatives have provided quite limited efficacy due to the short-term effect on pain management and inability to restore damaged tissue. The emergence of novel therapeutic alternatives such as the application of orthobiologics, particularly bone marrow aspirate (BMA) clot, have bestowed medical experts with considerable optimism as evidenced by the significant results found in numerous studies addressed in this manuscript. Although other products have been proposed for the treatment of musculoskeletal injuries, the peculiar interest in BMA, fibrin clot and associated fibrinolytic mechanisms continues to expand. BMA is a rich source of various cellular and molecular components which have demonstrated positive effects on tissue regeneration in many in vitro and in vivo models of musculoskeletal injuries. In addition to being able to undergo self-renewal and differentiation, the hematopoietic and mesenchymal stem cells present in this orthobiologic elicit key immunomodulatory and paracrine roles in inflammatory responses in tissue injury and drive the coagulation cascade towards tissue repair via different mechanisms. Although promising, these complex regenerative mechanisms have not yet been fully elucidated.
Collapse
|
21
|
Santinoni CS, Neves APC, Almeida BFM, Kajimoto NC, Pola NM, Caliente EA, Belem ELG, Lelis JB, Fucini SE, Messora MR, Garcia VG, Bomfim SRM, Ervolino E, Nagata MJH. Bone marrow coagulated and low-level laser therapy accelerate bone healing by enhancing angiogenesis, cell proliferation, osteoblast differentiation, and mineralization. J Biomed Mater Res A 2020; 109:849-858. [PMID: 32815657 DOI: 10.1002/jbm.a.37076] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 07/17/2020] [Accepted: 07/26/2020] [Indexed: 12/14/2022]
Abstract
The present study evaluated bone marrow aspirate (BMA) and low-level laser therapy (LLLT) on bone healing. It was created critical-size defects (CSD) of 5 mm diameter in rat calvaria of 64 rats. Animals were randomly divided into four groups: Control (blood clot), BMA (coagulated BMA), LLLT (laser irradiation and blood clot), and BMA/LLLT (laser irradiation and coagulated BMA). Euthanasia was performed at 15 or 30 days postoperative. Immunohistochemical reactions were performed to identify vascular endothelial growth factor (VEGF), proliferating cell nuclear antigen (PCNA), runt-related transcription factor-2 (Runx2), bone morphogenetic protein-2 (BMP-2), osteocalcin (OCN), and osteopontin (OPN). The markers were quantified, and data were statistically analyzed. Groups BMA/LLLT and LLLT presented significantly higher VEGF expression than group control. Group BMA/LLLT presented a significantly higher expression of PCNA than all experimental groups. Groups BMA and BMA/LLLT presented significantly higher expression of BMP-2 than all experimental groups. Groups LLLT and BMA/LLLT presented significantly higher expression of OPN than groups control and BMA. Groups LLLT, BMA, and BMA/LLLT presented a significantly higher expression of OCN than group control. It can be concluded that the association of BMA and LLLT enhanced bone healing by improving expression of VEGF, PCNA, Runx2, BMP-2, OPN, and OCN.
Collapse
Affiliation(s)
- Carolina S Santinoni
- Dental School of Presidente Prudente, Graduate Program in Dentistry (GPD-Master's Degree), UNOESTE-University of Western Sao Paulo, Presidente Prudente, Brazil.,Division of Periodontics, Dental School of Araçatuba, Univ. Estadual Paulista-UNESP, Araçatuba, Brazil
| | - Adrieli P C Neves
- Dental School of Presidente Prudente, Graduate Program in Dentistry (GPD-Master's Degree), UNOESTE-University of Western Sao Paulo, Presidente Prudente, Brazil.,Division of Periodontics, Dental School of Araçatuba, Univ. Estadual Paulista-UNESP, Araçatuba, Brazil
| | - Breno F M Almeida
- Division of Clinical, Surgery and Animal Reproduction, Veterinary School of Araçatuba, Univ. Estadual Paulista-UNESP, Araçatuba, Brazil
| | - Natália C Kajimoto
- Division of Periodontics, Dental School of Araçatuba, Univ. Estadual Paulista-UNESP, Araçatuba, Brazil
| | - Natália M Pola
- Division of Periodontics, Dental School of Pelotas, Federal University of Pelotas-UFPel, Pelotas, Brazil
| | - Eliana A Caliente
- Division of Periodontics, Dental School of Araçatuba, Univ. Estadual Paulista-UNESP, Araçatuba, Brazil
| | - Eduarda L G Belem
- Division of Periodontics, Dental School of Araçatuba, Univ. Estadual Paulista-UNESP, Araçatuba, Brazil
| | - Joilson B Lelis
- Division of Periodontics, Dental School of Araçatuba, Univ. Estadual Paulista-UNESP, Araçatuba, Brazil
| | - Stephen E Fucini
- Division of Periodontics, Dental School of Araçatuba, Univ. Estadual Paulista-UNESP, Araçatuba, Brazil.,Periodontics, Private Practice, Hanover, New Hampshire, USA
| | - Michel R Messora
- Division of Periodontics, School of Dentistry of Ribeirão Preto, University of São Paulo-USP, São Paulo, Brazil
| | - Valdir G Garcia
- Division of Periodontics, Dental School of Araçatuba, Univ. Estadual Paulista-UNESP, Araçatuba, Brazil
| | - Suely R M Bomfim
- Division of Clinical, Surgery and Animal Reproduction, Veterinary School of Araçatuba, Univ. Estadual Paulista-UNESP, Araçatuba, Brazil
| | - Edilson Ervolino
- Division of Histology, Dental School of Araçatuba, Univ. Estadual Paulista-UNESP, Araçatuba, Brazil
| | - Maria J H Nagata
- Division of Periodontics, Dental School of Araçatuba, Univ. Estadual Paulista-UNESP, Araçatuba, Brazil
| |
Collapse
|
22
|
Cui X, Zhang Y, Wang J, Huang C, Wang Y, Yang H, Liu W, Wang T, Wang D, Wang G, Ruan C, Chen D, Lu WW, Huang W, Rahaman MN, Pan H. Strontium modulates osteogenic activity of bone cement composed of bioactive borosilicate glass particles by activating Wnt/β-catenin signaling pathway. Bioact Mater 2020; 5:334-347. [PMID: 32206735 PMCID: PMC7078288 DOI: 10.1016/j.bioactmat.2020.02.016] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 02/24/2020] [Accepted: 02/26/2020] [Indexed: 01/06/2023] Open
Abstract
There is a need for synthetic grafts to reconstruct large bone defects using minimal invasive surgery. Our previous study showed that incorporation of Sr into bioactive borate glass cement enhanced the osteogenic capacity in vivo. However, the amount of Sr in the cement to provide an optimal combination of physicochemical properties and capacity to stimulate bone regeneration and the underlying molecular mechanism of this stimulation is yet to be determined. In this study, bone cements composed of bioactive borosilicate glass particles substituted with varying amounts of Sr (0 mol% to 12 mol% SrO) were created and evaluated in vitro and in vivo. The setting time of the cement increased with Sr substitution of the glass. Upon immersion in PBS, the cement degraded and converted more slowly to HA (hydroxyapatite) with increasing Sr substitution. The released Sr2+ modulated the proliferation, differentiation, and mineralization of hBMSCs (human bone marrow mesenchymal stem cells) in vitro. Osteogenic characteristics were optimally enhanced with cement (designated BG6Sr) composed of particles substituted with 6mol% SrO. When implanted in rabbit femoral condyle defects, BG6Sr cement supported better peri-implant bone formation and bone-implant contact, comparing to cements substituted with 0mol% or 9mol% SrO. The underlying mechanism is involved in the activation of Wnt/β-catenin signaling pathway in osteogenic differentiation of hBMSCs. These results indicate that BG6Sr cement has a promising combination of physicochemical properties and biological performance for minimally invasive healing of bone defects. A bone cement composed of Sr-substituted bioactive glass was developed. Sr can modulate the physicochemical properties of bone cements. Sr can enhance the osteogenic capacity of bone cements. Wnt/β-catenin pathway is involved in osteogenesis of the bone cements.
Collapse
Affiliation(s)
- Xu Cui
- Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Science, Shenzhen, 518055, PR China.,Schools of Materials Science and Engineering, Tongji University, Shanghai, 201804, PR China
| | - Yadong Zhang
- Department of Orthopaedics, Shanghai Fengxian Central Hospital, South Campus of the Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, 201499, PR China.,Department of Orthopaedics, Fengxian Central Hospital Affiliated to Southern Medical University, Shanghai, 201499, PR China
| | - Jianyun Wang
- Shenzhen Healthemes Biotechnology Co.Ltd, Shenzhen, 518102, PR China
| | - Chengcheng Huang
- Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Science, Shenzhen, 518055, PR China
| | - Yudong Wang
- Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Science, Shenzhen, 518055, PR China
| | - Hongsheng Yang
- Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Science, Shenzhen, 518055, PR China
| | - Wenlong Liu
- Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Science, Shenzhen, 518055, PR China
| | - Ting Wang
- Shenzhen Key Laboratory for Innovative Technology in Orthopaedic Trauma, Department of Orthopaedics, The University of Hong Kong-Shenzhen Hospital, University of Hong Kong, Shenzhen, 518053, PR China
| | - Deping Wang
- Schools of Materials Science and Engineering, Tongji University, Shanghai, 201804, PR China
| | - Guocheng Wang
- Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Science, Shenzhen, 518055, PR China
| | - Changshun Ruan
- Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Science, Shenzhen, 518055, PR China
| | - Dafu Chen
- Laboratory of Bone Tissue Engineering Beijing, Laboratory of Biomedical Materials, Beijing Research Institute of Orthopaedics and Traumatology, Beijing Jishuitan Hospital, Beijing, 100035, PR China
| | - William W Lu
- Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Science, Shenzhen, 518055, PR China.,Department of Orthopaedics and Traumatology, The University of Hong Kong, Room 907, Lab Block, 21 Sassoon Road, Hong Kong SAR, PR China
| | - Wenhai Huang
- Schools of Materials Science and Engineering, Tongji University, Shanghai, 201804, PR China
| | - Mohamed N Rahaman
- Department of Materials Science and Engineering, Missouri University of Science and Technology, MO, 65409-0340, USA
| | - Haobo Pan
- Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Science, Shenzhen, 518055, PR China
| |
Collapse
|
23
|
A Rationale for the Use of Clotted Vertebral Bone Marrow to Aid Tissue Regeneration Following Spinal Surgery. Sci Rep 2020; 10:4115. [PMID: 32139727 PMCID: PMC7058026 DOI: 10.1038/s41598-020-60934-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 02/19/2020] [Indexed: 12/25/2022] Open
Abstract
Vertebral body bone marrow aspirate (V-BMA), easily accessible simultaneously with the preparation of the site for pedicle screw insertion during spinal procedures, is becoming an increasingly used cell therapy approach in spinal surgery. However, the main drawbacks for V-BMA use are the lack of a standardized procedure and of a structural texture with the possibility of diffusion away from the implant site. The aim of this study was to evaluate, characterize and compare the biological characteristics of MSCs from clotted V-BMA and MSCs from whole and concentrate V-BMAs. MSCs from clotted V-BMA showed the highest cell viability and growth factors expression (TGF-β, VEGF-A, FGF2), the greatest colony forming unit (CFU) potency, cellular homogeneity, ability to differentiate towards the osteogenic (COL1AI, TNFRSF11B, BGLAP) and chondrogenic phenotype (SOX9) and the lowest ability to differentiate toward the adipogenic lineage (ADIPOQ) in comparison to all the other culture conditions. Additionally, results revealed that MSCs, differently isolated, expressed different level of HOX and TALE signatures and that PBX1 and MEIS3 were down-regulated in MSCs from clotted V-BMA in comparison to concentrated one. The study demonstrated for the first time that the cellular source inside the clotted V-BMA showed the best biological properties, representing an alternative and advanced cell therapy approach for patients undergoing spinal surgery.
Collapse
|
24
|
Leng Y, Ren G, Cui Y, Peng C, Wang J, Wu D, Liu H. Platelet-rich plasma-enhanced osseointegration of decellularized bone matrix in critical-size radial defects in rabbits. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:198. [PMID: 32309345 PMCID: PMC7154458 DOI: 10.21037/atm.2020.01.53] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Background Bone defects represent a common orthopedic condition. With its vast array of donor sources, xenogeneic bone shows considerable potential as a bone defect repair material but may also be associated with immune rejection and reduced osteogenic capacity. Thus, reducing the risks for immune rejection of xenogeneic bone, while improving its osseointegration, are key technical challenges. Methods Decellularized bone matrix scaffolds (DBMs) were fabricated by thorough ultrasonic vibration and subjection to chemical biological agents to remove cells and proteins. The DBMs were then mixed with platelet-rich plasma (PRP) under negative pressure. Growth factor concentrations of PRP, as well as the microstructures and biomechanical properties of the system, were examined. Furthermore, osseointegration capacities in the critical-size radial defect rabbit model were verified. Results Complete decellularization of the scaffold and limited reductions in mechanical strength were observed. Moreover, the obtained PRP demonstrated various growth factors. Radiographic evaluation and histological analysis verified that more new bone formation occurred in the DBM mixed with PRP group at 6 and 12 weeks after implantation compared with both the blank group and the DBM without PRP group. Conclusions Thorough physical and chemical treatments can reduce the probability of immune rejection of DBMs. The novel composite of DBMs mixed with PRP can serve as a promising bone regeneration material.
Collapse
Affiliation(s)
- Yi Leng
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun 130041, China
| | - Guangkai Ren
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun 130041, China
| | - Yutao Cui
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun 130041, China
| | - Chuangang Peng
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun 130041, China
| | - Jincheng Wang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun 130041, China
| | - Dankai Wu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun 130041, China
| | - He Liu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun 130041, China
| |
Collapse
|