1
|
Loree JM, Chan D, Lim J, Stuart H, Fidelman N, Koea J, Posavad J, Cummins M, Doucette S, Myrehaug S, Naraev B, Bailey DL, Bellizzi A, Laidley D, Boyle V, Goodwin R, Del Rivero J, Michael M, Pasieka J, Singh S. Biomarkers to Inform Prognosis and Treatment for Unresectable or Metastatic GEP-NENs. JAMA Oncol 2024; 10:1707-1720. [PMID: 39361298 DOI: 10.1001/jamaoncol.2024.4330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
Importance Evidence-based treatment decisions for advanced gastroenteropancreatic neuroendocrine neoplasms (GEP-NENs) require individualized patient-centered decision-making that accounts for patient and cancer characteristics. Objective To create an accessible guidance document to educate clinicians and patients on biomarkers informing prognosis and treatment in unresectable or metastatic GEP-NENs. Methods A multidisciplinary panel in-person workshop was convened to define methods. English language articles published from January 2016 to January 2023 in PubMed (MEDLINE) and relevant conference abstracts were reviewed to investigate prognostic and treatment-informing features in unresectable or metastatic GEP-NENs. Data from included studies were used to form evidence-based recommendations. Quality of evidence and strength of recommendations were determined using the Grading of Recommendations, Assessment, Development and Evaluations framework. Consensus was reached via electronic survey following a modified Delphi method. Findings A total of 131 publications were identified, including 8 systematic reviews and meta-analyses, 6 randomized clinical trials, 29 prospective studies, and 88 retrospective cohort studies. After 2 rounds of surveys, 24 recommendations and 5 good clinical practice statements were developed, with full consensus among panelists. Recommendations focused on tumor and functional imaging characteristics, blood-based biomarkers, and carcinoid heart disease. A single strong recommendation was made for symptomatic carcinoid syndrome informing treatment in midgut neuroendocrine tumors. Conditional recommendations were made to use grade, morphology, primary site, and urinary 5-hydroxyindoleacetic levels to inform treatment. The guidance document was endorsed by the Commonwealth Neuroendocrine Tumour Collaboration and the North American Neuroendocrine Tumor Society. Conclusions and Relevance The study results suggest that select factors have sufficient evidence to inform care in GEP-NENs, but the evidence for most biomarkers is weak. This article may help guide management and identify gaps for future research to advance personalized medicine and improve outcomes for patients with GEP-NENs.
Collapse
Affiliation(s)
- Jonathan M Loree
- BC Cancer, Vancouver Centre, Vancouver, British Columbia, Canada
| | - David Chan
- Northern Clinical School, University of Sydney, Sydney, Australia
- ENETS Centre of Excellence, Department of Medical Oncology, Royal North Shore Hospital, St Leonards, New South Wales, Australia
| | - Jennifer Lim
- St George Hospital, Sydney, New South Wales, Australia
- University of New South Wales, Sydney, New South Wales, Australia
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Heather Stuart
- University of British Columbia and BC Cancer Agency, Vancouver, British Columbia, Canada
| | | | - Jonathan Koea
- Te Whatu Ora Waitemata and the University of Auckland, Auckland, New Zealand
| | - Jason Posavad
- Canadian Neuroendocrine Tumours Society, Cornwall, Ontario, Canada
| | | | | | - Sten Myrehaug
- Odette Cancer Centre, Toronto, Ontario, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
| | - Boris Naraev
- Tampa General Hospital Cancer Institute, Tampa, Florida
| | - Dale L Bailey
- Department of Nuclear Medicine, Royal North Shore Hospital, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | | | - David Laidley
- Western University, London, Ontario, Canada
- Lawson Health Research Institute, London, Ontario, Canada
| | - Veronica Boyle
- School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- Department of Oncology, Auckland City Hospital, Te Whatu Ora Tamaki Makaurau, Auckland, New Zealand
| | - Rachel Goodwin
- Ottawa Hospital Cancer Centre, University of Ottawa, Ottawa, Ontario, Canada
| | - Jaydi Del Rivero
- Developmental Therapeutics Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Michael Michael
- NET Unit and ENETS Centre of Excellence, Peter MacCallum Cancer Centre, Sir Peter MacCallum Department of Medical Oncology, University of Melbourne, Parkville, Victoria, Australia
| | - Janice Pasieka
- Section of General Surgery, Division of Endocrine Surgery and Surgical Oncology, Department of Surgery and Oncology, University of Calgary Cumming School of Medicine, Calgary, Alberta, Canada
| | - Simron Singh
- University of Toronto, Toronto, Ontario, Canada
- Sunnybrook Odette Cancer Center, Sunnybrook Health Sciences Center, Toronto, Ontario, Canada
| |
Collapse
|
2
|
Pelosi G, Travis WD. Head-to-head: Should Ki67 proliferation index be included in the formal classification of pulmonary neuroendocrine neoplasms? Histopathology 2024; 85:535-548. [PMID: 38728050 DOI: 10.1111/his.15206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/07/2024] [Accepted: 04/18/2024] [Indexed: 08/31/2024]
Abstract
The reporting of lung neuroendocrine neoplasms (NENs) according to the 2021 World Health Organisation (WHO) is based on mitotic count per 2 mm2, necrosis assessment and a constellation of cytological and immunohistochemical details. Accordingly, typical carcinoid and atypical carcinoid are low- to intermediate-grade neuroendocrine tumours (NETs), while large-cell neuroendocrine carcinoma (NEC) and small-cell lung carcinoma are high-grade NECs. In small-sized diagnostic material (cytology and biopsy), the noncommittal term of carcinoid tumour/NET not otherwise specified (NOS) and metastatic carcinoid NOS have been introduced with regard to primary and metastatic diagnostic settings, respectively. Ki-67 antigen, a well-known marker of cell proliferation, has been included in the WHO classification as a non-essential but desirable criterion, especially to distinguish NETs from high-grade NECs and to delineate the provisional category of carcinoid tumours/NETs with elevated mitotic counts (> 10 mitoses per mm2) and/or Ki-67 proliferation index (≥ 30%). However, a wider use of this marker in the spectrum of lung NENs continues to be highly reported and debated, thus witnessing a never-subsided attention. Therefore, the arguments for and against incorporating Ki-67 in the classification and clinical practice of these neoplasms are discussed herein in detail.
Collapse
Affiliation(s)
- Giuseppe Pelosi
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Inter-Hospital Pathology Division, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) MultiMedica, Milan, Italy
| | - William D Travis
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York City, NY, USA
| |
Collapse
|
3
|
Schneider C, El-Koubani O, Intzepogazoglou D, Atkinson S, Menon K, Patel AG, Ross P, Srirajaskanthan R, Prachalias AA, Srinivasan P. Evaluation of treatment delays in hepatopancreatico-biliary surgery during the first COVID-19 wave. Ann R Coll Surg Engl 2023; 105:S12-S17. [PMID: 35175785 PMCID: PMC10390244 DOI: 10.1308/rcsann.2021.0317] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2021] [Indexed: 08/02/2023] Open
Abstract
INTRODUCTION The COVID-19 pandemic has caused oncological services worldwide to face unprecedented challenges resulting in treatment disruption for surgical patients. Hepatopancreatico-biliary (HPB) cancers are characterised by rapid disease progression. This study aims to assess delays in receiving surgery for this patient cohort during the first COVID-19 wave. METHODS Patients undergoing surgery between April and July 2020 (COVID-19 period) were compared with a control group from the preceding year. Delay in receiving surgery was defined as more than 50 days between referral and surgery date. Statistical analysis was carried out to evaluate predictors of delay and short-term outcomes. RESULTS During the COVID-19 and pre-COVID-19 periods, 94 and 115 patients underwent surgery, respectively. No patients contracted COVID-19 postoperatively. Some 118 patients waited more than 50 days for surgery versus 91 who received surgery within 50 days from referral. Independent predictors for surgical delay were undergoing surgery in the COVID-19 era (odds ratio (OR) 2.2, 95% confidence interval (CI) 1.2-4.1; p=0.015), referral pathway (OR 35.1, 95% CI 4.2-296; p=0.001) and presenting pathology (OR 8.3, 95% CI 1.2-56.1; p=0.03). Short-term outcomes were comparable between groups. CONCLUSIONS Patient referral pathway and presenting pathology may contribute to delays in undergoing HPB cancer surgery during COVID-19 outbreaks. It is hoped that a better understanding of these factors will aid in designing shifts in healthcare policy during future pandemic outbreaks.
Collapse
Affiliation(s)
- C Schneider
- King’s College Hospital NHS Foundation Trust, UK
| | - O El-Koubani
- King’s College Hospital NHS Foundation Trust, UK
| | | | - S Atkinson
- King’s College Hospital NHS Foundation Trust, UK
| | - K Menon
- King’s College Hospital NHS Foundation Trust, UK
| | - AG Patel
- King’s College Hospital NHS Foundation Trust, UK
| | - P Ross
- King’s College Hospital NHS Foundation Trust, UK
| | | | | | - P Srinivasan
- King’s College Hospital NHS Foundation Trust, UK
| |
Collapse
|
4
|
Reccia I, Pai M, Kumar J, Spalding D, Frilling A. Tumour Heterogeneity and the Consequent Practical Challenges in the Management of Gastroenteropancreatic Neuroendocrine Neoplasms. Cancers (Basel) 2023; 15:1861. [PMID: 36980746 PMCID: PMC10047148 DOI: 10.3390/cancers15061861] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/10/2023] [Accepted: 03/18/2023] [Indexed: 03/22/2023] Open
Abstract
Tumour heterogeneity is a common phenomenon in neuroendocrine neoplasms (NENs) and a significant cause of treatment failure and disease progression. Genetic and epigenetic instability, along with proliferation of cancer stem cells and alterations in the tumour microenvironment, manifest as intra-tumoural variability in tumour biology in primary tumours and metastases. This may change over time, especially under selective pressure during treatment. The gastroenteropancreatic (GEP) tract is the most common site for NENs, and their diagnosis and treatment depends on the specific characteristics of the disease, in particular proliferation activity, expression of somatostatin receptors and grading. Somatostatin receptor expression has a major role in the diagnosis and treatment of GEP-NENs, while Ki-67 is also a valuable prognostic marker. Intra- and inter-tumour heterogeneity in GEP-NENS, however, may lead to inaccurate assessment of the disease and affect the reliability of the available diagnostic, prognostic and predictive tests. In this review, we summarise the current available evidence of the impact of tumour heterogeneity on tumour diagnosis and treatment of GEP-NENs. Understanding and accurately measuring tumour heterogeneity could better inform clinical decision making in NENs.
Collapse
Affiliation(s)
- Isabella Reccia
- General Surgical and Oncology Unit, Policlinico San Pietro, Via Carlo Forlanini, 24036 Ponte San Pietro, Italy
| | - Madhava Pai
- Division of Surgery, Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0HS, UK
| | - Jayant Kumar
- Division of Surgery, Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0HS, UK
| | - Duncan Spalding
- Division of Surgery, Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0HS, UK
| | - Andrea Frilling
- Division of Surgery, Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0HS, UK
| |
Collapse
|
5
|
Holmager P, Langer SW, Federspiel B, Willemoe GL, Garbyal RS, Melchior L, Klose M, Kjaer A, Hansen CP, Andreassen M, Knigge U. Increase of Ki-67 index and influence on mortality in patients with neuroendocrine neoplasms. J Neuroendocrinol 2021; 33:e13018. [PMID: 34414612 DOI: 10.1111/jne.13018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 06/15/2021] [Accepted: 07/23/2021] [Indexed: 12/11/2022]
Abstract
An increase in the Ki-67 index in neuroendocrine neoplasms over time in relation to prognosis has scarcely been investigated. We aimed to assess whether the Ki-67 index changed over time and also whether a change influenced prognosis. Second, we investigated the difference in the Ki-67 index between primary tumour and metastases. From 1 January 1995 to 31 December 2019, 108 consecutive patients with gastroenteropancreatic tumours were included. Patients were followed with regard to an increase in the Ki-67 index and all-cause mortality. Ki-67 determination of the primary tumour at diagnosis and at the time of radiological progression, including developed metastases, was performed. A significant increase in the Ki-67 index was defined as a doubling of the value at disease progression compared to the value at diagnosis. In addition, in 14 patients, the Ki-67 index of the primary tumour and present metastases at the time of diagnosis was investigated. At diagnosis, there were no differences in the Ki-67 index between primary tumours and metastases (P = .41). Sixty-five patients had a doubling of the Ki-67 index. The median Ki-67 index at the time of progression 17% (1%-90%) vs 5% (1%-60%) at the time of diagnosis (P = .006). A doubling of the Ki-67 index was independently associated with all-cause mortality (hazard ratio = 2.7 [1.3-6.3], P = 0.02), after adjustment for relevant co-variables including the Ki-67 index at baseline. Doubling of the Ki-67 index at the time of disease progression was associated with a significantly higher risk of all-cause mortality. We recommend that a Ki-67 index is obtained whenever disease progression is recorded by demonstrated progression because it may have impact on the choice of treatment.
Collapse
Affiliation(s)
- Pernille Holmager
- ENETS Neuroendocrine Tumor Centre of Excellence, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Endocrinology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Seppo W Langer
- ENETS Neuroendocrine Tumor Centre of Excellence, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Oncology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Institute of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Birgitte Federspiel
- ENETS Neuroendocrine Tumor Centre of Excellence, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Pathology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Gro Linno Willemoe
- ENETS Neuroendocrine Tumor Centre of Excellence, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Pathology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Rajendra Singh Garbyal
- ENETS Neuroendocrine Tumor Centre of Excellence, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Pathology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Linea Melchior
- ENETS Neuroendocrine Tumor Centre of Excellence, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Pathology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Marianne Klose
- ENETS Neuroendocrine Tumor Centre of Excellence, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Endocrinology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Andreas Kjaer
- ENETS Neuroendocrine Tumor Centre of Excellence, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Carsten Palnaes Hansen
- ENETS Neuroendocrine Tumor Centre of Excellence, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Surgery, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Mikkel Andreassen
- ENETS Neuroendocrine Tumor Centre of Excellence, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Endocrinology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Ulrich Knigge
- ENETS Neuroendocrine Tumor Centre of Excellence, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Endocrinology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Surgery, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
6
|
Singh S, Bergsland EK, Card CM, Hope TA, Kunz PL, Laidley DT, Lawrence B, Leyden S, Metz DC, Michael M, Modahl LE, Myrehaug S, Padda SK, Pommier RF, Ramirez RA, Soulen M, Strosberg J, Sung A, Thawer A, Wei B, Xu B, Segelov E. Commonwealth Neuroendocrine Tumour Research Collaboration and the North American Neuroendocrine Tumor Society Guidelines for the Diagnosis and Management of Patients With Lung Neuroendocrine Tumors: An International Collaborative Endorsement and Update of the 2015 European Neuroendocrine Tumor Society Expert Consensus Guidelines. J Thorac Oncol 2020; 15:1577-1598. [PMID: 32663527 DOI: 10.1016/j.jtho.2020.06.021] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 06/14/2020] [Accepted: 06/29/2020] [Indexed: 12/12/2022]
Abstract
Lung neuroendocrine tumors (LNETs) are uncommon cancers, and there is a paucity of randomized evidence to guide practice. As a result, current guidelines from different neuroendocrine tumor societies vary considerably. There is a need to update and harmonize global consensus guidelines. This article reports the best practice guidelines produced by a collaboration between the Commonwealth Neuroendocrine Tumour Research Collaboration and the North American Neuroendocrine Tumor Society. We performed a formal endorsement and updating process of the 2015 European Neuroendocrine Tumor Society expert consensus article on LNET. A systematic review from January 2013 to October 2017 was conducted to procure the most recent evidence. The stepwise endorsement process involved experts from all major subspecialties, patients, and advocates. Guided by discussion of the most recent evidence, each statement from the European Neuroendocrine Tumor Society was either endorsed, modified, or removed. New consensus statements were added if appropriate. The search yielded 1109 new publications, of which 230 met the inclusion criteria. A total of 12 statements were endorsed, 22 statements were modified or updated, one was removed, and two were added. Critical answered questions for each topic in LNET were identified. Through the consensus process, guidelines for the management of patients with local and metastatic neuroendocrine tumors have been updated to include both recent evidence and practice changes relating to technological and definitional advances. The guidelines provide clear, evidence-based statements aimed at harmonizing the global approach to patients with LNETs, on the basis of the principles of person-centered and LNET-specific care. The importance of LNET-directed research and person-centered care throughout the diagnosis, treatment, and follow-up journey is emphasized along with directions for future collaborative research.
Collapse
Affiliation(s)
- Simron Singh
- Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada.
| | - Emily K Bergsland
- Department of Medicine, Division of Hematology/Oncology, University of California, San Francisco, San Francisco, California
| | | | - Thomas A Hope
- Department of Radiology and Biomedical Imaging, Division of Hematology/Oncology, University of California, San Francisco, San Francisco, California
| | - Pamela L Kunz
- Department of Medicine, Yale University, New Haven, Connecticut
| | - David T Laidley
- Department of Medical Imaging, Division of Nuclear Medicine, London Health Sciences Centre, London, Ontario, Canada
| | - Ben Lawrence
- Discipline of Oncology, University of Auckland, Auckland, New Zealand
| | - Simone Leyden
- Unicorn Foundation, Blairgowrie, Victoria, Australia
| | - David C Metz
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Michael Michael
- Peter MacCallum Cancer Centre, University of Melbourne, Melbourne, Victoria, Australia
| | - Lucy E Modahl
- Auckland Radiology Group, Auckland City Hospital, Auckland, New Zealand
| | - Sten Myrehaug
- Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Sukhmani K Padda
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California
| | | | - Robert A Ramirez
- Department of Medical Oncology, Ochsner Medical Center, New Orleans, Louisiana
| | - Michael Soulen
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | - Arthur Sung
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Stanford University, Stanford, California
| | - Alia Thawer
- Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Benjamin Wei
- Department of Surgery, Birmingham Medical Center, University of Alabama, Birmingham, Alabama
| | - Bin Xu
- Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Eva Segelov
- Department of Oncology, Monash Health, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
7
|
Abstract
Neuroendocrine tumors (NETs) comprise a heterogeneous group of neoplasms in which tumor staging/prognosis and response to treatments depend heavily on accurate and timely identification of the anatomic primary site or NET subtype. Despite recent technological advancements and use of multiple diagnostic modalities, 10% to 14% of newly diagnosed NETs are not fully characterized based on subtype or anatomic primary site. Inability to fully characterize NETs of unknown primary may cause delays in surgical intervention and limit potential treatment options. To address this unmet need, clinical validity and utility are being demonstrated for novel approaches that improve NET subtype or anatomic primary site identification. Functional imaging using Ga-radiolabeled DOTATATE positron emission tomography/computed tomography has been shown to overcome some false-positive and resolution issues associated with octreotide scanning and computed tomography/magnetic resonance imaging. Using a genomic approach, molecular tumor classification based on differential gene expression has demonstrated high diagnostic accuracy in blinded validation studies of different NET types and subtypes. Given the widespread availability of these technologies, we propose an algorithm for the workup of NETs of unknown primary that integrates these approaches. Including these technologies in the standard workup will lead to better NET subtype identification and improved treatment optimization for patients.
Collapse
|
8
|
Leung HH, Chan AW. Updates of pancreatic neuroendocrine neoplasm in the 2017 World Health Organization classification. SURGICAL PRACTICE 2019. [DOI: 10.1111/1744-1633.12353] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Howard H.W. Leung
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales HospitalThe Chinese University of Hong Kong Hong Kong
| | - Anthony W.H. Chan
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales HospitalThe Chinese University of Hong Kong Hong Kong
| |
Collapse
|
9
|
Dromain C, Pavel ME, Ruszniewski P, Langley A, Massien C, Baudin E, Caplin ME. Tumor growth rate as a metric of progression, response, and prognosis in pancreatic and intestinal neuroendocrine tumors. BMC Cancer 2019; 19:66. [PMID: 30642293 PMCID: PMC6332566 DOI: 10.1186/s12885-018-5257-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 12/27/2018] [Indexed: 01/02/2023] Open
Abstract
Background Lanreotide depot/autogel antitumor activity in intestinal/pancreatic neuroendocrine tumors (NETs) was demonstrated in the phase-3 CLARINET study (NCT00353496), based on significantly prolonged progression-free survival (PFS) versus placebo. Methods During CLARINET, patients with metastatic intestinal/pancreatic NETs received lanreotide depot/autogel 120 mg or placebo every 4 weeks for 96 weeks. Imaging data (response evaluation criteria in solid tumors [RECIST] v1.0, centrally reviewed) were re-evaluated in this post hoc analysis of tumor growth rate (TGR) in NETs. TGR (%/month) was calculated from two imaging scans during relevant periods: pre-treatment (TGR0); 12–24 weeks before randomization versus baseline; each treatment visit versus baseline (TGRTx-0); between consecutive treatment visits (TGRTx-Tx). To assess TGR as a measure of prognosis, PFS was compared for TGR0 subgroups stratified by optimum TGR0 cut-off; a multivariate analysis was conducted to identify prognostic factors for PFS. Results TGR0 revealed tumors growing during pre-treatment (median [interquartile range] TGR0: lanreotide 2.1%/month [0.2; 6.1]; placebo 2.7%/month [0.15; 6.8]), contrary to RECIST status. TGR was significantly reduced by 12 weeks with lanreotide versus placebo (difference in least-square mean TGR0–12 of − 2.9 [− 5.1, − 0.8], p = 0.008), a difference that was maintained at most subsequent visits. TGR0 > 4%/month had greater risk of progression/death than ≤4%/month (hazard ratio 4.1; [95% CI 2.5–6.5]; p < 0.001); multivariate analysis revealed lanreotide treatment, progression at baseline, TGR0, hepatic tumor load, and primary tumor type were independently associated with PFS. Conclusions TGR provides valuable information on tumor activity and prognosis in patients with metastatic intestinal/pancreatic NETs, and identifies early lanreotide depot/autogel antitumor activity. Trial registration Retrospective registration, 18 July 2006; EudraCT: 2005–004904-35; ClinicalTrials.gov: NCT00353496. Electronic supplementary material The online version of this article (10.1186/s12885-018-5257-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Clarisse Dromain
- Department of Diagnostic and Interventional Radiology, CHUV University Hospital, Lausanne, Switzerland.
| | - Marianne E Pavel
- Department of Medicine 1, Division of Endocrinology and Diabetology, Friedrich-Alexander Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Philippe Ruszniewski
- Division of Gastroenterology and Pancreatology, Beaujon Hospital, Clichy, France.,Faculty of Medicine, Paris Diderot University, Paris, France
| | | | - Christine Massien
- Ipsen, Boulogne-Billancourt, France.,APHP, Hypertension unit, Georges Pompidou European Hospital, F-75015, Paris, France
| | - Eric Baudin
- Endocrine Tumour and Nuclear Medicine Unit, Gustave-Roussy Cancer Campus, Villejuif, France
| | - Martyn E Caplin
- Neuroendocrine Tumour Unit, Department of Gastroenterology, Royal Free Hospital, London, UK
| | | |
Collapse
|
10
|
Pelosi G, Sonzogni A, Harari S, Albini A, Bresaola E, Marchiò C, Massa F, Righi L, Gatti G, Papanikolaou N, Vijayvergia N, Calabrese F, Papotti M. Classification of pulmonary neuroendocrine tumors: new insights. Transl Lung Cancer Res 2017; 6:513-529. [PMID: 29114468 PMCID: PMC5653522 DOI: 10.21037/tlcr.2017.09.04] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 09/12/2017] [Indexed: 12/11/2022]
Abstract
Neuroendocrine tumors of the lung (Lu-NETs) embrace a heterogeneous family of neoplasms classified into four histological variants, namely typical carcinoid (TC), atypical carcinoid (AC), large cell neuroendocrine carcinoma (LCNEC) and small cell lung carcinoma (SCLC). Defining criteria on resection specimens include mitotic count in 2 mm2 and the presence or absence of necrosis, alongside a constellation of cytological and histological traits including cell size and shape, nuclear features and overall architecture. Clinically, TC are low-grade malignant tumors, AC intermediate-grade malignant tumors and SCLC/LCNEC high-grade malignant full-blown carcinomas with no significant differences in survival between them. Homologous tumors arise in the thymus that occasionally have some difficulties in differentiating from the lung counterparts when presented with large unresectable or metastatic lesions. Immunohistochemistry (IHC) helps refine NE diagnosis at various anatomical sites, particularly on small-sized tissue material, in which only TC and small cell carcinoma categories can be recognized easily on hematoxylin & eosin stain, while AC and LCNEC can only be suggested on such material. The Ki-67 labeling index effectively separates carcinoids from small cell carcinoma and may prove useful for the clinical management of a metastatic disease to help the therapeutic decision-making process. Although carcinoids and high-grade neuroendocrine carcinomas in the lung and elsewhere make up separate tumor categories on molecular grounds, emerging data supports the concept of secondary high-grade NETs arising in the preexisting carcinoids, whose clinical and biological relevance will have to be placed into the proper context for the optimal management of these patients. In this review, we will discuss the selected, recent literature with a focus on current issues regarding Lu-NET nosology, i.e., classification, derivation and tumor evolution.
Collapse
Affiliation(s)
- Giuseppe Pelosi
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
- Inter-hospital Pathology Division, Science & Technology Park, IRCCS MultiMedica Group, Milan, Italy
| | - Angelica Sonzogni
- Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Sergio Harari
- Department of Medical Sciences and Division of Pneumology, San Giuseppe Hospital, Science & Technology Park, IRCCS MultiMedica Group, Milan, Italy
| | - Adriana Albini
- Laboratory of Vascular Biology and Angiogenesis, Science & Technology Park, IRCCS MultiMedica Group, Milan, Italy
| | - Enrica Bresaola
- Department of Pathology and Laboratory Medicine, European Institute of Oncology, Milan, Italy
| | - Caterina Marchiò
- Department of Medical Sciences, University of Turin, and Pathology Division, AOU Città della Salute e della Scienza, Turin, Italy
| | - Federica Massa
- Department of Oncology, University of Turin, and Pathology Division, AOU Città della Salute e della Scienza, Turin, Italy
| | - Luisella Righi
- Department of Oncology, University of Turin, Pathology Division, San Luigi Hospital, University of Turin, Turin, Italy
| | - Gaia Gatti
- Department of Oncology, University of Turin, Pathology Division, San Luigi Hospital, University of Turin, Turin, Italy
| | - Nikolaos Papanikolaou
- Inter-hospital Pathology Division, Science & Technology Park, IRCCS MultiMedica Group, Milan, Italy
| | - Namrata Vijayvergia
- Department of Hematology and Oncology, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Fiorella Calabrese
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padua, Padova, Italy
| | - Mauro Papotti
- Department of Oncology, University of Turin, and Pathology Division, AOU Città della Salute e della Scienza, Turin, Italy
| |
Collapse
|