1
|
Wang ZD, Feng YF, Wang YS, Ma Y, Liu J, Li D, Li S, Zhang GD. Peripheral arterial rather than venous blood is a better source of circulating tumor cells in early lung cancer. Thorac Cancer 2024; 15:654-660. [PMID: 38297462 DOI: 10.1111/1759-7714.15236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/26/2023] [Accepted: 01/20/2024] [Indexed: 02/02/2024] Open
Abstract
BACKGROUND Circulating tumor cells (CTCs) play a crucial role in the early diagnosis and prognosis of lung cancer. Identification of a more suitable sample source could be a breakthrough towards enhancing CTC detectability in early-stage lung cancer. We investigated the differences in detectable CTCs between peripheral arterial and venous blood in early- and mid-stage lung cancer patients undergoing surgery and analyzed the association between clinicopathological factors and detectable CTCs in peripheral arterial and venous blood. METHODS Peripheral arterial and venous blood was collected in 5-mL samples from 56 patients with surgically resected and pathologically clear at early- or mid-stage lung cancer. Blood specimens were enriched for CTCs based on isolation by size of epithelial tumor cells. The CTCs were identified using Swiss Giemsa staining and immunohistochemistry for CD45/CD31. RESULTS In stage I lung cancer, CTC-positive rate was significantly higher in peripheral arterial than in venous blood (45.45% vs. 17.39%). There was no significant difference in the number of detectable CTCs between peripheral arterial and venous blood. A low degree of differentiation was associated with a high positive rate of CTCs in peripheral venous blood. The number of circulating tumor microemboli was significantly higher in patients with tumor size >3 cm compared with ≤3 cm. CONCLUSION CTC levels in peripheral arterial and venous blood differed little in lung cancer patients.Compared to peripheral venous blood, peripheral arterial blood had a higher CTC positivity rate in early-stage lung cancer.This study was favorable for early detection and monitoring of lung cancer.
Collapse
Affiliation(s)
- Zhen-Dan Wang
- Department of Thoracic Surgery, Shandong University Cancer Center, Jinan, China
- Department of Thoracic Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Yi-Fei Feng
- School of Clinical and Basic Medicine, Shandong First Medical University, Jinan, China
| | - Yu-Shuo Wang
- Department of Primary Care and Population Health, Institute of Epidemiology and Public Health, London's Global University, London, UK
| | - Ying Ma
- Shandong Pharmaceutical Research Institute, Jinan, China
| | - Jiyan Liu
- Shandong Pharmaceutical Research Institute, Jinan, China
| | - Dihua Li
- Shandong Pharmaceutical Research Institute, Jinan, China
| | - Sheng Li
- Shandong Pharmaceutical Research Institute, Jinan, China
- Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Guo-Dong Zhang
- Department of Thoracic Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
2
|
Hofman P, Denis MG. The use of minimal residual disease in thoracic oncology: Gaps between promises and the on-the-ground reality of daily practice. Cytopathology 2024; 35:7-15. [PMID: 37222472 DOI: 10.1111/cyt.13246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/08/2023] [Accepted: 04/27/2023] [Indexed: 05/25/2023]
Abstract
The assessment of minimal residual disease (MRD) from blood samples of patients with resected non-small cell lung carcinoma (NSCLC) is promising and opens up many opportunities for the optimisation of patient care in daily practice. Notably, this includes the potential for escalation or de-escalation of adjuvant therapies. Thus, the evaluation of MRD status can directly contribute to an increase in the overall survival of early stage NSCLC patients and/or limit therapeutic but also "financial" toxicity. Therefore, several clinical trials recently evaluated MRD in early stage NSCLC by integrating and retrospectively comparing the results of MRD assessments. In this context, there is an urgent need to close the gap between clinical research and the use of the evaluation of MRD in routine daily practice. Further action needs to be taken, particularly in evaluating the pertinence of the detection of MRD in prospective interventional clinical studies. This may be done in part by comparing different parameters, such as the techniques used, the different time points and the cutoffs of MRD assessments. This article investigates the assessment of MRD in non-small cell lung cancers, with a special focus on the issues associated with the various assays and the limitations of using circulating free DNA analyses for MRD assessment in early stage lung cancer. Recommendations and tips for the optimisation of MRD evaluation in non-small cell lung cancers are provided.
Collapse
Affiliation(s)
- Paul Hofman
- FHU OncoAge, Laboratory of Clinical and Experimental Pathology, Pasteur Hospital, Université Côte d'Azur, Nice, France
| | - Marc G Denis
- Department of Biochemistry, INSERM, CNRS, Immunology and New Concepts in Immunotherapy, Nantes Université, CHU Nantes, Nantes, France
| |
Collapse
|
3
|
Zhou Q, He Q, He W, Wang C, Liu G, Wang K, Li H, Li J, Xiao W, Fang Q, Peng L, Han Y, Wang D, Leng X. Clinical value of folate receptor-positive circulating tumor cells in patients with esophageal squamous cell carcinomas: a retrospective study. BMC Cancer 2023; 23:1171. [PMID: 38037003 PMCID: PMC10687783 DOI: 10.1186/s12885-023-11565-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 10/25/2023] [Indexed: 12/02/2023] Open
Abstract
BACKGROUND The aim of the study is to explore the role of preoperative folate receptor-positive circulating tumor cell (FR+CTC) levels in predicting disease-free survival (DFS) and overall survival (OS) in patients with esophageal squamous cell carcinomas (ESCC). METHODS Three ml blood samples were prospectively drawn from ESCC patients, and ligand-targeted polymerase chain reaction (LT-PCR) was used for the quantification of FR+CTCs. Other serum indicators were measured by traditional methods. Clinicopathological characteristics were obtained from the hospital medical record system, DFS and OS data were obtained by follow-up. The correlation between clinico-pathological characteristics, DFS, and OS and FR+CTCs were analyzed, respectively. Risk factors potentially affecting DFS and OS were explored by Cox regression analysis. RESULTS there were no significant correlations between FR+CTCs and patient age, sex, albumin, pre-albumin, C-reactive protein (CRP), ferritin and CRP/Albumin ratio, tumor size, grade of differentiation, lymph node metastasis, TNM stage, perineural invasion/vessel invasion (all P > 0.05). Nevertheless, preoperative FR+CTCs were an independent prognostic factor for DFS (HR 2.7; 95% CI 1.31-, P = 0.007) and OS (HR 3.37; 95% CI 1.06-, P = 0.04). DFS was significantly shorter for patients with post-operative FR+CTCs ≥ 17.42 FU/3ml compared with patients < 17.42 FU/3ml (P = 0.0012). For OS, it was shorter for patients with FR+CTCs ≥ 17.42 FU/3ml compared with patients < 17.42 FU/3ml, however, the difference did not reach statistical significance (P = 0.51). CONCLUSIONS ESCC patients with high FR+CTCs tend to have a worse prognosis. FR+CTCs may monitor the recurrence of cancers in time, accurately assess patient prognosis, and guide clinical decision-making. TRIAL REGISTRATION The study was approved by the Sichuan Cancer Hospital & Institute Ethics Committee (No. SCCHEC-02-2022-050).
Collapse
Affiliation(s)
- Qiang Zhou
- Department of Thoracic Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, No.55, Section 4, South Renmin Road, Chengdu, 610041, China
| | - Qiao He
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Wenwu He
- Department of Thoracic Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, No.55, Section 4, South Renmin Road, Chengdu, 610041, China
| | - Chenghao Wang
- Department of Thoracic Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, No.55, Section 4, South Renmin Road, Chengdu, 610041, China
| | - Guangyuan Liu
- Department of Thoracic Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, No.55, Section 4, South Renmin Road, Chengdu, 610041, China
| | - Kangning Wang
- Department of Thoracic Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, No.55, Section 4, South Renmin Road, Chengdu, 610041, China
| | - Haojun Li
- Department of Thoracic Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, No.55, Section 4, South Renmin Road, Chengdu, 610041, China
| | - Jialong Li
- Department of Thoracic Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, No.55, Section 4, South Renmin Road, Chengdu, 610041, China
| | - Wenguang Xiao
- Department of Thoracic Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, No.55, Section 4, South Renmin Road, Chengdu, 610041, China
| | - Qiang Fang
- Department of Thoracic Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, No.55, Section 4, South Renmin Road, Chengdu, 610041, China
| | - Lin Peng
- Department of Thoracic Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, No.55, Section 4, South Renmin Road, Chengdu, 610041, China
| | - Yongtao Han
- Department of Thoracic Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, No.55, Section 4, South Renmin Road, Chengdu, 610041, China
| | - Dongsheng Wang
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Xuefeng Leng
- Department of Thoracic Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, No.55, Section 4, South Renmin Road, Chengdu, 610041, China.
| |
Collapse
|
4
|
Qi C, Xiong XZ. Value of peripheral blood circulating tumor cell detection in the diagnosis of thoracic diseases and the prediction of severity. Clin Exp Med 2023; 23:2331-2339. [PMID: 36929453 PMCID: PMC10543157 DOI: 10.1007/s10238-023-01022-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 02/05/2023] [Indexed: 03/18/2023]
Abstract
Circulating tumor cell (CTC) detection, as a noninvasive liquid biopsy method, has been used in the diagnosis, prognostic indication, and monitoring of a variety of cancers. In this study, we aimed to investigate whether CTC detection could be used in the early diagnosis and prediction of severity of thoracic diseases. We enrolled 168 thoracic disease patients, all of whom underwent pathological biopsy. Carcinoembryonic antigen (CEA) and neuron-specific enolase (NSE) measurement was also performed in 146 patients. There were 131 cases of malignant thoracic diseases and 37 cases of benign lesions. We detected CTCs in a 5 ml peripheral blood sample with the CTCBiopsy® system and analyzed the value of CTC count for predicting disease severity. Of 131 patients with a diagnosis of thoracic malignancy, CTCs were found in blood samples from 122 patients. However, only 2 out of 37 patients with benign thoracic disease had no detectable CTCs. There was no significant correlation between CTC count and benign and malignant lesions (P = 0.986). However, among 131 patients who had been diagnosed with malignant lesions, 33 had lymph node metastasis or distant metastasis. The presence of CTCs was significantly correlated with metastasis (P = 0.016 OR = 1.14). The area under the receiver operating characteristic (ROC) curve was 0.625 (95% confidence interval (CI), 0.519 to 0.730 P = 0.032). In addition, with stage IA1 as the cutoff, all patients were further divided into an early-stage group and a late-stage group. CTC count was significantly correlated with disease progression (P = 0.031 OR = 1.11), with an area under the curve (AUC) of 0.599 (95% CI, 0.506-0.692 P = 0.47). The sensitivity and specificity of CTC detection for the diagnosis of disease stage were 72.3% and 45.5%, respectively. In addition, the cutoff of 2.5 CTCs was the same when predicting disease metastasis and staging. Furthermore, the combination of CTC count, demographic characteristics and tumor markers had better predictive significance for disease staging. CTC count can effectively indicate the stages and metastasis of thoracic diseases, but it cannot differentiate benign and malignant diseases.
Collapse
Affiliation(s)
- Chang Qi
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei, China
| | - Xian-Zhi Xiong
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei, China.
| |
Collapse
|
5
|
Kurma K, Alix-Panabières C. Mechanobiology and survival strategies of circulating tumor cells: a process towards the invasive and metastatic phenotype. Front Cell Dev Biol 2023; 11:1188499. [PMID: 37215087 PMCID: PMC10196185 DOI: 10.3389/fcell.2023.1188499] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 04/18/2023] [Indexed: 05/24/2023] Open
Abstract
Metastatic progression is the deadliest feature of cancer. Cancer cell growth, invasion, intravasation, circulation, arrest/adhesion and extravasation require specific mechanical properties to allow cell survival and the completion of the metastatic cascade. Circulating tumor cells (CTCs) come into contact with the capillary bed during extravasation/intravasation at the beginning of the metastatic cascade. However, CTC mechanobiology and survival strategies in the bloodstream, and specifically in the microcirculation, are not well known. A fraction of CTCs can extravasate and colonize distant areas despite the biomechanical constriction forces that are exerted by the microcirculation and that strongly decrease tumor cell survival. Furthermore, accumulating evidence shows that several CTC adaptations, via molecular factors and interactions with blood components (e.g., immune cells and platelets inside capillaries), may promote metastasis formation. To better understand CTC journey in the microcirculation as part of the metastatic cascade, we reviewed how CTC mechanobiology and interaction with other cell types in the bloodstream help them to survive the harsh conditions in the circulatory system and to metastasize in distant organs.
Collapse
Affiliation(s)
- Keerthi Kurma
- Laboratory of Rare Human Circulating Cells (LCCRH), University Medical Centre of Montpellier, Montpellier, France
- CREEC/CANECEV, MIVEGEC (CREES), University of Montpellier, CNRS, IRD, Montpellier, France
- European Liquid Biopsy Society (E LBS), Hamburg, Germany
| | - Catherine Alix-Panabières
- Laboratory of Rare Human Circulating Cells (LCCRH), University Medical Centre of Montpellier, Montpellier, France
- CREEC/CANECEV, MIVEGEC (CREES), University of Montpellier, CNRS, IRD, Montpellier, France
- European Liquid Biopsy Society (E LBS), Hamburg, Germany
| |
Collapse
|
6
|
Advances in the Biology, Detection Techniques, and Clinical Applications of Circulating Tumor Cells. JOURNAL OF ONCOLOGY 2022; 2022:7149686. [PMID: 36090904 PMCID: PMC9462976 DOI: 10.1155/2022/7149686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 07/12/2022] [Accepted: 08/02/2022] [Indexed: 12/01/2022]
Abstract
Circulating tumor cells (CTCs) play a crucial role in tumor recurrence and metastasis, and their early detection has shown remarkable benefits in clinical theranostics. However, CTCs are extremely rare, thus detecting them in the blood is very challenging. New CTC detection techniques are continuously being developed, enabling deeper analysis of CTC biology and potential clinical application. This article reviews current CTC detection techniques and their clinical application. CTCs have provided, and will continue to provide, important insights into the process of metastasis, which could lead to development of new therapies for different cancers.
Collapse
|
7
|
Tian R, Li X, Zhang H, Ma L, Zhang H, Wang Z. Ulex Europaeus Agglutinin-I-Based Magnetic Isolation for the Efficient and Specific Capture of SW480 Circulating Colorectal Tumor Cells. ACS OMEGA 2022; 7:30405-30411. [PMID: 36061664 PMCID: PMC9435041 DOI: 10.1021/acsomega.2c03702] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
The efficient and specific capture of circulating tumor cells (CTCs) from patients' peripheral blood is of significant value in precise cancer diagnosis and cancer therapy. As fine targeting molecules, lectins can recognize cancer cells specifically due to the abnormal glycosylation of molecules on the cancer cell membrane and the specific binding of lectin with glycoconjugates. Herein, a Ulex europaeus agglutinin-I (UEA-I)-based magnetic isolation strategy was developed to efficiently and specifically capture α-1,2-fucose overexpression CTCs from colorectal cancer (CRC) patients' peripheral blood. Using UEA-I-modified Fe3O4 magnetic beads (termed MB-UEA-I), up to 94 and 89% of target cells (i.e., SW480 CRC cells) were captured from the cell spiking complete cell culture medium and whole blood, respectively. More than 90% of captured cells show good viability and proliferation ability without detaching from MB-UEA-I. In combination with three-color immunocytochemistry (ICC) identification, MB-UEA-I has been successfully used to capture CTCs from CRC patients' peripheral blood. The experimental results indicate a correlation between CTC characterization and tumor metastasis. Specifically, MB-UEA-I can be applied to screen early CRC by capturing CTCs when served as a liquid biopsy. The presented work offers a new insight into developing cost-effective lectin-functionalized methods for biomedical applications.
Collapse
Affiliation(s)
- Rongrong Tian
- State
Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- University
of Science and Technology of China, Jinzhai Road, Baohe District, Hefei, Anhui 230026, P. R. China
| | - Xiaodong Li
- Department
of Radiology, The First Hospital of Jilin
University, Changchun, Jilin 130021, P. R. China
| | - Hua Zhang
- State
Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Lina Ma
- State
Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Huimao Zhang
- Department
of Radiology, The First Hospital of Jilin
University, Changchun, Jilin 130021, P. R. China
| | - Zhenxin Wang
- State
Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- University
of Science and Technology of China, Jinzhai Road, Baohe District, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
8
|
Functional analysis of circulating tumour cells: the KEY to understand the biology of the metastatic cascade. Br J Cancer 2022; 127:800-810. [PMID: 35484215 PMCID: PMC9427839 DOI: 10.1038/s41416-022-01819-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 03/21/2022] [Accepted: 04/01/2022] [Indexed: 02/06/2023] Open
Abstract
Metastasis formation is the main cause of cancer-related death in patients with solid tumours. At the beginning of this process, cancer cells escape from the primary tumour to the blood circulation where they become circulating tumour cells (CTCs). Only a small subgroup of CTCs will survive during the harsh journey in the blood and colonise distant sites. The in-depth analysis of these metastasis-competent CTCs is very challenging because of their extremely low concentration in peripheral blood. So far, only few groups managed to expand in vitro and in vivo CTCs to be used as models for large-scale descriptive and functional analyses of CTCs. These models have shown already the high variability and complexity of the metastatic cascade in patients with cancer, and open a new avenue for the development of new diagnostic and therapeutic approaches.
Collapse
|
9
|
Garrido Castillo LN, Mejean A, Vielh P, Anract J, Decina A, Nalpas B, Benali-Furet N, Desitter I, Paterlini-Bréchot P. Predictive Value of Circulating Tumor Cells Detected by ISET® in Patients with Non-Metastatic Prostate Cancer Undergoing Radical Prostatectomy. Life (Basel) 2022; 12:life12020165. [PMID: 35207452 PMCID: PMC8877346 DOI: 10.3390/life12020165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 11/16/2022] Open
Abstract
There is an unmet need for reliable biomarkers to predict prostate cancer recurrence after prostatectomy in order to better guide the choice of surgical treatment. We have evaluated the predictive value of the preoperative detection of Circulating Tumor Cells (CTC) for prostate cancer recurrence after surgery. A cohort of 108 patients with non-metastatic prostate adenocarcinoma undergoing radical prostatectomy was tested for the presence of CTC before prostatectomy using ISET®. Disease recurrence was assessed by the increase in serum PSA level after prostatectomy. The following factors were assessed for statistical association with prostate cancer recurrence: the presence of CTC, serum PSA, Gleason score, and pT stage using univariate and multivariate analyses, with a mean follow-up of 34.9 months. Prostate cancer recurrence was significantly associated with the presence of at least 1 CTC at the preoperative time point (p < 0.001; Predictive value = 0.83). Conversely, the absence of prostate cancer recurrence was significantly associated with the lack of CTC detection at diagnosis (Predictive value = 1). Our multivariate analysis shows that only CTC presence is an independent risk factor associated with prostate cancer recurrence after prostatectomy (p < 0.001). Our results suggest that CTC detection by ISET® before surgery is an interesting candidate predictive marker for cancer recurrence in patients with non-metastatic PCa.
Collapse
Affiliation(s)
- Laura Nalleli Garrido Castillo
- Institut Necker Enfants Malades (INEM), INSERM U1151, Faculté de Médecine, Université de Paris, 75015 Paris, France; (L.N.G.C.); (J.A.)
- INSERM U807, Faculté de Médecine, Université de Paris, 75015 Paris, France;
| | - Arnaud Mejean
- Service d’Urologie, Hôpital Européen Georges Pompidou, 75015 Paris, France;
| | - Philippe Vielh
- Medipath and American Hospital of Paris, 92200 Paris, France;
| | - Julien Anract
- Institut Necker Enfants Malades (INEM), INSERM U1151, Faculté de Médecine, Université de Paris, 75015 Paris, France; (L.N.G.C.); (J.A.)
- Service d’Urologie, Hôpital Cochin, 75005 Paris, France
| | | | - Bertrand Nalpas
- Service d’addictologie, Université de Montpellier, 34090 Montpellier, France;
| | | | | | - Patrizia Paterlini-Bréchot
- Institut Necker Enfants Malades (INEM), INSERM U1151, Faculté de Médecine, Université de Paris, 75015 Paris, France; (L.N.G.C.); (J.A.)
- Rarecells Diagnostics, 75280 Paris, France; (A.D.); (I.D.)
- Laboratoires de Biochimie Hôpital Necker-Enfants Malades, 75015 Paris, France
- Correspondence:
| |
Collapse
|
10
|
Subpopulations of Circulating Cells with Morphological Features of Malignancy Are Preoperatively Detected and Have Differential Prognostic Significance in Non-Small Cell Lung Cancer. Cancers (Basel) 2021; 13:cancers13174488. [PMID: 34503298 PMCID: PMC8431290 DOI: 10.3390/cancers13174488] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 12/25/2022] Open
Abstract
Simple Summary Lung cancer is by far the main cause of cancer-related deaths among both men and women. Early detection of malignant nodules and non-invasive monitoring of disease status is essential to increase the chance of cure. In this study, we analyzed the frequency and the biological features of circulating tumor cells, i.e., cells released from the tumor and in transit in the bloodstream, in patients with a diagnosis of non-small cell lung cancer undergoing surgical resection, with the aim to develop a blood-based diagnostic test and to promptly identify patients at risk of post-operative disease recurrence. Abstract Background: Non-small cell lung cancer (NSCLC) frequently presents when surgical intervention is no longer feasible. Despite local treatment with curative intent, patients might experience disease recurrence. In this context, accurate non-invasive biomarkers are urgently needed. We report the results of a pilot study on the diagnostic and prognostic role of circulating tumor cells (CTCs) in operable NSCLC. Methods: Blood samples collected from healthy volunteers (n = 10), nodule-negative high-risk individuals enrolled in a screening program (n = 7), and NSCLC patients (n = 74) before surgery were analyzed (4 mL) for the presence of cells with morphological features of malignancy enriched through the ISET® technology. Results: CTC detection was 60% in patients, while no target cells were found in lung cancer-free donors. We identified single CTCs (sCTC, 46%) and clusters of CTCs and leukocytes (heterotypic clusters, hetCLU, 31%). The prevalence of sCTC (sCTC/4 mL ≥ 2) or the presence of hetCLU predicted the risk of disease recurrence within the cohort of early-stage (I–II, n = 52) or advanced stage cases (III–IVA, n = 22), respectively, while other tumor-related factors did not inform prognosis. Conclusions: Cancer cell hematogenous dissemination occurs frequently in patients with NSCLC without clinical evidence of distant metastases, laying the foundation for the application of cell-based tests in screening programs. CTC subpopulations are fine prognostic classifiers whose clinical validity should be further investigated in larger studies.
Collapse
|
11
|
Real-Time Detection of Tumor Cells during Capture on a Filter Element Significantly Enhancing Detection Rate. BIOSENSORS-BASEL 2021; 11:bios11090312. [PMID: 34562902 PMCID: PMC8472380 DOI: 10.3390/bios11090312] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/23/2021] [Accepted: 08/29/2021] [Indexed: 12/21/2022]
Abstract
Circulating tumor cells (CTCs) that enter the bloodstream play an important role in the formation of metastases. The prognostic significance of CTCs as biomarkers obtained from liquid biopsies is intensively investigated and requires accurate methods for quantification. The purpose of this study was the capture of CTCs on an optically accessible surface for real-time quantification. A filtration device was fabricated from a transparent material so that capturing of cells could be observed microscopically. Blood samples were spiked with stained tumor cells and the sample was filtrated using a porous structure with pore sizes of 7.4 µm. The possible removal of lysed erythrocytes and the retention of CTCs were assessed. The filtration process was observed in real-time using fluorescence microscopy, whereby arriving cells were counted in order to determine the number of CTCs present in the blood. Through optimization of the microfluidic channel design, the cell retention rate could be increased by 13% (from 76% ± 7% to 89% ± 5%). Providing the possibility for real-time detection significantly improved quantification efficiency even for the smallest cells evaluated. While end-point evaluation resulted in a detection rate of 63% ± 3% of the spiked cells, real-time evaluation led to an increase of 21% to 84% ± 4%. The established protocol provides an advantageous and efficient method for integration of fully automated sample preparation and CTC quantification into a lab-on-a-chip system.
Collapse
|
12
|
Agnoletto C, Caruso C, Garofalo C. Heterogeneous Circulating Tumor Cells in Sarcoma: Implication for Clinical Practice. Cancers (Basel) 2021; 13:cancers13092189. [PMID: 34063272 PMCID: PMC8124844 DOI: 10.3390/cancers13092189] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary The present review is aimed to discuss the relevance of assaying for the presence and isolation of circulating tumor cells (CTCs) in patients with sarcoma. Just a few studies have been performed to detect and enumerate viable CTCs in sarcoma and a majority of them still represent proof-of-concept studies, while more frequently tumor cells have been detected in the circulation by using the PCR-based method. Nevertheless, recent advances in technologies allowed detection of epithelial–mesenchymal transitioned CTCs from patients with mesenchymal malignancies, despite results being mostly preliminary. The possibility to identify CTCs holds a great promise for both applications of liquid biopsy in sarcoma for precision medicine, and for research purposes to pinpoint the mechanism of the metastatic process through the characterization of tumor mesenchymal cells. Coherently, clinical trials in sarcoma have been designed accordingly to detect CTCs, for diagnosis, identification of novel therapeutic targets and resistance mechanisms of systemic therapies, and patient stratification. Abstract Bone and soft tissue sarcomas (STSs) represent a group of heterogeneous rare malignant tumors of mesenchymal origin, with a poor prognosis. Due to their low incidence, only a few studies have been reported addressing circulating tumor cells (CTCs) in sarcoma, despite the well-documented relevance for applications of liquid biopsy in precision medicine. In the present review, the most recent data relative to the detection and isolation of viable and intact CTCs in these tumors will be reviewed, and the heterogeneity in CTCs will be discussed. The relevance of epithelial–mesenchymal plasticity and stemness in defining the phenotypic and functional properties of these rare cells in sarcoma will be highlighted. Of note, the existence of dynamic epithelial–mesenchymal transition (EMT)-related processes in sarcoma tumors has only recently been related to their clinical aggressiveness. Also, the presence of epithelial cell adhesion molecule (EpCAM)-positive CTC in sarcoma has been weakly correlated with poor outcome and disease progression, thus proving the existence of both epithelial and mesenchymal CTC in sarcoma. The advancement in technologies for capturing and enumerating all diverse CTCs phenotype originating from these mesenchymal tumors are presented, and results provide a promising basis for clinical application of CTC detection in sarcoma.
Collapse
|
13
|
Zeng H, Veeramootoo JS, Ma G, Jiang Y, Wang J, Xia T, Liu X. Clinical value and feasibility of ISET in detecting circulating tumor cells in early breast cancer. Transl Cancer Res 2020; 9:4297-4305. [PMID: 35117796 PMCID: PMC8799038 DOI: 10.21037/tcr-19-2662] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 06/03/2020] [Indexed: 12/24/2022]
Abstract
Background Patients with operable breast cancer have a better prognosis for recovery. However, once distant organ metastasis occurs, the chance of a long-term survival or a cure is limited. The collection and counting of circulating tumor cells (CTCs) by reliable detection techniques are of increasing importance in the diagnosis of early metastasis and prognosis of disease progression. Isolation by size of epithelial tumor cells (ISET) has the advantage of simplicity of operation and high homogeneity. It is practical for large-scale clinical detection showing cell abundance. The value of ISET in the detection of circulating breast cancers in the blood has not been determined. The purpose of this study is to explore the feasibility of applying ISET to detect CTCs by determining the detection rate of ISET in operable breast cancer and by evaluating the correlation between detection rate, cell count and clinical factors such as molecular typing and pathological staging. Methods The experiment included 193 breast cancer patients who were diagnosed by core needle biopsy before the operation. 10 mL of venous blood was collected from the patients preoperatively, and CTCs in their blood samples were counted and analyzed by ISET. Results Patients were divided into groups according to pathology and immunohistochemistry. The overall detection rate of CTCs by ISET was 41.24%. The detection rate, the number of overall CTCs and the average number of CTCs in each group were analyzed individually. No significant differences were observed between the different groups. Conclusions Although ISET has a relatively good detection rate for circulating breast cancer cells, it fails to provide more information on pathological staging, molecular classification and so forth.
Collapse
Affiliation(s)
- Hanling Zeng
- Department of Breast Surgery, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | | | - Ge Ma
- Department of Breast Surgery, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center For Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yi Jiang
- Department of Breast Surgery, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Jingyi Wang
- Department of Breast Surgery, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Tiansong Xia
- Department of Breast Surgery, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center For Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Xiaoan Liu
- Department of Breast Surgery, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| |
Collapse
|
14
|
Ried K, Tamanna T, Matthews S, Eng P, Sali A. New Screening Test Improves Detection of Prostate Cancer Using Circulating Tumor Cells and Prostate-Specific Markers. Front Oncol 2020; 10:582. [PMID: 32391268 PMCID: PMC7192049 DOI: 10.3389/fonc.2020.00582] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 03/30/2020] [Indexed: 12/18/2022] Open
Abstract
The current screening-test for prostate cancer, affecting 10% of men worldwide, has a high false negative rate and a low true positive rate. A more reliable screening test is needed. Circulating-Tumor-Cells (CTC) provide a biomarker for early carcinogenesis, cancer progression and treatment effectiveness. The cytology-based ISET®-CTC Test is a clinically validated blood test with high sensitivity and specificity. This study aimed to evaluate the ISET®-CTC test combined with prostate-specific-marker staining as a screening test for the detection of prostate cancer. We selected a group of 47 men from our ongoing CTC screening study involving 2,000 patient-tests from Sep-2014 to July-2019, who also underwent standard diagnostic cancer testing before or after CTC testing. While 20 of the 47 men were diagnosed with prostate cancer before the ISET®-CTC test, 27 men underwent screening. We studied the CTC identified in 45 CTC-positive men by Immuno-Cyto-Chemistry (ICC) assays with the prostate-specific-marker PSA. CTC were ICC-PSA-marker positive in all men diagnosed with primary prostate cancer (n = 20). Secondary cancers were detected in 63% (n = 7/11) of men with mixed CTC-population (ICC-PSA-positive/ICC-PSA-negative). Of the 27 men screened, 25 had CTC, and 84% of those (n = 20) were positive for the prostate-specific-PSA-marker. Follow-up testing suggested suspected prostate cancer in 20/20 men by a positive PSMA-PET scan, and biopsies performed in 45% (n = 9/20) men confirmed the diagnosis of early prostate cancer. Kidney cancer or B-cell lymphoma were detected in two men with ICC-PSA-marker negative CTC. Our study suggests that the combination of ISET®-CTC and ICC-PSA-marker-testing has an estimated positive-predictive-value (PPV) of 99% and a negative-predictive-value (NPV) of 97%, providing a more reliable screening test for prostate cancer than the standard PSA-blood-test (PPV = 25%; NPV = 15.5%). Our findings warrant further studies to evaluate the new test's potential for prostate cancer screening on a population level.
Collapse
Affiliation(s)
- Karin Ried
- National Institute of Integrative Medicine (NIIM), Melbourne, VIC, Australia
- Department of Health, Torrens University, Melbourne, VIC, Australia
- Discipline of General Practice, The University of Adelaide, Adelaide, SA, Australia
| | - Tasnuva Tamanna
- National Institute of Integrative Medicine (NIIM), Melbourne, VIC, Australia
| | - Sonja Matthews
- National Institute of Integrative Medicine (NIIM), Melbourne, VIC, Australia
| | - Peter Eng
- National Institute of Integrative Medicine (NIIM), Melbourne, VIC, Australia
| | - Avni Sali
- National Institute of Integrative Medicine (NIIM), Melbourne, VIC, Australia
| |
Collapse
|
15
|
Woestemeier A, Harms-Effenberger K, Karstens KF, Konczalla L, Ghadban T, Uzunoglu FG, Izbicki JR, Bockhorn M, Pantel K, Reeh M. Clinical Relevance of Circulating Tumor Cells in Esophageal Cancer Detected by a Combined MACS Enrichment Method. Cancers (Basel) 2020; 12:E718. [PMID: 32197486 PMCID: PMC7140099 DOI: 10.3390/cancers12030718] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/11/2020] [Accepted: 03/12/2020] [Indexed: 12/16/2022] Open
Abstract
INTRODUCTION Current modalities to predict tumor recurrence and survival in esophageal cancer are insufficient. Even in lymph node-negative patients, a locoregional and distant relapse is common. Hence, more precise staging methods are needed. So far, only the CellSearch system was used to detect circulating tumor cells (CTC) with clinical relevance in esophageal cancer patients. Studies analyzing different CTC detection assays using advanced enrichment techniques to potentially increase the sensitivity are missing. METHODS In this single-center, prospective study, peripheral blood samples from 90 esophageal cancer patients were obtained preoperatively and analyzed for the presence of CTCs by Magnetic Cell Separation (MACS) enrichment (combined anti-cytokeratin and anti-epithelial cell adhesion molecules (EpCAM)), with subsequent immunocytochemical staining. Data were correlated with clinicopathological parameters and patient outcomes. RESULTS CTCs were detected in 25.6% (23/90) of the patients by combined cytokeratin/EpCAM enrichment (0-150 CTCs/7.5 mL). No significant correlation between histopathological parameters and CTC detection was found. Survival analysis revealed that the presence of more than two CTCs correlated with significantly shorter overall survival (OS) and progression-free survival (PFS). CONCLUSION With the use of cytokeratin as an additional enrichment target, the CTC detection rate in esophageal cancer patients can be elevated and displays the heterogeneity of cytokeratin (CK) and EpCAM expression. The presence of >2CTCs correlated with a shorter relapse-free and overall survival in a univariate analysis, but not in a multivariate setting. Moreover, our results suggest that the CK7/8+/EpCAM+ or CK7/8+/EpCAM- CTC subtype does not lead to an advanced tumor staging tool in non-metastatic esophageal cancer (EC) patients.
Collapse
Affiliation(s)
- Anna Woestemeier
- Department of General, Visceral and Thoracic Surgery, University Medical Centre, Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany; (A.W.); (K.-F.K.); (L.K.); (T.G.); (F.G.U.); (J.R.I.); (M.B.)
| | - Katharina Harms-Effenberger
- Department of Tumor Biology, University Medical Centre, Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany; (K.H.-E.); (K.P.)
| | - Karl-F. Karstens
- Department of General, Visceral and Thoracic Surgery, University Medical Centre, Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany; (A.W.); (K.-F.K.); (L.K.); (T.G.); (F.G.U.); (J.R.I.); (M.B.)
| | - Leonie Konczalla
- Department of General, Visceral and Thoracic Surgery, University Medical Centre, Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany; (A.W.); (K.-F.K.); (L.K.); (T.G.); (F.G.U.); (J.R.I.); (M.B.)
| | - Tarik Ghadban
- Department of General, Visceral and Thoracic Surgery, University Medical Centre, Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany; (A.W.); (K.-F.K.); (L.K.); (T.G.); (F.G.U.); (J.R.I.); (M.B.)
| | - Faik G. Uzunoglu
- Department of General, Visceral and Thoracic Surgery, University Medical Centre, Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany; (A.W.); (K.-F.K.); (L.K.); (T.G.); (F.G.U.); (J.R.I.); (M.B.)
| | - Jakob R. Izbicki
- Department of General, Visceral and Thoracic Surgery, University Medical Centre, Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany; (A.W.); (K.-F.K.); (L.K.); (T.G.); (F.G.U.); (J.R.I.); (M.B.)
| | - Maximilian Bockhorn
- Department of General, Visceral and Thoracic Surgery, University Medical Centre, Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany; (A.W.); (K.-F.K.); (L.K.); (T.G.); (F.G.U.); (J.R.I.); (M.B.)
| | - Klaus Pantel
- Department of Tumor Biology, University Medical Centre, Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany; (K.H.-E.); (K.P.)
| | - Matthias Reeh
- Department of General, Visceral and Thoracic Surgery, University Medical Centre, Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany; (A.W.); (K.-F.K.); (L.K.); (T.G.); (F.G.U.); (J.R.I.); (M.B.)
| |
Collapse
|
16
|
Tamminga M, Groen HJM. Circulating tumor cells are prognostic in SCLC, but still lack clinical application. Ann Oncol 2019; 30:1031-1033. [PMID: 31095269 DOI: 10.1093/annonc/mdz162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- M Tamminga
- Department of Pulmonary Diseases, University of Groningen, Groningen; University Medical Center Groningen, Groningen, The Netherlands
| | - H J M Groen
- Department of Pulmonary Diseases, University of Groningen, Groningen; University Medical Center Groningen, Groningen, The Netherlands.
| |
Collapse
|
17
|
Lee SJ, Sim TS, Shin HY, Lee J, Kim MY, Sunoo J, Lee JG, Yea K, Kim YZ, van Noort D, Park SK, Kim WH, Park KW, Kim MS. Microslit on a chip: A simplified filter to capture circulating tumor cells enlarged with microbeads. PLoS One 2019; 14:e0223193. [PMID: 31647823 PMCID: PMC6812780 DOI: 10.1371/journal.pone.0223193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 09/15/2019] [Indexed: 12/11/2022] Open
Abstract
Microchips are widely used to separate circulating tumor cells (CTCs) from whole blood by virtues of sophisticated manipulation for microparticles. Here, we present a chip with an 8 μm high and 27.9 mm wide slit to capture cancer cells bound to 3 μm beads. Apart from a higher purity and recovery rate, the slit design allows for simplified fabrication, easy cell imaging, less clogging, lower chamber pressure and, therefore, higher throughput. The beads were conjugated with anti-epithelial cell adhesion molecules (anti-EpCAM) to selectively bind to breast cancer cells (MCF-7) used to spike the whole blood. The diameter of the cell-bead construct was in average 23.1 μm, making them separable from other cells in the blood. As a result, the cancer cells were separated from 5 mL of whole blood with a purity of 52.0% and a recovery rate of 91.1%, and also we confirmed that the device can be applicable to clinical samples of human breast cancer patients. The simple design with microslit, by eliminating any high-aspect ratio features, is expected to reduce possible defects on the chip and, therefore, more suitable for mass production without false separation outputs.
Collapse
Affiliation(s)
- Seung Joon Lee
- Department of New Biology, DGIST, Daegu, Republic of Korea
- CytoDx, Pangyo-ro, Beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Tae Seok Sim
- Samsung Electronics, Ltd., Maetan3-dong, Youngtong-gu, Suwon-si, Gyeonggi-do, Republic of Korea
| | | | - Jungmin Lee
- Department of New Biology, DGIST, Daegu, Republic of Korea
| | - Min Young Kim
- Department of New Biology, DGIST, Daegu, Republic of Korea
| | - Joseph Sunoo
- CytoDx, Pangyo-ro, Beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Jeong-Gun Lee
- Samsung Electronics, Ltd., Maetan3-dong, Youngtong-gu, Suwon-si, Gyeonggi-do, Republic of Korea
| | - Kyungmoo Yea
- Department of New Biology, DGIST, Daegu, Republic of Korea
| | - Young Zoon Kim
- Division of Neurooncology and Department of Neurosurgery, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Republic of Korea
| | - Danny van Noort
- Department of New Biology, DGIST, Daegu, Republic of Korea
- Division of Biotechnology, IFM, Linköping University, Linköping, Sweden
| | - Soo Kyung Park
- CytoDx, Pangyo-ro, Beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Woon-Hae Kim
- Department of New Biology, DGIST, Daegu, Republic of Korea
| | - Kyun Woo Park
- Daejeon Wellness Hospital, Beon-gil, Dongseo-daero, Daedeok-gu, Daejeon, Republic of Korea
| | - Minseok S. Kim
- Department of New Biology, DGIST, Daegu, Republic of Korea
- Translational Responsive Medicine Center, DGIST, Daegu, Republic of Korea
- * E-mail:
| |
Collapse
|
18
|
Yannoutsos A, Fontaine M, Galloula A, Damotte D, Chatellier G, Paterlini-Bréchot P, Meyer G, Pastre J, Duchatelle V, Marini V, Schwering KL, Lazareth I, Ghaffari P, Stansal A, Sanson H, Labrousse C, Beaussier H, Nasr NB, Zins M, Salmeron S, Messas E, Lajonchère JP, Emmerich J, Priollet P, Trédaniel J. Peripheral arterial disease and systematic detection of circulating tumor cells: rationale and design of the DETECTOR prospective cohort study. BMC Cardiovasc Disord 2019; 19:212. [PMID: 31519196 PMCID: PMC6743149 DOI: 10.1186/s12872-019-1193-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 09/06/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Smoking is a strong risk factor for cancer and atherosclerosis. Cancer mortality, especially from lung cancer, overtakes cardiovascular (CV) death rate in patients with peripheral arterial disease (PAD). Only a few patients with lung cancer after PAD management may benefit from surgical excision. Circulating tumor cells (CTC) associated with low-dose chest CT (LDCT) may improve early cancer detection. This study focuses on a screening strategy that can address not only lung cancer but all tobacco-related cancers in this high-risk population. METHODS DETECTOR Project is a prospective cohort study in two French University hospitals. Participants are smokers or former smokers (≥30 pack-years, quitted ≤15 years), aged ≥55 to 80 years, with atherosclerotic PAD or abdominal aortic aneurysm. After the first screening round combining LDCT and CTC search on a blood sample, two other screening rounds will be performed at one-year interval. Incidental lung nodule volume, volume doubling time and presence of CTC will be taken into consideration for adapted diagnostic management. In case of negative LDCT and presence of CTC, a contrast enhanced whole-body PET/CT will be performed for extra-pulmonary malignancy screening. Psychological impact of this screening strategy will be evaluated in population study using a qualitative methodology. Assuming 10% prevalence of smoking-associated cancer in the studied population, a total of at least 300 participants will be enrolled. DISCUSSION Epidemiological data underline an increase incidence in cancer and related death in the follow-up of patients with PAD, compared with the general population, particularly for tobacco-related cancers. The clinical benefit of a special workup for neoplasms in patients with PAD and a history of cigarette smoking has never been investigated. By considering CTCs detection in this very high-risk selected PAD population for tobacco-induced cancer, we expect to detect earlier pulmonary and extra-pulmonary malignancies, at a potentially curable stage. TRIAL REGISTRATION The study was registered in the French National Agency for Medicines and Health Products Safety (No N° EUDRACT_ID RCB: 2016-A00657-44) and was approved by the ethics Committee for Persons Protection (IRB number 1072 and n° initial agreement 2016-08-02; ClinicalTrials.gov identifier NCT02849041).
Collapse
Affiliation(s)
- Alexandra Yannoutsos
- Groupe Hospitalier Paris Saint Joseph, 185 rue Raymond Losserand, 75 014, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Unité INSERM UMR 1153-CRESS, Paris, France
| | | | - Alexandre Galloula
- Hôpital Européen Georges Pompidou, Assistance Publique - Hôpitaux de Paris, 75014, Paris, France
| | - Diane Damotte
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Hôpital Cochin, Assistance Publique - Hôpitaux de Paris, 75014, Paris, France.,Unité INSERM U1138, Centre de Recherche des Cordeliers, Paris, France
| | - Gilles Chatellier
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Hôpital Européen Georges Pompidou, Assistance Publique - Hôpitaux de Paris, 75014, Paris, France
| | | | - Guy Meyer
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Hôpital Européen Georges Pompidou, Assistance Publique - Hôpitaux de Paris, 75014, Paris, France
| | - Jean Pastre
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Hôpital Européen Georges Pompidou, Assistance Publique - Hôpitaux de Paris, 75014, Paris, France
| | - Véronique Duchatelle
- Groupe Hospitalier Paris Saint Joseph, 185 rue Raymond Losserand, 75 014, Paris, France
| | - Valéria Marini
- Groupe Hospitalier Paris Saint Joseph, 185 rue Raymond Losserand, 75 014, Paris, France
| | | | - Isabelle Lazareth
- Groupe Hospitalier Paris Saint Joseph, 185 rue Raymond Losserand, 75 014, Paris, France
| | - Parinaz Ghaffari
- Groupe Hospitalier Paris Saint Joseph, 185 rue Raymond Losserand, 75 014, Paris, France
| | - Audrey Stansal
- Groupe Hospitalier Paris Saint Joseph, 185 rue Raymond Losserand, 75 014, Paris, France
| | - Hélène Sanson
- Groupe Hospitalier Paris Saint Joseph, 185 rue Raymond Losserand, 75 014, Paris, France
| | - Cécile Labrousse
- Groupe Hospitalier Paris Saint Joseph, 185 rue Raymond Losserand, 75 014, Paris, France
| | - Hélène Beaussier
- Groupe Hospitalier Paris Saint Joseph, 185 rue Raymond Losserand, 75 014, Paris, France
| | - Nesrine Ben Nasr
- Groupe Hospitalier Paris Saint Joseph, 185 rue Raymond Losserand, 75 014, Paris, France
| | - Marc Zins
- Groupe Hospitalier Paris Saint Joseph, 185 rue Raymond Losserand, 75 014, Paris, France
| | - Sergio Salmeron
- Groupe Hospitalier Paris Saint Joseph, 185 rue Raymond Losserand, 75 014, Paris, France
| | - Emmanuel Messas
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Hôpital Européen Georges Pompidou, Assistance Publique - Hôpitaux de Paris, 75014, Paris, France
| | | | - Joseph Emmerich
- Groupe Hospitalier Paris Saint Joseph, 185 rue Raymond Losserand, 75 014, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Unité INSERM UMR 1153-CRESS, Paris, France
| | - Pascal Priollet
- Groupe Hospitalier Paris Saint Joseph, 185 rue Raymond Losserand, 75 014, Paris, France
| | - Jean Trédaniel
- Groupe Hospitalier Paris Saint Joseph, 185 rue Raymond Losserand, 75 014, Paris, France. .,Université Paris Descartes, Sorbonne Paris Cité, Paris, France. .,Unité INSERM UMR-S 1124, Toxicologie, pharmacologie et signalisation cellulaire, Paris, France.
| |
Collapse
|
19
|
Snow A, Chen D, Lang JE. The current status of the clinical utility of liquid biopsies in cancer. Expert Rev Mol Diagn 2019; 19:1031-1041. [PMID: 31482746 DOI: 10.1080/14737159.2019.1664290] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: Liquid biopsies have attracted considerable attention as potential diagnostic, prognostic, predictive, and screening assays in oncology. The term liquid biopsies include circulating tumor cells (CTCs) and circulating tumor DNA (ctDNA) in the blood. While many liquid biopsy technologies are under active investigation, relatively few liquid biopsy assays have been proven to serve as a diagnostic surrogate for biopsies of metastatic disease as predictive biomarkers to guide the selection of therapy in the clinic. Areas covered: The objective of this review is to highlight the status of liquid biopsies in solid tumors in the oncology literature with attention to proven utility as diagnostic surrogates for macrometastases. Expert opinion: Carefully designed clinical-translational studies are needed to establish the diagnostic accuracy and clinical utility of liquid biopsy biomarkers in oncology. Investigators must fully consider relevant pre-analytical variables, assay sensitivity, bioinformatics considerations as well as the clinical utility of rare event profiling in the context of the normal blood background. Future liquid biopsy research should address the concern that not all DNA mutations are expressed and should provide the means to discover potential therapeutic targets in metastatic patients via a minimally invasive blood draw.
Collapse
Affiliation(s)
- Anson Snow
- Department of Surgery, University of Southern California Norris Comprehensive Cancer Center , Los Angeles , CA , USA
| | - Denaly Chen
- Department of Medicine, University of Southern California Norris Comprehensive Cancer Center , Los Angeles , CA , USA
| | - Julie E Lang
- Department of Surgery, University of Southern California Norris Comprehensive Cancer Center , Los Angeles , CA , USA
| |
Collapse
|
20
|
Tamminga M, de Wit S, Hiltermann TJN, Timens W, Schuuring E, Terstappen LWMM, Groen HJM. Circulating tumor cells in advanced non-small cell lung cancer patients are associated with worse tumor response to checkpoint inhibitors. J Immunother Cancer 2019; 7:173. [PMID: 31291995 PMCID: PMC6617698 DOI: 10.1186/s40425-019-0649-2] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 06/21/2019] [Indexed: 12/27/2022] Open
Abstract
Background Non-small cell lung cancer (NSCLC) patients treated with checkpoint inhibitors show long lasting responses, but it is hard to predict which patients will profit from this treatment with the currently used marker, programmed death ligand 1 (PD-L1). We hypothesized that circulating tumor cells (CTC) or tumor derived extracellular vesicles (tdEV) are markers of treatment efficacy. Methods Patients with advanced NSCLC treated with checkpoint inhibitors were included. Blood was drawn at baseline (T0) and at 4 weeks of treatment (T1) for analysis of CTC and tdEV using CellSearch®. Tumor response was classified as partial or complete response based on the response evaluation criteria in solid tumors (RECISTv1.1) measured 4–6 weeks after start of treatment. Durable response was defined as stable disease, partial or complete response without disease progression at 6 months. Analyses were adjusted for covariables including PD-L1 expression. Results We included 104 patients (30 with a tumor response, 74 non-responders, 2 responses not evaluable due to early death); 63 patients provided T1 samples. All patients were treated with PD-L1 inhibitors. The majority of patients received second (85%) or third line (treatment with nivolumab monotherapy (89%). CTC were present in 33/104 patients at T0 (32%) and 17/63 at T1 (27%), 9/63 patients had CTC (14%) at both time points. The presence of CTC, both at T0 (OR = 0.28, p = 0.02,) and T1 (OR = 0.07, p < 0.01), was an independent predictive factor for a lack of durable response and was associated with worse progression free and overall survival. More tdEV were associated with shorter survival but not with response rate. Conclusion CTC occur in one third of advanced NSCLC patients and their presence is a predictive factor for a worse durable response rate to checkpoint inhibitors. tdEV are associated with shorter survival but not with response. Electronic supplementary material The online version of this article (10.1186/s40425-019-0649-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Menno Tamminga
- Department of Pulmonary Diseases, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. Box 30.0001, 9700, RB, Groningen, The Netherlands.
| | - Sanne de Wit
- Department of Medical Cell BioPhysics, Faculty of Sciences and Technology, University of Twente, Enschede, The Netherlands
| | - T Jeroen N Hiltermann
- Department of Pulmonary Diseases, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. Box 30.0001, 9700, RB, Groningen, The Netherlands
| | - Wim Timens
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Ed Schuuring
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Leon W M M Terstappen
- Department of Medical Cell BioPhysics, Faculty of Sciences and Technology, University of Twente, Enschede, The Netherlands
| | - Harry J M Groen
- Department of Pulmonary Diseases, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. Box 30.0001, 9700, RB, Groningen, The Netherlands
| |
Collapse
|
21
|
The Detection and Morphological Analysis of Circulating Tumor and Host Cells in Breast Cancer Xenograft Models. Cells 2019; 8:cells8070683. [PMID: 31284534 PMCID: PMC6679018 DOI: 10.3390/cells8070683] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/01/2019] [Accepted: 07/01/2019] [Indexed: 02/06/2023] Open
Abstract
Hematogenous dissemination may occur early in breast cancer (BC). Experimental models could clarify mechanisms, but in their development, the heterogeneity of this neoplasia must be considered. Here, we describe circulating tumor cells (CTCs) and the metastatic behavior of several BC cell lines in xenografts. MDA-MB-231, BT-474, MDA-MB-453 and MDA-MB-468 cells were injected at the orthotopic level in immunocompromised mice. CTCs were isolated using a size-based method and identified by cytomorphological criteria. Metastases were detected by COX IV immunohistochemistry. CTCs were detected in 90% of animals in each model. In MDA-MB-231, CTCs were observed after 5 weeks from the injection and step wisely increased at later time points. In animals injected with less aggressive cell lines, the load of single CTCs (mean ± SD CTCs/mL: 1.8 ± 1.3 in BT-474, 122.2 ± 278.5 in MDA-MB-453, 3.4 ± 2.5 in MDA-MB468) and the frequency of CTC clusters (overall 38%) were lower compared to MDA-MB231 (946.9 ± 2882.1; 73%). All models had lung metastases, MDA-MB-453 and MDA-MB468 had ovarian foci too, whereas lymph nodal involvement was observed in MDA-MB231 and MDA-MB-468 only. Interestingly, CTCs showed morphological heterogeneity and were rarely associated to host cells. Orthotopic xenograft of BC cell lines offers valid models of hematogenous dissemination and a possible experimental setting to study CTC-blood microenvironment interactions.
Collapse
|
22
|
Baek DH, Kim GH, Song GA, Han IS, Park EY, Kim HS, Jo HJ, Ko SH, Park DY, Cho YK. Clinical Potential of Circulating Tumor Cells in Colorectal Cancer: A Prospective Study. Clin Transl Gastroenterol 2019; 10:e00055. [PMID: 31246593 PMCID: PMC6708664 DOI: 10.14309/ctg.0000000000000055] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 04/16/2019] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVES Circulating tumor cells (CTCs) in the blood have been used as diagnostic markers in patients with colorectal cancer (CRC). In this study, we evaluated a CTC detection system based on cell size to assess CTCs and their potential as early diagnostic and prognostic biomarkers for CRC. METHODS From 2014 to 2015, 88 patients with newly diagnosed CRC, who were scheduled for surgery, and 31 healthy volunteers were enrolled and followed up in Pusan National University Hospital. CTCs were enriched using a centrifugal microfluidic system with a new fluid-assisted separation technique (FAST) and detected by cytomorphological evaluation using fluorescence microscopy. RESULTS Two or more CTCs were detected using FAST in 74 patients and 3 healthy volunteers. The number of CTCs in the CRC group was significantly higher than that in the healthy volunteers (P < 0.001). When a receiver operating characteristic curve was created to differentiate patients with CRC from healthy volunteers, the sensitivity and specificity were almost optimized when the critical CTC value was 5/7.5 mL of blood. When this value was used, the sensitivity and specificity in differentiating patients with CRC from the healthy controls were 75% and 100%, respectively. In patients with CRC with ≥5 CTCs, vascular invasion was frequently identified (P = 0.035). All patients with stage IV were positive for CTCs. Patients with ≥5 CTCs showed a trend toward poor overall and progression-free survival. DISCUSSION Our study demonstrated promising results with the use of FAST-based CTC detection for the early diagnosis and prognosis of CRC.
Collapse
Affiliation(s)
- Dong Hoon Baek
- Department of Internal Medicine, Pusan National University School of Medicine and Biomedical Research Institute, Pusan National University Hospital, Busan, South Korea;
| | - Gwang Ha Kim
- Department of Internal Medicine, Pusan National University School of Medicine and Biomedical Research Institute, Pusan National University Hospital, Busan, South Korea;
| | - Geun Am Song
- Department of Internal Medicine, Pusan National University School of Medicine and Biomedical Research Institute, Pusan National University Hospital, Busan, South Korea;
| | - In Sub Han
- Department of Internal Medicine, Pusan National University School of Medicine and Biomedical Research Institute, Pusan National University Hospital, Busan, South Korea;
| | - Eun Young Park
- Department of Internal Medicine, Pusan National University School of Medicine and Biomedical Research Institute, Pusan National University Hospital, Busan, South Korea;
| | - Hyun Sung Kim
- Department of Surgery, Pusan National University Yangsan Hospital, Yangsan, South Korea;
| | - Hong Jae Jo
- Department of Surgery, Pusan National University School of Medicine and Biomedical Research Institute, Pusan National University Hospital, Busan, South Korea;
| | - Sang Hwa Ko
- Department of Surgery, Pusan National University School of Medicine and Biomedical Research Institute, Pusan National University Hospital, Busan, South Korea;
| | - Do Youn Park
- Department of Pathology, Pusan National University School of Medicine and Biomedical Research Institute, Pusan National University Hospital, Busan, South Korea;
| | - Yoon-Kyung Cho
- Department of Biomedical Engineering, School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea.
| |
Collapse
|
23
|
Integrated Microfluidic Device for Enrichment and Identification of Circulating Tumor Cells from the Blood of Patients with Colorectal Cancer. DISEASE MARKERS 2019; 2019:8945974. [PMID: 31354892 PMCID: PMC6636595 DOI: 10.1155/2019/8945974] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 04/08/2019] [Indexed: 01/02/2023]
Abstract
Integrated device with high purity for circulating tumor cell (CTC) identification has been regarded as a key goal to make CTC analysis a “bench-to-bedside” technology. Here, we have developed a novel integrated microfluidic device that can enrich and identify the CTCs from the blood of patients with colorectal cancer. To enrich CTCs from whole blood, microfabricated trapping chambers were included in the miniaturized device, allowing for the isolation of tumor cells based on differences in size and deformability between tumor and normal blood cells. Microvalves were also introduced sequentially in the device, enabling automatic CTC enrichment as well as immunostaining reagent delivery. Under optimized conditions, the whole blood spiked with caco-2 cells passing through the microfluidic device after leukocyte depletion and approximately 73% of caco-2 cells were identified by epithelial cell adhesion molecule (EpCAM) staining. In clinical samples, CTCs were detectable from all patients with advanced colorectal cancer within 3 h. In contrast, the number of CTCs captured on the device from the blood of healthy donors was significantly lower than that from the patients, suggesting the utilization of the integrated device for further molecular analyses of CTCs.
Collapse
|
24
|
Hawkes D. Extraordinary Claims Don't always Require Extraordinary Evidence, but They Do Require Good Quality Evidence. Asian Pac J Cancer Prev 2019; 20:1935-1937. [PMID: 31350947 PMCID: PMC6745220 DOI: 10.31557/apjcp.2019.20.7.1935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Indexed: 11/25/2022] Open
Affiliation(s)
- David Hawkes
- VCS Foundation, Carlton South, Australia. ,VCS Pathology, Carlton South, Australia.,Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Australia.,Department of Pathology, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
25
|
Tsutsuyama M, Nakanishi H, Yoshimura M, Oshiro T, Kinoshita T, Komori K, Shimizu Y, Ichinosawa Y, Kinuta S, Wajima K, Sakakibara Y, Yatabe Y, Ito S, Kodera Y. Detection of circulating tumor cells in drainage venous blood from colorectal cancer patients using a new filtration and cytology-based automated platform. PLoS One 2019; 14:e0212221. [PMID: 30811434 PMCID: PMC6392262 DOI: 10.1371/journal.pone.0212221] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 01/29/2019] [Indexed: 12/30/2022] Open
Abstract
Numerous technologies exist to detect circulating tumor cells (CTCs), although reports on cytological detection of CTCs remain limited. We recently developed a cytology-based CTC detection device using glass slides and light microscopy. In this study, we automated this previously manual device to improve its efficiency and cost effectiveness for clinical applications. We conducted a pilot study using this device to compare CTCs in peripheral blood (PB) and draining venous blood (DVB) from patients with colorectal cancer (CRC). The cytology-based automated CTC detection platform consisted of a disposable filtration device with a three-dimensional (3D) metal filter and multichannel automated CTC enrichment device. This platform allowed rapid and gentle filtration of CTCs and their efficient transfer from the filter to glass slides for subsequent Papanicolaou (Pap) and immunocytochemical (ICC) staining. Cytological diagnosis of CTCs was performed by observing permanent glass slide specimens by light microscopy. The current pilot clinical study enrolled CRC patients (n = 26) with stage I–IV tumors, who underwent surgery. PB was collected before surgery, and DVB was obtained from the mesenteric vein immediately after resection. Based on the CTC morphology obtained from PB and DVB samples, we proposed the following cytological criteria for the diagnosis of CTCs: pan-cytokeratin-positive, atypical cells with malignant morphological features identified by Pap staining. The numbers of CTCs defined by these criteria were significantly higher in DVB than PB from CRC patients (p<0.01), and the number of CTCs in DVB was increased significantly with stage progression (p<0.05). These results suggest that DVB may be another potential source of CTCs other than PB for liquid biopsies including downstream analysis. This automated cytology-based CTC detection device therefore provides a unique and powerful tool to investigate the significance of CTCs in CRC patients in a clinical setting.
Collapse
Affiliation(s)
- Masayuki Tsutsuyama
- Department of Gastroenterological Surgery, Aichi Cancer Center Central Hospital, Chikusa-ku, Nagoya, Japan
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan
| | - Hayao Nakanishi
- Department of Pathology and Molecular Diagnostics, Aichi Cancer Center Central Hospital, Chikusa-ku, Nagoya, Japan
- Laboratory of Pathology and Clinical Research, Aichi Cancer Center Aichi Hospital, Okazaki, Aichi, Japan
- * E-mail: ,
| | - Mayumi Yoshimura
- Department of Pathology and Molecular Diagnostics, Aichi Cancer Center Central Hospital, Chikusa-ku, Nagoya, Japan
| | - Taihei Oshiro
- Department of Gastroenterological Surgery, Aichi Cancer Center Central Hospital, Chikusa-ku, Nagoya, Japan
| | - Takashi Kinoshita
- Department of Gastroenterological Surgery, Aichi Cancer Center Central Hospital, Chikusa-ku, Nagoya, Japan
| | - Koji Komori
- Department of Gastroenterological Surgery, Aichi Cancer Center Central Hospital, Chikusa-ku, Nagoya, Japan
| | - Yasuhiro Shimizu
- Department of Gastroenterological Surgery, Aichi Cancer Center Central Hospital, Chikusa-ku, Nagoya, Japan
| | | | | | | | | | - Yasushi Yatabe
- Department of Pathology and Molecular Diagnostics, Aichi Cancer Center Central Hospital, Chikusa-ku, Nagoya, Japan
| | - Seiji Ito
- Department of Gastroenterological Surgery, Aichi Cancer Center Central Hospital, Chikusa-ku, Nagoya, Japan
| | - Yasuhiro Kodera
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan
| |
Collapse
|
26
|
Zhao Y, Zhao S, Chen Y, Dong X, Peng C, Sun Q, Shan L, Wang Z, Zhao X. Isolation of circulating tumor cells in patients undergoing surgery for esophageal cancer and a specific confirmation method. Oncol Lett 2019; 17:3817-3825. [PMID: 30881502 PMCID: PMC6403499 DOI: 10.3892/ol.2019.10017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Accepted: 12/06/2018] [Indexed: 01/13/2023] Open
Abstract
The clinical significance of circulating tumor cells (CTCs) in patients with esophageal squamous cell carcinoma (ESCC) who have undergone radical surgery was investigated. A novel confirmation method for identifying CTCs or circulating tumor microemboli (CTM) in ESCC was also investigated. Blood samples from 55 patients with ESCC were collected 1–3 days prior to surgery and 7 days post-surgery. All patients underwent curative thoracic esophagectomy and lymphadenectomy. Blood samples from 20 healthy volunteers were obtained as controls. Isolation by size of epithelial tumor cells (ISET) was performed also. The overall CTC detection rate was 52.7% preoperatively and 49.1% postoperatively. The presence of CTCs correlated with the Tumor-Node-Metastasis stage and the Log odds of positive lymph nodes. No significant difference in perioperative CTC transformation was discovered between the thoracoscopic and laparoscopic approach, and the open approach. The P40+/cluster of differentiation (CD)45− phenotype was confirmed in the CTCs and CTM. ISET appeared to have high sensitivity for detecting CTCs within ESCC patients. Immunofluorescence staining for CD45 and P40 was a specific, accurate and convenient method for confirming the presence of CTCs or CTM in patients with ESCC, and is strongly recommended as a supplement to morphological analysis.
Collapse
Affiliation(s)
- Yunpeng Zhao
- Department of Thoracic Surgery, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Shukang Zhao
- Department of Thoracic Surgery, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Yingjie Chen
- Department of Thoracic Surgery, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Xiaopeng Dong
- Department of Thoracic Surgery, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Chuanliang Peng
- Department of Thoracic Surgery, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Qifeng Sun
- Department of Thoracic Surgery, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Lei Shan
- Department of Thoracic Surgery, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Zhendan Wang
- Department of Thoracic Surgery, Shandong Cancer Hospital and Institute (HL), Jinan, Shandong 250177, P.R. China
| | - Xiaogang Zhao
- Department of Thoracic Surgery, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| |
Collapse
|
27
|
Abstract
Circulating tumor cells (CTCs) have long been assumed to be the substrate of cancer metastasis. However, only in recent years have we begun to leverage the potential of CTCs found in minimally invasive peripheral blood specimens to improve care for cancer patients. Currently, CTC enumeration is an accepted prognostic indicator for breast, prostate, and colorectal cancer; however, CTC enumeration remains largely a research tool. More recently, the focus has shifted to CTC characterization and isolation which holds great promise for predictive testing. This review summarizes the relevant clinical, biological, and technical background necessary for pathologists and cytopathologists to appreciate the potential of CTC techniques. A summary of relevant systematic reviews of CTCs for specific cancers is then presented, as well as potential applications to precision medicine. Finally, we suggest future applications of CTC technologies that can be easily incorporated in the pathology laboratory, with the recommendation that pathologists and particularly cytopathologists apply these technologies to small specimens in the era of "doing more with less."
Collapse
|
28
|
Circulating Tumor Cells for the Management of Renal Cell Carcinoma. Diagnostics (Basel) 2018; 8:diagnostics8030063. [PMID: 30177639 PMCID: PMC6164661 DOI: 10.3390/diagnostics8030063] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 08/30/2018] [Accepted: 08/31/2018] [Indexed: 12/17/2022] Open
Abstract
Renal cell carcinoma is a highly malignant cancer that would benefit from non-invasive innovative markers providing early diagnosis and recurrence detection. Circulating tumor cells are a particularly promising marker of tumor invasion that could be used to improve the management of patients with RCC. However, the extensive genetic and immunophenotypic heterogeneity of cells from RCC and their trend to transition to the mesenchymal phenotype when they circulate in blood constitute a challenge for their sensitive and specific detection. This review analyzes published studies targeting CTC in patients with RCC, in the context of the biological, pathological, and molecular complexity of this particular cancer. Although further analytical and clinical studies are needed to pinpoint the most suitable approach for highly sensitive CTC detection in RCC patients, it is clear that this field can bring a relevant guide to clinicians and help to RCC patients. Furthermore, as described, a particular subtype of RCC-the ccRCC-can be used as a model to study the relationship between cytomorphological and genetic cellular markers of malignancy, an important issue for the study of CTC from any type of solid cancer.
Collapse
|
29
|
Yadav DK, Bai X, Yadav RK, Singh A, Li G, Ma T, Chen W, Liang T. Liquid biopsy in pancreatic cancer: the beginning of a new era. Oncotarget 2018; 9:26900-26933. [PMID: 29928492 PMCID: PMC6003564 DOI: 10.18632/oncotarget.24809] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 02/25/2018] [Indexed: 12/21/2022] Open
Abstract
With dismal survival rate pancreatic cancer remains one of the most aggressive and devastating malignancy. Predominantly, due to the absence of a dependable methodology for early identification and limited therapeutic options for advanced disease. However, it takes over 17 years to develop pancreatic cancer from initiation of mutation to metastatic cancer; therefore, if diagnosed early; it may increase overall survival dramatically, thus, providing a window of opportunity for early detection. Recently, genomic expression analysis defined 4 subtypes of pancreatic cancer based on mutated genes. Hence, we need simple and standard, minimally invasive test that can monitor those altered genes or their associated pathways in time for the success of precision medicine, and liquid biopsy seems to be one answer to all these questions. Again, liquid biopsy has an ability to pair with genomic tests. Additionally, liquid biopsy based development of circulating tumor cells derived xenografts, 3D organoids system, real-time monitoring of genetic mutations by circulating tumor DNA and exosome as the targeted drug delivery vehicle holds lots of potential for the treatment and cure of pancreatic cancer. At present, diagnosis of pancreatic cancer is frantically done on the premise of CA19-9 and radiological features only, which doesn't give a picture of genetic mutations and epigenetic alteration involved. In this manner, the current diagnostic paradigm for pancreatic cancer diagnosis experiences low diagnostic accuracy. This review article discusses the current state of liquid biopsy in pancreatic cancer as diagnostic and therapeutic tools and future perspectives of research in the light of circulating tumor cells, circulating tumor DNA and exosomes.
Collapse
Affiliation(s)
- Dipesh Kumar Yadav
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Xueli Bai
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Rajesh Kumar Yadav
- Department of Pharmacology, Gandaki Medical College, Tribhuwan University, Institute of Medicine, Pokhara 33700, Nepal
| | - Alina Singh
- Department of Surgery, Bir Hospital, National Academy of Medical Science, Kanti Path, Kathmandu 44600, Nepal
| | - Guogang Li
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Tao Ma
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Wei Chen
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| |
Collapse
|
30
|
Broncy L, Njima BB, Méjean A, Béroud C, Romdhane KB, Ilie M, Hofman V, Muret J, Hofman P, Bouhamed HC, Paterlini-Bréchot AP. Single-cell genetic analysis validates cytopathological identification of circulating cancer cells in patients with clear cell renal cell carcinoma. Oncotarget 2018; 9:20058-20074. [PMID: 29732003 PMCID: PMC5929446 DOI: 10.18632/oncotarget.25102] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Accepted: 03/24/2018] [Indexed: 12/14/2022] Open
Abstract
CONTEXT Circulating Rare Cells (CRC) are non-haematological cells circulating in blood. They include Circulating Cancer Cells (CCC) and cells with uncertain malignant features (CRC-UMF) according to cytomorphology. Clear cell renal cell carcinomas frequently bear a mutated Von Hippel-Lindau (VHL) gene. AIM To match blind genetic analysis of CRC and tumor samples with CRC cytopathological diagnosis. RESULTS 29/30 patients harboured CRC (20 harboured CCC, 29 CRC-UMF) and 25/29 patients carried VHL mutations in their tumour. 205 single CRC (64 CCC, 141 CRC-UMF) provided genetic data. 57/57 CCC and 104/125 CRC-UMF from the 25 patients with VHL-mutated tumor carried the same VHL mutation detected in the tumor. Seven CCC and 16 CRC-UMF did not carry VHL mutations but were found in patients with wild-type VHL tumor tissue. CONCLUSIONS All the CCC and 83,2% (104/125) of the CRC-UMF were found to carry the same VHL mutation identified in the corresponding tumorous tissue, validating cytopathological identification of CCC in patients with clear cell renal cell carcinoma. METHODS The blood of 30 patients with clear cell renal cell carcinoma was treated by ISET® for CRC isolation, cytopathology and single-cell VHL mutations analysis, performed blindly and compared to VHL mutations of corresponding tumor tissues and leukocytes.
Collapse
Affiliation(s)
- Lucile Broncy
- INSERM Unit 1151, Faculté de Médecine Paris Descartes, Paris, France
| | - Basma Ben Njima
- Genetics and Pathology Departments, University of Tunis, Tunis, Tunisia
| | - Arnaud Méjean
- Service d'Urologie, Hôpital Européen Georges Pompidou, Paris, France
| | - Christophe Béroud
- Aix Marseille University, INSERM, MMG, Marseille, France
- APHM, Hôpital TIMONE Enfants, Laboratoire de Génétique Moléculaire, Marseille, France
| | | | - Marius Ilie
- Laboratoire de pathologie clinique et Biobank BB-0033-00025, Centre Hospitalo-Universitaire de Nice, Nice, France
| | - Veronique Hofman
- Laboratoire de pathologie clinique et Biobank BB-0033-00025, Centre Hospitalo-Universitaire de Nice, Nice, France
| | - Jane Muret
- Institut Curie, PSL Research University, Département d'Anesthésie Réanimation Douleur, Paris, France
| | - Paul Hofman
- Laboratoire de pathologie clinique et Biobank BB-0033-00025, Centre Hospitalo-Universitaire de Nice, Nice, France
| | | | - And Patrizia Paterlini-Bréchot
- INSERM Unit 1151, Faculté de Médecine Paris Descartes, Paris, France
- Laboratoire de Biochimie A, Hôpital Necker-Enfants Malades, Paris, France
| |
Collapse
|
31
|
Chen F, Wang S, Fang Y, Zheng L, Zhi X, Cheng B, Chen Y, Zhang C, Shi D, Song H, Cai C, Zhou P, Xiong B. Feasibility of a novel one-stop ISET device to capture CTCs and its clinical application. Oncotarget 2018; 8:3029-3041. [PMID: 27935872 PMCID: PMC5356861 DOI: 10.18632/oncotarget.13823] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 11/24/2016] [Indexed: 12/20/2022] Open
Abstract
INTRODUCTION Circulating tumor cells (CTCs) play a crucial role in cancer metastasis. In this study, we introduced a novel isolation method by size of epithelial tumor cells (ISET) device with automatic isolation and staining procedure, named one-stop ISET (osISET) and validated its feasibility to capture CTCs from cancer patients. Moreover, we aim to investigate the correlation between clinicopathologic features and CTCs in colorectal cancer (CRC) in order to explore its clinical application. RESULTS The capture efficiency ranged from 80.3% to 88% with tumor cells spiked into medium while 67% to 78.3% with tumor cells spiked into healthy donors' blood. In detection blood samples of 72 CRC patients, CTCs and clusters of circulating tumor cells (CTC-clusters) were detected with a positive rate of 52.8% (38/72) and 18.1% (13/72) respectively. Moreover, CTC positive rate was associated with factors of lymphatic or venous invasion, tumor depth, lymph node metastasis and TNM stage in CRC patients (p < 0.01). Lymphocyte count and neutrophil to lymphocyte ratio (NLR) were significantly different between CTC positive and negative groups (p < 0.01). MATERIALS AND METHODS The capture efficiency of the device was tested by spiking cancer cells (MCF-7, A549, SW480, Hela) into medium or blood samples of healthy donors. Blood samples of 72 CRC patients were detected by osISET device. The clinicopathologic characteristics of 72 CRC patients were collected and the association with CTC positive rate or CTC count were analyzed. CONCLUSIONS Our osISET device was feasible to capture and identify CTCs and CTC-clusters from cancer patients. In addition, our device holds a potential for application in cancer management.
Collapse
Affiliation(s)
- Fangfang Chen
- Department of Oncology, Zhongnan Hospital of Wuhan University, Hubei Cancer Clinical Study Center, Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China
| | - Shuyi Wang
- Department of Oncology, Zhongnan Hospital of Wuhan University, Hubei Cancer Clinical Study Center, Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China
| | - Yuan Fang
- Department of Oncology, Zhongnan Hospital of Wuhan University, Hubei Cancer Clinical Study Center, Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China
| | - Liang Zheng
- Department of Oncology, Zhongnan Hospital of Wuhan University, Hubei Cancer Clinical Study Center, Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China
| | - Xuan Zhi
- Department of Circulating Tumor Cells, YZY Medical Technological Company, Wuhan, China
| | - Boran Cheng
- Department of Oncology, Zhongnan Hospital of Wuhan University, Hubei Cancer Clinical Study Center, Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China
| | - Yuanyuan Chen
- Department of Oncology, Zhongnan Hospital of Wuhan University, Hubei Cancer Clinical Study Center, Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China
| | - Chunxiao Zhang
- Department of Oncology, Zhongnan Hospital of Wuhan University, Hubei Cancer Clinical Study Center, Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China
| | - Dongdong Shi
- Department of Oncology, Zhongnan Hospital of Wuhan University, Hubei Cancer Clinical Study Center, Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China
| | - Haibin Song
- Department of Oncology, Zhongnan Hospital of Wuhan University, Hubei Cancer Clinical Study Center, Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China
| | - Congli Cai
- Department of Circulating Tumor Cells, YZY Medical Technological Company, Wuhan, China
| | - Pengfei Zhou
- Department of Circulating Tumor Cells, YZY Medical Technological Company, Wuhan, China
| | - Bin Xiong
- Department of Oncology, Zhongnan Hospital of Wuhan University, Hubei Cancer Clinical Study Center, Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China
| |
Collapse
|
32
|
Clinical significance of circulating tumor cells from lung cancer patients using microfluidic chip. Clin Exp Med 2018; 18:191-202. [PMID: 29445889 DOI: 10.1007/s10238-018-0485-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 01/03/2018] [Indexed: 12/13/2022]
Abstract
Circulating tumor cells (CTCs) exist in the peripheral blood and have an important role in the disease development, tumor metastasis and clinical surveillance, especially in the process of metastasis. However, the technology of detecting CTCs still had a large challenge since they were rare in the peripheral blood. Here, we developed a size-based microfluidic chip, which contained array and filter channel array that could enrich CTCs from blood samples more quickly and conveniently. Combined with clinical specimen, we analyzed CTCs in 200 lung cancer patients by this microfluidic chip. The microfluidic device has high specificity and sensitivity in detecting CTCs (86.0% sensitivity and 98% specificity). Furthermore, the number of CTCs showed a increasing trend according to the stage of the disease (the mean number of I stage 5.0 ± 5.121 versus II stage 8.731 ± 6.36 versus III stage 16.81 ± 9.556 versus IV stage 28.72 ± 17.39 cells/mL, P < 0.05). The number of CTCs was concurrent with the condition of pathological type and metastasis patients. Compared to conventional markers like CEA, CY211, SCC, CTCs showed a higher positive rate in diagnosed patients. The advanced microfluidic device could capture tumor cells without reliance on cell surface expression markers and provide a fast, convenient, economical method in detecting CTCs, thereby offering potential to design effective and individualized cancer therapies.
Collapse
|
33
|
Hui L, Su Y, Ye T, Liu Z, Tian Q, He C, Zhao Y, Chen P, Wang X, Han W, Luo Y, Wang B. Self-Sterilizing and Regeneratable Microchip for the Precise Capture and Recovery of Viable Circulating Tumor Cells from Patients with Cancer. ACS APPLIED MATERIALS & INTERFACES 2018; 10:207-218. [PMID: 29235843 DOI: 10.1021/acsami.7b15406] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Cancer cells metastasize and are transported in the bloodstream, easily reaching any site in the body through the blood circulation. A method designed to assess the number of circulating tumor cells (CTCs) should be validated as a clinical tool for predicting the response to therapy and monitoring the disease progression in patients with cancer. Although CTCs are detectable in many cases, they remain unavailable for clinic usage because of their high testing cost, tedious operation, and poor clinical relevance. Herein, we developed a regeneratable microchip for isolating CTCs, which is available for robust cell heterogeneity assays on-site without the need for a sterile environment. The ivy-like hierarchical roughened zinc oxide (ZnO) nanograss interface was synthesized and directly integrated into the microfluidic devices and enables effective CTC capture and flexible, nontoxic CTC release during incubation in a mildly acidic solution, thus enabling cellular and molecular analyses. The microchip can be regenerated and recycled to capture CTCs with the remaining ZnO without affecting the efficiency, even after countless cycles of cell release. Moreover, microbial infection is avoided during its storage, distribution, and even in the open space usage, which ideally appeals to the demands of point-of-care (POC) and home testing and meets to the requirements for blood examinations in undeveloped or resource-limited settings. Furthermore, the findings generated using this platform based on the cocktail of antiepithelial cell adhesion molecule and antivimentin antibodies indicate that CTC capture was more precise and reasonable for patients with advanced cancer.
Collapse
Affiliation(s)
- Lanlan Hui
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, National Ministry of Education & Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province), The Second Affiliated Hospital, School of Medicine, Zhejiang University , Hangzhou 310009, China
- Institute of Translational Medicine, School of Medicine, Zhejiang University , Hangzhou 310029, China
| | - Yi Su
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, National Ministry of Education & Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province), The Second Affiliated Hospital, School of Medicine, Zhejiang University , Hangzhou 310009, China
- Institute of Translational Medicine, School of Medicine, Zhejiang University , Hangzhou 310029, China
| | - Tingting Ye
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, National Ministry of Education & Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province), The Second Affiliated Hospital, School of Medicine, Zhejiang University , Hangzhou 310009, China
- Institute of Translational Medicine, School of Medicine, Zhejiang University , Hangzhou 310029, China
| | | | - Qingchang Tian
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, National Ministry of Education & Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province), The Second Affiliated Hospital, School of Medicine, Zhejiang University , Hangzhou 310009, China
- Institute of Translational Medicine, School of Medicine, Zhejiang University , Hangzhou 310029, China
| | - Chuanjiang He
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, National Ministry of Education & Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province), The Second Affiliated Hospital, School of Medicine, Zhejiang University , Hangzhou 310009, China
- Institute of Translational Medicine, School of Medicine, Zhejiang University , Hangzhou 310029, China
| | | | - Pu Chen
- School of Medicine, Wuhan University , Wuhan 430071, China
| | - Xiaojia Wang
- Department of Medical Oncology, Zhejiang Cancer Hospital , Hangzhou 310022, China
| | - Weidong Han
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University , Hangzhou 310016, China
| | - Yan Luo
- College of Basic Medical Sciences, School of Medicine, Zhejiang University , Hangzhou 310058, China
| | - Ben Wang
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, National Ministry of Education & Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province), The Second Affiliated Hospital, School of Medicine, Zhejiang University , Hangzhou 310009, China
- Institute of Translational Medicine, School of Medicine, Zhejiang University , Hangzhou 310029, China
| |
Collapse
|
34
|
Zhai TT, Ye D, Zhang QW, Wu ZQ, Xia XH. Highly Efficient Capture and Electrochemical Release of Circulating Tumor Cells by Using Aptamers Modified Gold Nanowire Arrays. ACS APPLIED MATERIALS & INTERFACES 2017; 9:34706-34714. [PMID: 28925689 DOI: 10.1021/acsami.7b11107] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The effective capture and release of circulating tumor cells (CTCs) is of significant importance in cancer prognose and treatment. Here we report a highly efficient method to capture and release human leukemic lymphoblasts (CCRF-CEM) using aptamers modified gold nanowire arrays (AuNWs). The gold nanowires, showing tunable morphologies from relatively random pillar deposit to relatively uniform arrays, were fabricated by electrochemical deposition using anodic aluminum oxide (AAO) as template. Upon simply being modified with aptamers by Au-S chemistry, the AuNWs exhibit higher specificity to target cells. Also compared to flat gold substrate, the AuNWs with nanostructure can capture target cells with much higher capture yield. Moreover, the captured CCRF-CEM cells can be released from AuNWs efficiently with little damage through an electrochemical desorption process. We predict that our strategy has great potential in providing a simple and economical platform for CTCs isolation, cancer diagnosis, and therapy.
Collapse
Affiliation(s)
- Ting-Ting Zhai
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University , Nanjing 210093, China
| | - Dekai Ye
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University , Nanjing 210093, China
| | - Qian-Wen Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University , Nanjing 210093, China
| | - Zeng-Qiang Wu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University , Nanjing 210093, China
| | - Xing-Hua Xia
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University , Nanjing 210093, China
| |
Collapse
|
35
|
Ried K, Eng P, Sali A. Screening for Circulating Tumour Cells Allows Early Detection of Cancer and Monitoring of Treatment Effectiveness: An Observational Study. Asian Pac J Cancer Prev 2017; 18:2275-2285. [PMID: 28843267 PMCID: PMC5697492 DOI: 10.22034/apjcp.2017.18.8.2275] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Background: Circulating-Tumour-Cells (CTC) provide a blood biomarker for early carcinogenesis, cancer progression and treatment effectiveness. An increase in CTCs is associated with cancer progression, a CTC decrease with cancer containment or remission. Several technologies have been developed to identify CTC, including the validated Isolation-by-Size-of-Epithelial-Tumour (ISET, Rarecells) technology, combining blood filtration and microscopy using standard histo-pathological criteria. Methods: This observational study compared CTC count to cancer status and cancer risk, by monitoring treatment effectiveness in cancer patients and by screening for CTC in asymptomatic patients with risk factors, including family history of cancer. Results: Between Sept-2014 and Dec-2016 we undertook 600 CTC tests (542 patients), including 50% screening requests of patients without cancer diagnosis but with risk factors. CTC were detected in all cancer patients (n=277, 100%), and in half of the asymptomatic patients screened (50%, 132 out-of 265 patients). Follow-up tests including scans, scheduled within 1-10 months of positive CTC tests, found early cancerous lesions in 20% of screened patients. In 50% of male patients with CTC and normal PSA (prostate-specific-antigen) levels, PSMA-PET scans revealed increased uptake in the prostate, indicative of early prostate cancer. Other types of cancers detected by CTC screening and subsequent scans included early breast, ovarian, lung, or renal cancer. Patients with CTC were advised on integrative approaches including immune-stimulating and anti-carcinogenic nutritional therapies. CTC repeat tests were available in 10% of patients with detected CTC (40 out-of 409 patients, n=98 CTC tests) to assess treatment effectiveness, suggesting nutritional therapies to be beneficial in reducing CTC count. Conclusions: CTC screening provided a highly sensitive biomarker for the early detection of cancer, with higher CTC counts being associated with higher risk of malignancy. CTC monitoring over time indicated treatment effectiveness. Nutrients with anti-carcinogenic properties could reduce CTC count, and included curcumin, garlic, green tea, grape seed, modified citrus pectin, and medicinal mushroom extract.
Collapse
Affiliation(s)
- Karin Ried
- National Institute of Integrative Medicine (NIIM), Melbourne, Australia.
| | | | | |
Collapse
|
36
|
Gallo M, De Luca A, Maiello MR, D'Alessio A, Esposito C, Chicchinelli N, Forgione L, Piccirillo MC, Rocco G, Morabito A, Botti G, Normanno N. Clinical utility of circulating tumor cells in patients with non-small-cell lung cancer. Transl Lung Cancer Res 2017; 6:486-498. [PMID: 28904891 DOI: 10.21037/tlcr.2017.05.07] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Several different studies have addressed the role of the circulating tumor cells (CTC) in non-small-cell lung cancer (NSCLC). In particular, the potential of CTC analysis in the early diagnosis of NSCLC and in the prediction of the outcome of patients with early and advanced NSCLC have been explored. A major limit of these studies is that they used different techniques for CTC isolation and enumeration, they employed different thresholds to discriminate between high- and low-risk patients, and they enrolled heterogeneous and often small cohort of patients. Nevertheless, the results of many studies are concordant in indicating a correlation between high CTC count and poor prognosis in both early and advanced NSCLC. The reduction of CTC number following treatment might also represent an important indicator of sensitivity to therapy in patients with metastatic disease. Preliminary data also suggest the potential for CTC analysis in the early diagnosis of NSCLC in high-risk individuals. However, these findings need to be confirmed in large prospective trials in order to be transferred to the clinical practice. The molecular profiling of single CTC in NSCLC might provide important information on tumor biology and on the mechanisms involved in tumor dissemination and in acquired resistance to targeted therapies. In this respect, xenografts derived from CTC might represent a valuable tool to investigate these phenomena and to develop novel therapeutic strategies.
Collapse
Affiliation(s)
- Marianna Gallo
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS-"Fondazione G. Pascale", Naples, Italy
| | - Antonella De Luca
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS-"Fondazione G. Pascale", Naples, Italy
| | - Monica Rosaria Maiello
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS-"Fondazione G. Pascale", Naples, Italy
| | - Amelia D'Alessio
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS-"Fondazione G. Pascale", Naples, Italy
| | - Claudia Esposito
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS-"Fondazione G. Pascale", Naples, Italy
| | - Nicoletta Chicchinelli
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS-"Fondazione G. Pascale", Naples, Italy
| | - Laura Forgione
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS-"Fondazione G. Pascale", Naples, Italy
| | | | - Gaetano Rocco
- Thoracic Surgery, Thoraco-Pulmonary Department, Istituto Nazionale Tumori-IRCCS-"Fondazione G. Pascale", Naples, Italy
| | - Alessandro Morabito
- Medical Oncology Unit, Thoraco-Pulmonary Department, Istituto Nazionale Tumori-IRCCS-"Fondazione G. Pascale", Naples, Italy
| | - Gerardo Botti
- Surgical Pathology Unit, Istituto Nazionale Tumori-IRCCS-"Fondazione G. Pascale", Naples, Italy
| | - Nicola Normanno
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS-"Fondazione G. Pascale", Naples, Italy
| |
Collapse
|
37
|
Mascalchi M, Maddau C, Sali L, Bertelli E, Salvianti F, Zuccherelli S, Matucci M, Borgheresi A, Raspanti C, Lanzetta M, Falchini M, Mazza E, Vella A, Luconi M, Pinzani P, Pazzagli M. Circulating tumor cells and microemboli can differentiate malignant and benign pulmonary lesions. J Cancer 2017; 8:2223-2230. [PMID: 28819424 PMCID: PMC5560139 DOI: 10.7150/jca.18418] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Accepted: 02/26/2017] [Indexed: 01/02/2023] Open
Abstract
The presence of circulating tumor cells (CTC) or microemboli (CTM) in the peripheral blood can theoretically anticipate malignancy of solid lesions in a variety of organs. We aimed to preliminarily assess this capability in patients with pulmonary lesions of suspected malignant nature. We used a cell-size filtration method (ScreenCell) and cytomorphometric criteria to detect CTC/CTM in a 3 mL sample of peripheral blood that was taken just before diagnostic percutaneous CT-guided fine needle aspiration (FNA) or core biopsy of the suspicious lung lesion. At least one CTC/CTM was found in 47 of 67 (70%) patients with final diagnoses of lung malignancy and in none of 8 patients with benign pulmonary nodules. In particular they were detected in 38 (69%) of 55 primary lung cancers and in 9 (75%) of 12 lung metastases from extra-pulmonary cancers. Sensitivity of CTC/CTM presence for malignancy was 70.1% (95%CI: 56.9-83.1%), specificity 100%, positive predictive value 100% and negative predictive value 28.6% (95%CI: 11.9-45.3%). Remarkably, the presence of CTC/CTM anticipated the diagnosis of primary lung cancer in 3 of 5 patients with non-diagnostic or inconclusive results of FNA or core biopsy, whereas CTC/CTM were not observed in 1 patient with sarcoidosis and 1 with amarthocondroma. These results suggest that presently, due to the low sensitivity, the search of CTC/CTM cannot replace CT guided percutaneous FNA or core biopsy in the diagnostic work-up of patients with suspicious malignant lung lesions. However, the high specificity may as yet indicate a role in cases with non-diagnostic or inconclusive FNA or core biopsy results that warrants to be further investigated.
Collapse
Affiliation(s)
- Mario Mascalchi
- Diagnostic and Interventional Radiology Units, "Mario Serio" Department of Biomedical, Experimental and Clinical Sciences, University of Florence, Florence, Italy
| | - Cristina Maddau
- Oncological Prevention Laboratory, Institute for Cancer Research and Prevention (ISPO), Florence, Italy
| | - Lapo Sali
- Diagnostic and Interventional Radiology Units, "Mario Serio" Department of Biomedical, Experimental and Clinical Sciences, University of Florence, Florence, Italy
| | - Elena Bertelli
- Diagnostic and Interventional Radiology Units, "Mario Serio" Department of Biomedical, Experimental and Clinical Sciences, University of Florence, Florence, Italy
| | - Francesca Salvianti
- Clinical Biochemistry Unit, "Mario Serio" Department of Biomedical, Experimental and Clinical Sciences, University of Florence, Florence, Italy
| | - Stefania Zuccherelli
- Diagnostic and Interventional Radiology Units, "Mario Serio" Department of Biomedical, Experimental and Clinical Sciences, University of Florence, Florence, Italy
| | - Marzia Matucci
- Oncological Prevention Laboratory, Institute for Cancer Research and Prevention (ISPO), Florence, Italy
| | - Alessandra Borgheresi
- Diagnostic and Interventional Radiology Units, "Mario Serio" Department of Biomedical, Experimental and Clinical Sciences, University of Florence, Florence, Italy
| | - Claudio Raspanti
- Interventional Radiology Unit, Careggi Hospital, Florence, Italy
| | - Monica Lanzetta
- Diagnostic and Interventional Radiology Units, "Mario Serio" Department of Biomedical, Experimental and Clinical Sciences, University of Florence, Florence, Italy
| | - Massimo Falchini
- Diagnostic and Interventional Radiology Units, "Mario Serio" Department of Biomedical, Experimental and Clinical Sciences, University of Florence, Florence, Italy
| | - Ernesto Mazza
- Interventional Radiology Unit, Careggi Hospital, Florence, Italy
| | - Alessandra Vella
- Nuclear Medicine Unit, Le Scotte University Hospital, Siena, Italy
| | - Michaela Luconi
- Endocrinology Unit, "Mario Serio" Department of Biomedical, Experimental and Clinical Sciences, University of Florence, Florence, Italy
| | - Pamela Pinzani
- Clinical Biochemistry Unit, "Mario Serio" Department of Biomedical, Experimental and Clinical Sciences, University of Florence, Florence, Italy
| | - Mario Pazzagli
- Clinical Biochemistry Unit, "Mario Serio" Department of Biomedical, Experimental and Clinical Sciences, University of Florence, Florence, Italy
| |
Collapse
|
38
|
Yagi S, Koh Y, Akamatsu H, Kanai K, Hayata A, Tokudome N, Akamatsu K, Endo K, Nakamura S, Higuchi M, Kanbara H, Nakanishi M, Ueda H, Yamamoto N. Development of an automated size-based filtration system for isolation of circulating tumor cells in lung cancer patients. PLoS One 2017. [PMID: 28640869 PMCID: PMC5480994 DOI: 10.1371/journal.pone.0179744] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Circulating tumor cells (CTCs), defined as tumor cells circulating in the peripheral blood of patients with solid tumors, are relatively rare. Diagnosis using CTCs is expected to help in the decision-making for precision cancer medicine. We have developed an automated microcavity array (MCA) system to detect CTCs based on the differences in size and deformability between tumor cells and normal blood cells. Herein, we evaluated the system using blood samples from non-small-cell lung cancer (NSCLC) and small-cell lung cancer (SCLC) patients. To evaluate the recovery of CTCs, preclinical experiments were performed by spiking NSCLC cell lines (NCI-H820, A549, NCI-H23 and NCI-H441) into peripheral whole blood samples from healthy volunteers. The recovery rates were 70% or more in all cell lines. For clinical evaluation, 6 mL of peripheral blood was collected from 50 patients with advanced lung cancer and from 10 healthy donors. Cells recovered on the filter were stained. We defined CTCs as DAPI-positive, cytokeratin-positive, and CD45-negative cells under the fluorescence microscope. The 50 lung cancer patients had a median age of 72 years (range, 48–85 years); 76% had NSCLC and 20% had SCLC, and 14% were at stage III disease whereas 86% were at stage IV. One or more CTCs were detected in 80% of the lung cancer patients (median 2.5). A comparison of the CellSearch system with our MCA system, using the samples from NSCLC patients, confirmed the superiority of our system (median CTC count, 0 versus 11 for CellSearch versus MCA; p = 0.0001, n = 17). The study results suggest that our MCA system has good clinical potential for diagnosing CTCs in lung cancer.
Collapse
Affiliation(s)
- Satomi Yagi
- Medical Business Unit, Hitachi Chemical Co., Ltd., Ibaraki, Japan
- Third Department of Internal Medicine, Wakayama Medical University, Wakayama, Japan
| | - Yasuhiro Koh
- Third Department of Internal Medicine, Wakayama Medical University, Wakayama, Japan
- * E-mail:
| | - Hiroaki Akamatsu
- Third Department of Internal Medicine, Wakayama Medical University, Wakayama, Japan
| | - Kuninobu Kanai
- Third Department of Internal Medicine, Wakayama Medical University, Wakayama, Japan
| | - Atsushi Hayata
- Third Department of Internal Medicine, Wakayama Medical University, Wakayama, Japan
| | - Nahomi Tokudome
- Third Department of Internal Medicine, Wakayama Medical University, Wakayama, Japan
| | - Keiichiro Akamatsu
- Third Department of Internal Medicine, Wakayama Medical University, Wakayama, Japan
| | - Katsuya Endo
- Medical Business Unit, Hitachi Chemical Co., Ltd., Ibaraki, Japan
| | - Seita Nakamura
- Medical Business Unit, Hitachi Chemical Co., Ltd., Ibaraki, Japan
| | - Masayuki Higuchi
- Medical Business Unit, Hitachi Chemical Co., Ltd., Ibaraki, Japan
| | | | - Masanori Nakanishi
- Third Department of Internal Medicine, Wakayama Medical University, Wakayama, Japan
| | - Hiroki Ueda
- Third Department of Internal Medicine, Wakayama Medical University, Wakayama, Japan
| | - Nobuyuki Yamamoto
- Third Department of Internal Medicine, Wakayama Medical University, Wakayama, Japan
| |
Collapse
|
39
|
Zheng X, Fan L, Zhou P, Ma H, Huang S, Yu D, Zhao L, Yang S, Liu J, Huang A, Cai C, Dai X, Zhang T. Detection of Circulating Tumor Cells and Circulating Tumor Microemboli in Gastric Cancer. Transl Oncol 2017; 10:431-441. [PMID: 28448959 PMCID: PMC5406582 DOI: 10.1016/j.tranon.2017.02.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 02/14/2017] [Accepted: 02/14/2017] [Indexed: 02/06/2023] Open
Abstract
PURPOSE: Gastric cancer studies indicated a potential correlation between circulating tumor cells (CTCs) in peripheral blood and tumor relapse/metastasis. The prevalence and significance of circulating tumor microemboli (CTM) in gastric cancer remain unknown. We investigated the prevalence and prognostic value of CTCs and CTM for progression-free survival (PFS) and overall survival (OS) in gastric cancer patients. METHODS:Eighty-one gastric cancer patients consented to provide 5 ml of peripheral blood before systematic therapy. CTCs and CTM were isolated using isolation by size of epithelial tumor cells and characterized by cytopathologists. For 41 stage IV gastric cancer patients, CTM was investigated as a potential biomarker to predict prognosis. RESULTS:CTCs were detected in 51 patients; the average count was 1.81. In clinical stage I, II, III, and IV patients, the average CTC counts were 1.40, 0.67, 1.24, and 2.71, respectively. CTM were detected in 3 of 33 clinical stage I to IIIb patients, at an average of 0.12 (0-2). CTM were detected in 13 of 53 clinical stage IIIc to IV patients, at an average of 1.26 (0-22). In stage IV patients, CTM positivity correlated with the CA125 level. PFS and OS in CTM-positive patients were significantly lower than in CTM-negative patients (P < .001). CTM positivity was an independent factor for determining the PFS (P = .016) and OS (P = .003) of stage IV patients in multivariate analysis. Using markers of the epithelial-mesenchymal transition, single CTCs were divided into three phenotypes including epithelial CTCs, biphenotypic epithelial/mesenchymal CTCs, and mesenchymal CTCs. For CTM, CK−/Vimentin+/CD45− and CK+/Vimentin+/CD45− phenotypes were observed, but the CK+/Vimentin−/CD45− CTM phenotype was not. CA125 was detected in gastric cancer cell lines BGC823 and MGC803. CONCLUSIONS: In stage IV patients, CTM positivity was correlated with serum CA125 level. CTM were an independent predictor of shorter PFS and OS in stage IV patients. Thus, CTM detection may be a useful tool to predict prognosis in stage IV patients.
Collapse
Affiliation(s)
- Xiumei Zheng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Ave, Wuhan 430022, China
| | - Li Fan
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Ave, Wuhan 430022, China
| | - Pengfei Zhou
- Wuhan YZY Medical Science & Technology Co., Ltd., biolake, No.666 Gaoxin Road, Wuhan, China
| | - Hong Ma
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Ave, Wuhan 430022, China
| | - Shaoyi Huang
- Wuhan YZY Medical Science & Technology Co., Ltd., biolake, No.666 Gaoxin Road, Wuhan, China
| | - Dandan Yu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Ave, Wuhan 430022, China
| | - Lei Zhao
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Ave, Wuhan 430022, China
| | - Shengli Yang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Ave, Wuhan 430022, China
| | - Jun Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Ave, Wuhan 430022, China
| | - Ai Huang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Ave, Wuhan 430022, China
| | - Congli Cai
- Wuhan YZY Medical Science & Technology Co., Ltd., biolake, No.666 Gaoxin Road, Wuhan, China
| | - Xiaomeng Dai
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Ave, Wuhan 430022, China
| | - Tao Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Ave, Wuhan 430022, China.
| |
Collapse
|
40
|
Castle J, Morris K, Pritchard S, Kirwan CC. Challenges in enumeration of CTCs in breast cancer using techniques independent of cytokeratin expression. PLoS One 2017; 12:e0175647. [PMID: 28422972 PMCID: PMC5397021 DOI: 10.1371/journal.pone.0175647] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 03/29/2017] [Indexed: 12/24/2022] Open
Abstract
INTRODUCTION Given the current postulated plasticity between epithelial and mesenchymal states of migratory cancer cells the detection of non-epithelial CTCs is an important scientific and clinical goal. METHODS We used the filtration-based ISET technology to enrich circulating tumour cells (CTCs) in early breast cancer blood samples and identify them using a morphology-based immunocytochemistry (ICC) approach. RESULTS We found greater numbers of putative CTCs by this approach than by the cytokeratin-based CellSearch technology, but a high number of CTC false positives were identified in healthy volunteer samples which were not reduced in successive blood draws. Preliminary work using an oestrogen receptor (ER)-based multiplex ICC method in metastatic breast cancer ISET samples indicated a low number of ER+ CTCs even at this advanced stage. CONCLUSIONS This work highlights the challenges in enumerating CTCs without conventional epithelial markers.
Collapse
Affiliation(s)
- John Castle
- Clinical and Experimental Pharmacology, Cancer Research UK Manchester Institute; Manchester, United Kingdom
| | - Karen Morris
- Clinical and Experimental Pharmacology, Cancer Research UK Manchester Institute; Manchester, United Kingdom
| | - Susan Pritchard
- Department of Histopathology, University Hospital of South Manchester; Manchester, United Kingdom
| | - Cliona C Kirwan
- Division of Molecular and Clinical Cancer Sciences, University of Manchester; Department of Academic Surgery, University Hospital of South Manchester, Manchester, United Kingdom
| |
Collapse
|
41
|
Lian H, Ding Z, Yuan D, Ma J, Qin J. [Diagnostic Value of Folate Receptor-positive Circulating Tumor Cell in Lung Cancer: A Pilot Study]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2017; 19:813-820. [PMID: 27978866 PMCID: PMC5973455 DOI: 10.3779/j.issn.1009-3419.2016.12.03] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
背景与目的 评价一种通过叶酸受体(folate receptor, FR)检测循环肿瘤细胞(circulating tumor cell, CTC)的方法用于肺癌临床诊断的实用性和可行性及进一步探究CTC在肺癌术后复发的预测价值。 方法 通过免疫磁珠负向富集方法从3 mL外周血中捕获循环肿瘤细胞,再用肿瘤特异性叶酸配体-寡核苷酸偶和物标记捕获的循环肿瘤细胞,洗去没有结合的偶和物后,洗脱下特异性结合的偶合物的寡核苷酸用于定量PCR扩增分析。 结果 97例肺癌患者的CTC水平高于肺部良性疾病患者(P < 0.001)。本检测方法以8.7 Folate Units/3 mL为cutoff值,结果显示靶向PCR法对肺癌的检测灵敏度为82.5%,特异性为72.2%,特别是在Ⅰ期肺癌灵敏度达到86.8%。与其他肿瘤标志物(NSE、CEA、CYFRA21-1)比较,CTC对肺癌及Ⅰ期肺癌具有较高的诊断准确性(0.859; 95%CI: 0.779-0.939)和(0.912; 95%CI: 0.829-0.994)。5例肺癌患者术后2周内CTC水平高于cutoff值。 结论 叶酸受体阳性循环肿瘤细胞可以应用于肺癌的临床诊断,即使是对早期非小细胞肺癌(non-small cell lung cancer, NSCLC)的诊断。
Collapse
Affiliation(s)
- Huanhuan Lian
- Department of Thoracic Surgery, Henan Oncology Hospital, Zhengzhou 450008, China
| | - Zhidan Ding
- Department of Thoracic Surgery, Henan Oncology Hospital, Zhengzhou 450008, China
| | - Dongfeng Yuan
- Department of Thoracic Surgery, Henan Oncology Hospital, Zhengzhou 450008, China
| | - Jie Ma
- Department of Molecular Pathology Center, Henan Oncology Hospital, Zhengzhou 450008, China
| | - Jianjun Qin
- Department of Thoracic Surgery, Henan Oncology Hospital, Zhengzhou 450008, China
| |
Collapse
|
42
|
Lim KH, Chua YW, Lim TKH, Takano AM. An interesting observation from our experiences with circulating tumour cells. Lung Cancer 2017; 108:247-249. [PMID: 28262265 DOI: 10.1016/j.lungcan.2017.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 02/25/2017] [Indexed: 10/20/2022]
Affiliation(s)
- Kok H Lim
- Singapore General Hospital, Department of Anatomical Pathology, Academia, Diagnostics Tower Level 10, 20 College Road, 169856, Singapore.
| | - Yong W Chua
- Singapore General Hospital, Department of Anatomical Pathology, Academia, Diagnostics Tower Level 10, 20 College Road, 169856, Singapore
| | - Tony K H Lim
- Singapore General Hospital, Department of Anatomical Pathology, Academia, Diagnostics Tower Level 10, 20 College Road, 169856, Singapore
| | - Angela M Takano
- Singapore General Hospital, Department of Anatomical Pathology, Academia, Diagnostics Tower Level 10, 20 College Road, 169856, Singapore
| |
Collapse
|
43
|
Zhang D, Zhao L, Shen Q, Lv Q, Jin M, Ma H, Nie X, Zheng X, Huang S, Zhou P, Wu G, Zhang T. Down-regulation of KIAA1199/CEMIP by miR-216a suppresses tumor invasion and metastasis in colorectal cancer. Int J Cancer 2017; 140:2298-2309. [PMID: 28213952 DOI: 10.1002/ijc.30656] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 01/12/2017] [Accepted: 02/06/2017] [Indexed: 12/27/2022]
Abstract
Colorectal cancer is one of the major causes of death from cancer. Metastasis is the leading cause of treatment failure, in which cancer stem cells and circulating tumor cells play crucial roles. Identifying the involved metastatic biomarkers and clarifying the regulation mechanisms are of great importance for targeting tumor metastasis. In the current research, we discovered that KIAA1199, a cell-migration inducing protein, showed higher expression in CD44+ cancer cells from metastatic compared with the paired primary tissues, and was upregulated in colorectal cancer and positively correlated with numbers and mesenchymal phenotype of circulating tumor cells, and predicted shorter progress-free survival. Moreover, we indicated that down-regulation of KIAA1199 suppressed migration and invasion of colorectal cancer cells in vitro, and inhibited metastasis in vivo. Furthermore, we demonstrated that KIAA1199 was one of the direct and functional targets of miR-216a, and miR-216a overexpression led to decreased migration and invasion of colorectal cancer cells in vitro, and inhibited metastasis in vivo. Collectively, KIAA1199 plays a critical role in maintaining an aggressive phenotype of tumor cells, and suppression of KIAA1199-related motilities of tumor cells contributes to reduced tumor metastasis in colorectal cancer.
Collapse
Affiliation(s)
- Dejun Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Lei Zhao
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Qiong Shen
- Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qing Lv
- Department of Gastroenterology Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Min Jin
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Hong Ma
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiu Nie
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiumei Zheng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shaoyi Huang
- Wuhan YZY Medical Science & Technology Co, Ltd, Wuhan, 430075, People's Republic of China
| | - Pengfei Zhou
- Wuhan YZY Medical Science & Technology Co, Ltd, Wuhan, 430075, People's Republic of China
| | - Gang Wu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Tao Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
44
|
Detection of Circulating Tumour Cells in Urothelial Cancers and Clinical Correlations: Comparison of Two Methods. DISEASE MARKERS 2017; 2017:3414910. [PMID: 28321147 PMCID: PMC5340956 DOI: 10.1155/2017/3414910] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 01/15/2017] [Indexed: 12/21/2022]
Abstract
Circulating tumour cells (CTC) are identified exploiting their protein/gene expression patterns or distinct size compared to blood cells. Data on CTC in bladder cancer (BC) are still scarce. We comparatively analyzed CTC enrichment by AdnaTest ProstateCancerSelect (AT) and ScreenCell®Cyto (SC) kits, combined with identification by EPCAM, MUC1, and ERBB2 expression and by cytological criteria, respectively, in 19 nonmetastatic (M0) and 47 metastatic (M+) BC patients, at baseline (T0) and during treatment (T1). At T0, CTC positivity rates by AT were higher in M+ compared to M0 cases (57.4% versus 25%, p = 0.041). EPCAM was detected in 75% of CTC-positive samples by AT, showing increasing expression levels from T0 to T1 (median (interquartile range, IQR): 0.18 (0.07-0.42) versus 0.84 (0.33-1.84), p = 0.005) in M+ cases. Overall, CTC positivity by SC was around 80% regardless of clinical setting and time point of analysis, except for a lower occurrence at T1 in M0 cases. At T0, circulating tumour microemboli were more frequently (25% versus 8%) detected and more numerous in M+ compared to M0 patients. The approach used for CTC detection impacts the outcome of CTC studies. Further investigations are required to clarify the clinical validity of AT and SC in specific BC clinical contexts.
Collapse
|
45
|
He C, Huang X, Su X, Tang T, Zhang X, Ma J, Guo X, Lv X. The association between circulating tumor cells and Epstein-Barr virus activation in patients with nasopharyngeal carcinoma. Cancer Biol Ther 2017; 18:888-894. [PMID: 28121221 DOI: 10.1080/15384047.2017.1281493] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Circulating tumor cells (CTCs) and microemboli (CTM) are attracting increasing attention in medical biology and clinical practice. However, the clinical relevance of CTCs in nasopharyngeal carcinoma (NPC) has not yet been ascertained, and no study has focused on the influence of Epstein-Barr virus (EBV) status on CTCs in NPC patients. These issues were therefore examined. METHODS Peripheral blood samples were prospectively obtained from 33 NPC patients before treatment. CTCs and CTM were captured using the Isolation by Size of Epithelial Tumor (ISET) method. Immunohistochemistry on CK5/6 (cytokeratin5/6) and P63, as well as in situ hybridization of EBERs (EBV-encoded RNAs) were used to validate the harvested tumor cells. RESULTS Out of 33 NPC patients, CTCs were detected in 22 cases (66.7%), and CTM were observed in 2 cases (6.1%). CTCs were presented in all stages of NPC patients but had no association with the TNM stages (all P > 0.05). The presence of CTCs appeared to correlate with EBV activation status. Among the total NPC patients, the EBV VCA-IgA levels in CTC-positive cases were higher than that in CTC-negative cases (negative vs. positive: 3.88 vs. 4.86, P = 0.016). A similar result was observed in the patients without distant metastasis (negative vs. positive: 3.76 vs. 4.95, P = 0.009). When the number of CTCs was considered, CTC counts were found to correlate with EBV VCA-IgA (R = 0.382, P = 0.041) and EBV DNA load (R = 0.396, P = 0.033) for all NPC patients as well as NPC patients without distant metastases. CONCLUSIONS These findings strongly suggested detectable CTCs/CTM in all stages of NPC patients and support a positive correlation between CTCs and EBV activation in NPC patients.
Collapse
Affiliation(s)
- Caiyun He
- a Department of Molecular Diagnostics , Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China , China ; Collaborative Innovation Center for Cancer Medicine , Guangzhou , China
| | - Xinjun Huang
- b Department of Nasopharyngeal Carcinoma Sun Yat-Sen University Cancer Center , State Key Laboratory of Oncology in South China , China ; Collaborative Innovation Center for Cancer Medicine , Guangzhou , China
| | - Xuan Su
- c Department of Head and Neck of Sun Yat-sen University Cancer Center ; State Key Laboratory of Oncology in South China , China ; Collaborative Innovation Center for Cancer Medicine , Guangzhou , China
| | - Tao Tang
- a Department of Molecular Diagnostics , Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China , China ; Collaborative Innovation Center for Cancer Medicine , Guangzhou , China
| | - Xiao Zhang
- a Department of Molecular Diagnostics , Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China , China ; Collaborative Innovation Center for Cancer Medicine , Guangzhou , China
| | - Jiangjun Ma
- a Department of Molecular Diagnostics , Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China , China ; Collaborative Innovation Center for Cancer Medicine , Guangzhou , China
| | - Xiang Guo
- b Department of Nasopharyngeal Carcinoma Sun Yat-Sen University Cancer Center , State Key Laboratory of Oncology in South China , China ; Collaborative Innovation Center for Cancer Medicine , Guangzhou , China
| | - Xing Lv
- b Department of Nasopharyngeal Carcinoma Sun Yat-Sen University Cancer Center , State Key Laboratory of Oncology in South China , China ; Collaborative Innovation Center for Cancer Medicine , Guangzhou , China
| |
Collapse
|
46
|
Oh BY, Kim J, Lee WY, Kim HC. A New Size-based Platform for Circulating Tumor Cell Detection in Colorectal Cancer Patients. Clin Colorectal Cancer 2017; 16:214-219. [PMID: 28209483 DOI: 10.1016/j.clcc.2017.01.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 01/13/2017] [Indexed: 01/04/2023]
Abstract
BACKGROUND Circulating tumor cells (CTCs) might play a significant role in cancer progression and metastasis. However, the ability to detect CTCs is limited, especially in cells undergoing epithelial-mesenchymal transition. In this study, we evaluated a new size-based CTC detection platform and its clinical efficacy in colorectal cancer. PATIENTS AND METHODS Blood samples were obtained from 76 patients with colorectal cancer and 20 healthy control subjects for CTC analysis. CTCs were enriched using a high-density microporous chip filter and were detected using a 4-color staining protocol including 4',6-diamidino-2-phenylindole (DAPI) for nucleated cells, CD45 monoclonal antibody (mAb) as a leukocyte marker, and epithelial cell adhesion molecule (EpCAM) mAb or cytokeratin (CK) mAb as an epithelial cell marker. CTC positivity was defined as DAPI-positive (DAPI+)/CD45-/EpCAM+ or CK+ cells and clinical outcomes of patients were analyzed according to CTC counts. RESULTS CTCs were detected in 50 patients using this size-based filtration platform. CTC+ patients were more frequently identified with a high level of carcinoembryonic antigen and advanced stage cancer (P = .038 and P = .017, respectively). CTC counts for patients with stage IV cancer (12.47 ± 24.00) were significantly higher than those for patients with cancers that were stage I to III (2.84 ± 5.29; P = .005) and healthy control subjects (0.25 ± 0.55; P < .001). In addition, progression-free survival tended to be lower in CTC+ patients compared with CTC- patients (P = .092). In patients with stage I to III cancer, recurrence occurred only in CTC+ patients. CONCLUSION CTC positivity was found to correlate with clinical features of colorectal cancer patients. Our results suggest that this new size-based platform has potential for determining prognosis and therapeutic response in colorectal cancer patients.
Collapse
Affiliation(s)
- Bo Young Oh
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jhingook Kim
- Department of Thoracic and Cardiovascular Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Woo Yong Lee
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.
| | - Hee Cheol Kim
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.
| |
Collapse
|
47
|
Technical Insights into Highly Sensitive Isolation and Molecular Characterization of Fixed and Live Circulating Tumor Cells for Early Detection of Tumor Invasion. PLoS One 2017; 12:e0169427. [PMID: 28060956 PMCID: PMC5218415 DOI: 10.1371/journal.pone.0169427] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 12/16/2016] [Indexed: 12/26/2022] Open
Abstract
Circulating Tumor Cells (CTC) and Circulating Tumor Microemboli (CTM) are Circulating Rare Cells (CRC) which herald tumor invasion and are expected to provide an opportunity to improve the management of cancer patients. An unsolved technical issue in the CTC field is how to obtain highly sensitive and unbiased collection of these fragile and heterogeneous cells, in both live and fixed form, for their molecular study when they are extremely rare, particularly at the beginning of the invasion process. We report on a new protocol to enrich from blood live CTC using ISET® (Isolation by SizE of Tumor/Trophoblastic Cells), an open system originally developed for marker-independent isolation of fixed tumor cells. We have assessed the impact of our new enrichment method on live tumor cells antigen expression, cytoskeleton structure, cell viability and ability to expand in culture. We have also explored the ISET®in vitro performance to collect intact fixed and live cancer cells by using spiking analyses with extremely low number of fluorescent cultured cells. We describe results consistently showing the feasibility of isolating fixed and live tumor cells with a Lower Limit of Detection (LLOD) of one cancer cell per 10 mL of blood and a sensitivity at LLOD ranging from 83 to 100%. This very high sensitivity threshold can be maintained when plasma is collected before tumor cells isolation. Finally, we have performed a comparative next generation sequencing (NGS) analysis of tumor cells before and after isolation from blood and culture. We established the feasibility of NGS analysis of single live and fixed tumor cells enriched from blood by our system. This study provides new protocols for detection and characterization of CTC collected from blood at the very early steps of tumor invasion.
Collapse
|
48
|
Zhang D, Zhao L, Zhou P, Ma H, Huang F, Jin M, Dai X, Zheng X, Huang S, Zhang T. Circulating tumor microemboli (CTM) and vimentin+ circulating tumor cells (CTCs) detected by a size-based platform predict worse prognosis in advanced colorectal cancer patients during chemotherapy. Cancer Cell Int 2017; 17:6. [PMID: 28070168 PMCID: PMC5217234 DOI: 10.1186/s12935-016-0373-7] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 12/18/2016] [Indexed: 12/19/2022] Open
Abstract
Background Circulating tumor cells (CTCs) detected in peripheral blood (PB) of cancer patients can be identified as isolated CTCs and circulating tumor microemboli (CTM). This study aimed to evaluate the prognostic value of CTM detection and CTC phenotype in advanced colorectal cancer (CRC) patients during chemotherapy. Methods A size-based platform for CTC isolation was applied. PB samples (5 ml) from 98 advanced CRC patients during 2–6 cycles chemotherapy were collected for CTC detection, and CTC count was correlated to patient’s clinicopathological characteristics and clinical outcome. And CTC phenotype was measured by immunofluorescent staining and evaluate the predictive significance on survival in 32 CTCs-positive patients with advanced CRC. Results Forty-eight of 98 patients were CTCs-positive, including 18 CTM-positive patients, and CTC detection was positively correlated with lymphatic invasion (P = 0.049), TNM stage (P = 0.023), and serum CEA level (P = 0.014). Moreover, Kaplan–Meier survival and Cox regression analyses revealed that the presence of CTCs was an independent factor for poor PFS and OS (P < 0.05) in advanced CRC patients during chemotherapy, and CTM-positive patients had shooter survival than isolated CTCs-positive patients (P < 0.05). Furthermore, patients with vimentin+ isolated CTCs/CTM had shorter PFS and OS compared with CK+ CTCs (P < 0.05). Conclusions This study provided evidence that the presence of CTCs was positively correlated with poor prognosis, and furthermore, CTM and vimentin+ CTCs predicted poorer survival, which indicated that CTM and vimentin+ CTCs detected by a sensitive platform could be used to improve prognostic value of CTCs in advanced CRC patients under treatment.
Collapse
Affiliation(s)
- Dejun Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 Hubei People's Republic of China
| | - Lei Zhao
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 Hubei People's Republic of China
| | - Pengfei Zhou
- Wuhan YZY Medical Science & Technology Co., Ltd., Wuhan, 430075 Hubei People's Republic of China
| | - Hong Ma
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 Hubei People's Republic of China
| | - Fang Huang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 Hubei People's Republic of China
| | - Min Jin
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 Hubei People's Republic of China
| | - Xiaomeng Dai
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 Hubei People's Republic of China
| | - Xiumei Zheng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 Hubei People's Republic of China
| | - Shaoyi Huang
- Wuhan YZY Medical Science & Technology Co., Ltd., Wuhan, 430075 Hubei People's Republic of China
| | - Tao Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 Hubei People's Republic of China
| |
Collapse
|
49
|
Chudasama DY, Freydina DV, Freidin MB, Leung M, Montero Fernandez A, Rice A, Nicholson AG, Karteris E, Anikin V, Lim E. Inertia based microfluidic capture and characterisation of circulating tumour cells for the diagnosis of lung cancer. ANNALS OF TRANSLATIONAL MEDICINE 2016; 4:480. [PMID: 28149842 DOI: 10.21037/atm.2016.12.28] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Routine clinical application of circulating tumour cells (CTCs) for blood based diagnostics is yet to be established. Despite growing evidence of their clinical utility for diagnosis, prognosis and treatment monitoring, the efficacy of a robust platform and universally accepted diagnostic criteria remain uncertain. We evaluate the diagnostic performance of a microfluidic CTC isolation platform using cytomorphologic criteria in patients undergoing lung cancer surgery. METHODS Blood was processed from 51 patients undergoing surgery for known or suspected lung cancer using the ClearBridge ClearCell FX systemTM (ClearBridge Biomedics, Singapore). Captured cells were stained on slides with haematoxylin and eosin (H&E) and independently assessed by two pathologist teams. Diagnostic performance was evaluated against the pathologists reported diagnosis of cancer from surgically obtained specimens. RESULTS Cancer was diagnosed in 43.1% and 54.9% of all cases. In early stage primary lung cancer, between the two reporting teams, a positive diagnosis of CTCs was made for 50% and 66.7% of patients. The agreement between the reporting teams was 80.4%, corresponding to a kappa-statistic of 0.61±0.11 (P<0.001), indicating substantial agreement. Sensitivity levels for the two teams were calculated as 59% (95% CI, 41-76%) and 41% (95% CI, 24-59%), with a specificity of 53% for both. CONCLUSIONS The performance of the tested microfluidic antibody independent device to capture CTCs using standard cytomorphological criteria provides the potential of a diagnostic blood test for lung cancer.
Collapse
Affiliation(s)
- Dimple Y Chudasama
- National Heart and Lung Institute, Imperial College London, London, UK;; Division of Thoracic Surgery, Harefield Hospital, The Royal Brompton and Harefield Hospitals NHS Foundation Trust, London, UK;; Division of Biosciences, Brunel University London, London, UK
| | - Daria V Freydina
- National Heart and Lung Institute, Imperial College London, London, UK;; Academic Division of Thoracic Surgery, The Royal Brompton and Harefield Hospitals NHS Foundation Trust, London, UK
| | - Maxim B Freidin
- National Heart and Lung Institute, Imperial College London, London, UK;; Academic Division of Thoracic Surgery, The Royal Brompton and Harefield Hospitals NHS Foundation Trust, London, UK
| | - Maria Leung
- National Heart and Lung Institute, Imperial College London, London, UK;; Academic Division of Thoracic Surgery, The Royal Brompton and Harefield Hospitals NHS Foundation Trust, London, UK
| | - Angeles Montero Fernandez
- National Heart and Lung Institute, Imperial College London, London, UK;; Department of Histopathology, The Royal Brompton and Harefield Hospitals NHS Foundation Trust, London, UK
| | - Alexandra Rice
- National Heart and Lung Institute, Imperial College London, London, UK;; Department of Histopathology, The Royal Brompton and Harefield Hospitals NHS Foundation Trust, London, UK
| | - Andrew G Nicholson
- National Heart and Lung Institute, Imperial College London, London, UK;; Department of Histopathology, The Royal Brompton and Harefield Hospitals NHS Foundation Trust, London, UK
| | | | - Vladimir Anikin
- Division of Thoracic Surgery, Harefield Hospital, The Royal Brompton and Harefield Hospitals NHS Foundation Trust, London, UK
| | - Eric Lim
- National Heart and Lung Institute, Imperial College London, London, UK;; Academic Division of Thoracic Surgery, The Royal Brompton and Harefield Hospitals NHS Foundation Trust, London, UK
| |
Collapse
|
50
|
Pathologists and liquid biopsies: to be or not to be? Virchows Arch 2016; 469:601-609. [PMID: 27553354 DOI: 10.1007/s00428-016-2004-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 06/25/2016] [Accepted: 08/09/2016] [Indexed: 12/19/2022]
Abstract
Recently, the advent of therapies targeting genomic alterations has improved the care of patients with certain types of cancer. While molecular targets were initially detected in nucleic acid samples extracted from tumor tissue, detection of nucleic acids in circulating blood has allowed the development of what has become known as liquid biopsies, which provide a complementary and alternative sample source allowing identification of genomic alterations that might be addressed by targeted therapy. Consequently, liquid biopsies might rapidly revolutionize oncology practice in allowing administration of more effective treatments. Liquid biopsies also provide an approach towards short-term monitoring of metastatic cancer patients to evaluate efficacy of treatment and/or early detection of secondary mutations responsible for resistance to treatment. In this context, pathologists, who have already been required in recent years to take interest in the domain of molecular pathology of cancer, now face new challenges. The attitude of pathologists to and level of involvement in the practice of liquid biopsies, including mastering the methods employed in molecular analysis of blood samples, need close attention. Regardless of the level of involvement of pathologists in this new field, it is mandatory that oncologists, biologists, geneticists, and pathologists work together to coordinate the pre-analytical, analytical, and post-analytical phases of molecular assessment of tissue and liquid samples of individual cancer patients. The challenges include (1) implementation of effective and efficient procedures for reception and analysis of liquid and tissue samples for histopathological and molecular evaluation and (2) assuring short turn-around times to facilitate rapid optimization of individual patient treatment. In this paper, we will review the following: (1) recent data concerning the concept of liquid biopsies in oncology and its development for patient care, (2) advantages and limitations of molecular analyses performed on blood samples compared to those performed on tissue samples, and (3) short-term challenges facing pathologists in dealing with liquid biopsies of cancer patients and new strategies to early detect metastatic tumor cell clones.
Collapse
|