1
|
Liu R, Tang X, Xiong R, Li L, Du X, He L. Simultaneous determination of fourteen β 2-agonist enantiomers in food animal muscles by liquid chromatography coupled with tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1193:123169. [PMID: 35180545 DOI: 10.1016/j.jchromb.2022.123169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 01/21/2022] [Accepted: 02/10/2022] [Indexed: 10/19/2022]
Abstract
Illegal drug residues in animal derived foods are closely related to human's life and health. Studies on illegal drug residues and the metabolism, such as β2-agonists in animals have attracted more and more attention. In most cases, β2-agonists are suppliedand used astheracemate. The metabolic process and distribution of the two enantiomers in animal tissues are different. Therefore, it is very necessary to develop a simple and fast method for chiral resolution of these drugs in animal tissues. In this paper, a reliable resolution and determination method was presented using liquid chromatography-tandem mass spectrometry (LC-MS/MS) for fourteen enantiomers of seven β2-agonist racemates, clenbuterol (CLE), salbutamol (SAL), cimaterol (CIM), terbutaline (TER), clorprenaline (CLO), tulobuterol (TUL), penbuterol (PEN) in pork, beef, and lamb muscle samples. The samples were added the internal standard solution (IS) and extracted in the alkaline medium with acetonitrile. The further sample purification was accomplished through MCX solid phase extraction cartridge. Chromatographic chiral separation was carried out on a VancoShell chiral column (100 mm × 4.6 mm, 2.7 μm) with an isocratic mobile phase consisting of methanol and 10 mmol mL-1 ammonium formate aqueous solution (85:15, v/v). Under the optimized conditions, the resolution (R) of CIM was 2.0, CLE and PEN were 1.5, the others were all greater than 1.0. Enantiomeric determination was performed in the positive electrospray ionization mode using multiple reaction monitoring (MRM). The correlation coefficient (r) in the range of 0.2-25.0 μg L-1 was above 0.993. The average recoveries at the three spiking levels ranged from 95.3% to 117.7% with the relative standard deviation (RSD) lower than 15%. The limit of detection (LOD) and the limit of quantification (LOQ) of β2-agonist enantiomers was 0.2 μg kg-1 and 0.5 μg kg-1 respectively. The method was successfully applied in the analysis and evaluation of β2-agonist enantiomers in positive food animal muscle samples, CLE, SAL, TEB and CIM enantiomers were detected. The concentrations of the corresponding enantiomers were in the range of 1.06-17.3 μg kg-1, the lowest enantiomer fraction (EF) value was 0.42, and the highest value was 0.69. The work is expected to provide a method for chiral separation and enantiomeric determination of the further study of pharmacology, toxicity and residue elimination of β2-agonist enantiomers.
Collapse
Affiliation(s)
- Rong Liu
- Quality Supervision, Inspection and Testing Center for Domestic Animal Products (Guangzhou), Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China
| | - Xiaoling Tang
- National Reference Laboratory of Veterinary Drug Residues (SCAU), College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Renping Xiong
- Quality Supervision, Inspection and Testing Center for Domestic Animal Products (Guangzhou), Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China
| | - Lu Li
- National Reference Laboratory of Veterinary Drug Residues (SCAU), College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Xiaoxi Du
- Quality Supervision, Inspection and Testing Center for Domestic Animal Products (Guangzhou), Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China
| | - Limin He
- Quality Supervision, Inspection and Testing Center for Domestic Animal Products (Guangzhou), Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China; National Reference Laboratory of Veterinary Drug Residues (SCAU), College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
2
|
Ružena Č, Jindra V, Renáta H. Chirality of β2-agonists. An overview of pharmacological activity, stereoselective analysis, and synthesis. OPEN CHEM 2020. [DOI: 10.1515/chem-2020-0056] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Abstractβ2-Agonists (β2-adrenergic agonists, bronchodilatants, and sympathomimetic drugs) are a group of drugs that are mainly used in asthma and obstructive pulmonary diseases. In practice, the substances used to contain one or more stereogenic centers in their structure and their enantiomers exhibit different pharmacological properties. In terms of bronchodilatory activity, (R)-enantiomers showed higher activity. The investigation of stereoselectivity in action and disposition of chiral drugs together with the preparation of pure enantiomer drugs calls for efficient stereoselective analytical methods. The overview focuses on the stereoselectivity in pharmacodynamics and pharmacokinetics of β2-agonists and summarizes the stereoselective analytical methods for the enantioseparation of racemic beta-agonists (HPLC, LC-MS, GC, TLC, CE). Some methods of the stereoselective synthesis for β2-agonists preparation are also presented.
Collapse
Affiliation(s)
- Čižmáriková Ružena
- Department of Chemical Theory of Drugs, Faculty of Pharmacy, Comenius University in Bratislava, Odbojárov 10, 832 32 Bratislava, Slovakia
| | - Valentová Jindra
- Department of Chemical Theory of Drugs, Faculty of Pharmacy, Comenius University in Bratislava, Odbojárov 10, 832 32 Bratislava, Slovakia
| | - Horáková Renáta
- Department of Chemical Theory of Drugs, Faculty of Pharmacy, Comenius University in Bratislava, Odbojárov 10, 832 32 Bratislava, Slovakia
| |
Collapse
|
3
|
Jensen O, Rafehi M, Tzvetkov MV, Brockmöller J. Stereoselective cell uptake of adrenergic agonists and antagonists by organic cation transporters. Biochem Pharmacol 2020; 171:113731. [DOI: 10.1016/j.bcp.2019.113731] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 11/22/2019] [Indexed: 10/25/2022]
|
4
|
Saika A, Nagatake T, Kishino S, Park S, Honda T, Matsumoto N, Shimojou M, Morimoto S, Tiwari P, Node E, Hirata S, Hosomi K, Kabashima K, Ogawa J, Kunisawa J. 17( S),18( R)-epoxyeicosatetraenoic acid generated by cytochrome P450 BM-3 from Bacillus megaterium inhibits the development of contact hypersensitivity via G-protein-coupled receptor 40-mediated neutrophil suppression. FASEB Bioadv 2020; 2:59-71. [PMID: 32123857 PMCID: PMC6996328 DOI: 10.1096/fba.2019-00061] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 07/24/2019] [Accepted: 12/10/2019] [Indexed: 12/11/2022] Open
Abstract
Dietary intake of ω3 polyunsaturated fatty acids such as eicosapentaenoic acid and docosahexaenoic acid is beneficial for health control. We recently identified 17,18-epoxyeicosatetraenoic acid (17,18-EpETE) as a lipid metabolite endogenously generated from eicosapentaenoic acid that exhibits potent anti-allergic and anti-inflammatory properties. However, chemically synthesized 17,18-EpETE is enantiomeric due to its epoxy group-17(S),18(R)-EpETE and 17(R),18(S)-EpETE. In this study, we demonstrated stereoselective differences of 17(S),18(R)-EpETE and 17(R),18(S)-EpETE in amelioration of skin contact hypersensitivity and found that anti-inflammatory activity was detected in 17(S),18(R)-EpETE, but not in 17(R),18(S)-EpETE. In addition, we found that cytochrome P450 BM-3 derived from Bacillus megaterium stereoselectively converts EPA into 17(S),18(R)-EpETE, which effectively inhibited the development of skin contact hypersensitivity by inhibiting neutrophil migration in a G protein-coupled receptor 40-dependent manner. These results suggest the new availability of a bacterial enzyme to produce a beneficial lipid mediator, 17(S),18(R)-EpETE, in a stereoselective manner. Our findings highlight that bacterial enzymatic conversion of fatty acid is a promising strategy for mass production of bioactive lipid metabolites.
Collapse
Affiliation(s)
- Azusa Saika
- Laboratory of Vaccine MaterialsCenter for Vaccine and Adjuvant ResearchLaboratory of Gut Environmental SystemNational Institutes of Biomedical InnovationHealth and Nutrition (NIBIOHN)OsakaJapan
- Graduate School of Pharmaceutical SciencesOsaka UniversityOsakaJapan
| | - Takahiro Nagatake
- Laboratory of Vaccine MaterialsCenter for Vaccine and Adjuvant ResearchLaboratory of Gut Environmental SystemNational Institutes of Biomedical InnovationHealth and Nutrition (NIBIOHN)OsakaJapan
| | - Shigenobu Kishino
- Division of Applied Life SciencesGraduate School of AgricultureKyoto UniversityKyotoJapan
| | - Si‐Bum Park
- Division of Applied Life SciencesGraduate School of AgricultureKyoto UniversityKyotoJapan
| | - Tetsuya Honda
- Department of DermatologyGraduate School of MedicineKyoto UniversityKyotoJapan
| | - Naomi Matsumoto
- Laboratory of Vaccine MaterialsCenter for Vaccine and Adjuvant ResearchLaboratory of Gut Environmental SystemNational Institutes of Biomedical InnovationHealth and Nutrition (NIBIOHN)OsakaJapan
| | - Michiko Shimojou
- Laboratory of Vaccine MaterialsCenter for Vaccine and Adjuvant ResearchLaboratory of Gut Environmental SystemNational Institutes of Biomedical InnovationHealth and Nutrition (NIBIOHN)OsakaJapan
| | - Sakiko Morimoto
- Laboratory of Vaccine MaterialsCenter for Vaccine and Adjuvant ResearchLaboratory of Gut Environmental SystemNational Institutes of Biomedical InnovationHealth and Nutrition (NIBIOHN)OsakaJapan
| | - Prabha Tiwari
- Laboratory of Vaccine MaterialsCenter for Vaccine and Adjuvant ResearchLaboratory of Gut Environmental SystemNational Institutes of Biomedical InnovationHealth and Nutrition (NIBIOHN)OsakaJapan
| | - Eri Node
- Laboratory of Vaccine MaterialsCenter for Vaccine and Adjuvant ResearchLaboratory of Gut Environmental SystemNational Institutes of Biomedical InnovationHealth and Nutrition (NIBIOHN)OsakaJapan
| | - So‐ichiro Hirata
- Laboratory of Vaccine MaterialsCenter for Vaccine and Adjuvant ResearchLaboratory of Gut Environmental SystemNational Institutes of Biomedical InnovationHealth and Nutrition (NIBIOHN)OsakaJapan
- Graduate School of MedicineKobe UniversityHyogoJapan
| | - Koji Hosomi
- Laboratory of Vaccine MaterialsCenter for Vaccine and Adjuvant ResearchLaboratory of Gut Environmental SystemNational Institutes of Biomedical InnovationHealth and Nutrition (NIBIOHN)OsakaJapan
| | - Kenji Kabashima
- Department of DermatologyGraduate School of MedicineKyoto UniversityKyotoJapan
| | - Jun Ogawa
- Division of Applied Life SciencesGraduate School of AgricultureKyoto UniversityKyotoJapan
| | - Jun Kunisawa
- Laboratory of Vaccine MaterialsCenter for Vaccine and Adjuvant ResearchLaboratory of Gut Environmental SystemNational Institutes of Biomedical InnovationHealth and Nutrition (NIBIOHN)OsakaJapan
- Graduate School of Pharmaceutical SciencesOsaka UniversityOsakaJapan
- Graduate School of MedicineKobe UniversityHyogoJapan
- International Research and Development Center for Mucosal VaccinesThe Institute of Medical ScienceThe University of TokyoTokyoJapan
- Graduate School of MedicineGraduate School of DentistryOsaka UniversityOsakaJapan
| |
Collapse
|
5
|
Gao L, Xue Y, Zhang Z, Tian Y. Enantioseparation of
N‐
acetyl‐glutamine enantiomers by LC–MS/MS and its application to a plasma protein binding study. Biomed Chromatogr 2019; 33:e4559. [DOI: 10.1002/bmc.4559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/12/2019] [Accepted: 04/17/2019] [Indexed: 01/16/2023]
Affiliation(s)
- Lei Gao
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education)China Pharmaceutical University Nanjing China
- Key Laboratory of Drug Consistency EvaluationChina Pharmaceutical University Nanjing China
| | - Yunwen Xue
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education)China Pharmaceutical University Nanjing China
- Key Laboratory of Drug Consistency EvaluationChina Pharmaceutical University Nanjing China
| | - Zunjian Zhang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education)China Pharmaceutical University Nanjing China
- Key Laboratory of Drug Consistency EvaluationChina Pharmaceutical University Nanjing China
| | - Yuan Tian
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education)China Pharmaceutical University Nanjing China
- Key Laboratory of Drug Consistency EvaluationChina Pharmaceutical University Nanjing China
| |
Collapse
|
6
|
Pawlak A, Gładkowski W, Kutkowska J, Mazur M, Obmińska-Mrukowicz B, Rapak A. Enantiomeric trans β-aryl-δ-iodo-γ-lactones derived from 2,5-dimethylbenzaldehyde induce apoptosis in canine lymphoma cell lines by downregulation of anti-apoptotic Bcl-2 family members Bcl-xL and Bcl-2. Bioorg Med Chem Lett 2018. [PMID: 29534928 DOI: 10.1016/j.bmcl.2018.03.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
For many years, studies focused on developing new natural or synthetic compounds with antineoplastic activity have attracted the attention of researchers. An interesting group of such compounds seem to be those with both lactone moiety and an aromatic ring which, in addition to antimicrobial or antiviral activity, also exhibit antitumor properties. The study shows antitumor activity of two enantiomeric trans isomers of 5-(1-iodoethyl)-4-(2',5'-dimethylphenyl)dihydrofuran-2-one. Our aim was to determine their antitumor activity manifested as an ability to induce apoptosis in selected canine cancer cell lines as well as to evaluate differences in their strength depending on the configuration of their stereogenic centers. The enantiomers (+)-(4R,5S,6R)-1 and (-)-(4S,5R,6S)-2 were found to induce classical caspase-dependent apoptosis through downregulation of the expression of anti-apoptotic proteins Bcl-xL and Bcl-2. Although the mechanism of apoptosis induction was the same for both enantiomers, they differed in their strength, as stronger antineoplastic activity in vitro was exhibited by isomer (+)-(4R,5S,6R)-1.
Collapse
Affiliation(s)
- Aleksandra Pawlak
- Department of Pharmacology, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Norwida 31, 50-375 Wrocław, Poland.
| | - Witold Gładkowski
- Department of Chemistry, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland.
| | - Justyna Kutkowska
- Laboratory of Tumor Molecular Immunobiology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Wroclaw, Weigla 12, 53-114 Wroclaw, Poland.
| | - Marcelina Mazur
- Department of Chemistry, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| | - Bożena Obmińska-Mrukowicz
- Department of Pharmacology, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Norwida 31, 50-375 Wrocław, Poland
| | - Andrzej Rapak
- Laboratory of Tumor Molecular Immunobiology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Wroclaw, Weigla 12, 53-114 Wroclaw, Poland.
| |
Collapse
|
7
|
Fan Z, Lin W, Lv N, Ye Y, Tan W. R- and S-terbutaline activate large conductance and Ca 2+ dependent K + (BK Ca ) channel through interacting with β 2 and M receptor respectively. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:2745-2752. [DOI: 10.1016/j.bbamem.2016.07.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 07/22/2016] [Accepted: 07/27/2016] [Indexed: 11/30/2022]
|
8
|
Bioanalysis of chiral compounds during drug development using a tiered approach. Bioanalysis 2015; 6:629-39. [PMID: 24620805 DOI: 10.4155/bio.14.2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Significant differences in the pharmacodynamic activity and pharmacokinetic properties could exist for a pair of enantiomeric drugs. In order to evaluate the activity, toxicity, absorption, distribution, metabolism, and excretion properties of the individual enantiomers, and any potential for chiral inversion caused by the biotransformation process, chiral bioanalytical assays are necessary for individual enantiomers and/or their metabolites for in vivo samples. However, development and validation of chiral quantitative assays are highly challenging in comparison to typical nonchiral assays. Therefore, a tiered approach should be used to address specific needs arising in different scenarios of chiral drug development, including development of racemate or fixed-ratio (nonracemic) enantiomers, development of a single enantiomer, racemic switches, and quantitation of enantiomeric metabolites. The choice of a nonchiral quantitative assay, a chiral qualitative assay, or a chiral quantitative assay should be based on the development strategy and on the molecular properties of the drug candidate.
Collapse
|
9
|
Wu F, Gaohua L, Zhao P, Jamei M, Huang SM, Bashaw ED, Lee SC. Predicting nonlinear pharmacokinetics of omeprazole enantiomers and racemic drug using physiologically based pharmacokinetic modeling and simulation: application to predict drug/genetic interactions. Pharm Res 2014; 31:1919-29. [PMID: 24590877 DOI: 10.1007/s11095-013-1293-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 12/31/2013] [Indexed: 01/19/2023]
Abstract
PURPOSE The objective of this study is to develop a physiologically-based pharmacokinetic (PBPK) model for each omeprazole enantiomer that accounts for nonlinear PK of the two enantiomers as well as omeprazole racemic drug. METHODS By integrating in vitro, in silico and human PK data, we first developed PBPK models for each enantiomer. Simulation of racemic omeprazole PK was accomplished by combining enantiomer models that allow mutual drug interactions to occur. RESULTS The established PBPK models for the first time satisfactorily predicted the nonlinear PK of esomeprazole, R-omeprazole and the racemic drug. The modeling exercises revealed that the strong time-dependent inhibition of CYP2C19 by esomeprazole greatly altered the R-omeprazole PK following administration of racemic omeprazole as in contrast to R-omeprazole given alone. When PBPK models incorporated both autoinhibition of each enantiomer and mutual interactions, the ratios between predicted and observed AUC following single and multiple dosing of omeprazole were 0.97 and 0.94, respectively. CONCLUSIONS PBPK models of omeprazole enantiomers and racemic drug were developed. These models can be utilized to assess CYP2C19-mediated drug and genetic interaction potential for omeprazole and esomeprazole.
Collapse
Affiliation(s)
- Fang Wu
- Office of Clinical Pharmacology, Office of Translational Sciences Center for Drug Evaluation and Research, Food and Drug Administration, 10903 New Hampshire Ave, Silver Spring, Maryland, 20993, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Lewis DJ, Williams TC, Beck SL. Foamy macrophage responses in the rat lung following exposure to inhaled pharmaceuticals: a simple, pragmatic approach for inhaled drug development. J Appl Toxicol 2013; 34:319-31. [DOI: 10.1002/jat.2950] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 09/18/2013] [Accepted: 09/18/2013] [Indexed: 12/31/2022]
Affiliation(s)
- David J. Lewis
- Safety Assessment, GlaxoSmithKline; Ware Herts SG12 0DP UK
| | | | - Steven L. Beck
- Safety Assessment, GlaxoSmithKline; Ware Herts SG12 0DP UK
| |
Collapse
|
11
|
Abstract
A paradoxical drug reaction constitutes an outcome that is opposite from the outcome that would be expected from the drug's known actions. There are three types: 1. A paradoxical response in a condition for which the drug is being explicitly prescribed. 2. Paradoxical precipitation of a condition for which the drug is indicated, when the drug is being used for an alternative indication. 3. Effects that are paradoxical in relation to an aspect of the pharmacology of the drug but unrelated to the usual indication. In bidirectional drug reactions, a drug may produce opposite effects, either in the same or different individuals, the effects usually being different from the expected beneficial effect. Paradoxical and bidirectional drug effects can sometimes be harnessed for benefit; some may be adverse. Such reactions arise in a wide variety of drug classes. Some are common; others are reported in single case reports. Paradoxical effects are often adverse, since they are opposite the direction of the expected effect. They may complicate the assessment of adverse drug reactions, pharmacovigilance, and clinical management. Bidirectional effects may be clinically useful or adverse. From a clinical toxicological perspective, altered pharmacokinetics or pharmacodynamics in overdose may exacerbate paradoxical and bidirectional effects. Certain antidotes have paradoxical attributes, complicating management. Apparent clinical paradoxical or bidirectional effects and reactions ensue when conflicts arise at different levels in self-regulating biological systems, as complexity increases from subcellular components, such as receptors, to cells, tissues, organs, and the whole individual. These may be incompletely understood. Mechanisms of such effects include different actions at the same receptor, owing to changes with time and downstream effects; stereochemical effects; multiple receptor targets with or without associated temporal effects; antibody-mediated reactions; three-dimensional architectural constraints; pharmacokinetic competing compartment effects; disruption and non-linear effects in oscillating systems, systemic overcompensation, and other higher-level feedback mechanisms and feedback response loops at multiple levels. Here we review and provide a compendium of multiple class effects and individual reactions, relevant mechanisms, and specific clinical toxicological considerations of antibiotics, immune modulators, antineoplastic drugs, and cardiovascular, CNS, dermal, endocrine, musculoskeletal, gastrointestinal, haematological, respiratory, and psychotropic agents.
Collapse
Affiliation(s)
- Silas W Smith
- Department of Emergency Medicine, New York University School of Medicine, New York, NY 10016, USA.
| | | | | |
Collapse
|
12
|
Kasprzyk-Hordern B. Pharmacologically active compounds in the environment and their chirality. Chem Soc Rev 2010; 39:4466-503. [PMID: 20852776 DOI: 10.1039/c000408c] [Citation(s) in RCA: 308] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pharmacologically active compounds including both legally used pharmaceuticals and illicit drugs are potent environmental contaminants. Extensive research has been undertaken over the recent years to understand their environmental fate and toxicity. The one very important phenomenon that has been overlooked by environmental researchers studying the fate of pharmacologically active compounds in the environment is their chirality. Chiral drugs can exist in the form of enantiomers, which have similar physicochemical properties but differ in their biological properties such as distribution, metabolism and excretion, as these processes (due to stereospecific interactions of enantiomers with biological systems) usually favour one enantiomer over the other. Additionally, due to different pharmacological activity, enantiomers of chiral drugs can differ in toxicity. Furthermore, degradation of chiral drugs during wastewater treatment and in the environment can be stereoselective and can lead to chiral products of varied toxicity. The distribution of different enantiomers of the same chiral drug in the aquatic environment and biota can also be stereoselective. Biological processes can lead to stereoselective enrichment or depletion of the enantiomeric composition of chiral drugs. As a result the very same drug might reveal different activity and toxicity and this will depend on its origin and exposure to several factors governing its fate in the environment. In this critical review a discussion of the importance of chirality of pharmacologically active compounds in the environmental context is undertaken and suggestions for directions in further research are made. Several groups of chiral drugs of major environmental relevance are discussed and their pharmacological action and disposition in the body is also outlined as it is a key factor in developing a full understanding of their environmental occurrence, fate and toxicity. This review will be of interest to environmental scientists, especially those interested in issues associated with environmental contamination with pharmacologically active compounds and chiral pollutants. As the review will outline current state of knowledge on chiral drugs, it will be of value to anyone interested in the phenomenon of chirality, chiral drugs, their stereoselective disposition in the body and environmental fate (212 references).
Collapse
Affiliation(s)
- Barbara Kasprzyk-Hordern
- University of Huddersfield, Department of Chemical and Biological Sciences, School of Applied Sciences, Queensgate, Huddersfield HD1 3DH, UK.
| |
Collapse
|
13
|
Haritova AM, Fink-Gremmels J. A simulation model for the prediction of tissue:plasma partition coefficients for drug residues in natural casings. Vet J 2009; 185:278-84. [PMID: 19709908 DOI: 10.1016/j.tvjl.2009.06.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2009] [Revised: 06/07/2009] [Accepted: 06/08/2009] [Indexed: 10/20/2022]
Abstract
Tissue residues arise from the exposure of animals to undesirable substances in animal feed materials and drinking water and to the therapeutic or zootechnical use of veterinary medicinal products. In the framework of this study, an advanced toxicokinetic model was developed to predict the likelihood of residue disposition of licensed veterinary products in natural casings used as envelope for a variety of meat products, such as sausages. The model proved suitable for the calculation of drug concentrations in the muscles of pigs, cattle and sheep, the major species of which intestines are used. On the basis of drug concentrations in muscle tissue, the model allowed a prediction of intestinal concentrations and residues in the intestines that remained equal to or below the concentrations in muscle tissue, the major consumable product of slaughter animals. Subsequently, residues in intestines were found to be below the maximum residue limit value for muscle tissue when drugs were used according to prescribed procedures, including the application of appropriate withdrawal times. Considering the low consumption of natural casings (which represents only about 1-2% of the weight of a normal sausage), it was concluded that the exposure to drug residues from casings is negligible.
Collapse
Affiliation(s)
- Aneliya Milanova Haritova
- Department of Pharmacology, Veterinary Physiology and Physiological Chemistry, Faculty of Veterinary Medicine, Trakia University, Bulgaria
| | | |
Collapse
|
14
|
Enantioselective quantification of chiral drugs in human plasma with LC–MS/MS. Bioanalysis 2009; 1:561-76. [DOI: 10.4155/bio.09.31] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Today, approximately 60% of synthetic drugs are chiral and 88% of these chiral synthetic drugs are used therapeutically as racemates. However, for many racemic drugs, their stereospecific plasma pharmacokinetics in humans are not known due to the limitations of the analytical methods. Nowadays, liquid chromatography (LC)–tandem mass spectrometry (MS/MS) methods based on various chiral stationary phases (CSPs), with a high degree of specificity and sensitivity, have been widely used in enantioselective determination of chiral drugs and/or their metabolites in human plasma. The technologies and issues when coupling chiral chromatography with MS/MS detection in bioanalytical methods will be reviewed herein. The introduction and applications of various CPSs, including polysaccharide-, macrocyclic glycopeptide-, protein- and cyclodextrin-based phases, are described here. This review also includes a discussion of interface and matrix effects in enantioselective LC–MS/MS methods.
Collapse
|
15
|
Abstract
Chiral substances possess a unique architecture such that, despite sharing identical molecular formulas, atom-to-atom linkages, and bonding distances, they cannot be superimposed. Thus, in the environment of living systems, where specific structure-activity relationships may be required for effect (e.g., enzymes, receptors, transporters, and DNA), the physiochemical and biochemical properties of racemic mixtures and individual stereoisomers can differ significantly. In drug development, enantiomeric selection to maximize clinical effects or mitigate drug toxicity has yielded both success and failure. Further complicating genetic polymorphisms in drug disposition, stereoselective metabolism of chiral compounds can additionally influence pharmacokinetics, pharmacodynamics, and toxicity. Optically pure pharmaceuticals may undergo racemization in vivo, negating single enantiomer benefits or inducing unexpected effects. Appropriate chiral antidotes must be selected for therapeutic benefit and to minimize adverse events. Enantiomers may possess different carcinogenicity and teratogenicity. Environmental toxicology provides several examples in which compound bioaccumulation, persistence, and toxicity show chiral dependence. In forensic toxicology, chiral analysis has been applied to illicit drug preparations and biological specimens, with the potential to assist in determination of cause of death and aid in the correct interpretation of substance abuse and "doping" screens. Adrenergic agonists and antagonist, nonsteroidal anti-inflammatory agents, SSRIs, opioids, warfarin, valproate, thalidomide, retinoic acid, N-acetylcysteine, carnitine, penicillamine, leucovorin, glucarpidase, pesticides, polychlorinated biphenyls, phenylethylamines, and additional compounds will be discussed to illustrate important concepts in "chiral toxicology."
Collapse
Affiliation(s)
- Silas W Smith
- New York University School of Medicine, New York, New York 10016, USA.
| |
Collapse
|
16
|
Jalba MS. Three generations of ongoing controversies concerning the use of short acting beta-agonist therapy in asthma: a review. J Asthma 2008; 45:9-18. [PMID: 18259990 DOI: 10.1080/02770900701495512] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
An increase in asthma mortality in 1960s noted by British authors stirred a debate about the use of beta-adrenergic therapy that has persisted in the medical literature. The cause appears to be isoproterenol and fenoterol overuse. A second debate evolved around the possible deleterious, pro-inflammatory effects, of the albuterol distomer. Most clinical studies showed improved bronchodilatation, but limited benefits from using levalbuterol. Recently, genotyping has uncovered a single nucleotide polymorphism at codon 16 that appears to affect the long term response to both regular and as needed use of albuterol, calling for a new genotype based therapeutic approach in asthma.
Collapse
Affiliation(s)
- Mihai-Sergiu Jalba
- Health Services Research Postdoctoral Fellowship Program, Division of Research, Department of Family Medicine, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, Piscataway, New Jersey, USA.
| |
Collapse
|
17
|
Preuß TG, Ratte HT. Ökotoxikologische Charakterisierung von Nonylphenol Isomeren. ACTA ACUST UNITED AC 2007. [DOI: 10.1065/uwsf2007.10.219] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
18
|
Abstract
Many chiral drugs are used as their racemic mixtures in clinical practice. Two enantiomers of a chiral drug generally differ in pharmacodynamic and/or pharmacokinetic properties as a consequence of the stereoselective interaction with optically active biological macromolecules. Thus, a stereospecific assay to discriminate between enantiomers is required in order to relate plasma concentrations to pharmacological effect of a chiral drug. Stereoselective metabolism of drugs is most commonly the major contributing factor to stereoselectivity in pharmacokinetics. Metabolizing enzymes often display a preference for one enantiomer of a chiral drug over the other, resulting in enantioselectivity. The structural characteristics of enzymes dictate the enantiomeric discrimination associated with the metabolism of chiral drugs. The stereoselectivity can, therefore, be viewed as the physical property characteristic that phenotypes the enzyme. This review provides a comprehensive appraisal of stereochemical aspects of drug metabolism (i.e., enantioselective metabolism and first-pass effect, enzyme-selective inhibition or induction and drug interaction, species differences and polymorphic metabolism).
Collapse
Affiliation(s)
- Hong Lu
- GlaxoSmithKline, Worldwide Drug Metabolism and Pharmacokinetics, 5 Moore Drive, Research Triangle Park, NC 27709-3398, USA.
| |
Collapse
|
19
|
Brocks DR. Drug disposition in three dimensions: an update on stereoselectivity in pharmacokinetics. Biopharm Drug Dispos 2007; 27:387-406. [PMID: 16944450 DOI: 10.1002/bdd.517] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Many marketed drugs are chiral and are administered as the racemate, a 50:50 combination of two enantiomers. Pharmacodynamic and pharmacokinetic differences between enantiomers are well documented. Because of enantioselectivity in pharmacokinetics, results of in vitro pharmacodynamic studies involving enantiomers may differ from those in vivo where pharmacokinetic processes will proceed. With respect to pharmacokinetics, disparate plasma concentration vs time curves of enantiomers may result from the pharmacokinetic processes proceeding at different rates for the two enantiomers. At their foundation, pharmacokinetic processes may be enantioselective at the levels of drug absorption, distribution, metabolism and excretion. In some circumstances, one enantiomer can be chemically or biochemically inverted to its antipode in a unidirectional or bidirectional manner. Genetic consideration such as polymorphic drug metabolism and gender, and patient factors such as age, disease state and concomitant drug intake can all play a role in determining the relative plasma concentrations of the enantiomers of a racemic drug. The use of a nonstereoselective assay method for a racemic compound can lead to difficulties in interpretation of data from, for example, bioequivalence or dose/concentration vs effect assessments. In this review data from a number of representative studies involving pharmacokinetics of chiral drugs are presented and discussed.
Collapse
Affiliation(s)
- Dion R Brocks
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
20
|
Abstract
Most new drugs are marketed as single enantiomers but many older agents are still available in racemic form. As these drugs reach the end of their patent life manufacturers become interested in marketing single enantiomer equivalents. This is called 'chiral switching' and it has been claimed that it will bring clinical benefits in terms of improved efficacy, more predictable pharmacokinetics or reduced toxicity. We reviewed the clinical evidence and prices for three recently marketed single enantiomer versions of widely used racemic drugs: escitalopram, esomeprazole and levosalbutamol. Claims of increased efficacy were based on comparisons of non-equivalent doses and any advantages seemed small and clinically unimportant. Prices of esomeprazole and levosalbutamol were higher than their racemic alternatives and we predict that these prices will remain high despite the market presence of generic versions of the racemates. Patent protection and a perception of superiority based on promotion rather than evidence will maintain price premiums for single enantiomer drugs that are not justified on the basis of clinical performance.
Collapse
Affiliation(s)
- Peter Mansfield
- Department of General Practice, University of Adelaide, Adelaide, South Australia, Australia
| | | | | |
Collapse
|