1
|
Lin CC, Wu JY, Huang PY, Sung HL, Tung YC, Lai CC, Wei YF, Fu PK. Comparing prolonged infusion to intermittent infusion strategies for beta-lactam antibiotics in patients with gram-negative bacterial infections: a systematic review and meta-analysis. Expert Rev Anti Infect Ther 2024; 22:557-567. [PMID: 38441052 DOI: 10.1080/14787210.2024.2324940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 02/20/2024] [Indexed: 03/06/2024]
Abstract
INTRODUCTION Our objective is to determine whether prolonged infusion (PI) of beta-lactam antibiotics yields superior outcomes compared to intermittent infusion (II) in patients with Gram-Negative Bacterial (GNB) infections. METHODS We systematically searched papers from PubMed, the Cochrane Library, Embase, and Clinicaltrials.gov, targeting mortality as the primary outcome and looking at the clinical cure rate, hospital and intensive care unit (ICU) stay lengths, antibiotic treatment duration, and mechanical ventilation (MV) duration as secondary outcomes. RESULTS Our meta-analysis of 18 studies, including 5 randomized control trials and 13 observational studies, with a total of 3,035 patients-1,510 in the PI group and 1,525 in the II group, revealed significant findings. PI was associated with reduced mortality (RR, 0.67; 95% CI, 0.55-0.81; p = 0.001; I2 = 4.52%) and a shorter MV duration (SMD, -0.76; 95% CI, -1.37 to -0.16; p = 0.01; I2 = 87.81%) compared to II. However, no differences were found in clinical cure rates, antibiotic treatment duration, length of hospital stay, or length of ICU stay. CONCLUSIONS The PI approach for administering beta-lactam antibiotics in patients with suspected or confirmed GNB infections may be advantageous in reducing mortality rates and the duration of MV when compared to the II strategy.
Collapse
Affiliation(s)
- Chih-Chung Lin
- Department of Pharmacy, Taichung Veteran General Hospital Puli Branch, Nantou, Taiwan
| | - Jheng-Yen Wu
- Department of Nutrition, Chi Mei Medical Center, Tainan, Taiwan
| | - Po-Yu Huang
- Department of Internal Medicine, Chi Mei Medical Center, Tainan, Taiwan
| | - Hui-Lin Sung
- Department of Pharmacy, Taichung Veteran General Hospital Puli Branch, Nantou, Taiwan
| | - Yu-Chun Tung
- Department of Pharmacy, Taichung Veteran General Hospital Puli Branch, Nantou, Taiwan
| | - Chih-Cheng Lai
- Division of Hospital Medicine, Department of Internal Medicine, Chi Mei Medical Center, Tainan, Taiwan
| | - Yu-Feng Wei
- Department of Internal Medicine, E-Da Cancer Hospital, I-Shou University, Kaohsiung, Taiwan
- School of Medicine for International Students, College of Medicine, I-Shou University, Kaohsiung, Taiwan
| | - Pin-Kuei Fu
- Division of Clinical Research, Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
- College of Medicine, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
2
|
Haseeb A, Faidah HS, Alghamdi S, Alotaibi AF, Elrggal ME, Mahrous AJ, Abuhussain SSA, Obaid NA, Algethamy M, AlQarni A, Khogeer AA, Saleem Z, Iqbal MS, Ashgar SS, Radwan RM, Mutlaq A, Fatani N, Sheikh A. Dose optimization of β-lactams antibiotics in pediatrics and adults: A systematic review. Front Pharmacol 2022; 13:964005. [PMID: 36210807 PMCID: PMC9532942 DOI: 10.3389/fphar.2022.964005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/09/2022] [Indexed: 11/13/2022] Open
Abstract
Background: β-lactams remain the cornerstone of the empirical therapy to treat various bacterial infections. This systematic review aimed to analyze the data describing the dosing regimen of β-lactams. Methods: Systematic scientific and grey literature was performed in accordance with Preferred Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines. The studies were retrieved and screened on the basis of pre-defined exclusion and inclusion criteria. The cohort studies, randomized controlled trials (RCT) and case reports that reported the dosing schedule of β-lactams are included in this study. Results: A total of 52 studies met the inclusion criteria, of which 40 were cohort studies, 2 were case reports and 10 were RCTs. The majority of the studies (34/52) studied the pharmacokinetic (PK) parameters of a drug. A total of 20 studies proposed dosing schedule in pediatrics while 32 studies proposed dosing regimen among adults. Piperacillin (12/52) and Meropenem (11/52) were the most commonly used β-lactams used in hospitalized patients. As per available evidence, continuous infusion is considered as the most appropriate mode of administration to optimize the safety and efficacy of the treatment and improve the clinical outcomes. Conclusion: Appropriate antibiotic therapy is challenging due to pathophysiological changes among different age groups. The optimization of pharmacokinetic/pharmacodynamic parameters is useful to support alternative dosing regimens such as an increase in dosing interval, continuous infusion, and increased bolus doses.
Collapse
Affiliation(s)
- Abdul Haseeb
- Department of Clinical Pharmacy, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Hani Saleh Faidah
- Department of Microbiology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Saleh Alghamdi
- Department of Clinical Pharmacy, Faculty of Clinical Pharmacy, Al Baha University, Al Baha, Saudi Arabia
| | - Amal F. Alotaibi
- Department of Clinical Pharmacy, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Mahmoud Essam Elrggal
- Department of Clinical Pharmacy, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ahmad J. Mahrous
- Department of Clinical Pharmacy, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | | | - Najla A. Obaid
- Department of Pharmaceutics, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Manal Algethamy
- Department of Infection Prevention and Control Program, Alnoor Specialist Hospital, Makkah, Saudi Arabia
| | - Abdullmoin AlQarni
- Infectious Diseases Department, Alnoor Specialist Hospital, Makkah, Saudi Arabia
| | - Asim A. Khogeer
- Plan and Research Department, General Directorate of Health Affairs of Makkah Region, Ministry of Health, Makkah, Saudi Arabia
- Medical Genetics Unit, Maternity and Children Hospital, Makkah Healthcare Cluster, Ministry of Health, Makkah, Saudi Arabia
| | - Zikria Saleem
- Department of Pharmacy Practice, Faculty of Pharmacy, Bahauddin Zakariya Univrsity, Multan, Pakistan
| | - Muhammad Shahid Iqbal
- Department of Clinical Pharmacy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Sami S. Ashgar
- Department of Microbiology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Rozan Mohammad Radwan
- Pharmaceutical Care Department, Alnoor Specialist Hospital, Ministry of Health, Makkah, Saudi Arabia
| | - Alaa Mutlaq
- General Department of Pharmaceutical Care, Ministry of Health, Riyadh, Saudi Arabia
| | | | - Aziz Sheikh
- Usher Institute, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
3
|
Prolonged infusion of beta-lactam antibiotics for Gram-negative infections: rationale and evidence base. Curr Opin Infect Dis 2021; 33:501-510. [PMID: 33009140 DOI: 10.1097/qco.0000000000000681] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE OF REVIEW The aim of this review is to discuss the rationale of and current evidence for prolonged beta-lactam infusion in the management of Gram-negative infections. RECENT FINDINGS Pharmacokinetic/pharmacodynamic (PK/PD) data from various in-vitro and in-vivo experimental studies conclusively support prolonged infusion over intermittent infusion in terms of achieving effective beta-lactam exposure for maximal bacterial killing. Superior PK/PD target attainment has been demonstrated with prolonged beta-lactam infusion in patient populations that are more likely to have less susceptible Gram-negative infections. These populations include critically ill patients, cystic fibrosis patients and patients with malignant diseases. The clinical impact of prolonged beta-lactam infusion is likely to be the greatest in these patient groups: critically ill patients with a high level of illness severity who are not receiving renal replacement therapy; patients with nonfermenting Gram-negative bacilli infection and patients with respiratory infection. Critically ill patients with augmented renal clearance may not achieve effective beta-lactam exposure even with the use of prolonged infusion. Maximizing the effectiveness of prolonged beta-lactam infusion via therapeutic drug monitoring is becoming a more common strategy in the management of critically ill patients with Gram-negative infection. SUMMARY Prolonged beta-lactam infusion may not benefit all patients but only for those who are critically ill and/or immunocompromised, who are also more likely to have less susceptible Gram-negative infections.
Collapse
|
4
|
Wu CC, Su YC, Wu KS, Wu TH, Yang CS. Loading dose and efficacy of continuous or extended infusion of beta-lactams compared with intermittent administration in patients with critical illnesses: A subgroup meta-analysis and meta-regression analysis. J Clin Pharm Ther 2021; 46:424-432. [PMID: 33135261 DOI: 10.1111/jcpt.13301] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 10/06/2020] [Accepted: 10/06/2020] [Indexed: 12/23/2022]
Abstract
WHAT IS KNOWN AND OBJECTIVE The role of continuous/extended beta-lactam infusions (CEIs) in improving clinical outcomes among critically ill patients remains controversial. Therefore, we aimed to compare the clinical efficacy of CEI versus intermittent administration (IA) of beta-lactams by performing a systematic review and meta-analysis. METHODS PubMed, the Cochrane Library and Embase were searched from inception until December 2018 for studies comparing clinical outcomes of CEI versus IA in critically ill patients. The meta-analysis included 18 randomized controlled trials (RCTs) and 13 non-RCTs. RESULTS AND DISCUSSION For CEI versus IA, the summary relative risk (RR) for overall mortality and clinical cure was 0.82 (95% confidence interval [CI]: 0.72-0.94) and 1.31 (95% CI: 1.15-1.49), respectively. Subgroup and meta-regression analyses of the loading dose revealed a significantly increased clinical cure rate in the loading-dose group (RR: 1.44, 95% CI: 1.22-1.69), which remained significant after adjustments for beta-lactam type, and association between clinical cure and loading dose for clinical cure (RR: 1.47, 95% CI: 1.20-1.80; p = .001). Subgroup analysis of administration type indicated that both groups had low mortality and high clinical cure rates; however, the heterogeneity analysis did not support an association across continuous infusion and extended infusion groups. Subgroup analysis of the Acute Physiology and Chronic Health Evaluation (APACHE) score was conducted; according to APACHE scores ≥ 16, overall mortality and clinical cure significantly differed between CEI and IA. WHAT IS NEW AND CONCLUSION CEIs with loading-dose treatment may significantly improve the clinical outcomes in critically ill sepsis or septic shock patients.
Collapse
Affiliation(s)
- Chih-Chien Wu
- Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
- School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Yi-Chia Su
- Department of Pharmacy, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
- Institute of Clinical Pharmacy and Pharmaceutical Sciences, College of Medicine, National Cheng-Kung University, Tainan, Taiwan
| | - Kuan-Sheng Wu
- School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Department of Internal Medicine, Division of Infectious Diseases, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Tung-Ho Wu
- Department of Critical Care Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Ching-Shiang Yang
- Department of Pharmacy, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| |
Collapse
|
5
|
Zhu LL, Zhou Q. Optimal infusion rate in antimicrobial therapy explosion of evidence in the last five years. Infect Drug Resist 2018; 11:1105-1117. [PMID: 30127628 PMCID: PMC6089111 DOI: 10.2147/idr.s167616] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Background Sporadic studies in antimicrobial therapy have evaluated the effects of infusion rates on therapeutic and economic outcomes, and new findings may challenge the regular infusion regimen. Methods Focusing on studies comparing the outcomes of different infusion regimens, the relevant literature was identified by searching PubMed, Web of Science, and Scopus from January 1, 2013 to March 1, 2018. Papers were finally chosen using a PRISMA flowchart. Results Antimicrobials with the superiority of prolonged infusion to standard infusion in terms of efficacy and safety include meropenem, doripenem, imipenem, cefepime, ceftazidime, piperacillin/tazobactam, linezolid, and vancomycin. The strategy of concomitantly reducing total daily dose and prolonging infusion time may cause treatment failure (eg, imipenem). Extended infusion of piperacillin/tazobactam has pharmacoeconomic advantage over standard infusion. Prolonged infusion of voriconazole is inferior to standard infusion because of lower efficacy caused by pharmacokinetic changes. Comparable outcomes following standard infusion and continuous infusion were observed with norvancomycin and nafcillin. Factors determining whether prolonged infusion has a benefit over standard infusion include MIC of bacterial pathogens, bacterial density, diagnosis, disease severity, total daily dose, and renal function. Conclusion To maximally preserve the effectiveness of current antimicrobials, effective interventions should be implemented to enhance the application of optimal infusion strategies. For reducing nephrotoxicity, prolonged infusion of meropenem is better than conventional infusion in neonates with Gram-negative late-onset sepsis, and continuous infusion of vancomycin is superior to intermittent infusion. For increasing efficacy, prolonged or continuous infusion of time-dependent antimicrobials (eg, meropenem, doripenem, imipenem, cefepime, ceftazidime, piperacillin/tazobactam, linezolid, and vancomycin) is an optimal choice. Nevertheless, such advantages may only be demonstrated in special clinical circumstances and special populations (eg, patients with a sequential organ failure assessment (SOFA) score≥9, respiratory tract infections, urinary or intra-abdominal infections, or infections caused by less susceptible pathogens would benefit from prolonged infusion of piperacillin/tazobactam).
Collapse
Affiliation(s)
- Ling-Ling Zhu
- VIP care ward, Division of Nursing, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Quan Zhou
- Department of Pharmacy, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China,
| |
Collapse
|
6
|
Bao H, Lv Y, Wang D, Xue J, Yan Z. Clinical outcomes of extended versus intermittent administration of piperacillin/tazobactam for the treatment of hospital-acquired pneumonia: a randomized controlled trial. Eur J Clin Microbiol Infect Dis 2016; 36:459-466. [PMID: 27796647 PMCID: PMC5309263 DOI: 10.1007/s10096-016-2819-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 10/16/2016] [Indexed: 10/26/2022]
Abstract
The purpose of this study was to assess the pharmacokinetic (PK) characteristics, clinical efficiency, and pharmacoeconomic parameters of piperacillin/tazobactam administered by extended infusion (EI) or intermittent infusion (II) in the treatment of hospital-acquired pneumonia (HAP) in critically ill patients with low illness severity in China. Fifty patients completed the study, with 25 patients receiving 4/0.5 g piperacillin/tazobactam over 30 min as the II group and 25 patients receiving 4/0.5 g piperacillin/tazobactam over 3 h every 6 h as the EI group. Drug assay was performed using high-performance liquid chromatography (HPLC). The percentage of the dosing interval for which the free piperacillin concentration (%fT) exceeds the minimum inhibitory concentration (MIC) was calculated. The patients' therapy cost, clinical efficiency, and adverse effects were also recorded. %fT>MIC was about 100, 98.73, and 93.04 % in the EI arm versus 81.48, 53.29, and 42.15 % in the II arm, respectively, when the microorganism responsible for HAP had an MIC of 4, 8, and 16 mg/L. The therapy cost in the EI group was lower than that of the II group ($1351.72 ± 120.39 vs. $1782.04 ± 164.51, p = 0.001). However, the clinical success rate, clinical failure rate, and drug-related adverse events did not significantly differ between groups. EI treatment with piperacillin/tazobactam was a cost-effective approach to the management of HAP, being equally clinically effective to conventional II.
Collapse
Affiliation(s)
- H Bao
- Department of Clinical Pharmacology, Tianjin Medical University Cancer Institute and Hospital, Huan-Hu-Xi Road, Ti-Yuan-Bei, Hexi District, Tianjin, 300060, People's Republic of China.,Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Huan-Hu-Xi Road, Ti-Yuan-Bei, Hexi District, Tianjin, 300060, People's Republic of China
| | - Y Lv
- Intensive Care Unit, Tianjin Medical University Cancer Institute and Hospital, Huan-Hu-Xi Road, Ti-Yuan-Bei, Hexi District, Tianjin, 300060, People's Republic of China.,Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Huan-Hu-Xi Road, Ti-Yuan-Bei, Hexi District, Tianjin, 300060, People's Republic of China
| | - D Wang
- Intensive Care Unit, Tianjin Medical University Cancer Institute and Hospital, Huan-Hu-Xi Road, Ti-Yuan-Bei, Hexi District, Tianjin, 300060, People's Republic of China.,Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Huan-Hu-Xi Road, Ti-Yuan-Bei, Hexi District, Tianjin, 300060, People's Republic of China
| | - J Xue
- Department of Clinical Pharmacology, Tianjin Medical University Cancer Institute and Hospital, Huan-Hu-Xi Road, Ti-Yuan-Bei, Hexi District, Tianjin, 300060, People's Republic of China.,Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Huan-Hu-Xi Road, Ti-Yuan-Bei, Hexi District, Tianjin, 300060, People's Republic of China
| | - Z Yan
- Department of Clinical Pharmacology, Tianjin Medical University Cancer Institute and Hospital, Huan-Hu-Xi Road, Ti-Yuan-Bei, Hexi District, Tianjin, 300060, People's Republic of China. .,Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Huan-Hu-Xi Road, Ti-Yuan-Bei, Hexi District, Tianjin, 300060, People's Republic of China.
| |
Collapse
|
7
|
Abdul-Aziz MH, Sulaiman H, Mat-Nor MB, Rai V, Wong KK, Hasan MS, Abd Rahman AN, Jamal JA, Wallis SC, Lipman J, Staatz CE, Roberts JA. Beta-Lactam Infusion in Severe Sepsis (BLISS): a prospective, two-centre, open-labelled randomised controlled trial of continuous versus intermittent beta-lactam infusion in critically ill patients with severe sepsis. Intensive Care Med 2016; 42:1535-1545. [PMID: 26754759 DOI: 10.1007/s00134-015-4188-0] [Citation(s) in RCA: 216] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 12/10/2015] [Indexed: 12/25/2022]
Abstract
PURPOSE This study aims to determine if continuous infusion (CI) is associated with better clinical and pharmacokinetic/pharmacodynamic (PK/PD) outcomes compared to intermittent bolus (IB) dosing in critically ill patients with severe sepsis. METHODS This was a two-centre randomised controlled trial of CI versus IB dosing of beta-lactam antibiotics, which enrolled critically ill participants with severe sepsis who were not on renal replacement therapy (RRT). The primary outcome was clinical cure at 14 days after antibiotic cessation. Secondary outcomes were PK/PD target attainment, ICU-free days and ventilator-free days at day 28 post-randomisation, 14- and 30-day survival, and time to white cell count normalisation. RESULTS A total of 140 participants were enrolled with 70 participants each allocated to CI and IB dosing. CI participants had higher clinical cure rates (56 versus 34 %, p = 0.011) and higher median ventilator-free days (22 versus 14 days, p < 0.043) than IB participants. PK/PD target attainment rates were higher in the CI arm at 100 % fT >MIC than the IB arm on day 1 (97 versus 70 %, p < 0.001) and day 3 (97 versus 68 %, p < 0.001) post-randomisation. There was no difference in 14-day or 30-day survival between the treatment arms. CONCLUSIONS In critically ill patients with severe sepsis not receiving RRT, CI demonstrated higher clinical cure rates and had better PK/PD target attainment compared to IB dosing of beta-lactam antibiotics. Continuous beta-lactam infusion may be mostly advantageous for critically ill patients with high levels of illness severity and not receiving RRT. Malaysian National Medical Research Register ID: NMRR-12-1013-14017.
Collapse
Affiliation(s)
- Mohd H Abdul-Aziz
- Burns, Trauma and Critical Care Research Centre, Level 3, Ned Hanlon Building, Royal Brisbane and Women's Hospital, The University of Queensland, Herston, QLD, 4029, Australia.
- School of Pharmacy, International Islamic University of Malaysia, Kuantan, Pahang, Malaysia.
| | - Helmi Sulaiman
- Infectious Diseases Unit, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Mohd-Basri Mat-Nor
- Department of Anaesthesiology and Intensive Care, School of Medicine, International Islamic University of Malaysia, Kuantan, Pahang, Malaysia
| | - Vineya Rai
- Department of Anaesthesiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Kang K Wong
- Department of Anaesthesiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Mohd S Hasan
- Department of Anaesthesiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Azrin N Abd Rahman
- School of Pharmacy, International Islamic University of Malaysia, Kuantan, Pahang, Malaysia
- School of Pharmacy, The University of Queensland, Brisbane, Australia
| | - Janattul A Jamal
- Department of Pharmacy, Hospital Tengku Ampuan Afzan, Kuantan, Malaysia
| | - Steven C Wallis
- Burns, Trauma and Critical Care Research Centre, Level 3, Ned Hanlon Building, Royal Brisbane and Women's Hospital, The University of Queensland, Herston, QLD, 4029, Australia
| | - Jeffrey Lipman
- Burns, Trauma and Critical Care Research Centre, Level 3, Ned Hanlon Building, Royal Brisbane and Women's Hospital, The University of Queensland, Herston, QLD, 4029, Australia
- Department of Intensive Care Medicine, Royal Brisbane and Women's Hospital, Brisbane, Australia
| | - Christine E Staatz
- School of Pharmacy, The University of Queensland, Brisbane, Australia
- Australian Centre of Pharmacometrics, Brisbane, Australia
| | - Jason A Roberts
- Burns, Trauma and Critical Care Research Centre, Level 3, Ned Hanlon Building, Royal Brisbane and Women's Hospital, The University of Queensland, Herston, QLD, 4029, Australia.
- School of Pharmacy, The University of Queensland, Brisbane, Australia.
- Department of Intensive Care Medicine, Royal Brisbane and Women's Hospital, Brisbane, Australia.
| |
Collapse
|
8
|
Pharmacokinetic/pharmacodynamic considerations for the optimization of antimicrobial delivery in the critically ill. Curr Opin Crit Care 2016; 21:412-20. [PMID: 26348420 DOI: 10.1097/mcc.0000000000000229] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
PURPOSE OF REVIEW Antimicrobials are very commonly used drugs in the intensive care setting. Extensive research has been conducted in recent years to describe their pharmacokinetics/pharmacodynamics in order to maximize the pharmacological benefit and patient outcome. Translating these new findings into clinical practice is encouraged. RECENT FINDINGS This article will discuss mechanistic data on factors causing changes in antimicrobial pharmacokinetics in critically ill patients, such as the phenomena of augmented renal clearance as well as the effects of hypoalbuminemia, renal replacement therapy, and extracorporeal membrane oxygenation. Failure to achieve clinical cure has been correlated with pharmacokinetics/pharmacodynamics target nonattainment, and a recent meta-analysis suggests an association between dosing strategies aimed at optimizing antimicrobial pharmacokinetics/pharmacodynamics with improvement in clinical cure and survival. Novel dosing strategies including therapeutic drug monitoring are also now being tested to address challenges in the optimization of antimicrobial pharmacokinetics/pharmacodynamics. SUMMARY Optimization of antimicrobial dosing in accordance with pharmacokinetics/pharmacodynamics targets can improve survival and clinical cure. Dosing regimens for critically ill patients should aim for pharmacokinetics/pharmacodynamics target attainment by utilizing altered dosing strategies including adaptive feedback using therapeutic drug monitoring.
Collapse
|
9
|
Bassetti M, Welte T, Wunderink RG. Treatment of Gram-negative pneumonia in the critical care setting: is the beta-lactam antibiotic backbone broken beyond repair? CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2016; 20:19. [PMID: 26821535 PMCID: PMC4731981 DOI: 10.1186/s13054-016-1197-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Beta-lactam antibiotics form the backbone of treatment for Gram-negative pneumonia in mechanically ventilated patients in the intensive care unit. However, this beta-lactam antibiotic backbone is increasingly under pressure from emerging resistance across all geographical regions, and health-care professionals in many countries are rapidly running out of effective treatment options. Even in regions that currently have only low levels of resistance, the effects of globalization are likely to increase local pressures on the beta-lactam antibiotic backbone in the near future. Therefore, clinicians are increasingly faced with a difficult balancing act: the need to prescribe adequate and appropriate antibiotic therapy while reducing the emergence of resistance and the overuse of antibiotics. In this review, we explore the burden of Gram-negative pneumonia in the critical care setting and the pressure that antibiotic resistance places on current empiric therapy regimens (and the beta-lactam antibiotic backbone) in this patient population. New treatment approaches, such as systemic and inhaled antibiotic alternatives, are on the horizon and are likely to help tackle the rising levels of beta-lactam antibiotic resistance. In the meantime, it is imperative that the beta-lactam antibiotic backbone of currently available antibiotics be supported through stringent antibiotic stewardship programs.
Collapse
Affiliation(s)
- Matteo Bassetti
- Santa Maria Misericordia University Hospital, Piazzale S. Maria Misericordia 15, 33100, Udine, Italy.
| | - Tobias Welte
- Department of Respiratory Medicine, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
| | - Richard G Wunderink
- Northwestern University Feinberg School of Medicine, 676 North St. Clair Street, Arkes 14-015, Chicago, IL, 60611, USA
| |
Collapse
|
10
|
Monogue ML, Kuti JL, Nicolau DP. Optimizing Antibiotic Dosing Strategies for the Treatment of Gram-negative Infections in the Era of Resistance. Expert Rev Clin Pharmacol 2016; 9:459-76. [DOI: 10.1586/17512433.2016.1133286] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
11
|
Abdul-Aziz MH, Lipman J, Akova M, Bassetti M, De Waele JJ, Dimopoulos G, Dulhunty J, Kaukonen KM, Koulenti D, Martin C, Montravers P, Rello J, Rhodes A, Starr T, Wallis SC, Roberts JA. Is prolonged infusion of piperacillin/tazobactam and meropenem in critically ill patients associated with improved pharmacokinetic/pharmacodynamic and patient outcomes? An observation from the Defining Antibiotic Levels in Intensive care unit patients (DALI) cohort. J Antimicrob Chemother 2016; 71:196-207. [PMID: 26433783 DOI: 10.1093/jac/dkv288] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 08/17/2015] [Indexed: 01/22/2025] Open
Abstract
OBJECTIVES We utilized the database of the Defining Antibiotic Levels in Intensive care unit patients (DALI) study to statistically compare the pharmacokinetic/pharmacodynamic and clinical outcomes between prolonged-infusion and intermittent-bolus dosing of piperacillin/tazobactam and meropenem in critically ill patients using inclusion criteria similar to those used in previous prospective studies. METHODS This was a post hoc analysis of a prospective, multicentre pharmacokinetic point-prevalence study (DALI), which recruited a large cohort of critically ill patients from 68 ICUs across 10 countries. RESULTS Of the 211 patients receiving piperacillin/tazobactam and meropenem in the DALI study, 182 met inclusion criteria. Overall, 89.0% (162/182) of patients achieved the most conservative target of 50% fT>MIC (time over which unbound or free drug concentration remains above the MIC). Decreasing creatinine clearance and the use of prolonged infusion significantly increased the PTA for most pharmacokinetic/pharmacodynamic targets. In the subgroup of patients who had respiratory infection, patients receiving β-lactams via prolonged infusion demonstrated significantly better 30 day survival when compared with intermittent-bolus patients [86.2% (25/29) versus 56.7% (17/30); P = 0.012]. Additionally, in patients with a SOFA score of ≥9, administration by prolonged infusion compared with intermittent-bolus dosing demonstrated significantly better clinical cure [73.3% (11/15) versus 35.0% (7/20); P = 0.035] and survival rates [73.3% (11/15) versus 25.0% (5/20); P = 0.025]. CONCLUSIONS Analysis of this large dataset has provided additional data on the niche benefits of administration of piperacillin/tazobactam and meropenem by prolonged infusion in critically ill patients, particularly for patients with respiratory infections.
Collapse
Affiliation(s)
- Mohd H Abdul-Aziz
- Burns Trauma and Critical Care Research Centre, The University of Queensland, Brisbane, Australia
| | - Jeffrey Lipman
- Burns Trauma and Critical Care Research Centre, The University of Queensland, Brisbane, Australia Departments of Intensive Care Medicine and Pharmacy, Royal Brisbane and Women's Hospital, Brisbane, Australia
| | - Murat Akova
- Department of Infectious Diseases, School of Medicine, Hacettepe University, Ankara, Turkey
| | - Matteo Bassetti
- Infectious Diseases Division, Azienda Ospedaliera Universitaria Santa Maria della Misericordia, Udine, Italy
| | - Jan J De Waele
- Department of Critical Care Medicine, Ghent University Hospital, Ghent, Belgium
| | - George Dimopoulos
- Department of Critical Care, Attikon University Hospital, Athens, Greece
| | - Joel Dulhunty
- Burns Trauma and Critical Care Research Centre, The University of Queensland, Brisbane, Australia Departments of Intensive Care Medicine and Pharmacy, Royal Brisbane and Women's Hospital, Brisbane, Australia
| | - Kirsi-Maija Kaukonen
- Department of Anesthesiology and Intensive Care Medicine, Helsinki University Central Hospital, Helsinki, Finland
| | - Despoina Koulenti
- Burns Trauma and Critical Care Research Centre, The University of Queensland, Brisbane, Australia Department of Critical Care, Attikon University Hospital, Athens, Greece
| | - Claude Martin
- Anesthésie réanimation, Hospital Nord, Marseille, France AzuRea Group, Paris, France
| | - Philippe Montravers
- Département d'Anesthésie Réanimation, Centre Hospitalier Universitaire Bichat-Claude Bernard, AP-HP, Université Paris VII, Paris, France
| | - Jordi Rello
- CIBERES, Vall d'Hebron Institut of Research, Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Andrew Rhodes
- St George's Healthcare NHS Trust and Department of Intensive Care Medicine, St George's University of London, London, UK
| | - Therese Starr
- Departments of Intensive Care Medicine and Pharmacy, Royal Brisbane and Women's Hospital, Brisbane, Australia
| | - Steven C Wallis
- Burns Trauma and Critical Care Research Centre, The University of Queensland, Brisbane, Australia
| | - Jason A Roberts
- Burns Trauma and Critical Care Research Centre, The University of Queensland, Brisbane, Australia Departments of Intensive Care Medicine and Pharmacy, Royal Brisbane and Women's Hospital, Brisbane, Australia
| |
Collapse
|
12
|
Laterre PF, Wittebole X, Van de Velde S, Muller AE, Mouton JW, Carryn S, Tulkens PM, Dugernier T. Temocillin (6 g daily) in critically ill patients: continuous infusion versus three times daily administration. J Antimicrob Chemother 2014; 70:891-8. [PMID: 25433006 DOI: 10.1093/jac/dku465] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVES The growing incidence of infections caused by Enterobacteriaceae producing ESBLs has led to increased use of carbapenems. Temocillin, which resists most β-lactamases, may be a useful alternative. The aim of this study was to assess the pharmacokinetics and target attainment rates of 6 g of temocillin daily divided into three administrations every 8 h (three times daily) or administered by continuous infusion in critically ill patients. PATIENTS AND METHODS This was a prospective, two-centre, randomized, controlled study in patients with intra-abdominal or lower respiratory tract infections caused by Enterobacteriaceae. RESULTS Thirty-two patients were included and analysed for clinical efficacy, and pharmacokinetics were measured in 29 of them. Four patients undergoing continuous veno-venous haemofiltration (CVVH) were analysed separately. Mean, median and range of percentages of the dosing interval during which the free drug concentration remained >16 mg/L were 76.4, 98 and 18.7-98.9 in patients treated three times daily and 98.9, 89.7 and 36.4-99.9 in patients with continuous infusion, respectively. Clinical cure rates were 79% and 93% in each of these groups, respectively (not significant). Patients with CVVH received a daily dose of 750 mg given by continuous infusion and had a mean free drug concentration of only 13.8 ± 1.9 mg/L. No adverse event attributable to temocillin was observed. CONCLUSIONS Temocillin (6 g daily) given by continuous infusion allows a larger proportion of critically ill patients to have free drug serum concentrations covering infections caused by Enterobacteriaceae with an MIC of 16 mg/L compared with administration three times daily. Clinical efficacy compared with carbapenems in documented severe infections needs to be further studied.
Collapse
Affiliation(s)
- Pierre-François Laterre
- Department of Critical Care Medicine, St Luc University Hospital, Université catholique de Louvain, Brussels, Belgium
| | - Xavier Wittebole
- Department of Critical Care Medicine, St Luc University Hospital, Université catholique de Louvain, Brussels, Belgium
| | - Sebastien Van de Velde
- Pharmacologie cellulaire et moléculaire, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Anouk E Muller
- Department of Medical Microbiology, Medical Centre Haaglanden (MCH), Den Haag, The Netherlands
| | - Johan W Mouton
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC, Rotterdam, The Netherlands
| | - Stéphane Carryn
- Pharmacologie cellulaire et moléculaire, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Paul M Tulkens
- Pharmacologie cellulaire et moléculaire, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Thierry Dugernier
- Department of Critical Care Medicine, St Luc University Hospital, Université catholique de Louvain, Brussels, Belgium Department of Critical Care Medicine, St Pierre Hospital, Ottignies, Belgium
| |
Collapse
|
13
|
Chant C, Leung A, Friedrich JO. Optimal dosing of antibiotics in critically ill patients by using continuous/extended infusions: a systematic review and meta-analysis. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2013; 17:R279. [PMID: 24289230 PMCID: PMC4056781 DOI: 10.1186/cc13134] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Accepted: 11/13/2013] [Indexed: 01/07/2023]
Abstract
Introduction The aim of this study was to determine whether using pharmacodynamic-based dosing of antimicrobials, such as extended/continuous infusions, in critically ill patients is associated with improved outcomes as compared with traditional dosing methods. Methods We searched Medline, HealthStar, EMBASE, Cochrane Clinical Trial Registry, and CINAHL from inception to September 2013 without language restrictions for studies comparing the use of extended/continuous infusions with traditional dosing. Two authors independently selected studies, extracted data on methodology and outcomes, and performed quality assessment. Meta-analyses were performed by using random-effects models. Results Of 1,319 citations, 13 randomized controlled trials (RCTs) (n = 782 patients) and 13 cohort studies (n = 2,117 patients) met the inclusion criteria. Compared with traditional non-pharmacodynamic-based dosing, RCTs of continuous/extended infusions significantly reduced clinical failure rates (relative risk (RR) 0.68; 95% confidence interval (CI) 0.49 to 0.94, P = 0.02) and intensive care unit length of stay (mean difference, −1.5; 95% CI, −2.8 to −0.2 days, P = 0.02), but not mortality (RR, 0.87; 95% CI, 0.64 to 1.19; P = 0.38). No significant between-trial heterogeneity was found for these analyses (I2 = 0). Reduced mortality rates almost achieved statistical significance when the results of all included studies (RCTs and cohort studies) were pooled (RR, 0.83; 95% CI, 0.69 to 1.00; P = 0.054). Conclusions Pooled results from small RCTs suggest reduced clinical failure rates and intensive care unit length-of-stay when using continuous/extended infusions of antibiotics in critically ill patients. Reduced mortality rates almost achieved statistical significance when the results of RCTs were combined with cohort studies. These results support the conduct of adequately powered RCTs to define better the utility of continuous/extended infusions in the era of antibiotic resistance.
Collapse
|