1
|
Kanegae GB, Pereira Junior ML, Galvão DS, Ribeiro Junior LA, Fonseca AF. Enhanced Elastocaloric Effects in γ-Graphyne. ACS APPLIED MATERIALS & INTERFACES 2025; 17:13074-13082. [PMID: 38706297 DOI: 10.1021/acsami.4c03302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
The global emphasis on sustainable technologies has become a paramount concern for nations worldwide. Specifically, numerous sustainable methods are being explored as promising alternatives to the well-established vapor-compression technologies in cooling and heating devices. One such avenue gaining traction within the scientific community is the elastocaloric (eC) effect. This phenomenon holds promise for efficient cooling and heating processes without causing environmental harm. Studies carried out at the nanoscale have demonstrated the efficiency of the eC effect, proving to be comparable to that of state-of-the-art macroscopic systems. In this study, we used classical molecular dynamics simulations to investigate the elastocaloric effect for the recently synthesized γ-graphyne. Our analysis goes beyond obtaining changes in eC temperature and the coefficient of performance (COP) for two species of γ-graphyne nanoribbons (armchair and zigzag). We also explore their dependence on various conditions, including whether they are deposited on a substrate or prestrained. Our findings reveal a substantial enhancement in the elastocaloric effect for γ-graphyne nanoribbons when subjected to prestrain, amplifying it by at least 1 order of magnitude. Under certain conditions, the changes in the eC temperature and the COP of the structures reach expressive values as high as 224 K and 14, respectively. We discuss the implications of these results by examining the shape and behavior of the carbon-carbon bond lengths within the structures.
Collapse
Affiliation(s)
- Guilherme B Kanegae
- Universidade Estadual de Campinas, Instituto de Física Gleb Wataghin, Departamento de Física Aplicada, Campinas, São Paulo 13083-859, Brazil
| | - Marcelo L Pereira Junior
- University of Brasília, Faculty of Technology, Department of Electrical Engineering, Brasília 70910-900, Brazil
| | - Douglas S Galvão
- Universidade Estadual de Campinas, Instituto de Física Gleb Wataghin, Departamento de Física Aplicada, Campinas, São Paulo 13083-859, Brazil
| | - Luiz A Ribeiro Junior
- University of Brasília, Institute of Physics, Brasília 70910-900, Brazil
- Computational Materials Laboratory, LCCMat, University of Brasília, Brasília 70910-900, Brazil
| | - Alexandre F Fonseca
- Universidade Estadual de Campinas, Instituto de Física Gleb Wataghin, Departamento de Física Aplicada, Campinas, São Paulo 13083-859, Brazil
- Department of Mechanical and Civil Engineering, California Institute of Technology, 1200 E. California Boulevard, Pasadena, California 91125, United States
| |
Collapse
|
2
|
Zhao LX, Fan YG, Zhang X, Li C, Cheng XY, Guo F, Wang ZY. Graphdiyne biomaterials: from characterization to properties and applications. J Nanobiotechnology 2025; 23:169. [PMID: 40038692 DOI: 10.1186/s12951-025-03227-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 02/11/2025] [Indexed: 03/06/2025] Open
Abstract
Graphdiyne (GDY), the sole synthetic carbon allotrope with sp-hybridized carbon atoms, has been extensively researched that benefit from its pore structure, fully conjugated surfaces, wide band gaps, and more reactive C≡C bonds. In addition to the intrinsic features of GDY, engineering at the nanoscale, including metal/transition metal ion modification, chemical elemental doping, and other biomolecular modifications, endowed GDY with a broader functionality. This has led to its involvement in biomedical applications, including enzyme catalysis, molecular assays, targeted drug delivery, antitumor, and sensors. These promising research developments have been made possible by the rational design and critical characterization of GDY biomaterials. In contrast to other research areas, GDY biomaterials research has led to the development of characterization techniques and methods with specific patterns and some innovations based on the integration of materials science and biology, which are crucial for the biomedical applications of GDY. The objective of this review is to provide a comprehensive overview of the biomedical applications of GDY and the characterization techniques and methods that are essential in this process. Additionally, a general strategy for the biomedical research of GDY will be proposed, which will be of limited help to researchers in the field of GDY or nanomedicine.
Collapse
Affiliation(s)
- Ling-Xiao Zhao
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang, 110122, China
| | - Yong-Gang Fan
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang, 110122, China
| | - Xue Zhang
- Central Laboratory, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, 110042, China
| | - Chan Li
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang, 110122, China
| | - Xue-Yan Cheng
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang, 110122, China
| | - Feng Guo
- Department of Pharmacy, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, China.
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, 110122, China.
| | - Zhan-You Wang
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang, 110122, China.
| |
Collapse
|
3
|
Sandoval JS, Haley MM, Goodson T. Nonlinear Optical Properties of Bis(dehydrobenzoannuleno)benzenes: An Experimental and Computational Approach. J Phys Chem A 2025; 129:1240-1251. [PMID: 39852999 DOI: 10.1021/acs.jpca.4c06285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2025]
Abstract
Given their molecular properties and electronic structure, graphyne and graphdiyne are promising materials with numerous applications in different fields of material science. Dehydrobenzoannules (DBAs) are candidates that can serve as building blocks for synthesizing and designing new 2D carbon allotropes; however, only a few graphynes have been produced on a practical scale. Herein, we present our investigation of three DBAs, which serve as a model to understand the relationship between the structure and property, contributing to 2D carbon allotropes' rational design and synthetic effort. We performed entangled and classical two-photon absorption at 790 nm, revealing that minor structural changes within acetylenic units significantly impact the magnitudes of the entangled and classical two-photon cross sections. Later, we deconvolved the excited-state dynamics through femtosecond transient absorption, and the lifetimes on the nanosecond time scale were measured using time-correlated single-photon counting. Finally, electronic structure calculations were performed to compute the oscillator strength and energy associated with electronic transitions between the ground and excited states and among the excited states. The results reveal that the remarkable difference in nonlinear optical properties among the DBAs, despite their structural similarities, stems from the transition dipole moment associated with transitions among excited states.
Collapse
Affiliation(s)
- Juan S Sandoval
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Michael M Haley
- Department of Chemistry & Biochemistry and the Materials Science Institute, University of Oregon, Eugene, Oregon 97403-1253, United States
| | - Theodore Goodson
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
4
|
Aliev AE, Guo Y, Fonseca AF, Razal JM, Wang Z, Galvão DS, Bolding CM, Chapman-Wilson NE, Desyatkin VG, Leisen JE, Ribeiro Junior LA, Kanegae GB, Lynch P, Zhang J, Judicpa MA, Parra AM, Zhang M, Gao E, Hu L, Rodionov VO, Baughman RH. A planar-sheet nongraphitic zero-bandgap sp 2 carbon phase made by the low-temperature reaction of γ-graphyne. Proc Natl Acad Sci U S A 2025; 122:e2413194122. [PMID: 39874293 PMCID: PMC11804621 DOI: 10.1073/pnas.2413194122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 12/09/2024] [Indexed: 01/30/2025] Open
Abstract
The highest sheet symmetry form of graphyne, with one triple bond between each neighboring hexagon in graphene, irreversibly transforms exothermically at ambient pressure and low temperatures into a nongraphitic, planar-sheet, zero-bandgap phase consisting of intrasheet-bonded sp2 carbons. The synthesis of this sp2 carbon phase is demonstrated, and other carbon phases are described for possible future synthesis from graphyne without breaking graphyne bonds. While measurements and theory indicate that the reacting graphyne becomes nonplanar because of sheet wrinkling produced by dimensional mismatch between reacted and nonreacted sheet regions, sheet planarity is regained when the reaction is complete. Although the observed elimination of triple bonds to make parallel planar sp2 carbon sheets likely requires ordered transformation within each sheet, diffraction data for reacted multisheet stacks indicate that the relative lateral positions of neighboring sheets are disordered, as predicted, since no crystalline diffraction peak (other than for the intersheet spacing) is observed.
Collapse
Affiliation(s)
- Ali E. Aliev
- Alan G. MacDiarmid NanoTech Institute, University of Texas at Dallas, Richardson, TX75080
| | - Yongzhe Guo
- School of Civil Engineering, Wuhan University, Wuhan430072, Hubei, China
| | - Alexandre F. Fonseca
- Universidade Estadual de Campinas, Instituto de Física Gleb Wataghin, Departamento de Física Aplicada, Campinas, São Paulo13083-970, Brazil
| | - Joselito M. Razal
- Institute for Frontier Materials, Deakin University, Geelong, VIC3216, Australia
| | - Zhong Wang
- Alan G. MacDiarmid NanoTech Institute, University of Texas at Dallas, Richardson, TX75080
| | - Douglas S. Galvão
- Universidade Estadual de Campinas, Instituto de Física Gleb Wataghin, Departamento de Física Aplicada, Campinas, São Paulo13083-970, Brazil
| | - Claire M. Bolding
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, OH44106
| | | | - Victor G. Desyatkin
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, OH44106
| | - Johannes E. Leisen
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA30332
| | - Luiz A. Ribeiro Junior
- Institute of Physics and Computational Materials Laboratory, Institute of Physics, University of Brasília, Brasília70910-900, Brazil
| | - Guilherme B. Kanegae
- Universidade Estadual de Campinas, Instituto de Física Gleb Wataghin, Departamento de Física Aplicada, Campinas, São Paulo13083-970, Brazil
| | - Peter Lynch
- Institute for Frontier Materials, Deakin University, Geelong, VIC3216, Australia
- Commonwealth Scientific and Industrial Research Organisation, Geelong, VIC3216, Australia
| | - Jizhen Zhang
- Institute for Frontier Materials, Deakin University, Geelong, VIC3216, Australia
- Commonwealth Scientific and Industrial Research Organisation, Geelong, VIC3216, Australia
| | - Mia A. Judicpa
- Institute for Frontier Materials, Deakin University, Geelong, VIC3216, Australia
- Commonwealth Scientific and Industrial Research Organisation, Geelong, VIC3216, Australia
| | - Aaron M. Parra
- Alan G. MacDiarmid NanoTech Institute, University of Texas at Dallas, Richardson, TX75080
| | - Mengmeng Zhang
- Alan G. MacDiarmid NanoTech Institute, University of Texas at Dallas, Richardson, TX75080
| | - Enlai Gao
- School of Civil Engineering, Wuhan University, Wuhan430072, Hubei, China
| | - Lifang Hu
- Materials Science and Engineering, University of Texas at Dallas, Richardson, TX75080
| | - Valentin O. Rodionov
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, OH44106
| | - Ray H. Baughman
- Alan G. MacDiarmid NanoTech Institute, University of Texas at Dallas, Richardson, TX75080
| |
Collapse
|
5
|
Majidi R. Exploring the optical properties of naphdiyne sheet: First-principles study. J Mol Graph Model 2024; 133:108877. [PMID: 39369622 DOI: 10.1016/j.jmgm.2024.108877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 09/26/2024] [Accepted: 10/03/2024] [Indexed: 10/08/2024]
Abstract
Naphdiyne sheet is a two-dimensional carbon-based structure composed of naphthyl rings and acetylenic linkages. The optical characteristics of naphdiyne sheets are investigated using density functional theory. The results showed that this sheet is suitable for energy storage systems due to its high dielectric constant. The dielectric constant of naphdiyne is higher than that of graphene. The refractive index, absorption, reflection, and transmission coefficients are calculated based on the dielectric function. A notable optical absorption is observed across a wide energy range for parallel polarization. The transparency of this material is evident in its reflection and transmission constants, particularly in high-energy regions. The findings suggest that the naphdiyne sheets hold promise for use in nanoelectronics and optoelectronics.
Collapse
Affiliation(s)
- Roya Majidi
- Department of Physics, Shahid Rajaee Teacher Training University, Lavizan, 16788-15811 Tehran, Iran.
| |
Collapse
|
6
|
Fan Y, Wang Y, Hao X, Deng W, Jin Z. 0D/2D heterojunction constructed by Ag 2S quantum dots anchored on graphdiyne (g-C nH 2n-2) nanosheets for wide spectrum photocatalytic H 2 evolution. J Colloid Interface Sci 2024; 672:700-714. [PMID: 38870761 DOI: 10.1016/j.jcis.2024.06.065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/21/2024] [Accepted: 06/07/2024] [Indexed: 06/15/2024]
Abstract
Precisely crafting heterojunctions for efficient charge separation is a major obstacle in the realm of photocatalytic hydrogen evolution. A 0D/2D heterojunction was successfully fabricated by anchoring Ag2S quantum dots (Ag2S QDs) onto graphdiyne (GDY) nanosheets (Ag2S QDs/GDY) using a straightforward physical mixing technique. This unique structure allows for excellent contact between GDY and Ag2S QDs, thereby enhancing the rate of charge transfer. The light absorption capabilities of Ag2S QDs/GDY extend up to 1200 nm, enabling strong absorption of light, including infrared. Through DFT calculations and in-situ XPS analysis, it was demonstrated that incorporating Ag2S QDs onto GDY effectively modulates the electronic structure, promotes an internal electric field, and facilitates directional electron transfer. This directed electron transfer enhances the utilization of electrons by GDY and Ag2S QDs, with the added benefit of Ag2S QDs serving as electron reservoirs for efficient photocatalytic hydrogen evolution. A 7 %Ag2S QDs/GDY composite exhibited impressive efficiency and stable performance in photocatalytic hydrogen evolution (2418 μmol g-1 h-1), which is much higher than that of GDY and Ag2S QDs. This study conclusively demonstrates that the 0D/2D heterojunction formed by GDY and Ag2S QDs can establish high-quality contact and efficient charge transfer, ultimately enhancing photocatalytic performance.
Collapse
Affiliation(s)
- Yu Fan
- School of Chemistry and Chemical Engineering, North Minzu University, Yinchuan 750021, PR China; Ningxia Key Laboratory of Solar Chemical Conversion Technology, North Minzu University, Yinchuan 750021, PR China; Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan 750021, PR China
| | - Yimin Wang
- School of Chemistry and Chemical Engineering, North Minzu University, Yinchuan 750021, PR China; Ningxia Key Laboratory of Solar Chemical Conversion Technology, North Minzu University, Yinchuan 750021, PR China; Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan 750021, PR China
| | - Xuqiang Hao
- School of Chemistry and Chemical Engineering, North Minzu University, Yinchuan 750021, PR China; Ningxia Key Laboratory of Solar Chemical Conversion Technology, North Minzu University, Yinchuan 750021, PR China; Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan 750021, PR China.
| | - Wei Deng
- School of Chemistry and Chemical Engineering, North Minzu University, Yinchuan 750021, PR China; Ningxia Key Laboratory of Solar Chemical Conversion Technology, North Minzu University, Yinchuan 750021, PR China; Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan 750021, PR China
| | - Zhiliang Jin
- School of Chemistry and Chemical Engineering, North Minzu University, Yinchuan 750021, PR China; Ningxia Key Laboratory of Solar Chemical Conversion Technology, North Minzu University, Yinchuan 750021, PR China; Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan 750021, PR China
| |
Collapse
|
7
|
Narayan J, Bezborah K. Recent advances in the functionalization, substitutional doping and applications of graphene/graphene composite nanomaterials. RSC Adv 2024; 14:13413-13444. [PMID: 38660531 PMCID: PMC11041312 DOI: 10.1039/d3ra07072g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 04/01/2024] [Indexed: 04/26/2024] Open
Abstract
Recently, graphene and graphene-based nanomaterials have emerged as advanced carbon functional materials with specialized unique electronic, optical, mechanical, and chemical properties. These properties have made graphene an exceptional material for a wide range of promising applications in biological and non-biological fields. The present review illustrates the structural modifications of pristine graphene resulting in a wide variety of derivatives. The significance of substitutional doping with alkali-metals, alkaline earth metals, and III-VII group elements apart from the transition metals of the periodic table is discussed. The paper reviews various chemical and physical preparation routes of graphene, its derivatives and graphene-based nanocomposites at room and elevated temperatures in various solvents. The difficulty in dispersing it in water and organic solvents make it essential to functionalize graphene and its derivatives. Recent trends and advances are discussed at length. Controlled reduction reactions in the presence of various dopants leading to nanocomposites along with suitable surfactants essential to enhance its potential applications in the semiconductor industry and biological fields are discussed in detail.
Collapse
Affiliation(s)
- Jyoti Narayan
- Synthetic Nanochemistry Laboratory, Department of Basic Sciences & Social Sciences, (Chemistry Division) School of Technology, North Eastern Hill University Shillong 793022 Meghalaya India
| | - Kangkana Bezborah
- Synthetic Nanochemistry Laboratory, Department of Basic Sciences & Social Sciences, (Chemistry Division) School of Technology, North Eastern Hill University Shillong 793022 Meghalaya India
| |
Collapse
|
8
|
Jiang YC, Kariyado T, Hu X. Topological electronic states in holey graphyne. NANOTECHNOLOGY 2024; 35:195201. [PMID: 38295413 DOI: 10.1088/1361-6528/ad2483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 01/31/2024] [Indexed: 02/02/2024]
Abstract
We unveil that the holey graphyne (HGY), a two-dimensional carbon allotrope where benzene rings are connected by two -C≡C- bonds fabricated recently in a bottom-up way, exhibits topological electronic states. Using first-principles calculations and Wannier tight-binding modeling, we discover a higher-order topological invariant associated withC2symmetry of the material, and show that the resultant corner modes appear in nanoflakes matching to the structure of precursor reported previously, which are ready for direct experimental observations. In addition, we find that a band inversion between emergentg-like andh-like orbitals gives rise to a nontrivial topology characterized byZ2invariant protected by an energy gap as large as 0.52 eV, manifesting helical edge states mimicking those in the prominent quantum spin Hall effect, which can be accessed experimentally after hydrogenation in HGY. We hope these findings trigger interests towards exploring the topological electronic states in HGY and related future electronics applications.
Collapse
Affiliation(s)
- Yong-Cheng Jiang
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Tsukuba 305-0044, Japan
- Graduate School of Science and Technology, University of Tsukuba, Tsukuba 305-8571, Japan
| | - Toshikaze Kariyado
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Tsukuba 305-0044, Japan
| | - Xiao Hu
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Tsukuba 305-0044, Japan
- Graduate School of Science and Technology, University of Tsukuba, Tsukuba 305-8571, Japan
| |
Collapse
|
9
|
Yang Q, Li S, Liang R, Gao L, Zhang S, Jia J, Liu Y, Lyv R, Li G, Xiao S, Zhang D. Microwave assisted synthesis of PQ-GDY@NH 2-UIO-66(Zr) for improved photocatalytic removal of NO x under visible light. J Environ Sci (China) 2023; 134:126-137. [PMID: 37673528 DOI: 10.1016/j.jes.2023.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 11/08/2022] [Accepted: 01/15/2023] [Indexed: 09/08/2023]
Abstract
Pyrazinoquinoxaline-based graphdiyne (PQ-GDY) contains a fixed number of sp-sp2 hybridized carbon atoms and pyrazine-like sp2 hybridized N atoms. In this paper, NH2-UIO-66(Zr) on PQ-GDY substrate was successfully constructed with the help of microwave-assisted heating. PQ-GDY surface acts as a microwave antenna under microwave irradiation to rapidly absorb microwave energy and form hot spots (hot spot effect), which facilitates the formation of well-dispersed NH2-UIO-66(Zr) with good crystallinity. Transient absorption spectra show that high hole transport property of PQ-GDY can accelerate the migration of photogenerated holes from NH2-UIO-66(Zr) to PQ-GDY and greatly reduce the recombination rate of photogenerated electrons and holes due to the strong interaction between PQ-GDY and NH2-UIO-66(Zr). Under visible light (λ ≥ 420 nm), PQ-GDY@NH2-UIO-66(Zr) shows high photocatalytic stability and high NOx removal rate up to 74%, which is 44% higher than that of primitive NH2-UIO-66(Zr). At the same time, it inhibits the formation of toxic by-products (NO2) and limits its concentration to a low level.
Collapse
Affiliation(s)
- Qingyu Yang
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, China
| | - Shuangjun Li
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, China
| | - Rui Liang
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, China
| | - Lei Gao
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, China
| | - Shao Zhang
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, China
| | - Junfen Jia
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, China
| | - Yiran Liu
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, China
| | - Rundong Lyv
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, China
| | - Guisheng Li
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, China
| | - Shengxiong Xiao
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, China.
| | - Dieqing Zhang
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, China.
| |
Collapse
|
10
|
Wang MW, Fan W, Li X, Liu Y, Li Z, Jiang W, Wu J, Wang Z. Molecular Carbons: How Far Can We Go? ACS NANO 2023; 17:20734-20752. [PMID: 37889626 DOI: 10.1021/acsnano.3c07970] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2023]
Abstract
The creation and development of carbon nanomaterials promoted material science significantly. Bottom-up synthesis has emerged as an efficient strategy to synthesize atomically precise carbon nanomaterials, namely, molecular carbons, with various sizes and topologies. Different from the properties of the feasibly obtained mixture of carbon nanomaterials, numerous properties of single-component molecular carbons have been discovered owing to their well-defined structures as well as potential applications in various fields. This Perspective introduces recent advances in molecular carbons derived from fullerene, graphene, carbon nanotube, carbyne, graphyne, and Schwarzite carbon acquired with different synthesis strategies. By selecting a variety of representative examples, we elaborate on the relationship between molecular carbons and carbon nanomaterials. We hope these multiple points of view presented may facilitate further advancement in this field.
Collapse
Affiliation(s)
- Ming-Wei Wang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Wei Fan
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
| | - Xiaonan Li
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yujian Liu
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Zuoyu Li
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Wei Jiang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Jishan Wu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
| | - Zhaohui Wang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
- Laboratory of Flexible Electronic Technology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
11
|
Wu Y, Yang Y, Ke Z. Metal-Organic Frameworks/Graphdiyne/Copper Foam Composite Membranes for Catalytic Applications. ACS APPLIED MATERIALS & INTERFACES 2023; 15:40933-40941. [PMID: 37584716 DOI: 10.1021/acsami.3c07473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
Graphdiyne (GDY) with a three-dimensional network structure was synthesized on a copper foam (CF) via an in situ Glaser-Hay coupling reaction. A metal-organic framework/GDY composite membrane was designed and synthesized for the first time. CF serves as a template and catalyst for the directed polymerization of GDY membranes. The catalytic activities of HKUST-1/GDY/CF membrane in wet peroxide oxidation of phenol, oxidation of benzyl alcohol, and ring opening of epoxide were studied. The composite membrane has the advantages of appropriateness for continuous operation, simple use process, easy recycling, high catalytic efficiency, etc. It was found that the incorporation of GDY can facilitate electron transfer and effectively improve the catalytic activity of HKUST-1 in membrane catalysis.
Collapse
Affiliation(s)
- Yanjie Wu
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, Guangdong, China
| | - Yucheng Yang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, Jiangsu, China
| | - Zhihai Ke
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, Guangdong, China
| |
Collapse
|
12
|
Gai X, Sheng H, Wang J. Physical mechanism on the linear spectrum and nonlinear spectrum in a twist bilayer graphdiyne nanodisk. Phys Chem Chem Phys 2023; 25:20049-20065. [PMID: 37462095 DOI: 10.1039/d3cp01858j] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
The one-photon absorption properties (OPA), two-photon absorption properties (TPA), electronic circular dichroism (ECD) spectra and partial DOS (PDOS) of a twist bilayer graphdiyne nanodisk (TwBLGDY-ND) were investigated by using a variety of quantum chemistry and wave function analyses. The physical mechanism of the twist bilayer graphdiyne nanodisk (TwBLGDY) with optical properties regulated by twisting angles was revealed. The results show that the twist angle makes the TwBLGDY form a moiré superlattice structure, and electron excitation mainly occurs in the first ring of the moiré superlattice structure. The contribution of atomic orbitals in these fragments to transition dipole moments is greater and electronic transitions are more likely to occur. When the twist angle increases from 0° to 15°, the absorption spectrum of the system is red shifted, which is mainly due to the enhancement of electron excitation characteristics. When the twist angle increases from 15° to 27.5°, the absorption spectrum of the system is blue shifted, due to the enhanced charge transfer within the layer. On the other hand, the twist angle can regulate the TPA absorption cross section of the system to enhance the intensity of the absorption spectrum. The twist angle can also regulate chirality by adjusting the spatial distribution of electric dipole transition and magnetic dipole transition. This study can provide theoretical guidance for constructing chiral optical devices based on the TwBLGDY structure.
Collapse
Affiliation(s)
- Xinwen Gai
- College of Science, Liaoning Petrochemical University, Fushun 113001, China.
| | - Hao Sheng
- College of Science, Liaoning Petrochemical University, Fushun 113001, China.
| | - Jingang Wang
- College of Science, Liaoning Petrochemical University, Fushun 113001, China.
| |
Collapse
|
13
|
Zhang S, Yang L, Zhang X, Chen Y, Zhang Y, Sun W. In Situ Polymerization Synthesis of Graphdiyne Nanosheets as Electrode Material and Its Application in NMR Spectroelectrochemistry. Polymers (Basel) 2023; 15:2726. [PMID: 37376372 DOI: 10.3390/polym15122726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 06/10/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
In situ NMR spectroelectrochemistry is extremely powerful in studying redox reactions in real time and identifying unstable reaction intermediates. In this paper, in situ polymerization synthesis of ultrathin graphdiyne (GDY) nanosheets was realized on the surface of copper nanoflower/copper foam (nano-Cu/Cuf)-based electrode with hexakisbenzene monomers and pyridine. Palladium (Pd) nanoparticles were further deposited onto the GDY nanosheets by the constant potential method. By using this GDY composite as electrode material, a new NMR-electrochemical cell was designed for in situ NMR spectroelectrochemistry measurement. The three-electrode electrochemical system consists of a Pd/GDY/nano-Cu/Cuf electrode as the working electrode, a platinum wire as the counter electrode, and a silver/silver chloride (Ag/AgCl) wire as a quasi-reference electrode, which can be dipped into a specially constructed sample tube and adapted for convenient operation in any commercial high-field, variable-temperature FT NMR spectrometer. The application of this NMR-electrochemical cell is illustrated by monitoring the progressive oxidation of hydroquinone to benzoquinone by controlled-potential electrolysis in aqueous solution.
Collapse
Affiliation(s)
- Siyue Zhang
- Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Lin Yang
- Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Xiaoping Zhang
- Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Yuxue Chen
- Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Yutong Zhang
- Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Wei Sun
- Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| |
Collapse
|
14
|
Ghosh A, Orasugh JT, Ray SS, Chattopadhyay D. Prospects of 2D graphdiynes and their applications in desalination and wastewater remediation. RSC Adv 2023; 13:18568-18604. [PMID: 37346946 PMCID: PMC10281012 DOI: 10.1039/d3ra01370g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/05/2023] [Indexed: 06/23/2023] Open
Abstract
Water is an indispensable part of human life that affects health and food intake. Water pollution caused by rapid industrialization, agriculture, and other human activities affects humanity. Therefore, researchers are prudent and cautious regarding the use of novel materials and technologies for wastewater remediation. Graphdiyne (GDY), an emerging 2D nanomaterial, shows promise in this direction. Graphdiyne has a highly symmetrical π-conjugated structure consisting of uniformly distributed pores; hence, it is favorable for applications such as oil-water separation and organic-pollutant removal. The acetylenic linkage in GDY can strongly interact with metal ions, rendering GDY applicable to heavy-metal adsorption. In addition, GDY membranes that exhibit 100% salt rejection at certain pressures are potential candidates for wastewater treatment and water reuse via desalination. This review provides deep insights into the structure, properties, and synthesis methods of GDY, owing to which it is a unique, promising material. In the latter half of the article, various applications of GDY in desalination and wastewater treatment have been detailed. Finally, the prospects of these materials have been discussed succinctly.
Collapse
Affiliation(s)
- Adrija Ghosh
- Department of Polymer Science and Technology, University of Calcutta Kolkata-700009 India
| | - Jonathan Tersur Orasugh
- Department of Chemical Sciences, University of Johannesburg Doorfontein Johannesburg 2028 South Africa
- Centre for Nanostructures and Advanced Materials, DSI-CSIR Nanotechnology Innovation Centre, Council for Scientific and Industrial Research Pretoria 0001 South Africa
| | - Suprakas Sinha Ray
- Department of Chemical Sciences, University of Johannesburg Doorfontein Johannesburg 2028 South Africa
- Centre for Nanostructures and Advanced Materials, DSI-CSIR Nanotechnology Innovation Centre, Council for Scientific and Industrial Research Pretoria 0001 South Africa
| | - Dipankar Chattopadhyay
- Department of Polymer Science and Technology, University of Calcutta Kolkata-700009 India
- Center for Research in Nanoscience and Nanotechnology, Acharya Prafulla Chandra Roy Sikhsha Prangan, University of Calcutta JD-2, Sector-III, Saltlake City Kolkata-700098 WB India
| |
Collapse
|
15
|
Li H, Lim JH, Lv Y, Li N, Kang B, Lee JY. Graphynes and Graphdiynes for Energy Storage and Catalytic Utilization: Theoretical Insights into Recent Advances. Chem Rev 2023; 123:4795-4854. [PMID: 36921251 DOI: 10.1021/acs.chemrev.2c00729] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
Carbon allotropes have contributed to all aspects of people's lives throughout human history. As emerging carbon-based low-dimensional materials, graphyne family members (GYF), represented by graphdiyne, have a wide range potential applications due to their superior physical and chemical properties. In particular, graphdiyne (GDY), as the leader of the graphyne family, has been practically applied to various research fields since it was first successfully synthesized. GYF have a large surface area, both sp and sp2 hybridization, and a certain band gap, which was considered to originate from the overlap of carbon 2pz orbitals and the inhomogeneous π-bonds of carbon atoms in different hybridization forms. These properties mean GYF-based materials still have many potential applications to be developed, especially in energy storage and catalytic utilization. Since most of the GYF have yet to be synthesized and applications of successfully synthesized GYF have not been developed for a long time, theoretical results in various application fields should be shared to experimentalists to attract more intentions. In this Review, we summarized and discussed the synthesis, structural properties, and applications of GYF-based materials from the theoretical insights, hoping to provide different viewpoints and comments.
Collapse
Affiliation(s)
- Hao Li
- Department of Chemistry, Sungkyunkwan University, Suwon 440-746, Korea
| | - Jong Hyeon Lim
- Department of Chemistry, Sungkyunkwan University, Suwon 440-746, Korea
| | - Yipin Lv
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, P. R. China
| | - Nannan Li
- Department of Chemistry, Sungkyunkwan University, Suwon 440-746, Korea
| | - Baotao Kang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, P. R. China
| | - Jin Yong Lee
- Department of Chemistry, Sungkyunkwan University, Suwon 440-746, Korea
| |
Collapse
|
16
|
Li X, Niu K, Duan S, Tang Y, Hao Z, Xu Z, Ge H, Rosen J, Björk J, Zhang H, Xu X, Chi L. Pyridinic Nitrogen Modification for Selective Acetylenic Homocoupling on Au(111). J Am Chem Soc 2023; 145:4545-4552. [PMID: 36794794 DOI: 10.1021/jacs.2c11799] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
On-surface acetylenic homocoupling has been proposed to construct carbon nanostructures featuring sp hybridization. However, the efficiency of linear acetylenic coupling is far from satisfactory, often resulting in undesired enyne products or cyclotrimerization products due to the lack of strategies to enhance chemical selectivity. Herein, we inspect the acetylenic homocoupling reaction of polarized terminal alkynes (TAs) on Au(111) with bond-resolved scanning probe microscopy. The replacement of benzene with pyridine moieties significantly prohibits the cyclotrimerization pathway and facilitates the linear coupling to produce well-aligned N-doped graphdiyne nanowires. Combined with density functional theory calculations, we reveal that the pyridinic nitrogen modification substantially differentiates the coupling motifs at the initial C-C coupling stage (head-to-head vs head-to-tail), which is decisive for the preference of linear coupling over cyclotrimerization.
Collapse
Affiliation(s)
- Xuechao Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Kaifeng Niu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China.,Department of Physics, Chemistry and Biology, IFM, Linköping University, Linköping 581 83, Sweden
| | - Sai Duan
- Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai, Key Laboratory of Molecular Catalysis and Innovative Materials, MOE Key Laboratory of Computational Physical Sciences, Shanghai Key Laboratory of Bioactive Small Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Yanning Tang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Zhengming Hao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Zhichao Xu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Haitao Ge
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Johanna Rosen
- Department of Physics, Chemistry and Biology, IFM, Linköping University, Linköping 581 83, Sweden
| | - Jonas Björk
- Department of Physics, Chemistry and Biology, IFM, Linköping University, Linköping 581 83, Sweden
| | - Haiming Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Xin Xu
- Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai, Key Laboratory of Molecular Catalysis and Innovative Materials, MOE Key Laboratory of Computational Physical Sciences, Shanghai Key Laboratory of Bioactive Small Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Lifeng Chi
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| |
Collapse
|
17
|
Parameswaran AM, James A, Aboobacker A, Srinivasamurthy Swathi R. Unfurling Anion-π Interactions Involving Graphynes. Chemphyschem 2023; 24:e202200548. [PMID: 36068988 DOI: 10.1002/cphc.202200548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/06/2022] [Indexed: 01/07/2023]
Abstract
Ever since the inception of anion-π interactions, their nature and functional relevance have intrigued researchers. We address the twin challenge of elucidation of the role of extended conjugation and design of all-carbon neutral anion receptors by computations on the anion-π complexes of the halide ions with graphynes. Leveraging on the extended π-conjugation effects, we unfurl the functional relevance of graphynes as anion receptors using descriptors such as electrostatic potential, quadrupole moments, molecular polarizabilities and binding energies. Further, employing natural energy decomposition analysis, we assert that anion-π interactions are not merely dominated by electrostatic interactions. The polarization components do indeed play a crucial role in governing the binding of the anions to the graphynes.
Collapse
Affiliation(s)
- Aiswarya M Parameswaran
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram 695551, India
| | - Anto James
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram 695551, India
| | - Adil Aboobacker
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram 695551, India
| | - Rotti Srinivasamurthy Swathi
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram 695551, India
| |
Collapse
|
18
|
Shams M, Mansukhani N, Hersam MC, Bouchard D, Chowdhury I. Environmentally sustainable implementations of two-dimensional nanomaterials. Front Chem 2023; 11:1132233. [PMID: 36936535 PMCID: PMC10020365 DOI: 10.3389/fchem.2023.1132233] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 02/14/2023] [Indexed: 03/06/2023] Open
Abstract
Rapid advancement in nanotechnology has led to the development of a myriad of useful nanomaterials that have novel characteristics resulting from their small size and engineered properties. In particular, two-dimensional (2D) materials have become a major focus in material science and chemistry research worldwide with substantial efforts centered on their synthesis, property characterization, and technological, and environmental applications. Environmental applications of these nanomaterials include but are not limited to adsorbents for wastewater and drinking water treatment, membranes for desalination, and coating materials for filtration. However, it is also important to address the environmental interactions and implications of these nanomaterials in order to develop strategies that minimize their environmental and public health risks. Towards this end, this review covers the most recent literature on the environmental implementations of emerging 2D nanomaterials, thereby providing insights into the future of this fast-evolving field including strategies for ensuring sustainable development of 2D nanomaterials.
Collapse
Affiliation(s)
- Mehnaz Shams
- Civil and Environmental Engineering, Washington State University, Pullman, WA, United States
| | - Nikhita Mansukhani
- Departments of Materials Science and Engineering, Chemistry and Medicine, Northwestern University, Evanston, IL, United States
| | - Mark C. Hersam
- Departments of Materials Science and Engineering, Chemistry and Medicine, Northwestern University, Evanston, IL, United States
| | - Dermont Bouchard
- National Exposure Research Laboratory, United States Environmental Protection Agency, Athens, GA, United States
| | - Indranil Chowdhury
- Civil and Environmental Engineering, Washington State University, Pullman, WA, United States
- *Correspondence: Indranil Chowdhury,
| |
Collapse
|
19
|
Zhang J, Chen H, Qin X, Duan H, Zhang X, Kong X, Lian X, Ding H, Yi H, Tan Y, Xiao D, Du P, Xu P. Curved π-Conjugated Helical Carbon Frameworks: Syntheses, Structural Analyses, and Properties. Org Lett 2022; 24:9463-9467. [PMID: 36541687 DOI: 10.1021/acs.orglett.2c03905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Two enantiomers with helical carbon frameworks (M-HCFa and P-HCFa) and their conformational isomers (M-HCFb and P-HCFb) have been synthesized and characterized. The single-crystal analysis revealed the novel structures in which three propeller blades spiro-fused on two central benzene rings. The optical properties were further investigated, and stable bipolar electrochemiluminescence emissions were discovered for the first time existing in helical carbon frameworks, which provide new insights into the future development of high-performance molecular luminescent devices.
Collapse
Affiliation(s)
- Jinling Zhang
- Department of Chemistry and Chemical Engieering, Chongqing University of Science and Technology, Chongqing 401331, People's Republic of China
| | - Huafeng Chen
- Department of Chemistry and Chemical Engieering, Chongqing University of Science and Technology, Chongqing 401331, People's Republic of China
| | - Xi Qin
- Department of Chemistry and Chemical Engieering, Chongqing University of Science and Technology, Chongqing 401331, People's Republic of China
| | - Huiyuan Duan
- Department of Chemistry and Chemical Engieering, Chongqing University of Science and Technology, Chongqing 401331, People's Republic of China
| | - Xinyu Zhang
- Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Xin Kong
- Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Xin Lian
- Department of Chemistry and Chemical Engieering, Chongqing University of Science and Technology, Chongqing 401331, People's Republic of China
| | - Hao Ding
- Department of Chemistry and Chemical Engieering, Chongqing University of Science and Technology, Chongqing 401331, People's Republic of China
| | - Huan Yi
- Department of Chemistry and Chemical Engieering, Chongqing University of Science and Technology, Chongqing 401331, People's Republic of China
| | - Yuanzhi Tan
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, People's Republic of China
| | - Dongrong Xiao
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China
| | - Pingwu Du
- Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Peng Xu
- Department of Chemistry and Chemical Engieering, Chongqing University of Science and Technology, Chongqing 401331, People's Republic of China
| |
Collapse
|
20
|
Kuriakose F, Commodore M, Hu C, Fabiano CJ, Sen D, Li RR, Bisht S, Üngör Ö, Lin X, Strouse GF, DePrince AE, Lazenby RA, Mentink-Vigier F, Shatruk M, Alabugin IV. Design and Synthesis of Kekulè and Non-Kekulè Diradicaloids via the Radical Periannulation Strategy: The Power of Seven Clar's Sextets. J Am Chem Soc 2022; 144:23448-23464. [PMID: 36516873 DOI: 10.1021/jacs.2c09637] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This work introduces an approach to uncoupling electrons via maximum utilization of localized aromatic units, i.e., the Clar's π-sextets. To illustrate the utility of this concept to the design of Kekulé diradicaloids, we have synthesized a tridecacyclic polyaromatic system where a gain of five Clar's sextets in the open-shell form overcomes electron pairing and leads to the emergence of a high degree of diradical character. According to unrestricted symmetry-broken UCAM-B3LYP calculations, the singlet diradical character in this core system is characterized by the y0 value of 0.98 (y0 = 0 for a closed-shell molecule, y0 = 1 for pure diradical). The efficiency of the new design strategy was evaluated by comparing the Kekulé system with an isomeric non-Kekulé diradical of identical size, i.e., a system where the radical centers cannot couple via resonance. The calculated singlet-triplet gap, i.e., the ΔEST values, in both of these systems approaches zero: -0.3 kcal/mol for the Kekulé and +0.2 kcal/mol for the non-Kekulé diradicaloids. The target isomeric Kekulé and non-Kekulé systems were assembled using a sequence of radical periannulations, cross-coupling, and C-H activation. The diradicals are kinetically stabilized by six tert-butyl substituents and (triisopropylsilyl)acetylene groups. Both molecules are NMR-inactive but electron paramagnetic resonance (EPR)-active at room temperature. Cyclic voltammetry revealed quasi-reversible oxidation and reduction processes, consistent with the presence of two nearly degenerate partially occupied molecular orbitals. The experimentally measured ΔEST value of -0.14 kcal/mol confirms that K is, indeed, a nearly perfect singlet diradical.
Collapse
Affiliation(s)
- Febin Kuriakose
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida32306-4390, United States
| | - Michael Commodore
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida32306-4390, United States
| | - Chaowei Hu
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida32306-4390, United States
| | - Catherine J Fabiano
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida32306-4390, United States
| | - Debashis Sen
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida32306-4390, United States
| | - Run R Li
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida32306-4390, United States
| | - Shubham Bisht
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida32306-4390, United States
| | - Ökten Üngör
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida32306-4390, United States
| | - Xinsong Lin
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida32306-4390, United States
| | - Geoffrey F Strouse
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida32306-4390, United States
| | - A Eugene DePrince
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida32306-4390, United States
| | - Robert A Lazenby
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida32306-4390, United States
| | - Frederic Mentink-Vigier
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida32310, United States
| | - Michael Shatruk
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida32306-4390, United States
| | - Igor V Alabugin
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida32306-4390, United States
| |
Collapse
|
21
|
Yang J, Konsalraj J, Raja S. AA. Neighbourhood Sum Degree-Based Indices and Entropy Measures for Certain Family of Graphene Molecules. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010168. [PMID: 36615362 PMCID: PMC9822020 DOI: 10.3390/molecules28010168] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022]
Abstract
A topological index (TI) is a real number that defines the relationship between a chemical structure and its properties and remains invariant under graph isomorphism. TIs defined for chemical structures are capable of predicting physical properties, chemical reactivity and biological activity. Several kinds of TIs have been defined and studied for different molecular structures. Graphene is the thinnest material known to man and is also extremely strong while being a good conductor of heat and electricity. With such unique features, graphene and its derivatives have found commercial uses and have also fascinated theoretical chemists. In this article, the neighbourhood sum degree-based M-polynomial and entropy measures have been computed for graphene, graphyne and graphdiyne structures. The proper analytical expressions for these indices are derived. The obtained results will enable theoretical chemists to study these exciting structures further from a structural perspective.
Collapse
Affiliation(s)
- Jun Yang
- School of Economics and Law, Chaohu University, Chaohu 238000, China
| | - Julietraja Konsalraj
- Department of Mathematics, St. Joseph’s College of Engineering, OMR, Chennai 600119, India
- Correspondence:
| | - Arul Amirtha Raja S.
- Department of Mathematics, St. Joseph’s College of Engineering, OMR, Chennai 600119, India
| |
Collapse
|
22
|
Desyatkin VG, Martin WB, Aliev AE, Chapman NE, Fonseca AF, Galvão DS, Miller ER, Stone KH, Wang Z, Zakhidov D, Limpoco FT, Almahdali SR, Parker SM, Baughman RH, Rodionov VO. Scalable Synthesis and Characterization of Multilayer γ-Graphyne, New Carbon Crystals with a Small Direct Band Gap. J Am Chem Soc 2022; 144:17999-18008. [PMID: 36130080 DOI: 10.1021/jacs.2c06583] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
γ-Graphyne is the most symmetric sp2/sp1 allotrope of carbon, which can be viewed as graphene uniformly expanded through the insertion of two-carbon acetylenic units between all the aromatic rings. To date, synthesis of bulk γ-graphyne has remained a challenge. We here report the synthesis of multilayer γ-graphyne through crystallization-assisted irreversible cross-coupling polymerization. A comprehensive characterization of this new carbon phase is described, including synchrotron powder X-ray diffraction, electron diffraction, lateral force microscopy, Raman spectroscopy, infrared spectroscopy, and cyclic voltammetry. Experiments indicate that γ-graphyne is a 0.48 eV band gap semiconductor, with a hexagonal a-axis spacing of 6.88 Å and an interlayer spacing of 3.48 Å, which is consistent with theoretical predictions. The observed crystal structure has an aperiodic sheet stacking. The material is thermally stable up to 240 °C but undergoes transformation at higher temperatures. While conventional 2D polymerization and reticular chemistry rely on error correction through reversibility, we demonstrate that a periodic covalent lattice can be synthesized under purely kinetic control. The reported methodology is scalable and inspires extension to other allotropes of the graphyne family.
Collapse
Affiliation(s)
- Victor G Desyatkin
- Department of Macromolecular Science and Engineering, Case Western Reserve University, 2100 Adelbert Road, Cleveland, Ohio 44106, United States
| | - William B Martin
- Department of Macromolecular Science and Engineering, Case Western Reserve University, 2100 Adelbert Road, Cleveland, Ohio 44106, United States
| | - Ali E Aliev
- Alan G. MacDiarmid NanoTech Institute, University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080, United States
| | - Nathaniel E Chapman
- Department of Macromolecular Science and Engineering, Case Western Reserve University, 2100 Adelbert Road, Cleveland, Ohio 44106, United States
| | - Alexandre F Fonseca
- Applied Physics Department, Institute of Physics "Gleb Wataghin", University of Campinas, Campinas, São Paulo 13083-970, Brazil
| | - Douglas S Galvão
- Applied Physics Department, Institute of Physics "Gleb Wataghin", University of Campinas, Campinas, São Paulo 13083-970, Brazil
| | - Ericka Roy Miller
- Department of Chemistry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Kevin H Stone
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| | - Zhong Wang
- Alan G. MacDiarmid NanoTech Institute, University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080, United States
| | - Dante Zakhidov
- Department of Materials Science and Engineering, Stanford University; 496 Lomita Mall, Stanford, California 94305, United States
| | - F Ted Limpoco
- Oxford Instruments Asylum Research, 6310 Hollister Avenue, Santa Barbara, California 93117, United States
| | - Sarah R Almahdali
- Department of Macromolecular Science and Engineering, Case Western Reserve University, 2100 Adelbert Road, Cleveland, Ohio 44106, United States
| | - Shane M Parker
- Department of Chemistry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Ray H Baughman
- Alan G. MacDiarmid NanoTech Institute, University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080, United States
| | - Valentin O Rodionov
- Department of Macromolecular Science and Engineering, Case Western Reserve University, 2100 Adelbert Road, Cleveland, Ohio 44106, United States
| |
Collapse
|
23
|
G AV, Mishra SB, Ramaprabhu S, Nanda BRK. Design of an aluminium ion battery with a graphyne host: lowest volume expansion, high stability and low diffusion barriers. NANOSCALE ADVANCES 2022; 4:3870-3882. [PMID: 36133336 PMCID: PMC9470031 DOI: 10.1039/d2na00058j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 07/22/2022] [Indexed: 06/16/2023]
Abstract
Commercialization of aluminium ion battery (AIB) requires limited volume expansion of the host cathode materials after AlCl4 intercalation, lower activation barrier, high theoretical specific capacity (TSC), cyclic durability and thermodynamic stability. Most of the carbon and non-carbon based cathode hosts explored so far failed to address the issue of volume expansion and there is a lack of clarity about thermodynamic stability. In this work, we employed multipronged first principles computational approaches on α- and γ-graphyne (GY) and showed that α-GY as a promising cathode host addresses each of the above concerns. Both α and γ-GYs provide ample space to accommodate more number of AlCl4 molecules leading to a high TSC of 186 mA h g-1 and open circuit voltages of 2.18 and 2.22 V, respectively. The absence of bond dissociation of AlCl4 and deformation of GY sheets at 300 and 600 K, as revealed by ab initio molecular dynamics (AIMD) simulation, indicates the stability of α- and γ-GY with adsorbed AlCl4. α-GY after intercalation shows a volume expansion of 186% which is the lowest among the cathode materials studied so far. The negligible expansion energy per unit surface area (∼0.003 eV Å-2) ensures the reversibility and hence cyclic durability of α-GY. Although the γ-GY shows a volume expansion of 249%, it is still promising. The NEB based diffusion study on monolayer and bilayer GY estimates the activation barriers to be (0.26, 0.06 eV) and (0.42, 0.16 eV) for α and γ phases, respectively. These values are either comparable to or lower than those of earlier reported cathode hosts.
Collapse
Affiliation(s)
- Abhijitha V G
- Condensed Matter Theory and Computational Lab, Department of Physics, IIT Madras Chennai 600036 India
- Alternative Energy and Nanotechnology Lab, Department of Physics, IIT Madras Chennai 600036 India
| | - Shashi B Mishra
- Condensed Matter Theory and Computational Lab, Department of Physics, IIT Madras Chennai 600036 India
| | - S Ramaprabhu
- Alternative Energy and Nanotechnology Lab, Department of Physics, IIT Madras Chennai 600036 India
| | - B R K Nanda
- Condensed Matter Theory and Computational Lab, Department of Physics, IIT Madras Chennai 600036 India
- Center for Atomistic Modelling and Materials Design, IIT Madras India
| |
Collapse
|
24
|
|
25
|
Xu P, Zhai L, Duan H, Chen H, Qin X, Qin Y, Zuo Y, Lian X, Yi H, Su X, He B, Zhang J. Branched Dodecaynes: Synthesis and their Optical Properties. CAN J CHEM 2022. [DOI: 10.1139/cjc-2022-0123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Two homologous branched dodecaynes 1,3,5-{(4-<i>t</i>Bu)[2,3-(RC≡C)<sub>2</sub>]Ph(C≡C-C≡C)}<sub>3</sub>Ph (<b>2a</b>, R = H; <b>2b</b>, R = Ph) were synthesized and characterized in this work. According to steady-state spectroscopy, their electronic absorption and luminescent behaviors were investigated and compared. Simultaneously, as a typical structure of this class of dodecaynes, the molecular configuration of dodecayne <b>2a</b> was depicted by DFT simulation and the maximal absorption were supported by the subsequent TD-DFT calculations. In addition, the electrochemiluminescence (ECL) emission was also investigated. The experiment results showed that π-extended dodecayne <b>2b</b> with more distorted trigonal-planar possessed strong and stable ECL emission, indicating that it has potential application in ECL and luminescence fields.
Collapse
Affiliation(s)
- Peng Xu
- Chongqing University of Science and Technology, 66564, Department of Chemistry and Chemical Engineering, Chongqing, China
| | - Lei Zhai
- Chongqing University of Science and Technology, 66564, Department of Chemistry and Chemical Engineering, Chongqing, China
| | - Huiyuan Duan
- Chongqing University of Science and Technology, 66564, Department of Chemistry and Chemical Engineering, Chongqing, China
| | - Huafeng Chen
- Chongqing University of Science and Technology, 66564, Department of Chemistry and Chemical Engineering, Chongqing, China
| | - Xi Qin
- Chongqing University of Science and Technology, 66564, Department of Chemistry and Chemical Engineering, Chongqing, China
| | - Yanjie Qin
- Chongqing University of Science and Technology, 66564, Department of Chemistry and Chemical Engineering, Chongqing, China
| | - Yulan Zuo
- Chongqing University of Science and Technology, 66564, Department of Chemistry and Chemical Engineering, Chongqing, China
| | - Xin Lian
- Chongqing University of Science and Technology, 66564, Department of Chemistry and Chemical Engineering, Chongqing, China
| | - Huan Yi
- Chongqing University of Science and Technology, 66564, Department of Chemistry and Chemical Engineering, Chongqing, China
| | - Xiaodong Su
- Chongqing University of Science and Technology, 66564, Department of Chemistry and Chemical Engineering, Chongqing, China
| | - Bai He
- Chongqing University of Science and Technology, 66564, Department of Chemistry and Chemical Engineering, Chongqing, China
| | - Jinling Zhang
- Chongqing University of Science and Technology, 66564, Department of Chemistry and Chemical Engineering, Chongqing, China
| |
Collapse
|
26
|
Manouchehri F, Iranpanah S. Thioguanine adsorption on the γ- graphyne and its boron nitride analogue as promising drug delivery system: Electronic study via DFT. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
27
|
Chen X, Jiang X, Yang N. Graphdiyne Electrochemistry: Progress and Perspectives. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201135. [PMID: 35429089 DOI: 10.1002/smll.202201135] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/22/2022] [Indexed: 06/14/2023]
Abstract
Graphdiyne, a carbon allotrope, was synthesized in 2010 for the first time. It consists of two acetylene bonds between adjacent benzene rings. Graphdiyne and its composites thus exhibit ultrahigh intrinsic electrochemical activities. As "star" electrode materials, they have been utilized for various electrochemical applications. With the aim of giving a full screen of graphdiyne electrochemistry, this review starts from the history of graphdiyne materials, followed by their structural and electrochemical features. Recent progress and achievements in the synthesis of graphdiyne materials and their composites are overviewed. Subsequently, various electrochemical applications of graphdiyne materials and their composites are summarized, covering those in the fields of electrochemical energy conversion, electrochemical energy storage, and electrochemical sensing. The perspectives of graphdiyne electrochemistry are also discussed and outlined.
Collapse
Affiliation(s)
- Xinyue Chen
- Institute of Materials Engineering, University of Siegen, 57076, Siegen, Germany
| | - Xin Jiang
- Institute of Materials Engineering, University of Siegen, 57076, Siegen, Germany
| | - Nianjun Yang
- Institute of Materials Engineering, University of Siegen, 57076, Siegen, Germany
| |
Collapse
|
28
|
Serafini P, Milani A, Tommasini M, Castiglioni C, Proserpio DM, Bottani CE, Casari CS. Vibrational properties of graphdiynes as 2D carbon materials beyond graphene. Phys Chem Chem Phys 2022; 24:10524-10536. [PMID: 35442257 PMCID: PMC9425158 DOI: 10.1039/d2cp00980c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Two-dimensional (2D) hybrid sp–sp2 carbon systems are an appealing subject for science and technology. For these materials, topology and structure significantly affect electronic and vibrational properties. We investigate here by periodic density-functional theory (DFT) calculations the Raman and IR spectra of 2D carbon crystals belonging to the family of graphdiynes (GDYs) and having different structures and topologies. By joining DFT calculations with symmetry analysis, we assign the IR and Raman modes in the spectra of all the investigated systems. On this basis, we discuss how the modulation of the Raman and IR active bands depends on the different interactions between sp and sp2 domains. The symmetry-based classification allows identifying the marker bands sensitive to the different peculiar topologies. These results show the effectiveness of vibrational spectroscopy for the characterization of new nanostructures, deepening the knowledge of the subtle interactions that take place in these 2D materials. Raman and IR spectra investigation of 2D carbon crystals belonging to the family of graphdiynes (GDYs) and having different structures is performed in this paper, focusing on how these spectra are affected by different topological features.![]()
Collapse
Affiliation(s)
- P Serafini
- Department of Energy, Politecnico di Milano, Via Ponzio 23/3, 20133 Milan, Italy.
| | - A Milani
- Department of Energy, Politecnico di Milano, Via Ponzio 23/3, 20133 Milan, Italy.
| | - M Tommasini
- Department of Chemistry, Materials and Chem. Eng. 'G.Natta', Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy
| | - C Castiglioni
- Department of Chemistry, Materials and Chem. Eng. 'G.Natta', Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy
| | - D M Proserpio
- Dipartimento di Chimica, Università degli Studi di Milano, 20133 Milano, Italy
| | - C E Bottani
- Department of Energy, Politecnico di Milano, Via Ponzio 23/3, 20133 Milan, Italy.
| | - C S Casari
- Department of Energy, Politecnico di Milano, Via Ponzio 23/3, 20133 Milan, Italy.
| |
Collapse
|
29
|
Chen H, Zhang J, Qin X, Zhai L, Qin Y, Duan H, Pei S, Lian X, Xu P. A Dendrimer: Concise Synthesis and Its Optical Properties. RUSS J GEN CHEM+ 2022. [DOI: 10.1134/s1070363222030161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
30
|
Jin Z, Li H, Li J. Efficient photocatalytic hydrogen evolution over graphdiyne boosted with a cobalt sulfide formed S-scheme heterojunction. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)63818-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
31
|
Simple and efficient nickel-catalyzed cross-coupling reaction of alkenylalanes with alkynyl halides for synthesis of conjugated enynes. Tetrahedron 2022. [DOI: 10.1016/j.tet.2021.132549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
32
|
Architecting Pyrenyl-graphdiyne Nanowalls for High Capacity and Long-life Lithium Storage. Chem Res Chin Univ 2021. [DOI: 10.1007/s40242-021-1342-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
33
|
Alekseyev NI, Khmelnitskiy IK, Aivazyan VM, Broyko AP, Korlyakov AV, Luchinin VV. Ionic EAP Actuators with Electrodes Based on Carbon Nanomaterials. Polymers (Basel) 2021; 13:polym13234137. [PMID: 34883640 PMCID: PMC8659251 DOI: 10.3390/polym13234137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/20/2021] [Accepted: 11/23/2021] [Indexed: 11/24/2022] Open
Abstract
Flexible polymer-based actuators, often also called artificial muscles, are an essential part of biomimetic systems that mimic the movement principles of animal world creatures. The most used electrode material to force the actuator move is an ensemble of noble metal nanoparticles in the electroactive polymer surface. Noble metal electrodes have enough electrical conductivity and elasticity and are not subjected to oxidation. However, high cost of such electrodes and their tendency to cracking dictate the need for searching other materials, primarily carbon ones. The review considers several options for this search. For example, carbon nanotubes and graphene have excellent properties at the level of a single individually taken nanotube or graphene sheet. However, conservation of these properties in structurally imperfect film electrodes requires a separate study. In addition, there are problems of compatibility of such electrodes with the polymers that requires cumbersome technologies, e.g., hot pressing, which complicates the production of the actuator as a whole. The review concerns the technology options of manufacturing actuators and the results obtained on their basis, both including hot pressing and avoiding this procedure. In particular, the required level of the graphene oxide reduction in hydrazine provides sufficient adhesion at rather high electrical conductivity of the graphene film. The ability to simultaneous achieving these properties is a nontrivial result, providing the same level of actuation as with expensive noble metal electrodes. Actuators that additionally require greater lifetime resource should be obtained in other ways. Among them are using the graphdiyne electrodes and laser processing of the graphene electrodes.
Collapse
|
34
|
Maier S, Hippchen N, Rominger F, Freudenberg J, Bunz UHF. Cyclodimers and Cyclotrimers of 2,3 -Bisalkynylated Anthracenes, Phenazines and Diazatetracenes. Chemistry 2021; 27:16320-16324. [PMID: 34612544 PMCID: PMC9297893 DOI: 10.1002/chem.202103193] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Indexed: 11/07/2022]
Abstract
The synthesis of novel (N-)acene-based cyclooligomers is reported. Glaser-Hay coupling of the bisethynylated monomers results in cyclodimers and cyclotrimers that are separable by column and gel-permeation chromatographies. For the diazatetracene, the use of sec-butyl-silylethynyl groups is necessary to achieve solubility. Diazatetracene-based cyclodimers and cyclotrimers were used as semiconductors in thin-film transistors. Although their optoelectronic properties are quite similar, their electron mobilities in proof-of-concept thin-film transistors differ by an order of magnitude.
Collapse
Affiliation(s)
- Steffen Maier
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Nikolai Hippchen
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Frank Rominger
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Jan Freudenberg
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Uwe H F Bunz
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany.,Centre for Advanced Materials, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 225, 69120, Heidelberg, Germany
| |
Collapse
|
35
|
Wang Z, Qi L, Zheng Z, Xue Y, Li Y. 2D Graphdiyne: A Rising Star on the Horizon of Energy Conversion. Chem Asian J 2021; 16:3259-3271. [PMID: 34467664 DOI: 10.1002/asia.202100858] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/25/2021] [Indexed: 12/20/2022]
Abstract
Two-dimensional (2D) graphdiyne (GDY), a rapidly rising star on the horizon of carbon materials, is a new carbon allotrope featuring sp- and sp2 -cohybridized carbon atoms and 2D one-atom-thick network. Since the first successful synthesis of GDY by Professor Li's group in 2010, GDY has attached great interests from both scientific and industrial viewpoints based on its unique structure and physicochemical properties, which provides a fertile ground for applications in various fields including electrocatalysis, energy conversion, energy storage and optoelectronic devices. In this work, various potential properties of the GDY-based electrocatalysts and their recent advances in energy conversion are reviewed, including atomic catalysts, heterogeneous catalysts, and metal-free catalysts. The critical role of GDY in improving catalytic activity and stability is analyzed. The perspectives of the challenges and opportunities faced by GDY-based materials for energy conversion are also outlined.
Collapse
Affiliation(s)
- Zhongqiang Wang
- Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Jinan, 250100, P. R. China
| | - Lu Qi
- Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Jinan, 250100, P. R. China
| | - Zhiqiang Zheng
- Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Jinan, 250100, P. R. China
| | - Yurui Xue
- Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Jinan, 250100, P. R. China
| | - Yuliang Li
- Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Jinan, 250100, P. R. China.,Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
36
|
Sha X, Krowne CM. First principles quantum calculations for graphyne for electronic devices. NANOSCALE ADVANCES 2021; 3:5853-5859. [PMID: 36132670 PMCID: PMC9419551 DOI: 10.1039/d1na00336d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 07/07/2021] [Indexed: 06/16/2023]
Abstract
Moving beyond traditional 2D materials is now desirable in order to have switching capabilities (e.g., transistors). Here we propose using γ graphyne-n because, as shown in this paper, obtaining regions of the electronic band structure which act as valence and conduction bands, with an apparent bandgap, are found. Electron spatial density and electronic band structures with ε(k) vs. k are calculated for graphyne-1 and graphyne-2 having respectively, one and two triple C-C carbon-carbon bonds between adjoining benzene rings; such side by side comparisons never before done. The ab initio quantum calculations were performed using both the local density approximation (LDA) and the generalized gradient approximation (GGA) for density functional theory (DFT).
Collapse
Affiliation(s)
- Xianwei Sha
- General Dynamics Information Technology Corporation Falls Church VA 22042 USA
- Information Technology Division, Center for Computational Science, Naval Research Laboratory Washington DC USA
| | - Clifford M Krowne
- Electromagnetics Technology Branch, Electronics Science & Technology Division, Naval Research Laboratory Washington DC 20375 USA
| |
Collapse
|
37
|
Ruan X, Shi J, Wang X, Wang WY, Fan X, Zhou F. Robust Superlubricity and Moiré Lattice's Size Dependence on Friction between Graphdiyne Layers. ACS APPLIED MATERIALS & INTERFACES 2021; 13:40901-40908. [PMID: 34404203 DOI: 10.1021/acsami.1c09970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Structural superlubricity is a fascinating physical phenomenon that plays a significant role in many scientific and technological fields. Here, we report the robust superlubricating state achieved on the interface of relatively rotated graphdiyne (GDY) bilayers; such an interface with ultralow friction is formed at nearly arbitrary rotation angles and sustained at temperatures up to 300 K. We also identified the reverse correlation between the friction coefficient and size of the Moiré lattice formed on the surface of the incommensurate stacked GDY bilayers, particularly in a small size range. Our investigations show that the ultralow friction and the reduction of the friction coefficient with the increase in size of the Moiré lattice are closely related to the interfacial energetics and charge density as well as the atomic arrangement. Our findings enable the development of a new solid lubricant with novel superlubricating properties, which facilitate precise modulation of the friction at the interface between two incommensurate contacting crystalline surfaces.
Collapse
Affiliation(s)
- Xiaopeng Ruan
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, PR China
| | - Junqin Shi
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, PR China
| | - Xiaomei Wang
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, PR China
| | - William Yi Wang
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, PR China
| | - Xiaoli Fan
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, PR China
| | - Feng Zhou
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, PR China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, Gansu 730000, PR China
| |
Collapse
|
38
|
Jin ZL, Wang YP. Strategy of Graphdiyne (g-C n H 2n-2 ) Preparation Coupling with the Flower-Like NiAl-LDH Heterojunctions for Efficient Photocatalytic Hydrogen Evolution*. Chemistry 2021; 27:12649-12658. [PMID: 34180095 DOI: 10.1002/chem.202101908] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Indexed: 01/06/2023]
Abstract
Graphdiyne (g-Cn H2n-2 ), a novel two-dimension carbon allotrope material composed of a sp- and sp2 -hybrid carbon network, has been widely explored since it was synthesized for the first time by Li's group in 2010. A series distinct and excellent properties bestow graphdiyne excellent performance in many fields. Here, an innovative progress for preparing graphdiyne by using Cu+ contained material as catalyst is reported and the composite CuI-GD is coupled with flower-like NiAl-LDH to produce H2 from photocatalytic water splitting. The results of FTIR and Raman spectroscopy together reveal that graphdiyne nanosheets are synthesized successfully by employing a cross-coupling method. Photocatalytic hydrogen evolution performance shows that the hydrogen production activity of CuI-GD/NiAl-LDH has a 15- and 216-fold enhancement compared with CuI-GD and NiAl-LDH, respectively. A series of characterizations are carried out to expound the underlying reasons in the enhancement of the photocatalytic hydrogen production performance of CuI-GD/NiAl-LDH. Meanwhile, a possible mechanism for the photocatalytic hydrogen evolution process was proposed to understand the interaction among these materials.
Collapse
Affiliation(s)
- Zhi-Liang Jin
- School of Chemistry and Chemical Engineering, North Minzu University, Yinchuan, 750021, P. R.China.,Ningxia Key Laboratory of Solar Chemical Conversion Technology, North Minzu University, Yinchuan, 750021, P. R.China.,Key Laboratory for Chemical Engineering and Technology State Ethnic Affairs Commission, North Minzu University, Yinchuan, 750021, P. R. China
| | - Yuan-Peng Wang
- School of Chemistry and Chemical Engineering, North Minzu University, Yinchuan, 750021, P. R.China.,Ningxia Key Laboratory of Solar Chemical Conversion Technology, North Minzu University, Yinchuan, 750021, P. R.China.,Key Laboratory for Chemical Engineering and Technology State Ethnic Affairs Commission, North Minzu University, Yinchuan, 750021, P. R. China
| |
Collapse
|
39
|
Abdi G, Alizadeh A, Grochala W, Szczurek A. Developments in Synthesis and Potential Electronic and Magnetic Applications of Pristine and Doped Graphynes. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2268. [PMID: 34578583 PMCID: PMC8469384 DOI: 10.3390/nano11092268] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/29/2021] [Accepted: 08/30/2021] [Indexed: 11/17/2022]
Abstract
Doping and its consequences on the electronic features, optoelectronic features, and magnetism of graphynes (GYs) are reviewed in this work. First, synthetic strategies that consider numerous chemically and dimensionally different structures are discussed. Simultaneous or subsequent doping with heteroatoms, controlling dimensions, applying strain, and applying external electric fields can serve as effective ways to modulate the band structure of these new sp2/sp allotropes of carbon. The fundamental band gap is crucially dependent on morphology, with low dimensional GYs displaying a broader band gap than their bulk counterparts. Accurately chosen precursors and synthesis conditions ensure complete control of the morphological, electronic, and physicochemical properties of resulting GY sheets as well as the distribution of dopants deposited on GY surfaces. The uniform and quantitative inclusion of non-metallic (B, Cl, N, O, or P) and metallic (Fe, Co, or Ni) elements into graphyne derivatives were theoretically and experimentally studied, which improved their electronic and magnetic properties as row systems or in heterojunction. The effect of heteroatoms associated with metallic impurities on the magnetic properties of GYs was investigated. Finally, the flexibility of doped GYs' electronic and magnetic features recommends them for new electronic and optoelectronic applications.
Collapse
Affiliation(s)
- Gisya Abdi
- Centre of New Technologies, University of Warsaw, S. Banacha 2c, 02-097 Warsaw, Poland; (G.A.); (W.G.)
- Academic Centre for Materials and Nanotechnology, AGH University of Science and Technology, al. A. Mickiewicza 30, 30-059 Krakow, Poland
| | - Abdolhamid Alizadeh
- Department of Organic Chemistry, Faculty of Physics and Chemistry, Alzahra University, Tehran 1993893973, Iran;
| | - Wojciech Grochala
- Centre of New Technologies, University of Warsaw, S. Banacha 2c, 02-097 Warsaw, Poland; (G.A.); (W.G.)
| | - Andrzej Szczurek
- Centre of New Technologies, University of Warsaw, S. Banacha 2c, 02-097 Warsaw, Poland; (G.A.); (W.G.)
| |
Collapse
|
40
|
Serafini P, Milani A, Proserpio DM, Casari CS. Designing All Graphdiyne Materials as Graphene Derivatives: Topologically Driven Modulation of Electronic Properties. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2021; 125:18456-18466. [PMID: 34476043 PMCID: PMC8404194 DOI: 10.1021/acs.jpcc.1c04238] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/02/2021] [Indexed: 05/24/2023]
Abstract
Designing new 2D systems with tunable properties is an important subject for science and technology. Starting from graphene, we developed an algorithm to systematically generate 2D carbon crystals belonging to the family of graphdiynes (GDYs) and having different structures and sp/sp2 carbon ratios. We analyze how structural and topological effects can tune the relative stability and the electronic behavior, to propose a rationale for the development of new systems with tailored properties. A total of 26 structures have been generated, including the already known polymorphs such as α-, β-, and γ-GDY. Periodic density functional theory calculations have been employed to optimize the 2D crystal structures and to compute the total energy, the band structure, and the density of states. Relative energies with respect to graphene have been found to increase when the values of the carbon sp/sp2 ratio increase, following however different trends based on the peculiar topologies present in the crystals. These topologies also influence the band structure, giving rise to semiconductors with a finite band gap, zero-gap semiconductors displaying Dirac cones, or metallic systems. The different trends allow identifying some topological effects as possible guidelines in the design of new 2D carbon materials beyond graphene.
Collapse
Affiliation(s)
- Patrick Serafini
- Dipartimento
di Energia, Politecnico di Milano, via Ponzio 34/3, 20133 Milano, Italy
| | - Alberto Milani
- Dipartimento
di Energia, Politecnico di Milano, via Ponzio 34/3, 20133 Milano, Italy
| | - Davide M. Proserpio
- Dipartimento
di Chimica, Università degli Studi
di Milano, 20133 Milano, Italy
- Samara
Center for Theoretical Materials Science (SCTMS), Samara State Technical University, 443100 Samara, Russia
| | - Carlo S. Casari
- Dipartimento
di Energia, Politecnico di Milano, via Ponzio 34/3, 20133 Milano, Italy
| |
Collapse
|
41
|
Xiao Y, Gao J, Chen P, Chen G, Li Z, Huang W. Homocoupling of terminal alkynes catalyzed by CuCl under solvent-free conditions. JOURNAL OF CHEMICAL RESEARCH 2021. [DOI: 10.1177/17475198211032580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A series of symmetrical 1,4-disubstituted buta-1,3-diynes is prepared with excellent yields (up to 95%) through homocoupling of terminal alkynes catalyzed by a copper salt under solvent-free conditions. This method provides an environmentally friendly process to prepare 1,3-diynes in short reaction times under mild conditions. Furthermore, the method is suitable for a wide substrate scope and has excellent functional group compatibility. The reaction can also be scaled up to gram level.
Collapse
Affiliation(s)
- Yan Xiao
- School of Chemical Engineering, Sichuan University, Chengdu, P.R. China
| | - Jiyu Gao
- School of Chemical Engineering, Sichuan University, Chengdu, P.R. China
| | - Peng Chen
- School of Chemical Engineering, Sichuan University, Chengdu, P.R. China
| | - Guangliang Chen
- School of Chemical Engineering, Sichuan University, Chengdu, P.R. China
| | - Zicheng Li
- School of Chemical Engineering, Sichuan University, Chengdu, P.R. China
| | - Wencai Huang
- School of Chemical Engineering, Sichuan University, Chengdu, P.R. China
| |
Collapse
|
42
|
Ghiasi R, Valizadeh A. HYDROGEN ADSORPTION AND STORAGE
ON PALLADIUM-FUNCTIONALIZED GRAPHYNE
AND ITS BORON NITRIDE ANALOGUE. J STRUCT CHEM+ 2021. [DOI: 10.1134/s0022476621060032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
43
|
Ghiasi R, Ahraminejad M, Mohtat B. The application of graphyne and its boron nitride analogue in Li-ion batteries. COMPUT THEOR CHEM 2021. [DOI: 10.1016/j.comptc.2021.113243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
44
|
Kausar A. Ingenuities of graphyne and graphdiyne with polymers: design insights to high performance nanocomposite. POLYM-PLAST TECH MAT 2021. [DOI: 10.1080/25740881.2021.1888983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Ayesha Kausar
- Nanosciences Division, National Center for Physics, Quaid-i-Azam University Campus, Islamabad, Pakistan
| |
Collapse
|
45
|
Zhang C, Zhang Y, Xiao H, Zhang J, Li L, Wang L, Bai Q, Liu M, Wang Z, Sui N. Superior catalytic performance and CO tolerance of PtCu/graphdiyne electrocatalyst toward methanol oxidation reaction. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125960] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
46
|
Wu L, Zhang H, Zhou J. A simulation on the graphyne and its inorganic BN-like nanosheets as anode materials for Ca-ion batteries. MOLECULAR SIMULATION 2021. [DOI: 10.1080/08927022.2021.1872787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Lianxue Wu
- Department of Electrical and Electronic Engineering, Chengde Petroleum College, Chengde, Hebei, China
| | - Hongyu Zhang
- Department of Mathematics and Physics, Chengde Petroleum College, Chengde, Hebei, China
| | - Jing Zhou
- Department of Chemistry, Zhejiang University, Hangzhou, China
| |
Collapse
|
47
|
Yu Z, Chen XM, Liu ZY, Wang M, Huang S, Yang H. A phase-dependent photoluminescent discotic liquid crystal bearing a graphdiyne substructure. Chem Commun (Camb) 2021; 57:911-914. [PMID: 33393549 DOI: 10.1039/d0cc05959e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In recent years, graphdiyne and its derivatives with fascinating electro-optic properties have attracted tremendous scientific attention. Here we design and synthesize a graphdiyne-derived discotic liquid crystal material by decorating six wedge-shaped 3,4,5-tris(dodecyloxy)benzoate groups on the fundamental structural unit of graphdiyne, the dehydrotribenzo[18]annulene core. This graphdiyne-derived liquid crystal material exhibits a cubic phase and a hexagonal columnar phase at varied temperatures. Most interestingly, this molecule displays a tunable phase-dependent photoluminescence behavior. Under the irradiation of 365 nm wavelength ultraviolet light, the luminescent material emits pale blue, green and azure light in the cubic, hexagonal columnar and isotropic phases respectively. This graphdiyne-derived discotic liquid crystal with excellent optical characteristics might have application potentials in organic optoelectronic functional materials and devices.
Collapse
Affiliation(s)
- Zhen Yu
- Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, State Key Laboratory of Bioelectronics, Institute of Advanced Materials, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, Jiangsu, China.
| | - Xu-Man Chen
- Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, State Key Laboratory of Bioelectronics, Institute of Advanced Materials, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, Jiangsu, China.
| | - Zhi-Yang Liu
- Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, State Key Laboratory of Bioelectronics, Institute of Advanced Materials, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, Jiangsu, China.
| | - Meng Wang
- Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, State Key Laboratory of Bioelectronics, Institute of Advanced Materials, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, Jiangsu, China.
| | - Shuai Huang
- Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, State Key Laboratory of Bioelectronics, Institute of Advanced Materials, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, Jiangsu, China.
| | - Hong Yang
- Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, State Key Laboratory of Bioelectronics, Institute of Advanced Materials, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, Jiangsu, China.
| |
Collapse
|
48
|
Rabia A, Tumino F, Milani A, Russo V, Bassi AL, Bassi N, Lucotti A, Achilli S, Fratesi G, Manini N, Onida G, Sun Q, Xu W, Casari CS. Structural, Electronic, and Vibrational Properties of a Two-Dimensional Graphdiyne-like Carbon Nanonetwork Synthesized on Au(111): Implications for the Engineering of sp-sp 2 Carbon Nanostructures. ACS APPLIED NANO MATERIALS 2020; 3:12178-12187. [PMID: 33392466 PMCID: PMC7771048 DOI: 10.1021/acsanm.0c02665] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 11/19/2020] [Indexed: 05/08/2023]
Abstract
Graphdiyne, atomically thin two-dimensional (2D) carbon nanostructure based on sp-sp2 hybridization is an appealing system potentially showing outstanding mechanical and optoelectronic properties. Surface-catalyzed coupling of halogenated sp-carbon-based molecular precursors represents a promising bottom-up strategy to fabricate extended 2D carbon systems with engineered structure on metallic substrates. Here, we investigate the atomic-scale structure and electronic and vibrational properties of an extended graphdiyne-like sp-sp2 carbon nanonetwork grown on Au(111) by means of the on-surface synthesis. The formation of such a 2D nanonetwork at its different stages as a function of the annealing temperature after the deposition is monitored by scanning tunneling microscopy (STM), Raman spectroscopy, and combined with density functional theory (DFT) calculations. High-resolution STM imaging and the high sensitivity of Raman spectroscopy to the bond nature provide a unique strategy to unravel the atomic-scale properties of sp-sp2 carbon nanostructures. We show that hybridization between the 2D carbon nanonetwork and the underlying substrate states strongly affects its electronic and vibrational properties, modifying substantially the density of states and the Raman spectrum compared to the free standing system. This opens the way to the modulation of the electronic properties with significant prospects in future applications as active nanomaterials for catalysis, photoconversion, and carbon-based nanoelectronics.
Collapse
Affiliation(s)
- Andi Rabia
- Department
of Energy, Politecnico di Milano via Ponzio 34/3, Milano I-20133, Italy
| | - Francesco Tumino
- Department
of Energy, Politecnico di Milano via Ponzio 34/3, Milano I-20133, Italy
| | - Alberto Milani
- Department
of Energy, Politecnico di Milano via Ponzio 34/3, Milano I-20133, Italy
| | - Valeria Russo
- Department
of Energy, Politecnico di Milano via Ponzio 34/3, Milano I-20133, Italy
| | - Andrea Li Bassi
- Department
of Energy, Politecnico di Milano via Ponzio 34/3, Milano I-20133, Italy
| | - Nicolò Bassi
- Department
of Energy, Politecnico di Milano via Ponzio 34/3, Milano I-20133, Italy
| | - Andrea Lucotti
- Dipartimento
di Chimica, Materiali e Ingegneria Chimica “G. Natta”, Politecnico di Milano, Piazza Leonardo da Vinci 32, Milano 20133, Italy
| | - Simona Achilli
- ETSF
and Dipartimento di Fisica “Aldo Pontremoli”, Università degli Studi di Milano, Via Celoria, 16, Milano I-20133, Italy
| | - Guido Fratesi
- ETSF
and Dipartimento di Fisica “Aldo Pontremoli”, Università degli Studi di Milano, Via Celoria, 16, Milano I-20133, Italy
| | - Nicola Manini
- ETSF
and Dipartimento di Fisica “Aldo Pontremoli”, Università degli Studi di Milano, Via Celoria, 16, Milano I-20133, Italy
| | - Giovanni Onida
- ETSF
and Dipartimento di Fisica “Aldo Pontremoli”, Università degli Studi di Milano, Via Celoria, 16, Milano I-20133, Italy
| | - Qiang Sun
- Interdisciplinary
Materials Research Center, College of Materials Science and Engineering, Tongji University, Shanghai 201804, P. R. China
| | - Wei Xu
- Interdisciplinary
Materials Research Center, College of Materials Science and Engineering, Tongji University, Shanghai 201804, P. R. China
| | - Carlo S. Casari
- Department
of Energy, Politecnico di Milano via Ponzio 34/3, Milano I-20133, Italy
| |
Collapse
|
49
|
Gao L, Ge X, Zuo Z, Wang F, Liu X, Lv M, Shi S, Xu L, Liu T, Zhou Q, Ye X, Xiao S. High Quality Pyrazinoquinoxaline-Based Graphdiyne for Efficient Gradient Storage of Lithium Ions. NANO LETTERS 2020; 20:7333-7341. [PMID: 32881527 DOI: 10.1021/acs.nanolett.0c02728] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
N-doping of graphdiyne with atomic precision is very important for the study of heteroatom doping effect and the structure-properties relationships of graphdiyne. Here we report the bottom-up synthesis and characterizations of high-quality pyrazinoquinoxaline-based graphdiyne (PQ-GDY) film. First-principle studies of the layered structure were performed to examine the stacking mode, lithium binding affinity, and bulk lithium storage capacity. Three-stage insertion of 14 lithium atoms with binding affinities in the order of pyrazine nitrogen > diyne carbon > central aromatic ring were confirmed by both lithium-ion half-cell measurements and DFT calculations. More than half of the lithium atoms preferentially bind to pyrazine nitrogen, and a reversible capacity of 570.0 mA h g-1 at a current density of 200 mA g-1 after 800 cycles was achieved. Such a high capacity utilization rate of 97.2% provides a good case study of N-doped GDY with atomic precision.
Collapse
Affiliation(s)
- Lei Gao
- The Education Ministry Key Laboratory of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, P.R. China
| | - Xun Ge
- Department of Physics, Shanghai Normal University, Shanghai 200234, P.R. China
| | - Zicheng Zuo
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
| | - Fan Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
| | - Xiaoyan Liu
- The Education Ministry Key Laboratory of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, P.R. China
| | - Mengmeng Lv
- The Education Ministry Key Laboratory of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, P.R. China
| | - Siqi Shi
- School of Materials Science and Engineering, Shanghai University, Shanghai 200444, P.R. China
| | - Lanting Xu
- The Education Ministry Key Laboratory of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, P.R. China
| | - Taifeng Liu
- The Education Ministry Key Laboratory of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, P.R. China
| | - Qinghai Zhou
- The Education Ministry Key Laboratory of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, P.R. China
| | - Xiang Ye
- Department of Physics, Shanghai Normal University, Shanghai 200234, P.R. China
| | - Shengxiong Xiao
- The Education Ministry Key Laboratory of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, P.R. China
| |
Collapse
|
50
|
Li Y, He J, Shen H. Journey from Small-Molecule Diyne Structures to 2D Graphdiyne: Synthetic Strategies. Chemistry 2020; 26:12310-12321. [PMID: 32496650 DOI: 10.1002/chem.202001898] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/03/2020] [Indexed: 11/06/2022]
Abstract
Graphdiyne (GDY) exhibits unique characteristics of a highly conjugated π system, evenly distributed nanopores, and a direct band gap. This has encouraged multidisciplinary research groups to investigate its application in energy conversion and storage, catalysts, electronic devices, sensing, and separation. Herein, the achievements of synthetic strategies for preparing small-molecule diyne structures (GDY substructure), 1D nanoribbons, and 2D GDY are presented. These studies may help future investigations into the basic structure-related properties of GDY and synthetic methodology for the future developments of GDY-related 2D carbon materials.
Collapse
Affiliation(s)
- Yongjun Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P.R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Jingyi He
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P.R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Han Shen
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P.R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| |
Collapse
|