1
|
Phetfong J, Sanvoranart T, Nartprayut K, Nimsanor N, Seenprachawong K, Prachayasittikul V, Supokawej A. Osteoporosis: the current status of mesenchymal stem cell-based therapy. Cell Mol Biol Lett 2016; 21:12. [PMID: 28536615 PMCID: PMC5414670 DOI: 10.1186/s11658-016-0013-1] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 01/25/2016] [Indexed: 12/21/2022] Open
Abstract
Osteoporosis, or bone loss, is a progressive, systemic skeletal disease that affects millions of people worldwide. Osteoporosis is generally age related, and it is underdiagnosed because it remains asymptomatic for several years until the development of fractures that confine daily life activities, particularly in elderly people. Most patients with osteoporotic fractures become bedridden and are in a life-threatening state. The consequences of fracture can be devastating, leading to substantial morbidity and mortality of the patients. The normal physiologic process of bone remodeling involves a balance between bone resorption and bone formation during early adulthood. In osteoporosis, this process becomes imbalanced, resulting in gradual losses of bone mass and density due to enhanced bone resorption and/or inadequate bone formation. Several growth factors underlying age-related osteoporosis and their signaling pathways have been identified, such as osteoprotegerin (OPG)/receptor activator of nuclear factor B (RANK)/RANK ligand (RANKL), bone morphogenetic protein (BMP), wingless-type MMTV integration site family (Wnt) proteins and signaling through parathyroid hormone receptors. In addition, the pathogenesis of osteoporosis has been connected to genetics. The current treatment of osteoporosis predominantly consists of antiresorptive and anabolic agents; however, the serious adverse effects of using these drugs are of concern. Cell-based replacement therapy via the use of mesenchymal stem cells (MSCs) may become one of the strategies for osteoporosis treatment in the future.
Collapse
Affiliation(s)
- Jitrada Phetfong
- Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University, Phuttamonthon, Salaya, Nakhon Pathom 73170 Thailand
| | - Tanwarat Sanvoranart
- Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University, Phuttamonthon, Salaya, Nakhon Pathom 73170 Thailand
| | - Kuneerat Nartprayut
- Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University, Phuttamonthon, Salaya, Nakhon Pathom 73170 Thailand
| | - Natakarn Nimsanor
- Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University, Phuttamonthon, Salaya, Nakhon Pathom 73170 Thailand
| | - Kanokwan Seenprachawong
- Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University, Phuttamonthon, Salaya, Nakhon Pathom 73170 Thailand
| | - Virapong Prachayasittikul
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Phuttamonthon, Salaya, Nakhon Pathom 73170 Thailand
| | - Aungkura Supokawej
- Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University, Phuttamonthon, Salaya, Nakhon Pathom 73170 Thailand
| |
Collapse
|
2
|
Doucet M, Jayaraman S, Swenson E, Tusing B, Weber KL, Kominsky SL. CCL20/CCR6 Signaling Regulates Bone Mass Accrual in Mice. J Bone Miner Res 2016; 31:1381-90. [PMID: 26890063 DOI: 10.1002/jbmr.2813] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 02/03/2016] [Accepted: 02/13/2016] [Indexed: 11/10/2022]
Abstract
CCL20 is a member of the macrophage inflammatory protein family and is reported to signal monogamously through the receptor CCR6. Although studies have identified the genomic locations of both Ccl20 and Ccr6 as regions important for bone quality, the role of CCL20/CCR6 signaling in regulating bone mass is unknown. By micro-computed tomography (μCT) and histomorphometric analysis, we show that global loss of Ccr6 in mice significantly decreases trabecular bone mass coincident with reduced osteoblast numbers. Notably, CCL20 and CCR6 were co-expressed in osteoblast progenitors and levels increased during osteoblast differentiation, indicating the potential of CCL20/CCR6 signaling to influence osteoblasts through both autocrine and paracrine actions. With respect to autocrine effects, CCR6 was found to act as a functional G protein-coupled receptor in osteoblasts and although its loss did not appear to affect the number or proliferation rate of osteoblast progenitors, differentiation was significantly inhibited as evidenced by delays in osteoblast marker gene expression, alkaline phosphatase activity, and mineralization. In addition, CCL20 promoted osteoblast survival concordant with activation of the PI3K-AKT pathway. Beyond these potential autocrine effects, osteoblast-derived CCL20 stimulated the recruitment of macrophages and T cells, known facilitators of osteoblast differentiation and survival. Finally, we generated mice harboring a global deletion of Ccl20 and found that Ccl20(-/-) mice exhibit a reduction in bone mass similar to that observed in Ccr6(-/-) mice, confirming that this phenomenon is regulated by CCL20 rather than alternate CCR6 ligands. Collectively, these data indicate that CCL20/CCR6 signaling may play an important role in regulating bone mass accrual, potentially by modulating osteoblast maturation, survival, and the recruitment of osteoblast-supporting cells. © 2016 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Michele Doucet
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Swaathi Jayaraman
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Emily Swenson
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Brittany Tusing
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kristy L Weber
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Scott L Kominsky
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
3
|
Nie Y, Kumarasamy S, Waghulde H, Cheng X, Mell B, Czernik PJ, Lecka-Czernik B, Joe B. High-resolution mapping of a novel rat blood pressure locus on chromosome 9 to a region containing the Spp2 gene and colocalization of a QTL for bone mass. Physiol Genomics 2016; 48:409-19. [PMID: 27113531 DOI: 10.1152/physiolgenomics.00004.2016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 04/20/2016] [Indexed: 01/11/2023] Open
Abstract
Through linkage analysis of the Dahl salt-sensitive (S) rat and the spontaneously hypertensive rat (SHR), a blood pressure (BP) quantitative trait locus (QTL) was previously located on rat chromosome 9. Subsequent substitution mapping studies of this QTL revealed multiple BP QTLs within the originally identified logarithm of odds plot by linkage analysis. The focus of this study was on a 14.39 Mb region, the distal portion of which remained unmapped in our previous studies. High-resolution substitution mapping for a BP QTL in the setting of a high-salt diet indicated that an SHR-derived congenic segment of 787.9 kb containing the gene secreted phosphoprotein-2 (Spp2) lowered BP and urinary protein excretion. A nonsynonymous G/T polymorphism in the Spp2 gene was detected between the S and S.SHR congenic rats. A survey of 45 strains showed that the T allele was rare, being detected only in some substrains of SHR and WKY. Protein modeling prediction through SWISSPROT indicated that the predicted protein product of this variant was significantly altered. Importantly, in addition to improved cardiovascular and renal function, high salt-fed congenic animals carrying the SHR T variant of Spp2 had significantly lower bone mass and altered bone microarchitecture. Total bone volume and volume of trabecular bone, cortical thickness, and degree of mineralization of cortical bone were all significantly reduced in congenic rats. Our study points to opposing effects of a congenic segment containing the prioritized candidate gene Spp2 on BP and bone mass.
Collapse
Affiliation(s)
- Ying Nie
- Program in Physiological Genomics, Center for Hypertension and Personalized Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Sivarajan Kumarasamy
- Program in Physiological Genomics, Center for Hypertension and Personalized Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Harshal Waghulde
- Program in Physiological Genomics, Center for Hypertension and Personalized Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Xi Cheng
- Program in Physiological Genomics, Center for Hypertension and Personalized Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Blair Mell
- Program in Physiological Genomics, Center for Hypertension and Personalized Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Piotr J Czernik
- Center for Diabetes and Endocrine Research, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio; and Department of Orthopedics, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Beata Lecka-Czernik
- Center for Diabetes and Endocrine Research, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio; and Department of Orthopedics, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Bina Joe
- Program in Physiological Genomics, Center for Hypertension and Personalized Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio;
| |
Collapse
|
4
|
Mafi Golchin M, Heidari L, Ghaderian SMH, Akhavan-Niaki H. Osteoporosis: A Silent Disease with Complex Genetic Contribution. J Genet Genomics 2016; 43:49-61. [PMID: 26924688 DOI: 10.1016/j.jgg.2015.12.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 10/30/2015] [Accepted: 12/26/2015] [Indexed: 12/17/2022]
Abstract
Osteoporosis is the most common multifactorial metabolic bone disorder worldwide with a strong genetic component. In this review, the evidence for a genetic contribution to osteoporosis and related phenotypes is summarized alongside with methods used to identify osteoporosis susceptibility genes. The key biological pathways involved in the skeleton and bone development are discussed with a particular focus on master genes clustered in these pathways and their mode of action. Furthermore, the most studied single nucleotide polymorphisms (SNPs) analyzed for their importance as genetic markers of the disease are presented. New data generated by next-generation sequencing in conjunction with extensive meta-analyses should contribute to a better understanding of the genetic basis of osteoporosis and related phenotype variability. These data could be ultimately used for identifying at-risk patients for disease prevention by both controlling environmental factors and providing possible therapeutic targets.
Collapse
Affiliation(s)
- Maryam Mafi Golchin
- Department of Genetics, Faculty of Medicine, Babol University of Medical Sciences, Babol 4717647745, Iran
| | - Laleh Heidari
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences & Health Services, Tehran 1985717443, Iran
| | - Seyyed Mohammad Hossein Ghaderian
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences & Health Services, Tehran 1985717443, Iran
| | - Haleh Akhavan-Niaki
- Department of Genetics, Faculty of Medicine, Babol University of Medical Sciences, Babol 4717647745, Iran.
| |
Collapse
|
5
|
Zhao KW, Murray EJB, Murray SS. Spp24 derivatives stimulate a Gi-protein coupled receptor-Erk1/2 signaling pathway and modulate gene expressions in W-20-17 cells. J Cell Biochem 2015; 116:767-77. [PMID: 25501958 DOI: 10.1002/jcb.25032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 12/09/2014] [Indexed: 01/20/2023]
Abstract
Secreted phosphoprotein 24 kDa (Spp24) is an apatite- and BMP/TGF-β cytokine-binding phosphoprotein found in serum and many tissues, including bone. N-terminally intact degradation products ranging in size from 14 kDa to 23 kDa have been found in bone. The cleavage sites in Spp24 that produce these short forms have not been definitively identified, and the biological activities and mechanisms of action of Spp24 and its degradation products have not been fully elucidated. We found that the C-terminus of Spp24 is labile to proteolysis by furin, kallikrein, lactoferrin, and trypsin, indicating that both extracellular and intracellular proteolytic events could account for the generation of biologically-active Spp18, Spp16, and Spp14. We determined the effects of these truncation products on kinase-mediated signal transduction, gene expression, and osteoblastic differentiation in W-20-17 bone marrow stromal cells cultured in basal or pro-osteogenic media. After culturing for five days, all forms inhibited BMP-2-stimulated osteoblastic differentiation, assessed as induction of alkaline phosphatase activity, in basal, but not pro-osteogenic media. After 10 days, they also inhibited BMP-2-stimulated mineral deposition in pro-osteogenic media. Spp24 had no effect on Erk1/2 phosphorylation, but Spp18 stimulated short-term Erk1/2, MEK 1/2, and p38 phosphorylation. Pertussis toxin and a MEK1/2 inhibitor ablated Spp18-stimulated Erk 1/2 phosphorylation, indicating a role for Gi proteins and MEK1/2 in the Spp18-stimulated Erk1/2 phosphorylation cascade. Truncation products, but not full-length Spp24, stimulated RUNX2, ATF4, and CSF1 transcription. This suggests that Spp24 truncation products have effects on osteoblastic differentiation mediated by kinase pathways that are independent of exogenous BMP/TGF-β cytokines.
Collapse
Affiliation(s)
- Ke-Wei Zhao
- Geriatric Research, Education and Clinical Center (11-E), Veterans Affairs Greater Los Angeles Healthcare System, Sepulveda, California, 91343
| | | | | |
Collapse
|
6
|
Lee M, Choh AC, Williams KD, Schroeder V, Dyer TD, Blangero J, Cole SA, Chumlea WC, Duren DL, Sherwood RJ, Siervogel RM, Towne B, Czerwinski SA. Genome-wide linkage scan for quantitative trait loci underlying normal variation in heel bone ultrasound measures. J Nutr Health Aging 2012; 16:8-13. [PMID: 22237995 PMCID: PMC3928037 DOI: 10.1007/s12603-011-0080-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Quantitative ultrasound (QUS) traits are correlated with bone mineral density (BMD), but predict risk for future fracture independent of BMD. Only a few studies, however, have sought to identify specific genes influencing calcaneal QUS measures. The aim of this study was to conduct a genome-wide linkage scan to identify quantitative trait loci (QTL) influencing normal variation in QUS traits. QUS measures were collected from a total of 719 individuals (336 males and 383 females) from the Fels Longitudinal Study who have been genotyped and have at least one set of QUS measurements. Participants ranged in age from 18.0 to 96.6 years and were distributed across 110 nuclear and extended families. Using the Sahara ® bone sonometer, broadband ultrasound attenuation (BUA), speed of sound (SOS) and stiffness index (QUI) were collected from the right heel. Variance components based linkage analysis was performed on the three traits using 400 polymorphic short tandem repeat (STR) markers spaced approximately 10 cM apart across the autosomes to identify QTL influencing the QUS traits. Age, sex, and other significant covariates were simultaneously adjusted. Heritability estimates (h²) for the QUS traits ranged from 0.42 to 0.57. Significant evidence for a QTL influencing BUA was found on chromosome 11p15 near marker D11S902 (LOD = 3.11). Our results provide additional evidence for a QTL on chromosome 11p that harbors a potential candidate gene(s) related to BUA and bone metabolism.
Collapse
Affiliation(s)
- M Lee
- Lifespan Health Research Center, Wright State University, Boonshoft School of Medicine, Dayton, OH 45420, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Insights into the genetics of osteoporosis from recent genome-wide association studies. Expert Rev Mol Med 2011; 13:e28. [PMID: 21867596 DOI: 10.1017/s1462399411001980] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Osteoporosis, which is characterised by reduced bone mineral density (BMD) and an increased risk of fragility fractures, is the result of a complex interaction between environmental factors and genetic variants that confer susceptibility. Heritability studies have shown that BMD and other osteoporosis-related traits such as ultrasound properties of bone, skeletal geometry and bone turnover have significant inheritable components. Although previous linkage and candidate gene studies have provided few replicated loci for osteoporosis, genome-wide association approaches have produced clear and reproducible findings. To date, 20 genome-wide association studies (GWASs) for osteoporosis and related traits have been conducted, identifying dozens of genes. Further meta-analyses of GWAS data and deep resequencing of rare variants will uncover more novel susceptibility loci and ultimately provide possible therapeutic targets for fracture prevention.
Collapse
|
8
|
Abstract
Osteoporosis is a common disease with a strong genetic component characterized by reduced bone mass, defects in the microarchitecture of bone tissue, and an increased risk of fragility fractures. Twin and family studies have shown high heritability of bone mineral density (BMD) and other determinants of fracture risk such as ultrasound properties of bone, skeletal geometry, and bone turnover. Osteoporotic fractures also have a heritable component, but this reduces with age as environmental factors such as risk of falling come into play. Susceptibility to osteoporosis is governed by many different genetic variants and their interaction with environmental factors such as diet and exercise. Notable successes in identification of genes that regulate BMD have come from the study of rare Mendelian bone diseases characterized by major abnormalities of bone mass where variants of large effect size are operative. Genome-wide association studies have also identified common genetic variants of small effect size that contribute to regulation of BMD and fracture risk in the general population. In many cases, the loci and genes identified by these studies had not previously been suspected to play a role in bone metabolism. Although there has been extensive progress in identifying the genes and loci that contribute to the regulation of BMD and fracture over the past 15 yr, most of the genetic variants that regulate these phenotypes remain to be discovered.
Collapse
Affiliation(s)
- Stuart H Ralston
- Rheumatic Diseases Unit, Molecular Medicine Centre, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, United Kingdom.
| | | |
Collapse
|
9
|
Abstract
Osteoporosis is a common disease with a strong genetic component characterized by reduced bone mass and an increased risk of fragility fractures. Twin and family studies have shown that the heritability of bone mineral density and other determinants of fracture risk, such as ultrasound properties of bone, skeletal geometry, and bone turnover, is high, although heritability of fracture is modest. Many different genetic variants contribute to the regulation of these phenotypes. Most are common variants of small effect size, but there is evidence that rare variants of large effect size also contribute in some individuals. Many of the genes that regulate susceptibility to osteoporosis have been identified through studies of rare bone diseases, but genome-wide association studies have also been successful in identifying genes that predispose to osteoporosis. Although there has been extensive progress in this area over the past 10 years, most of the genetic variants that regulate susceptibility to osteoporosis remain to be discovered.
Collapse
Affiliation(s)
- Stuart H Ralston
- University of Edinburgh, Western General Hospital, Edinburgh, UK.
| |
Collapse
|
10
|
|
11
|
Karasik D, Dupuis J, Cho K, Cupples LA, Zhou Y, Kiel DP, Demissie S. Refined QTLs of osteoporosis-related traits by linkage analysis with genome-wide SNPs: Framingham SHARe. Bone 2010; 46:1114-21. [PMID: 20064633 PMCID: PMC2842472 DOI: 10.1016/j.bone.2010.01.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Revised: 12/06/2009] [Accepted: 01/02/2010] [Indexed: 11/30/2022]
Abstract
Genome-wide association studies (GWAS) using high-density array of single-nucleotide polymorphisms (SNPs) offer an unbiased strategy to identify new candidate genes for osteoporosis. We used a subset of autosomal SNPs from the Affymetrix 500K+50K SNP GeneChip marker set to examine genetic linkage with multiple highly heritable osteoporosis-related traits, including BMD of the hip and spine, heel ultrasound (attenuation and speed of sound), and geometric indices of the hip, in two generations from the Framingham Osteoporosis Study. Variance component linkage analysis was performed using normalized residuals (adjusted for age, height, BMI, and estrogen status in women). Multipoint linkage analyses produced LOD scores > or =3.0 for BMD on chromosomes (chr.) 9 and 11 and for ultrasound speed of sound on chr. 5. Hip geometric traits were linked with higher LOD scores, such as with shaft width on chr. 4 (LOD=3.9) and chr. 16 (LOD=3.8) and with shaft section modulus on chr. 22 (LOD=4.0). LOD score > or =5.0 was obtained for femoral neck width on chr. 7. In conclusion, with an SNP-based linkage approach, we identified several novel potential QTLs and confirmed previously identified chromosomal regions linked to bone mass and geometry. Subsequent focus on the spectrum of genetic polymorphisms in these refined regions may contribute to finding variants predisposing to osteoporosis.
Collapse
Affiliation(s)
- David Karasik
- Hebrew SeniorLife Institute for Aging Research and Harvard Medical School, Boston, MA 02131, USA.
| | | | | | | | | | | | | |
Collapse
|
12
|
Brochmann EJ, Behnam K, Murray SS. Bone morphogenetic protein-2 activity is regulated by secreted phosphoprotein-24 kd, an extracellular pseudoreceptor, the gene for which maps to a region of the human genome important for bone quality. Metabolism 2009; 58:644-50. [PMID: 19375587 DOI: 10.1016/j.metabol.2009.01.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2007] [Accepted: 01/02/2009] [Indexed: 10/20/2022]
Abstract
The material properties of bone are the sum of the complex and interrelated anabolic and catabolic processes that modulate formation and turnover. The 2q33-37 region of the human genome contains quantitative trait loci important in determining the broadband ultrasound attenuation (an index of trabecular microarchitecture, bone elasticity, and susceptibility to fracture) of the calcaneus, but no genes of significance to bone metabolism have been identified in this domain. Secreted phosphoprotein-24 kd (SPP24 or SPP2) is a novel and relatively poorly characterized growth hormone-regulated gene that maps to 2q37. The purpose of this review is to summarize the status of research related to spp24 and how it regulates bone morphogenetic protein (BMP) bioactivity in bone. SPP24 codes for an extracellular matrix protein that contains a high-affinity BMP-2-binding transforming growth factor-beta receptor II homology 1 loop similar to those identified in fetuin and the receptor itself. SPP24 is transcribed primarily in the liver and bone. High levels of spp24 (a hydroxyapatite-binding protein) are found in bone, and small amounts are found in fetuin-mineral complexes. Full-length secretory spp24 inhibits ectopic bone formation, and overexpression of spp24 reduces murine bone mass and density. Spp24 is extremely labile to proteolysis, a process that regulates its bioactivity in vivo. For example, an 18.5-kd degradation product of spp24, designated spp18.5, is pro-osteogenic. A synthetic cyclized Cys(1)-to-Cys(19) disulfide-bonded peptide (BMP binding peptide) corresponding to the transforming growth factor-beta receptor II homology 1 domain of spp24 and spp18.5 binds BMP-2 and increases the rate and magnitude of BMP-2-mediated ectopic bone formation. Thus, the mechanism of action of spp18.5 and spp24 may be to regulate the local bioavailability of BMP cytokines. SPP24 is regulated by growth hormone and 3 major families of transcription factors (nuclear factor of activated T cells, CCAAT/enhancer-binding protein, Cut/Cux/CCAAT displacement protein) that regulate mesenchymal cell proliferation, embryonic patterning, and terminal differentiation. The gene contains at least 2 single nucleotide polymorphisms. Given its mechanism of action and sequence variability, SPP24 may be an interesting candidate for future studies of the genetic regulation of bone mass, particularly during periods of BMP-mediated endochondral bone growth, development, and fracture healing.
Collapse
Affiliation(s)
- Elsa J Brochmann
- Geriatric Research, Education and Clinical Center (11-E), VA Greater Los Angeles Healthcare System, Sepulveda, CA 91343, USA
| | | | | |
Collapse
|
13
|
Cheung CL, Chan BYY, Chan V, Ikegawa S, Kou I, Ngai H, Smith D, Luk KDK, Huang QY, Mori S, Sham PC, Kung AWC. Pre-B-cell leukemia homeobox 1 (PBX1) shows functional and possible genetic association with bone mineral density variation. Hum Mol Genet 2009; 18:679-87. [PMID: 19064610 DOI: 10.1093/hmg/ddn397] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Bone mineral density (BMD) is one of the major determinants of risk for osteoporotic fracture. Multiple studies reveal that peak bone mass is under strong genetic influence. One of the major susceptibility loci for peak spine BMD has been mapped to chromosome 1q21-q23 in the Caucasian population. We have previously replicated this finding in Southern Chinese pedigrees and detected a maximum multipoint log of odds (LOD) score of 2.36 in this region. To further fine-map this region, 380 single-nucleotide polymorphic (SNP) markers were genotyped in 610 sibpairs from 231 families. Several markers were identified in the association analysis as important candidates underlying BMD variation. Among them, successful replication was demonstrated for SNPs in pre-B-cell leukemia homeobox 1 (PBX1) gene in two other unrelated case-control cohorts. The functional role of PBX1 in bone metabolism was examined in vitro using human bone-derived cells (HBDC) and murine MC3T3-E1 pre-osteoblasts. PBX1 mRNA was constitutively expressed in both HBDC and MC3T3-E1 cells. Immunostaining revealed that PBX1 is localized in the nucleus compartment. Silencing of PBX1 by RNAi in MC3T3-E1 cells decreased the expression of Runx2 and Osterix, the critical transcription factors for osteogenesis, but accelerated cell proliferation and bone nodule formation. Overall, our data suggest a genetic and functional association of PBX1 with BMD.
Collapse
Affiliation(s)
- Ching-Lung Cheung
- Department of Medicine, The University of Hong Kong, Hong Kong, Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Chinappen-Horsley U, Blake GM, Fogelman I, Kato B, Ahmadi KR, Spector TD. Quantitative trait loci for bone lengths on chromosome 5 using dual energy X-Ray absorptiometry imaging in the Twins UK cohort. PLoS One 2008; 3:e1752. [PMID: 18335030 PMCID: PMC2262137 DOI: 10.1371/journal.pone.0001752] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2007] [Accepted: 01/16/2008] [Indexed: 12/21/2022] Open
Abstract
Human height is a highly heritable and complex trait but finding important genes has proven more difficult than expected. One reason might be the composite measure of height which may add heterogeneity and noise. The aim of this study was to conduct a genome-wide linkage scan to identify quantitative trait loci (QTL) for lengths of spine, femur, tibia, humerus and radius. These were investigated as alternative measures for height in a large, population–based twin sample with the potential to find genes underlying bone size and bone diseases. 3,782 normal Caucasian females, 18–80 years old, with whole body dual energy X-ray absorptiometry (DXA) images were used. A novel and reproducible method, linear pixel count (LPC) was used to measure skeletal sizes on DXA images. Intraclass correlations and heritability estimates were calculated for lengths of spine, femur, tibia, humerus and radius on monozygotic (MZ; n = 1,157) and dizygotic (DZ; n = 2,594) twins. A genome-wide linkage scan was performed on 2000 DZ twin subjects. All skeletal sites excluding spine were highly correlated. Intraclass correlations showed results for MZ twins to be significantly higher than DZ twins for all traits. Heritability results were as follows: spine, 66%; femur, 73%; tibia, 65%; humerus, 57%; radius, 68%. Results showed reliable evidence of highly suggestive linkage on chromosome 5 for spine (LOD score = 3.0) and suggestive linkage for femur (LOD score = 2.19) in the regions of 105cM and 155cM respectively. We have shown strong heritability of all skeletal sizes measured in this study and provide preliminary evidence that spine length is linked to the chromosomal region 5q15-5q23.1. Bone size phenotype appears to be more useful than traditional height measures to uncover novel genes. Replication and further fine mapping of this region is ongoing to determine potential genes influencing bone size and diseases affecting bone.
Collapse
Affiliation(s)
- Usha Chinappen-Horsley
- Twin Research and Genetic Epidemiology Unit, King's College London School of Medicine, St Thomas' Hospital, London, United Kingdom.
| | | | | | | | | | | |
Collapse
|
15
|
Wang L, Liu YJ, Xiao P, Shen H, Deng HY, Papasian CJ, Drees BM, Hamilton JJ, Recker RR, Deng HW. Chromosome 2q32 may harbor a QTL affecting BMD variation at different skeletal sites. J Bone Miner Res 2007; 22:1672-8. [PMID: 17680728 DOI: 10.1359/jbmr.070722] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
UNLABELLED BMDs at different skeletal sites share some common genetic determinants. Using PCA and bivariate linkage analysis, we identified a QTL on chromosome 2q32 with significant pleiotropic effects on BMDs at different skeletal sites. INTRODUCTION BMDs at the hip, spine, and forearm are genetically correlated, suggesting the existence of quantitative trait loci (QTLs) with concurrent effects on BMDs at these three skeletal sites. Consequently, it is important to identify these QTLs in the human genome and, for those implicated QTLs, it is important to differentiate between pleiotropic effects, caused by a single gene that concurrently effects these traits, and co-incident linkage, caused by multiple, closely linked, genes that independently effect these traits. MATERIALS AND METHODS For a sample of 451 American white pedigrees made up of 4,498 individuals, we evaluated the correlations between BMDs at the three skeletal sites. We carried out principal component analysis (PCA) for the three correlated traits and obtained a major component, PC1, which accounts for >75% of the co-variation of BMDs at the three sites. We subsequently conducted a whole genome linkage scan for PC1 and performed bivariate linkage analysis for pairs of the three traits (i.e., forearm/spine BMD, hip/forearm BMD, and hip/spine BMD). RESULTS Chromosome region 2q32, near the marker GATA65C03M, showed strong linkage to PC1 (LOD = 3.35). Subsequent bivariate linkage analysis substantiated linkage at 2q32 for each trait pair (LOD scores were 2.65, 2.42, and 2.13 for forearm/spine BMD, hip/forearm BMD, and hip/spine BMD, respectively). Further analyses rejected the hypothesis of co-incident linkage (p(0)[forearm/spine] = 0.0005, p(0)[hip/forearm] = 0.004, p(0)(hip/spine] = 0.001) but failed to reject the hypothesis of pleiotropy (p(1)[forearm/spine] = 0.35, p(1)[hip/forearm] = 0.07, p(1)[hip/spine] = 0.15). CONCLUSIONS Our results strongly support the conclusion that chromosome region 2q32 may harbor a QTL with pleiotropic effects on BMDs at different skeletal sites.
Collapse
Affiliation(s)
- Liang Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
Osteoporosis is a common disease with a strong genetic component characterised by reduced bone mass and an increased risk of fragility fractures. Twin and family studies have shown that genetic factors contribute to osteoporosis by influencing bone mineral density (BMD), and other phenotypes that are associated with fracture risk, although the heritability of fracture itself is modest. Linkage studies have identified several quantitative trait loci that regulate BMD but most causal genes remain to be identified. In contrast, linkage studies in monogenic bone diseases have been successful in gene identification, and polymorphisms in many of these genes have been found to contribute to the regulation of bone mass in the normal population. Population-based studies have identified polymorphisms in several candidate genes that have been associated with bone mass or osteoporotic fracture, although individually these polymorphisms only account for a small amount of the genetic contribution to BMD regulation. Environmental factors such as diet and physical activity are also important determinants of BMD, and in some cases specific nutrients have been found to interact with genetic polymorphisms to regulate BMD. From a clinical standpoint, advances in knowledge about the genetic basis of osteoporosis are likely to be important in increasing the understanding of the pathophysiology of the disease; providing new genetic markers with which to assess fracture risk and in identifying genes and pathways that form molecular targets for the design of the next generation of drug treatments.
Collapse
Affiliation(s)
- Stuart H Ralston
- Molecular Medicine Centre, Rheumatic Diseases Unit, Edinburgh University, Western General Hospital, Edinburgh EH4 2XU, UK.
| |
Collapse
|
17
|
Livshits G, Kato BS, Zhai G, Hart DJ, Hunter D, MacGregor AJ, Williams FMK, Spector TD. Genomewide linkage scan of hand osteoarthritis in female twin pairs showing replication of quantitative trait loci on chromosomes 2 and 19. Ann Rheum Dis 2007; 66:623-7. [PMID: 17127684 PMCID: PMC1954638 DOI: 10.1136/ard.2006.060236] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2006] [Indexed: 11/04/2022]
Abstract
BACKGROUND AND OBJECTIVE Until recently, there has been little agreement between conflicting results of osteoarthritis (OA) linkage. The purpose of this study was to conduct a whole-genome linkage scan to identify susceptibility loci for idiopathic hand OA in a large, population-based sample of females. METHODS Two OA-related radiographic phenotypes DIP (distal interphalangeal joints)-OA and Tot-KL (Kellgren-Lawrence score for both hands) chosen a priori were examined on 538 (269 pairs) monozygous and 1256 (628 pairs) dizygous (DZ) females. A genome-wide scan using microsatellite markers spaced 10 cM apart was performed on 1028 DZ twins. First, the heritability of the two OA phenotypes was estimated. Next, multipoint linkage analysis was conducted using a modified version of the Haseman-Elston method in a generalised linear model. RESULTS Heritability for DIP-OA and Tot-KL was found to be 47.6% and 67.4%, respectively. A genome-wide scan produced reliable evidence of significant linkage of DIP-OA on chromosome 2 at 90 cM (logarithmic odds ratio (LOD) = 2.90) and for Tot-KL on chromosome 19 at 65 cM (LOD = 4.26). These results are in agreement with data published previously. Several other significant linkage peaks were observed-for example, on chromosome 1 at 250 cM and on chromosome 3 at 30 cM-but were confirmed less reliably. CONCLUSION This is one of the largest OA linkage studies performed to date and provides clear evidence for linkage at two quantitative trait loci (on chromosome 2 at 90 cM and on chromosome 19 at 65 cM). As the results were robust and replicated in previous smaller studies, the fine mapping of these regions is a logical next step to pinpoint potential susceptibility gene(s) of interest.
Collapse
MESH Headings
- Chromosome Aberrations
- Chromosomes, Human, Pair 1/genetics
- Chromosomes, Human, Pair 19/genetics
- Chromosomes, Human, Pair 2/genetics
- Chromosomes, Human, Pair 3/genetics
- Diseases in Twins/genetics
- Female
- Finger Joint
- Genetic Linkage/genetics
- Genetic Predisposition to Disease/genetics
- Genome, Human/genetics
- Hand
- Humans
- Osteoarthritis/genetics
- Phenotype
- Quantitative Trait Loci/genetics
- Twins, Dizygotic/genetics
- Twins, Monozygotic/genetics
Collapse
|
18
|
Abstract
Over the past 10 years, many advances have been made in understanding the mechanisms by which genetic factors regulate susceptibility to osteoporosis. It has become clear from studies in man and experimental animals that different genes regulate BMD at different skeletal sites and in men and women. Linkage studies have identified several chromosomal regions that regulate BMD, but only a few causative genes have been discovered so far using this approach. In contrast, significant advances have been made in identifying the genes that cause monogenic bone diseases, and polymorphic variation is some of these genes has been found to contribute to the genetic regulation of BMD in the normal population. Other genes that have been investigated as possible candidates for susceptibility to osteoporosis because of their role in bone biology, such as vitamin D, have yielded mixed results. Many candidate gene association studies have been underpowered, and meta-analysis has been used to try to confirm or refute potential associations and gain a better estimate of their true effect size in the population. Most of the genetic variants that confer susceptibility to osteoporosis remain to be discovered. It is likely that new techniques such as whole-genome association will provide new insights into the genetic determinants of osteoporosis and will help to identify genes of modest effect size. From a clinical standpoint, genetic variants that are found to predispose to osteoporosis will advance our understanding of the pathophysiology of the disease. They could be developed as diagnostic genetic tests or form molecular targets for design of new drugs for the prevention and treatment of osteoporosis and other bone diseases.
Collapse
Affiliation(s)
- Omar M E Albagha
- Rheumatology Section, Molecular Medicine Centre, University of Edinburgh School of Molecular and Clinical Medicine, Western General Hospital, Edinburgh, EH4 2XU, United Kingdom.
| | | |
Collapse
|
19
|
Falchetti A, Sferrazza C, Cepollaro C, Gozzini A, Del Monte F, Masi L, Napoli N, Di Fede G, Cannone V, Cusumano G, Pandolfo MC, Rini GB, Tanini A, Brandi ML. FokI polymorphism of the vitamin D receptor gene correlates with parameters of bone mass and turnover in a female population of the Italian island of Lampedusa. Calcif Tissue Int 2007; 80:15-20. [PMID: 17164973 DOI: 10.1007/s00223-005-0295-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2005] [Accepted: 09/23/2006] [Indexed: 10/23/2022]
Abstract
One of the most promising genetic approaches to dissecting a multifactorial disease is represented by genetically isolated population studies. We studied a genetic marker in a cohort of women living on the Mediterranean island of Lampedusa, a geographically isolated population. Lampedusa, located between the African coast and Sicily, consists of a young genetic isolate (<20 generations) with an exponential growth in the last generations. We analyzed the association between the FokI vitamin D receptor (VDR) gene polymorphism, previously proposed as a predictor of bone mass, with parameters of bone mass and turnover in a cohort of pre- and postmenopausal women living on Lampedusa. In 424 women (277 postmenopausal and 147 premenopausal), allelic frequencies were 49% for the F allele and 51% for the f allele. Using analysis of covariance, we found that subjects with ff genotype exhibited a significantly (P < 0.001) lower lumbar spine bone mass, by dual-energy X-ray absorptiometry, and lower values of bone ultrasonographic parameters (speed of sound and broadband ultrasound attenuation) relative to those with Ff and FF genotypes. Conversely, osteocalcin and serum cross-laps were significantly higher in ff and Ff compared to FF genotype. Our data suggest that FokI VDR polymorphism may contribute to the determination of bone mass and turnover in both pre- and postmenopausal women in this geographically isolated population.
Collapse
Affiliation(s)
- A Falchetti
- Department of Internal Medicine, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Liu YJ, Shen H, Xiao P, Xiong DH, Li LH, Recker RR, Deng HW. Molecular genetic studies of gene identification for osteoporosis: a 2004 update. J Bone Miner Res 2006; 21:1511-35. [PMID: 16995806 PMCID: PMC1829484 DOI: 10.1359/jbmr.051002] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This review summarizes comprehensively the most important and representative molecular genetics studies of gene identification for osteoporosis published up to the end of December 2004. It is intended to constitute a sequential update of our previously published review covering the available data up to the end of 2002. Evidence from candidate gene association studies and genome-wide linkage studies in humans, as well as quantitative trait locus mapping animal models are reviewed separately. Studies of transgenic and knockout mice models relevant to osteoporosis are summarized. An important extension of this update is incorporation of functional genomic studies (including DNA microarrays and proteomics) on osteogenesis and osteoporosis, in light of the rapid advances and the promising prospects of the field. Comments are made on the most notable findings and representative studies for their potential influence and implications on our present understanding of genetics of osteoporosis. The format adopted by this review should be ideal for accommodating future new advances and studies.
Collapse
Affiliation(s)
- Yong-Jun Liu
- Osteoporosis Research Center, Creighton University Medical Center, Omaha, Nebraska, USA
| | - Hui Shen
- Osteoporosis Research Center, Creighton University Medical Center, Omaha, Nebraska, USA
| | - Peng Xiao
- Osteoporosis Research Center, Creighton University Medical Center, Omaha, Nebraska, USA
| | - Dong-Hai Xiong
- Osteoporosis Research Center, Creighton University Medical Center, Omaha, Nebraska, USA
| | - Li-Hua Li
- Osteoporosis Research Center, Creighton University Medical Center, Omaha, Nebraska, USA
| | - Robert R Recker
- Osteoporosis Research Center, Creighton University Medical Center, Omaha, Nebraska, USA
| | - Hong-Wen Deng
- Osteoporosis Research Center, Creighton University Medical Center, Omaha, Nebraska, USA
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education and Institute of Molecular Genetics, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, China
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences Hunan Normal University, Changsha, Hunan, China
| |
Collapse
|
21
|
Ralston SH, de Crombrugghe B. Genetic regulation of bone mass and susceptibility to osteoporosis. Genes Dev 2006; 20:2492-506. [PMID: 16980579 DOI: 10.1101/gad.1449506] [Citation(s) in RCA: 224] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Osteoporosis is a common disease with a strong genetic component characterized by reduced bone mass and increased risk of fragility fractures. Twin and family studies have shown that the heritability of bone mineral density (BMD) and other determinants of fracture risk-such as ultrasound properties of bone, skeletal geometry, and bone turnover-is high, although heritability of fracture is modest. Many different genetic variants of modest effect size are likely to contribute to the regulation of these phenotypes by interacting with environmental factors such as diet and exercise. Linkage studies in rare Mendelian bone diseases have identified several previously unknown genes that play key roles in regulating bone mass and bone turnover. In many instances, subtle polymorphisms in these genes have also been found to regulate BMD in the general population. Although there has been extensive progress in identifying the genetic variants that regulate susceptibility to osteoporosis, most of the genes and genetic variants that regulate bone mass and susceptibility to osteoporosis remain to be discovered.
Collapse
Affiliation(s)
- Stuart H Ralston
- Rheumatic Diseases Unit, Molecular Medicine Centre, Western General Hospital, Edinburgh EH4 2XU, United Kingdom.
| | | |
Collapse
|
22
|
Wilson SG, Adam G, Langdown M, Reneland R, Braun A, Andrew T, Surdulescu GL, Norberg M, Dudbridge F, Reed PW, Sambrook PN, Kleyn PW, Spector TD. Linkage and potential association of obesity-related phenotypes with two genes on chromosome 12q24 in a female dizygous twin cohort. Eur J Hum Genet 2006; 14:340-8. [PMID: 16391564 DOI: 10.1038/sj.ejhg.5201551] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Obesity is a multifactorial disorder with a complex phenotype. It is a significant risk factor for diabetes and hypertension. We assessed obesity-related traits in a large cohort of twins and performed a genome-wide linkage scan and positional candidate analysis to identify genes that play a role in regulating fat mass and distribution in women. Dizygous female twin pairs from 1,094 pedigrees were studied (mean age 47.0+/-11.5 years (range 18-79 years)). Nonparametric multipoint linkage analyses showed linkage for central fat mass to 12q24 (141 cM) with LOD 2.2 and body mass index to 8q11 (67 cM) with LOD 1.3, supporting previously established linkage data. Novel areas of suggestive linkage were for total fat percentage at 6q12 (LOD 2.4) and for total lean mass at 2q37 (LOD 2.4). Data from follow-up fine mapping in an expanded cohort of 1243 twin pairs reinforced the linkage for central fat mass to 12q24 (LOD 2.6; 143 cM) and narrowed the -1 LOD support interval to 22 cM. In all, 45 single-nucleotide polymorphisms (SNPs) from 26 positional candidate genes within the 12q24 interval were then tested for association in a cohort of 1102 twins. Single-point Monks-Kaplan analysis provided evidence of association between central fat mass and SNPs in two genes - PLA2G1B (P = 0.0067) and P2RX4 (P = 0.017). These data provide replication and refinement of the 12q24 obesity locus and suggest that genes involved in phospholipase and purinoreceptor pathways may regulate fat accumulation and distribution.
Collapse
Affiliation(s)
- Scott G Wilson
- Department of Endocrinology & Diabetes, Sir Charles Gairdner Hospital, Nedlands, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Albagha OME, Pettersson U, Stewart A, McGuigan FEA, MacDonald HM, Reid DM, Ralston SH. Association of oestrogen receptor alpha gene polymorphisms with postmenopausal bone loss, bone mass, and quantitative ultrasound properties of bone. J Med Genet 2006; 42:240-6. [PMID: 15744038 PMCID: PMC1736016 DOI: 10.1136/jmg.2004.023895] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND The gene encoding oestrogen receptor alpha (ESR1) appears to regulate bone mineral density (BMD) and other determinants of osteoporotic fracture risk. OBJECTIVE To investigate the relation between common polymorphisms and haplotypes of the ESR1 gene and osteoporosis related phenotypes in a population based cohort of 3054 Scottish women. RESULTS There was a significant association between a common haplotype "px", defined by the PvuII and XbaI restriction fragment length polymorphisms within intron 1 of the ESR1 gene, and femoral neck bone loss in postmenopausal women who had not received hormone replacement therapy (n = 945; p = 0.009). Annual rates of femoral neck bone loss were approximately 14% higher in subjects who carried one copy of px and 22% higher in those who carried two copies, compared with those who did not carry the px haplotype. The px haplotype was associated with lower femoral neck BMD in the postmenopausal women (p = 0.02), and with reduced calcaneal broadband ultrasound attenuation (BUA) values in the whole study population (p = 0.005). There was no association between a TA repeat polymorphism in the ESR1 promoter and any phenotype studied, though on long range haplotype analysis subjects with a smaller number of TA repeats who also carried the px haplotype had reduced BUA values. CONCLUSIONS The ESR1px haplotype is associated with reduced hip BMD values and increased rates of femoral neck bone loss in postmenopausal women. An association with BUA may explain the fact that ESR1 intron 1 alleles predict osteoporotic fractures by a mechanism partly independent of differences in BMD.
Collapse
Affiliation(s)
- O M E Albagha
- The Bone Research Group, Department of Medicine and Therapeutics, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | | | | | | | | | | | | |
Collapse
|
24
|
Xiong DH, Shen H, Xiao P, Guo YF, Long JR, Zhao LJ, Liu YZ, Deng HY, Li JL, Recker RR, Deng HW. Genome-wide scan identified QTLs underlying femoral neck cross-sectional geometry that are novel studied risk factors of osteoporosis. J Bone Miner Res 2006; 21:424-37. [PMID: 16491291 DOI: 10.1359/jbmr.051202] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2005] [Revised: 10/03/2005] [Accepted: 12/02/2005] [Indexed: 11/18/2022]
Abstract
UNLABELLED A genome-wide screen was conducted using a large white sample to identify QTLs for FNCS geometry. We found significant linkage of FNCS parameters to 20q12 and Xq25, plus significant epistatic interactions and sex-specific QTLs influencing FNCS geometry variation. INTRODUCTION Bone geometry, a highly heritable trait, is a critical component of bone strength that significantly determines osteoporotic fracture risk. Specifically, femoral neck cross-sectional (FNCS) geometry is significantly associated with hip fracture risk as well as genetic factors. However, genetic research in this respect is still in its infancy. MATERIALS AND METHODS To identify the underlying genomic regions influencing FNCS variables, we performed a remarkably large-scale whole genome linkage scan involving 3998 individuals from 434 pedigrees for four FNCS geometry parameters, namely buckling ratio (BR), cross-sectional area (CSA), cortical thickness (CT), and section modulus (Z). The major statistical approach adopted is the variance component method implemented in SOLAR. RESULTS Significant linkage evidence (threshold LOD = 3.72 after correction for tests of multiple phenotypes) was found in the regions of 20q12 and Xq25 for CT (LOD = 4.28 and 3.90, respectively). We also identified eight suggestive linkage signals (threshold LOD = 2.31 after correction for multiple tests) for the respective geometry traits. The above findings were supported by principal component linkage analysis. Of them, 20q12 was of particular interest because it was linked to multiple FNCS geometry traits and significantly interacted with five other genomic loci to influence CSA variation. The effects of 20q12 on FNCS geometry were present in both male and female subgroups. Subgroup analysis also revealed the presence of sex-specific quantitative trait loci (QTLs) for FNCS traits in the regions such as 2p14, 3q26, 7q21 and 15q21. CONCLUSIONS Our findings laid a foundation for further replication and fine-mapping studies as well as for positional and functional candidate gene studies, aiming at eventually finding the causal genetic variants and hidden mechanisms concerning FNCS geometry variation and the associated hip fractures.
Collapse
Affiliation(s)
- Dong-Hai Xiong
- Osteoporosis Research Center and Department of Biomedical Sciences, Creighton University, Omaha, Nebraska, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
Genetic factors play an important role in regulating bone mineral density and other phenotypes relevant to the pathogenesis of osteoporosis such as ultrasound properties of bone, skeletal geometry, and bone turnover. Progress has been made in identifying quantitative traits for regulation of bone mineral density by linkage studies in man and mouse, but relatively few causal genes have been identified. Dramatic progress has been made in identifying the genes responsible for monogenic bone diseases and it appears that polymorphisms in many of these genes also play a role in regulating bone mineral density in the general population. Advances in knowledge about the genetic basis of osteoporosis and other bone diseases offer the prospect of developing new markers for assessment of fracture risk and the identification of novel molecular targets for the design of new drug treatments for osteoporosis.
Collapse
Affiliation(s)
- Huilin Jin
- University of Aberdeen Medical School, Department of Medicine and Therapeutics, University of Aberdeen, AB25 2ZD, UK
| | | |
Collapse
|
26
|
Shen H, Liu Y, Liu P, Recker RR, Deng HW. Nonreplication in genetic studies of complex diseases--lessons learned from studies of osteoporosis and tentative remedies. J Bone Miner Res 2005; 20:365-76. [PMID: 15746981 DOI: 10.1359/jbmr.041129] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2004] [Revised: 08/29/2004] [Accepted: 10/15/2004] [Indexed: 12/17/2022]
Abstract
Inconsistent results have accumulated in genetic studies of complex diseases/traits over the past decade. Using osteoporosis as an example, we address major potential factors for the nonreplication results and propose some potential remedies. Over the past decade, numerous linkage and association studies have been performed to search for genes predisposing to complex human diseases. However, relatively little success has been achieved, and inconsistent results have accumulated. We argue that those nonreplication results are not unexpected, given the complicated nature of complex diseases and a number of confounding factors. In this article, based on our experience in genetic studies of osteoporosis, we discuss major potential factors for the inconsistent results and propose some potential remedies. We believe that one of the main reasons for this lack of reproducibility is overinterpretation of nominally significant results from studies with insufficient statistical power. We indicate that the power of a study is not only influenced by the sample size, but also by genetic heterogeneity, the extent and degree of linkage disequilibrium (LD) between the markers tested and the causal variants, and the allele frequency differences between them. We also discuss the effects of other confounding factors, including population stratification, phenotype difference, genotype and phenotype quality control, multiple testing, and genuine biological differences. In addition, we note that with low statistical power, even a "replicated" finding is still likely to be a false positive. We believe that with rigorous control of study design and interpretation of different outcomes, inconsistency will be largely reduced, and the chances of successfully revealing genetic components of complex diseases will be greatly improved.
Collapse
Affiliation(s)
- Hui Shen
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | | | | | | | | |
Collapse
|
27
|
Ramesh Babu L, Wilson SG, Dick IM, Islam FMA, Devine A, Prince RL. Bone mass effects of a BMP4 gene polymorphism in postmenopausal women. Bone 2005; 36:555-61. [PMID: 15777683 DOI: 10.1016/j.bone.2004.12.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2004] [Revised: 11/23/2004] [Accepted: 12/07/2004] [Indexed: 10/25/2022]
Abstract
The pathogenesis of osteoporosis involves both genetic and environmental factors. On the basis of linkage data suggesting gene effects on bone density at chromosome 14q and data locating the BMP4 gene to 14q, we performed a positional candidate study to examine a possible association of BMP4 gene polymorphisms, hip bone density (n = 1012) and fracture rates (n = 1232) in postmenopausal women (mean age 75). On genotype analysis of the three selected single nucleotide polymorphisms (SNP), the 6007C > T polymorphism was associated with total and intertrochanteric hip BMD and BMD was lower in the 32% of subjects homozygous for the C allele. This polymorphism codes for a nonsynonymous amino acid change with the T allele coding for valine, while the C allele codes for alanine. The difference in BMD was 3.1% (TT vs. CC) and 2.3% (CT versus CC) for the total hip (P = 0.023), and 3.7% (TT vs. CC) and 2.8% (CT versus CC) for the intertrochanter site (P = 0.012). Haplotype analysis demonstrated 6 haplotypes of frequency greater than 2%. A major haplotype defined by G-C-T alleles in SNPs -5826G > A, 3564C > T and 6007C > T respectively, showed association with high bone mass. No SNP showed association with fracture rates. We conclude that a polymorphism found in the BMP4 gene, affecting amino acid sequence, is associated with hip bone density in postmenopausal women, presumably via regulation of anabolic effects on the skeleton.
Collapse
Affiliation(s)
- L Ramesh Babu
- School of Medicine and Pharmacology, University of Western Australia, Nedlands, WA, Australia
| | | | | | | | | | | |
Collapse
|