1
|
Weaver SR, Taylor EL, Zars EL, Arnold KM, Bradley EW, Westendorf JJ. Pleckstrin homology (PH) domain and Leucine Rich Repeat Phosphatase 1 (Phlpp1) Suppresses Parathyroid Hormone Receptor 1 (Pth1r) Expression and Signaling During Bone Growth. J Bone Miner Res 2021; 36:986-999. [PMID: 33434347 PMCID: PMC8131217 DOI: 10.1002/jbmr.4248] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 12/06/2020] [Accepted: 12/24/2020] [Indexed: 12/20/2022]
Abstract
Endochondral ossification is tightly controlled by a coordinated network of signaling cascades including parathyroid hormone (PTH). Pleckstrin homology (PH) domain and leucine rich repeat phosphatase 1 (Phlpp1) affects endochondral ossification by suppressing chondrocyte proliferation in the growth plate, longitudinal bone growth, and bone mineralization. As such, Phlpp1-/- mice have shorter long bones, thicker growth plates, and proportionally larger growth plate proliferative zones. The goal of this study was to determine how Phlpp1 deficiency affects PTH signaling during bone growth. Transcriptomic analysis revealed greater PTH receptor 1 (Pth1r) expression and enrichment of histone 3 lysine 27 acetylation (H3K27ac) at the Pth1r promoter in Phlpp1-deficient chondrocytes. PTH (1-34) enhanced and PTH (7-34) attenuated cell proliferation, cAMP signaling, cAMP response element-binding protein (CREB) phosphorylation, and cell metabolic activity in Phlpp1-inhibited chondrocytes. To understand the role of Pth1r action in the endochondral phenotypes of Phlpp1-deficient mice, Phlpp1-/- mice were injected with Pth1r ligand PTH (7-34) daily for the first 4 weeks of life. PTH (7-34) reversed the abnormal growth plate and long-bone growth phenotypes of Phlpp1-/- mice but did not rescue deficits in bone mineral density or trabecular number. These results show that elevated Pth1r expression and signaling contributes to increased proliferation in Phlpp1-/- chondrocytes and shorter bones in Phlpp1-deficient mice. Our data reveal a novel molecular relationship between Phlpp1 and Pth1r in chondrocytes during growth plate development and longitudinal bone growth. © 2021 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
| | | | | | | | - Elizabeth W. Bradley
- Department of Orthopedic Surgery and Stem Cell Institute, University of Minnesota, Minneapolis, MN
| | - Jennifer J. Westendorf
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
2
|
Abstract
Intrauterine growth restriction (IUGR) is an important cause of fetal, perinatal and neonatal morbidity and mortality. IUGR occurs because of multiple reasons. Neonates with IUGR experience acute problems in the perinatal and early neonatal period that can be life-threatening. The unfavorable uterine environment causing growth restriction results in programming that predisposes IUGR infants to long-term health issues such as poor physical growth, metabolic syndrome, cardiovascular disease, neurodevelopmental impairment and endocrine abnormalities, warranting careful monitoring. It is imperative to strike the balance between achieving optimal catch-up to promote normal development, while preventing the onset of cardiovascular and metabolic disorders in the long-term.
Collapse
Affiliation(s)
- Kalpashri Kesavan
- Division of Neonatology & Developmental Biology, Department of Pediatrics, David Geffen School of Medicine at UCLA, UCLA Mattel Children's Hospital, 10833 Le Conte Avenue, B2-413 MDCC, Los Angeles, CA 90095, USA.
| | - Sherin U Devaskar
- Department of Pediatrics, David Geffen School of Medicine at UCLA, UCLA Mattel Children's Hospital, 10833 Le Conte Avenue, 22-412 MDCC, Los Angeles, CA 90095, USA
| |
Collapse
|
3
|
Sotunde OF, Laliberte A, Weiler HA. Maternal risk factors and newborn infant vitamin D status: a scoping literature review. Nutr Res 2019; 63:1-20. [PMID: 30824393 DOI: 10.1016/j.nutres.2018.11.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 11/19/2018] [Accepted: 11/30/2018] [Indexed: 01/20/2023]
Abstract
Low vitamin D (VitD) status is common among newborn infants, more so in temperate latitudes with evidence that maternal VitD deficiency is a major risk factor given that the neonate relies solely on maternal-fetal transfer of VitD. This scoping review was conducted to provide an overview of the latest evidence from studies regarding the impact of maternal risk factors on infant 25-hydryoxyvitamin D [25(OH)D] concentrations with a focus on studies in Canada and the United States. Several maternal risk factors that contribute to low maternal-fetal 25(OH)D concentrations have been reported over many decades, but no clear pattern has been established for multiethnic populations. For example, darker skin pigmentation and ethnicity are common risk factors for low VitD status. Studies in predominantly white women showed that supplementation of VitD during pregnancy causes significant increases in maternal serum 25(OH)D which often improves cord serum 25(OH)D values. In addition, VitD recommendations by health care professionals and adherence to supplementation by pregnant women appear to positively influence maternal and infant 25(OH)D concentrations. Conversely, winter season, obesity, lower socioeconomic status including lifestyle factors (smoking), and use of medication pose risk for lower maternal-fetal transfer of VitD. However, there is still a dearth of pertinent data on the relationship between some of the maternal risk factors and newborn 25(OH)D concentrations, for instance, relationships between gestational diabetes and neonatal VitD status. Additional research is required to determine if the same target for 25(OH)D concentrations applies for pregnant women, neonates, and infants.
Collapse
Affiliation(s)
- Olusola F Sotunde
- School of Human Nutrition, McGill University Ste Anne de Bellevue, Québec, Canada H9X 3V9.
| | - Alexandra Laliberte
- School of Human Nutrition, McGill University Ste Anne de Bellevue, Québec, Canada H9X 3V9.
| | - Hope A Weiler
- School of Human Nutrition, McGill University Ste Anne de Bellevue, Québec, Canada H9X 3V9.
| |
Collapse
|
4
|
Takahata Y. Usefulness of circuit training at home for improving bone mass and muscle mass while losing fat mass in undergraduate female students. Lipids Health Dis 2018; 17:104. [PMID: 29743072 PMCID: PMC5944040 DOI: 10.1186/s12944-018-0743-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 04/13/2018] [Indexed: 02/07/2023] Open
Abstract
Background The purpose of this study was to determine whether or not circuit training at home affects the calcaneus quantitative ultrasound status as well as other indices of body composition among undergraduate female students. Methods Forty-one adolescents were recruited (18.5 ± 0.6 years old). The stiffness index of the calcaneus, broadband ultrasound attenuation of the calcaneus, speed of sound of the calcaneus, and body frame index. This was a three-month intervention study, so the measurements were conducted at baseline, 2 months later, and 3 months later while the subjects underwent circuit training at home. The subjects were divided into two groups: namely, the exercising group and non-exercising group. Results In the exercising group, broadband ultrasound attenuation of the calcaneus was higher 2 months later (p = 0.033) as well as 3 months later (p = 0.036), and the speed of sound of the calcaneus was higher 3 months later (p = 0.018). In addition, the muscle mass was strongly positively correlated with the calcaneus QUS-SOS (p = 0.004), while the body fat percentage was a strongly negatively correlated with the calcaneus QUS-BUA (p = 0.043). In the non-exercising group, the stiffness index of the calcaneus was higher 2 months later (p = 0.002) as well as 3 months later (p = 0.002). Furthermore, the body percentage was strongly positively correlated with the calcaneus QUS-SI (p = 0.009). Conclusions These findings suggest that the calcaneus quantitative ultrasound status and muscle mass while losing fat mass may be improved by means of a simple exercise regimen within a short period among undergraduate female students.
Collapse
Affiliation(s)
- Yoko Takahata
- Faculty of Nursing, Baika Women's University, Shukunosho 2-19-5, Ibaraki, Osaka, 567-8578, Japan.
| |
Collapse
|
5
|
Hayward CE, McIntyre KR, Sibley CP, Greenwood SL, Dilworth MR. Mechanisms Underpinning Adaptations in Placental Calcium Transport in Normal Mice and Those With Fetal Growth Restriction. Front Endocrinol (Lausanne) 2018; 9:671. [PMID: 30515131 PMCID: PMC6255882 DOI: 10.3389/fendo.2018.00671] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 10/29/2018] [Indexed: 12/25/2022] Open
Abstract
Fetal delivery of calcium, via the placenta, is crucial for appropriate skeletal mineralization. We have previously demonstrated that maternofetal calcium transport, per gram placenta, is increased in the placental specific insulin-like growth factor 2 knockout mouse (P0) model of fetal growth restriction (FGR) compared to wild type littermates (WTL). This effect was mirrored in wild-type (WT) mice comparing lightest vs. heaviest (LvH) placentas in a litter. In both models increased placental calcium transport was associated with normalization of fetal calcium content. Despite this adaptation being observed in small normal (WT), and small dysfunctional (P0) placentas, mechanisms underpinning these changes remain unknown. Parathyroid hormone-related protein (PTHrP), elevated in cord blood in FGR and known to stimulate plasma membrane calcium ATPase, might be important. We hypothesized that PTHrP expression would be increased in LvH WT placentas, and in P0 vs. WTL. We used calcium pathway-focused PCR arrays to assess whether mechanisms underpinning these adaptations in LvH WT placentas, and in P0 vs. WTL, were similar. PTHrP protein expression was not different between LvH WT placentas at E18.5 but trended toward increased expression (139%; P = 0.06) in P0 vs. WTL. PCR arrays demonstrated that four genes were differentially expressed in LvH WT placentas including increased expression of the calcium-binding protein calmodulin 1 (1.6-fold; P < 0.05). Twenty-four genes were differentially expressed in placentas of P0 vs. WTL; significant reductions were observed in expression of S100 calcium binding protein G (2-fold; P < 0.01), parathyroid hormone 1 receptor (1.7-fold; P < 0.01) and PTHrP (2-fold; P < 0.05), whilst serum/glucocorticoid-regulated kinase 1 (SGK1), a regulator of nutrient transporters, was increased (1.4 fold; P < 0.05). Tartrate resistant acid phosphatase 5 (TRAP5 encoded by Acp5) was reduced in placentas of both LvH WT and P0 vs. WTL (1.6- and 1.7-fold, respectively; P < 0.05). Signaling events underpinning adaptations in calcium transport are distinct between LvH placentas of WT mice and those in P0 vs. WTL. Calcium binding proteins appear important in functional adaptations in the former whilst PTHrP and SGK1 are also implicated in the latter. These data facilitate understanding of mechanisms underpinning placental calcium transport adaptation in normal and growth restricted fetuses.
Collapse
Affiliation(s)
- Christina E. Hayward
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, Faculty of Biology, Medicine and Health, School of Medical Sciences, University of Manchester, Manchester, United Kingdom
- Manchester Academic Health Science Centre, St. Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | - Kirsty R. McIntyre
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, Faculty of Biology, Medicine and Health, School of Medical Sciences, University of Manchester, Manchester, United Kingdom
- Manchester Academic Health Science Centre, St. Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | - Colin P. Sibley
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, Faculty of Biology, Medicine and Health, School of Medical Sciences, University of Manchester, Manchester, United Kingdom
- Manchester Academic Health Science Centre, St. Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | - Susan L. Greenwood
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, Faculty of Biology, Medicine and Health, School of Medical Sciences, University of Manchester, Manchester, United Kingdom
- Manchester Academic Health Science Centre, St. Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | - Mark R. Dilworth
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, Faculty of Biology, Medicine and Health, School of Medical Sciences, University of Manchester, Manchester, United Kingdom
- Manchester Academic Health Science Centre, St. Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, United Kingdom
- *Correspondence: Mark R. Dilworth
| |
Collapse
|
6
|
Hayward CE, Renshall LJ, Sibley CP, Greenwood SL, Dilworth MR. Adaptations in Maternofetal Calcium Transport in Relation to Placental Size and Fetal Sex in Mice. Front Physiol 2017; 8:1050. [PMID: 29311979 PMCID: PMC5732954 DOI: 10.3389/fphys.2017.01050] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 11/30/2017] [Indexed: 01/21/2023] Open
Abstract
Appropriate placental transport of calcium is essential for normal fetal skeletal mineralization. In fetal growth restriction (FGR), the failure of a fetus to achieve its growth potential, a number of placental nutrient transport systems show reduced activity but, in the case of calcium, placental transport is increased. In a genetic mouse model of FGR this increase, or adaptation, maintains appropriate fetal calcium content, relative to the size of the fetus, despite a small, dysfunctional placenta. It is unknown whether such an adaptation is also apparent in small, but normally functioning placentas. We tested the hypothesis that calcium transfer would be up-regulated in the lightest vs. heaviest placentas in the same C57Bl/6J wild-type (WT) mouse litter. Since lightest placentas are often from females, we also assessed whether fetal sex influenced placental calcium transfer. Placentas and fetuses were collected at embryonic day (E)16.5 and 18.5; the lightest and heaviest placentas, and female and male fetuses, were identified. Unidirectional maternofetal calcium clearance (CaKmf) was assessed following 45Ca administration to the dam and subsequent radiolabel counts within the fetuses. Placental expression of calcium pathway components was measured by Western blot. Data (median) are lightest placenta expressed as percentage of the heaviest within a litter and analyzed by Wilcoxon signed-rank test. In WT mice having normally grown fetuses, CaKmf, per gram placenta near term, in the lightest placentas was increased (126%; P < 0.05) in association with reduced fetal calcium accretion earlier in gestation (92%; P < 0.05), that was subsequently normalized near term. Increased placental expression of calbindin-D9K, an important calcium binding protein, was observed in the lightest placentas near term (122%; P < 0.01). There was no difference in fetal calcium accretion between male and female littermates but a trend toward higher CaKmf in females (P = 0.055). These data suggest a small, normal placenta adapts calcium transfer according to its size, as previously demonstrated in a mouse model of FGR. Fetal sex had limited influence on this adaptive increase. These adaptations are potentially driven by fetal nutrient demand, as evidenced by the normalization of fetal calcium content. Understanding the regulatory mechanisms involved may provide novel avenues for treating placental dysfunction.
Collapse
Affiliation(s)
- Christina E Hayward
- Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom.,Maternal and Fetal Health Research Centre, Manchester Academic Health Science Centre, St. Mary's Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester, United Kingdom
| | - Lewis J Renshall
- Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom.,Maternal and Fetal Health Research Centre, Manchester Academic Health Science Centre, St. Mary's Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester, United Kingdom
| | - Colin P Sibley
- Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom.,Maternal and Fetal Health Research Centre, Manchester Academic Health Science Centre, St. Mary's Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester, United Kingdom
| | - Susan L Greenwood
- Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom.,Maternal and Fetal Health Research Centre, Manchester Academic Health Science Centre, St. Mary's Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester, United Kingdom
| | - Mark R Dilworth
- Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom.,Maternal and Fetal Health Research Centre, Manchester Academic Health Science Centre, St. Mary's Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester, United Kingdom
| |
Collapse
|
7
|
Kiely M, Hemmingway A, O’Callaghan KM. Vitamin D in pregnancy: current perspectives and future directions. Ther Adv Musculoskelet Dis 2017; 9:145-154. [PMID: 28620423 PMCID: PMC5466149 DOI: 10.1177/1759720x17706453] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 02/15/2017] [Indexed: 12/13/2022] Open
Abstract
As neonatal vitamin D status is determined by circulating maternal 25-hydroxyvitamin D [25(OH)D] concentrations, prevention of maternal vitamin D deficiency during pregnancy is essential for the avoidance of neonatal deficiency. However, a high prevalence of vitamin D deficiency has been extensively reported among gravidae and neonates from ethnic minorities and white populations resident at high latitude. Currently, regulatory authorities recommend vitamin D intakes for pregnant women that are similar to non-pregnant adults of the same age, at 10-15 µg/day (400-600 IU), to meet 25(OH)D thresholds of 25-50 nmol/liter. The lack of pregnancy-specific dietary recommendations is due to inadequate data indicating whether nutritional requirements for vitamin D during pregnancy differ from the non-pregnant state. In addition, there are few dose-response studies to determine the maternal 25(OH)D response to vitamin D intake throughout pregnancy at high latitude. These data are also required to determine vitamin D requirements during pregnancy for prevention of neonatal deficiency, an outcome which is likely to require a higher maternal 25(OH)D concentration than prevention of maternal deficiency only. With regard to the impact of vitamin D on perinatal health outcomes, which could guide pregnancy-specific 25(OH)D thresholds, dietary intervention studies to date have been inconsistent and recent systematic reviews have highlighted issues of low quality and a high risk of bias as drawbacks in the trial evidence to date. Many observational studies have been hampered by a reliance on retrospective data, unclear reporting, suboptimal clinical phenotyping and incomplete subject characterization. Current investigations of vitamin D metabolism during pregnancy have potentially exciting implications for clinical research. This paper provides an update of current dietary recommendations for vitamin D in pregnant women and a synopsis of the evidence relating vitamin D status with maternal and infant health.
Collapse
Affiliation(s)
- Mairead Kiely
- Cork Centre for Vitamin D and Nutrition Research, School of Food and Nutritional Sciences, College of Science, Engineering and Food Science, Room 127, Level 1, Food Science Building, University College Cork, Western Road, Cork, Ireland
| | - Andrea Hemmingway
- Cork Centre for Vitamin D and Nutrition Research, School of Food and Nutritional Sciences, College of Science, Engineering and Food Science, University College Cork, Ireland
- The Irish Centre for Fetal and Neonatal Translational Research (INFANT), College of Medicine, University College Cork, Ireland
| | - Karen M. O’Callaghan
- Cork Centre for Vitamin D and Nutrition Research, School of Food and Nutritional Sciences, College of Science, Engineering and Food Science, University College Cork, Ireland
- The Irish Centre for Fetal and Neonatal Translational Research (INFANT), College of Medicine, University College Cork, Ireland
| |
Collapse
|
8
|
Elidrissy ATH. The Return of Congenital Rickets, Are We Missing Occult Cases? Calcif Tissue Int 2016; 99:227-36. [PMID: 27245342 DOI: 10.1007/s00223-016-0146-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 04/21/2016] [Indexed: 10/21/2022]
Abstract
Congenital rickets is the term given to fetus born with clinical features of rickets, but those born with biochemical evidence of rickets without obvious clinical features still can be considered occult congenital rickets. Some of the affected babies with this disease have the intrauterine rachitic environment, but a calcium trans-placental pump prevents the fetus from having clinical features of rickets. They may present with hypocalcemia few days after birth or later with more florid features of rickets. Congenital rickets cases born with florid features reported over the last 40 years are few and can be divided into two groups. The first due to severe maternal osteomalacia in which their bones were so decalcified to have enough calcium to be pumped to their fetus. Another group in which newborn babies were hypocalcemic due to other maternal diseases as malabsorption, celiac disease, pre-eclampsia, and prematurity. All inherited rickets cases per se, or as part of other syndromes can be considered congenital rickets. Most cases seen in our region are due to maternal vitamin D deficiency with symptoms becoming obvious when the infants are breastfed, or may present with hypocalcemic convulsions or craniotabes. This is a review of congenital rickets with the aim of shedding light on this potentially acute disease that needs more attention and awareness in the neonatal period to avoid rare serious complications as cardiomyopathy or myelofibrosis and the complications of hypocalcemic convulsions. Congenital rickets cases seen simulate a tip of an ice-burg and its prevention is an important issue, especially with the tremendous urbanization with tall buildings living in sun-deprived flats as the commonest type of residence leading to the increasing incidence of maternal osteomalacia and rickets.
Collapse
|
9
|
Abstract
BACKGROUND Suboptimal maternal calcium intake and vitamin D status may or may not adversely influence fetal growth. OBJECTIVE It was hypothesized that maternal calcium metabolic stress in early pregnancy, rather than suboptimal calcium intake or insufficient vitamin D, influences the risk of small-for-gestational-age (SGA) births and other aspects of fetal growth. Stress to calcium metabolism was defined as elevated intact parathyroid hormone (PTH) (>62 pg/mL) accompanied by a very low calcium intake [<60% of the Estimated Average Requirement (EAR)] or insufficient 25-hydroxyvitamin D [25(OH)D] (<20 ng/mL). DESIGN This was a prospective cohort study of 1116 low-income and minority gravidae at entry to care of 13.8 ± 5.6 wk (mean ± SD). RESULTS The PTH concentration depended on circulating 25(OH)D and total calcium intake. When 25(OH)D was insufficient, even a high calcium intake (which equaled or exceeded the Recommended Dietary Allowance) was unable to maintain PTH or to moderate the proportion of patients with an elevated PTH. When examined one at a time, very low calcium intake (<60% of EAR), very low 25(OH)D (<12 ng/mL), and elevated PTH (>62 pg/mL) each had a small but significant association with birth weight. Elevated PTH was also related to birth length and risk of SGA birth. Elevated PTH accompanied by insufficient 25(OH)D or very low calcium intake was associated with a 2- to 3-fold increased risk of SGA birth and a significantly lower birth weight, birth length, and head circumference, even after women who developed preeclampsia were excluded. Infants born to gravidae with insufficient 25(OH)D or very low calcium intake without elevated PTH or with elevated PTH alone were unaffected. CONCLUSION Maternal calcium metabolic stress, rather than low calcium intake or insufficient vitamin D, has an adverse influence on fetal growth. This trial was registered at clinicaltrials.gov as NIH 0320070046.
Collapse
Affiliation(s)
- Theresa O Scholl
- Departments of Obstetrics and Gynecology (TOS and XC) and Surgery (TPS), Rowan University-School of Osteopathic Medicine, Stratford, NJ 08084
| | | | | |
Collapse
|
10
|
Abstract
TRPV6 (former synonyms ECAC2, CaT1, CaT-like) displays several specific features which makes it unique among the members of the mammalian Trp gene family (1) TRPV6 (and its closest relative, TRPV5) are the only highly Ca(2+)-selective channels of the entire TRP superfamily (Peng et al. 1999; Wissenbach et al. 2001; Voets et al. 2004). (2) Translation of Trpv6 initiates at a non-AUG codon, at ACG, located upstream of the annotated AUG, which is not used for initiation (Fecher-Trost et al. 2013). The ACG codon is nevertheless decoded by methionine. Not only a very rare event in eukaryotic biology, the full-length TRPV6 protein existing in vivo comprises an amino terminus extended by 40 amino acid residues compared to the annotated truncated TRPV6 protein which has been used in most studies on TRPV6 channel activity so far. (In the following numbering occurs according to this full-length protein, with the numbers of the so far annotated truncated protein in brackets). (3) Only in humans a coupled polymorphism of Trpv6 exists causing three amino acid exchanges and resulting in an ancestral Trpv6 haplotype and a so-called derived Trpv6 haplotype (Wissenbach et al. 2001). The ancestral allele encodes the amino acid residues C197(157), M418(378) and M721(681) and the derived alleles R197(157), V418(378) and T721(681). The ancestral haplotype is found in all species, the derived Trpv6 haplotype has only been identified in humans, and its frequency increases with the distance to the African continent. Apparently the Trpv6 gene has been a strong target for selection in humans, and its derived variant is one of the few examples showing consistently differences to the orthologues genes of other primates (Akey et al. 2004, 2006; Stajich and Hahn 2005; Hughes et al. 2008). (4) The Trpv6 gene expression is significantly upregulated in several human malignancies including the most common cancers, prostate and breast cancer (Wissenbach et al. 2001; Zhuang et al. 2002; Fixemer et al. 2003; Bolanz et al. 2008). (5) Male mice lacking functional TRPV6 channels are hypo-/infertile making TRPV6 one of the very few channels essential for male fertility (Weissgerber et al. 2011, 2012).
Collapse
Affiliation(s)
- Claudia Fecher-Trost
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Universität des Saarlandes, 66421, Homburg, Germany
| | | | | |
Collapse
|
11
|
Hashemipour S, Ziaee A, Javadi A, Movahed F, Elmizadeh K, Javadi EH, Lalooha F. Effect of treatment of vitamin D deficiency and insufficiency during pregnancy on fetal growth indices and maternal weight gain: a randomized clinical trial. Eur J Obstet Gynecol Reprod Biol 2013; 172:15-9. [PMID: 24210789 DOI: 10.1016/j.ejogrb.2013.10.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 09/04/2013] [Accepted: 10/08/2013] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To determine whether treatment of low serum vitamin D in pregnant women improves fetal growth indices. STUDY DESIGN In this open-label randomized clinical trial, 130 Iranian pregnant women (24-26 weeks of gestation) with vitamin D deficiency or insufficiency [25(OH)D <30ng/ml] were divided at random into an intervention group and a control group. The control group received 200mg calcium plus a multivitamin (containing vitamin D3 400U) each day, and the intervention group received 200mg calcium plus a multivitamin (containing vitamin D3 400U) each day, plus vitamin D3 (50,000U) each week for 8 weeks. At delivery, maternal and cord blood 25(OH)D levels, maternal weight gain, neonatal length, neonatal weight and neonatal head circumference were compared between two groups. Serum vitamin D was measured using enzyme-linked immunosorbent assay. A multivariate regression analysis was performed to examine the independent effect of maternal vitamin D level on fetal growth indices. RESULTS Mean (±standard deviation) length (intervention group: 49±1.6cm; control group: 48.2±1.7cm; p=0.001), head circumference (intervention group: 35.9±0.7cm; control group: 35.3±1.0cm; p=0.001) and weight (intervention group: 3429±351.9g; control group: 3258.8±328.2g; p=0.01) were higher in the intervention group compared with the control group. Mean maternal weight gain was higher in the intervention group compared with the control group (13.3±2.4kg vs 11.7±2.7kg; p=0.006). Multivariate regression analysis for maternal weight gain, neonatal length, neonatal weight and neonatal head circumference showed an independent correlation with maternal vitamin D level. CONCLUSION Treatment of low serum vitamin D during pregnancy improves fetal growth indices and maternal weight gain.
Collapse
Affiliation(s)
- Sima Hashemipour
- Metabolic Diseases Research Center, Qazvin University of Medical Science, Qazvin, Iran
| | - Amir Ziaee
- Metabolic Diseases Research Center, Qazvin University of Medical Science, Qazvin, Iran
| | - Amir Javadi
- Qazvin University of Medical Sciences, Qazvin, Iran
| | | | | | | | | |
Collapse
|
12
|
Vitamin D status in pregnant Indian women across trimesters and different seasons and its correlation with neonatal serum 25-hydroxyvitamin D levels. Br J Nutr 2011; 106:1383-9. [DOI: 10.1017/s000711451100170x] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The present cross-sectional study was conducted to determine the vitamin D status of pregnant Indian women and their breast-fed infants. Subjects were recruited from the Department of Obstetrics, Armed Forces Clinic and Army Hospital (Research and Referral), Delhi. A total of 541 apparently healthy women with uncomplicated, single, intra-uterine gestation reporting in any trimester were consecutively recruited. Of these 541 women, 299 (first trimester, ninety-seven; second trimester, 125; third trimester, seventy-seven) were recruited in summer (April–October) and 242 (first trimester, fifty-nine, second trimester, ninety-three; third trimester, ninety) were recruited in winter (November–March) to study seasonal variations in vitamin D status. Clinical, dietary, biochemical and hormonal evaluations for the Ca–vitamin D–parathormone axis were performed. A subset of 342 mother–infant pairs was re-evaluated 6 weeks postpartum. Mean serum 25-hydroxyvitamin D (25(OH)D) of pregnant women was 23·2 (sd 12·2) nmol/l. Hypovitaminosis D (25(OH)D < 50 nmol/l) was observed in 96·3 % of the subjects. Serum 25(OH)D levels were significantly lower in winter in the second and third trimesters, while serum intact parathormone (iPTH) and alkaline phosphatase levels were significantly higher in winter in all three trimesters. A significant negative correlation was found between serum 25(OH)D and iPTH in mothers (r − 0·367, P = 0·0001) and infants (r − 0·56, P = 0·0001). A strong positive correlation was observed between 25(OH)D levels of mother–infant pairs (r 0·779, P = 0·0001). A high prevalence of hypovitaminosis D was observed in pregnancy, lactation and infancy with no significant inter-trimester differences in serum 25(OH)D levels.
Collapse
|
13
|
Chen JR, Lazarenko OP, Wu X, Kang J, Blackburn ML, Shankar K, Badger TM, Ronis MJJ. Dietary-induced serum phenolic acids promote bone growth via p38 MAPK/β-catenin canonical Wnt signaling. J Bone Miner Res 2010; 25:2399-411. [PMID: 20499363 DOI: 10.1002/jbmr.137] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Diet and nutritional status are critical factors that influences bone development. In this report we demonstrate that a mixture of phenolic acids found in the serum of young rats fed blueberries (BB) significantly stimulated osteoblast differentiation, resulting in significantly increased bone mass. Greater bone formation in BB diet-fed animals was associated with increases in osteoblast progenitors and osteoblast differentiation and reduced osteoclastogenesis. Blockade of p38 phosphorylation eliminated effects of BB on activation of Wnt signaling in preosteoblasts. Knocking down β-catenin expression also blocked the ability of serum from BB diet-fed rats to stimulate osteoblast differentiation in vitro. Based on our in vivo and in vitro data, we propose that the underlying mechanisms of these powerful bone-promoting effects occur through β-catenin activation and the nuclear accumulation and transactivation of TCF/LEF gene transcription in bone and in osteoblasts. These results indicate stimulation of molecular events leading to osteoblast differentiation triggered by P38 MAP kinase (MAPK)/β-catenin canonical Wnt signaling results in significant increases in bone growth in young rats consuming BB-supplemented diets. Liquid chromatography/mass spectrometry (LC/MS) characterization of the serum after BB feeding revealed a mixture of simple phenolic acids that may provide a basis for developing a new treatment to increase peak bone mass and delay degenerative bone disorders such as osteoporosis.
Collapse
Affiliation(s)
- Jin-Ran Chen
- Arkansas Children's Nutrition Center, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Session 2: Other diseases: Dietary management of osteoporosis throughout the life course. Proc Nutr Soc 2009; 69:25-33. [PMID: 19968903 DOI: 10.1017/s0029665109991765] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Osteoporosis-related fractures have a major impact on health at the individual and societal levels, through associated morbidity and increased mortality. Up to 50% of women and 20% of men at age 50 years may have a fragility fracture in their remaining lifetimes. Nutrition is important throughout the life course. Thus, adequate Ca and vitamin D intake has been shown to reduce risk of fracture in old age. Other factors such as protein and vitamin K may also be important, although the evidence here is less strong. In childhood Ca or vitamin D supplementation trials have demonstrated modest short-term increases in bone mass, but the long-term implications have not been established. Over recent years it has become apparent that maternal nutrition may have critical and far-reaching persistent consequences for offspring health. Thus, reduced maternal fat stores and low levels of circulating 25-hydroxyvitamin D in pregnancy are associated with reduced bone mass in the offspring; placental Ca transport may be key to these relationships. Wider maternal dietary patterns have also been shown to predict offspring bone mass. These data suggest that an interventional approach aimed at specific micronutrients, such as vitamin D, should be complemented by general optimisation of the mother's diet and lifestyle in order to maximise intrauterine bone mineral accrual and postnatal skeletal growth and thus reduce the burden of osteoporotic fractures in future generations.
Collapse
|
15
|
Abdel-Aleem H, Abdel-Aleem H, Merialdi M, Elsnosy ED, Elsedfy GO, Abdel-Aleem MA, Villar J. The effect of calcium supplementation during pregnancy on fetal and infant growth: a nested randomized controlled trial within WHO calcium supplementation trial. J Matern Fetal Neonatal Med 2009; 22:94-100. [DOI: 10.1080/14767050802464569] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
16
|
Romano T, Wark JD, Owens JA, Wlodek ME. Prenatal growth restriction and postnatal growth restriction followed by accelerated growth independently program reduced bone growth and strength. Bone 2009; 45:132-41. [PMID: 19332163 DOI: 10.1016/j.bone.2009.03.661] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2008] [Revised: 03/10/2009] [Accepted: 03/12/2009] [Indexed: 12/01/2022]
Abstract
Low birth weight increases the risk of developing adult onset cardiovascular and metabolic diseases. Recently being born small has also been identified as a risk factor for adverse bone growth, development and adult fracture risk. Evidence also suggests that accelerated growth in offspring of normal birth weight, following periods of slowed growth, can also independently program adult diseases. The aim of this study was to determine the relative roles of prenatal and postnatal growth restriction on adult bone characteristics and strength. Bilateral uterine vessel ligation (Restricted) or sham surgery (Control) was performed on gestational day 18 in WKY rats to induce fetal growth restriction. Control, Reduced (reduced Control litter size to match Restricted) and Restricted pups were cross-fostered onto different Control (normal lactation) or Restricted (impaired lactation) mothers 1 day after birth. Femur length, dimensions, strength, mineral content and density were quantified using DXA and pQCT analysis. Markers of bone turnover were measured in offspring at 6 months. Restricted pups were born lighter than Controls with males, not females, remaining smaller than Control-on-Control at 6 months (P<0.05). Pups born of normal weight from a reduced litter suckling on a Restricted mother (Reduced-on-Restricted) grew slowly during lactation then quicker after weaning compared to Controls (P<0.05). Cortical bone mineral content, dimensions and strength were lower in Restricted-on-Restricted and Reduced-on-Restricted offspring compared to Controls with lower density in Reduced-on-Restricted females (P<0.05). The stress strain index of bone bending strength remained lower in the Restricted male offspring when body weight adjustments were made. Cross-fostering Restricted females, but not males, onto mothers with normal lactation (Restricted-on-Control) restored growth and bone parameters to Controls (P<0.05). Being born small, or postnatal growth restriction for normal birth weight offspring followed by accelerated growth, programs bone content and strength deficits. Deficits were corrected by improving postnatal nutrition for females born small, highlighting sex specific programming outcomes and impact of postnatal nutrition. These findings suggest a link between growth restriction and adult bone health with additional studies needed to further explore this link in humans.
Collapse
Affiliation(s)
- Tania Romano
- Department of Physiology, The University of Melbourne, Parkville, Victoria, Australia
| | | | | | | |
Collapse
|
17
|
Williams EL, Harvey NC, Dennison EM, Edwards CC, Cooper C. Maternal nutrition and bone health in the offspring. ACTA ACUST UNITED AC 2009. [DOI: 10.2217/ijr.09.8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
18
|
Serum 1-84 and 7-84 parathyroid hormone concentrations and bone in patients with primary hyperparathyroidism. Langenbecks Arch Surg 2008; 393:709-13. [DOI: 10.1007/s00423-008-0385-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2008] [Accepted: 06/25/2008] [Indexed: 10/21/2022]
|
19
|
Bond H, Dilworth MR, Baker B, Cowley E, Requena Jimenez A, Boyd RDH, Husain SM, Ward BS, Sibley CP, Glazier JD. Increased maternofetal calcium flux in parathyroid hormone-related protein-null mice. J Physiol 2008; 586:2015-25. [PMID: 18258656 PMCID: PMC2375733 DOI: 10.1113/jphysiol.2007.149104] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The role of parathyroid hormone-related protein (PTHrP) in fetal calcium homeostasis and placental calcium transport was examined in mice homozygous for the deletion of the PTHrP gene (PTHrP−/− null; NL) compared to PTHrP+/+ (wild-type; WT) and PTHrP+/− (heterozygous; HZ) littermates. Fetal blood ionized calcium was significantly reduced in NL fetuses compared to WT and HZ groups at 18 days of pregnancy (dp) with abolition of the fetomaternal calcium gradient. In situ placental perfusion of the umbilical circulation at 18 dp was used to measure unidirectional clearance of 45Ca across the placenta in maternofetal (CaKmf) and fetoplacental (CaKfp) directions; CaKfp was < 5% of CaKmf for all genotypes. At 18 dp, CaKmf across perfused placenta and intact placenta (CaKmf(intact)) were similar and concordant with net calcium accretion rates in vivo. CaKmf was significantly raised in NL fetuses compared to WT and HZ littermates. Calcium accretion was significantly elevated in NL fetuses by 19 dp. Placental calbindin-D9K expression in NL fetuses was marginally enhanced (P < 0.07) but expression of TRPV6/ECaC2 and plasma membrane Ca2+-ATPase (PMCA) isoforms 1 and 4 were unaltered. We conclude that PTHrP is an important regulator of fetal calcium homeostasis with its predominant effect being on unidirectional maternofetal transfer, probably mediated by modifying placental calbindin-D9K expression. In situ perfusion of mouse placenta is a robust methodology for allowing detailed dissection of placental transfer mechanisms in genetically modified mice.
Collapse
Affiliation(s)
- H Bond
- Maternal and Fetal Heath Research Group, University of Manchester, St Mary's Hospital, Hathersage Road, Manchester M13 0JH, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Lanham SA, Roberts C, Perry MJ, Cooper C, Oreffo ROC. Intrauterine programming of bone. Part 2: alteration of skeletal structure. Osteoporos Int 2008; 19:157-67. [PMID: 17704965 DOI: 10.1007/s00198-007-0448-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2007] [Accepted: 07/24/2007] [Indexed: 10/22/2022]
Abstract
UNLABELLED Osteoporosis is believed to be partly programmed in utero. Rat dams were given a low protein diet during pregnancy, and offspring were studied at different ages. Old aged rats showed site-specific strength differences. In utero nutrition has consequences in later life. INTRODUCTION Epidemiological studies suggest skeletal growth is programmed during intrauterine and early postnatal life. We hypothesize that age-related decrease in bone mass has, in part, a fetal origin and investigated this using a rat model of maternal protein insufficiency. METHODS Dams received either 18% w/w (control) or w/w 9% (low protein) diet during pregnancy, and the offspring were studied at selected time points (4, 8, 12, 16, 20, 47, 75 weeks). RESULTS Using micro-CT, we found that at 75 weeks of age female offspring from mothers fed a restricted protein diet during pregnancy had femoral heads with thinner, less dense trabeculae, femoral necks with closer packed trabeculae, vertebrae with thicker, denser trabeculae and midshaft tibiae with denser cortical bone. Mechanical testing showed the femoral heads and midshaft tibiae to be structurally weaker, whereas the femoral necks and vertebrae were structurally stronger. CONCLUSIONS Offspring from mothers fed a restricted protein diet during pregnancy displayed significant differences in bone structure and density at various sites. These differences result in altered bone characteristics indicative of significantly altered bone turnover. These results further support the need to understand the key role of the nutritional environment in early development on programming of skeletal development and consequences in later life.
Collapse
Affiliation(s)
- S A Lanham
- Bone and Joint Research Group, Developmental Origins of Health and Disease, University of Southampton, Southampton, SO16 6YD, UK.
| | | | | | | | | |
Collapse
|
21
|
Abstract
Depending on the definitions used, up to 10% of all live-born neonates are small for gestational age (SGA). Although the vast majority of these children show catch-up growth by 2 yr of age, one in 10 does not. It is increasingly recognized that those who are born SGA are at risk of developing metabolic disease later in life. Reduced fetal growth has been shown to be associated with an increased risk of insulin resistance, obesity, cardiovascular disease, and type 2 diabetes mellitus. The majority of pathology is seen in adults who show spontaneous catch-up growth as children. There is evidence to suggest that some of the metabolic consequences of intrauterine growth retardation in children born SGA can be mitigated by ensuring early appropriate catch-up growth, while avoiding excessive weight gain. Implicitly, this argument questions current infant formula feeding practices. The risk is less clear for individuals who do not show catch-up growth and who are treated with GH for short stature. Recent data, however, suggest that long-term treatment with GH does not increase the risk of type 2 diabetes mellitus and the metabolic syndrome in young adults born SGA.
Collapse
Affiliation(s)
- Paul Saenger
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, New York 10467, USA.
| | | | | | | |
Collapse
|
22
|
Prentice A, Schoenmakers I, Ann Laskey M, de Bono S, Ginty F, Goldberg GR. Symposium on ‘Nutrition and health in children and adolescents’ Session 1: Nutrition in growth and development Nutrition and bone growth and development. Proc Nutr Soc 2007. [DOI: 10.1079/pns2006519] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
23
|
Bajoria R, Sooranna SR, Chatterjee R. Leptin and bone turnover in monochorionic twins complicated by twin-twin transfusion syndrome. Osteoporos Int 2007; 18:193-200. [PMID: 17036171 DOI: 10.1007/s00198-006-0236-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2006] [Accepted: 09/12/2006] [Indexed: 11/25/2022]
Abstract
INTRODUCTION To test the hypothesis that the bone metabolism of a growth-restricted foetus is regulated by genetic, placental and/or foetal factors through leptin, we investigated the foetal bone turnover in monochorionic pregnancies complicated with or without twin-twin transfusion syndrome (TTTS). METHODS Maternal and cord bloods were collected from gestational-age-matched monochorionic twins with (n=15) and without (n=15) TTTS. The samples were assayed for leptin, cross-linked carboxyl terminal telo-peptide (ICTP, a marker of bone resorption) and pro-peptide (PICP, a marker of bone formation) of type I collagen by radioimmunoassay (RIA). RESULTS In the growth-restricted donor twin, the plasma concentration of leptin (P < 0.001), PICP (P < 0.001) was lower, while that of ICTP (P < 0.001) was higher than the recipient twin of the TTTS group. In contrast, leptin, PICP and ICTP were comparable in non-TTTS twins. In the recipient twin of TTTS and non-TTTS twins, leptin was positively associated with PICP (r=0.73; n=45, P < 0.001) and negatively with ICTP (r=-0.68; n=45; P < 0.001). No such association was found between leptin and bone marker in the growth-restricted donor twin of the TTTS group. CONCLUSION Our data suggest that, in AGA twins, leptin maintains bone metabolism by inhibiting resorption and enhancing bone formation. In contrast, growth-restricted donor twins have high bone turnover and this does not seem to be due to leptin deficiency.
Collapse
Affiliation(s)
- R Bajoria
- Academic Unit of Obstetrics and Gynaecology, St. Mary's Hospital, Manchester, UK.
| | | | | |
Collapse
|
24
|
Prentice A, Schoenmakers I, Laskey MA, de Bono S, Ginty F, Goldberg GR. Nutrition and bone growth and development. Proc Nutr Soc 2006; 65:348-60. [PMID: 17181901 PMCID: PMC2039894 DOI: 10.1017/s0029665106005192] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The growth and development of the human skeleton requires an adequate supply of many different nutritional factors. Classical nutrient deficiencies are associated with stunting (e.g. energy, protein, Zn), rickets (e.g. vitamin D) and other bone abnormalities (e.g. Cu, Zn, vitamin C). In recent years there has been interest in the role nutrition may play in bone growth at intakes above those required to prevent classical deficiencies, particularly in relation to optimising peak bone mass and minimising osteoporosis risk. There is evidence to suggest that peak bone mass and later fracture risk are influenced by the pattern of growth in childhood and by nutritional exposures in utero, in infancy and during childhood and adolescence. Of the individual nutrients, particular attention has been paid to Ca, vitamin D, protein and P. There has also been interest in several food groups, particularly dairy products, fruit and vegetables and foods contributing to acid-base balance. However, it is not possible at the present time to define dietary reference values using bone health as a criterion, and the question of what type of diet constitutes the best support for optimal bone growth and development remains open. Prudent recommendations (Department of Health, 1998; World Health Organization/Food and Agriculture Organization, 2003) are the same as those for adults, i.e. to consume a Ca intake close to the reference nutrient intake, optimise vitamin D status through adequate summer sunshine exposure (and diet supplementation where appropriate), be physically active, have a body weight in the healthy range, restrict salt intake and consume plenty of fruit and vegetables.
Collapse
Affiliation(s)
- Ann Prentice
- MRC Human Nutrition Research, Elsie Widdowson Laboratory, Cambridge CB1 9NL, UK.
| | | | | | | | | | | |
Collapse
|
25
|
Affiliation(s)
- O Gillie
- Health Research Forum, 68 Whitehall Park, London N19 3TN, U.K.
| |
Collapse
|
26
|
Ramadoss J, Hogan HA, Given JC, West JR, Cudd TA. Binge alcohol exposure during all three trimesters alters bone strength and growth in fetal sheep. Alcohol 2006; 38:185-92. [PMID: 16905445 DOI: 10.1016/j.alcohol.2006.06.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2006] [Revised: 06/06/2006] [Accepted: 06/06/2006] [Indexed: 10/24/2022]
Abstract
Women who drink while pregnant are at a high risk of giving birth to children with neurodevelopmental disorders. Heavy consumption of alcohol during pregnancy is also known to be deleterious to fetal bone growth in both humans and laboratory animals. However, nothing is known regarding the effect of maternal moderate and heavy alcohol binging on fetal and maternal bone strength. The purpose of this study was to determine the effects of moderate and heavy alcohol binging throughout gestation on fetal and maternal bone growth and strength. The study was conducted using an ovine model system. The large body mass of the ovine fetus, the longer gestation that is more similar to that of humans, and the fact that all three trimester equivalents occur in utero, make the sheep an excellent model for studying Fetal Alcohol Spectrum Disorder. Suffolk ewes were mated and, beginning on gestational day 4, received intravenous infusions over 1 h on 3 consecutive days per week followed by 4 days without treatment concluding on day 132 of pregnancy. Pregnant ewes were divided into four groups: two alcohol treatment groups (0.75 and 1.75 g/kg of body weight), one pair-fed saline control group, and an untreated normal control group. The fetuses were harvested on gestational day 133. Maternal and fetal femoral and tibial dimensions were measured and the maximum strength (MPa) carried by the bone tissue was determined using a three-point bending procedure. Maternal bones were not different among groups. The higher alcohol dose resulted in reduced fetal femoral bone strength, whereas the tibial bone strength was lower when compared with the normal control subjects. In contrast, the lower alcohol dose increased fetal femoral strength compared to the normal control subjects. The alcohol-exposed fetal bones also tended to exhibit reduced lengths. We conclude that binge alcohol exposure throughout gestation resulted in dose-dependent differences in the maximum stress absorbed by the fetal bones.
Collapse
Affiliation(s)
- Jayanth Ramadoss
- Department of Veterinary Physiology and Pharmacology and Michael E. DeBakey Institute, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843-4466, USA
| | | | | | | | | |
Collapse
|
27
|
Javaid MK, Crozier SR, Harvey NC, Gale CR, Dennison EM, Boucher BJ, Arden NK, Godfrey KM, Cooper C. Maternal vitamin D status during pregnancy and childhood bone mass at age 9 years: a longitudinal study. Lancet 2006; 367:36-43. [PMID: 16399151 DOI: 10.1016/s0140-6736(06)67922-1] [Citation(s) in RCA: 537] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
BACKGROUND Vitamin D insufficiency is common in women of childbearing age and increasing evidence suggests that the risk of osteoporotic fracture in adulthood could be determined partly by environmental factors during intrauterine and early postnatal life. We investigated the effect of maternal vitamin D status during pregnancy on childhood skeletal growth. METHODS In a longitudinal study, we studied 198 children born in 1991-92 in a hospital in Southampton, UK; the body build, nutrition, and vitamin D status of their mothers had been characterised during pregnancy. The children were followed up at age 9 years to relate these maternal characteristics to their body size and bone mass. FINDINGS 49 (31%) mothers had insufficient and 28 (18%) had deficient circulating concentrations of 25(OH)-vitamin D during late pregnancy. Reduced concentration of 25(OH)-vitamin D in mothers during late pregnancy was associated with reduced whole-body (r=0.21, p=0.0088) and lumbar-spine (r=0.17, p=0.03) bone-mineral content in children at age 9 years. Both the estimated exposure to ultraviolet B radiation during late pregnancy and the maternal use of vitamin D supplements predicted maternal 25(OH)-vitamin D concentration (p<0.0001 and p=0.0110, respectively) and childhood bone mass (p=0.0267). Reduced concentration of umbilical-venous calcium also predicted reduced childhood bone mass (p=0.0286). INTERPRETATION Maternal vitamin D insufficiency is common during pregnancy and is associated with reduced bone-mineral accrual in the offspring during childhood; this association is mediated partly through the concentration of umbilical venous calcium. Vitamin D supplementation of pregnant women, especially during winter months, could lead to longlasting reductions in the risk of osteoporotic fracture in their offspring.
Collapse
Affiliation(s)
- M K Javaid
- MRC Epidemiology Resource Centre, University of Southampton, Southampton General Hospital, Southampton, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Tobias JH, Steer CD, Emmett PM, Tonkin RJ, Cooper C, Ness AR. Bone mass in childhood is related to maternal diet in pregnancy. Osteoporos Int 2005; 16:1731-41. [PMID: 15905998 DOI: 10.1007/s00198-005-1912-6] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2005] [Accepted: 03/29/2005] [Indexed: 10/25/2022]
Abstract
Evidence that birth weight is related to bone mass in later life suggests that the intrauterine environment programs the trajectory of subsequent bone development. To explore this hypothesis, we examined whether maternal diet in pregnancy, as assessed by the maternal food frequency questionnaire (FFQ) completed at 32 weeks gestation, is related to bone mass of the child, as measured by total body DXA carried out at age 9 years in the Avon Longitudinal Study of Parents and Children (ALSPAC). Diet records were linked to DXA scan results for the total body and spine sub-region and pooled between pre- and early pubertal boys and girls (n=4,451). Regression analysis was carried out between DXA values and dietary factors following adjustment for social and other confounding factors. Maternal magnesium intake was related to total body BMC (beta=4.9, 7.4-23.1; g) and BMD (beta=4.9, 2.5-7.3; g/cm2 x10(3)) (standardized regression coefficient with 95% confidence limits; P<0.001). An equivalent relationship was no longer observed after adjusting for the height of the child, to which magnesium intake was also related (beta=0.48, 0.20-0.77; cm; P=0.001). Maternal intake of potassium was related to spinal BMC (beta=1.8, 0.8-2.9; g) and BMD (beta=10.5, 4.9-16.0; g/cm2 x10(3)) (P=0.001), which was no longer observed after adjusting for the weight of the child, to which potassium intake was also related (beta=0.52, 0.16-0.88, P=0.005; kg). A significant association was also observed between maternal dietary folate intake and spinal BMC adjusted for bone area using a linear regression model (beta=0.55, 0.16-0.94; g; P=0.006), which persisted after adjusting for height and weight. Our observation that constituents of maternal diet are related to DXA measures at age 9 is consistent with the hypothesis that the trajectory of bone development in childhood is programmed by early life factors.
Collapse
Affiliation(s)
- J H Tobias
- Clinical Science at South Bristol, Bristol, UK.
| | | | | | | | | | | |
Collapse
|
29
|
Simpson ME, Duggal S, Keiver K. Prenatal ethanol exposure has differential effects on fetal growth and skeletal ossification. Bone 2005; 36:521-32. [PMID: 15777686 DOI: 10.1016/j.bone.2004.11.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2004] [Revised: 09/29/2004] [Accepted: 11/12/2004] [Indexed: 10/25/2022]
Abstract
There is increasing evidence suggesting that the intrauterine environment may influence long-term bone health and the risk of developing osteoporosis in later life. Alcohol (ethanol) is one factor whose presence in the prenatal environment has long-term consequences for the offspring, including permanent growth retardation. Moreover, prenatal ethanol exposure retards both fetal and postnatal bone development. It is unknown if ethanol's effects on skeletal development result from generalized growth retardation or effects specific to skeletal development. Furthermore, the level of ethanol exposure required to produce skeletal effects is unknown. The objectives of this study were to determine (1) if ethanol exerts specific effects on fetal skeletal development that are independent from its effects on general growth, and (2) the level of prenatal ethanol exposure required to affect fetal growth and skeletal ossification. Rats were fed isocaloric diets with ethanol (15%, 25%, or 36% ethanol-derived calories (EDC), approximating low, moderate, and high exposure levels), or without ethanol (pair-fed, PF, or control, C groups), prior to and throughout 21 days of gestation. The degree of E-induced delay in development was determined by comparison of E fetuses on d21 gestation to C fetuses on d17-d21 gestation. Prenatal ethanol exposure at 36% EDC decreased fetal body weight, length, and skeletal ossification compared with PF and C fetuses on d21 gestation. Importantly, effects on ossification, but not body weight or length, were also seen at the more moderate dose of 25% EDC, and the number of bones affected and the severity of effects on ossification tended to increase with dose of ethanol. Comparison of E fetuses on d21 gestation with C fetuses from d17 to 21 gestation indicated that the ethanol-induced delay in development differed for weight and skeletal ossification, and was not uniform among skeletal sites. Taken together, these data suggest that prenatal ethanol exposure has effects on fetal skeletal development that are independent of those on overall fetal growth, and that these effects occur even at moderate levels of maternal drinking. Effects of prenatal ethanol exposure on fetal skeletal development could potentially increase the offspring's risk of osteoporosis later in life.
Collapse
Affiliation(s)
- M E Simpson
- Food, Nutrition and Health, Faculty of Agricultural Sciences, The University of British Columbia, 2205 East Mall, Vancouver, BC, Canada
| | | | | |
Collapse
|