1
|
Toya M, Kushioka J, Shen H, Utsunomiya T, Hirata H, Tsubosaka M, Gao Q, Chow SKH, Zhang N, Goodman SB. Sex differences of NF-κB-targeted therapy for mitigating osteoporosis associated with chronic inflammation of bone. Bone Joint Res 2024; 13:28-39. [PMID: 38194999 PMCID: PMC10776185 DOI: 10.1302/2046-3758.131.bjr-2023-0040.r3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2024] Open
Abstract
Aims Transcription factor nuclear factor kappa B (NF-κB) plays a major role in the pathogenesis of chronic inflammatory diseases in all organ systems. Despite its importance, NF-κB targeted drug therapy to mitigate chronic inflammation has had limited success in preclinical studies. We hypothesized that sex differences affect the response to NF-κB treatment during chronic inflammation in bone. This study investigated the therapeutic effects of NF-κB decoy oligodeoxynucleotides (ODN) during chronic inflammation in male and female mice. Methods We used a murine model of chronic inflammation induced by continuous intramedullary delivery of lipopolysaccharide-contaminated polyethylene particles (cPE) using an osmotic pump. Specimens were evaluated using micro-CT and histomorphometric analyses. Sex-specific osteogenic and osteoclastic differentiation potentials were also investigated in vitro, including alkaline phosphatase, Alizarin Red, tartrate-resistant acid phosphatase staining, and gene expression using reverse transcription polymerase chain reaction (RT-PCR). Results Local delivery of NF-κB decoy ODN in vivo increased osteogenesis in males, but not females, in the presence of chronic inflammation induced by cPE. Bone resorption activity was decreased in both sexes. In vitro osteogenic and osteoclastic differentiation assays during inflammatory conditions did not reveal differences among the groups. Receptor activator of nuclear factor kappa Β ligand (Rankl) gene expression by osteoblasts was significantly decreased only in males when treated with ODN. Conclusion We demonstrated that NF-κB decoy ODN increased osteogenesis in male mice and decreased bone resorption activity in both sexes in preclinical models of chronic inflammation. NF-κB signalling could be a therapeutic target for chronic inflammatory diseases involving bone, especially in males.
Collapse
Affiliation(s)
- Masakazu Toya
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Junichi Kushioka
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Huaishuang Shen
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Takeshi Utsunomiya
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, California, USA
- Department of Orthopaedic Surgery, Kyushu University, Fukuoka, Japan
| | - Hirohito Hirata
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Masanori Tsubosaka
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Qi Gao
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Simon K-H. Chow
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Ning Zhang
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Stuart B. Goodman
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, California, USA
- Department of Bioengineering, Stanford University, Stanford, California, USA
| |
Collapse
|
2
|
Zhu S, Sun P, Bennett S, Charlesworth O, Tan R, Peng X, Gu Q, Kujan O, Xu J. The therapeutic effect and mechanism of parthenolide in skeletal disease, cancers, and cytokine storm. Front Pharmacol 2023; 14:1111218. [PMID: 37033622 PMCID: PMC10080395 DOI: 10.3389/fphar.2023.1111218] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/17/2023] [Indexed: 03/12/2023] Open
Abstract
Parthenolide (PTL or PAR) was first isolated from Magnolia grandiflora and identified as a small molecule cancer inhibitor. PTL has the chemical structure of C15H20O3 with characteristics of sesquiterpene lactones and exhibits the biological property of inhibiting DNA biosynthesis of cancer cells. In this review, we summarise the recent research progress of medicinal PTL, including the therapeutic effects on skeletal diseases, cancers, and inflammation-induced cytokine storm. Mechanistic investigations reveal that PTL predominantly inhibits NF-κB activation and other signalling pathways, such as reactive oxygen species. As an inhibitor of NF-κB, PTL appears to inhibit several cytokines, including RANKL, TNF-α, IL-1β, together with LPS induced activation of NF-κB and NF-κB -mediated specific gene expression such as IL-1β, TNF-α, COX-2, iNOS, IL-8, MCP-1, RANTES, ICAM-1, VCAM-1. It is also proposed that PTL could inhibit cytokine storms or hypercytokinemia triggered by COVID-19 via blocking the activation of NF-κB signalling. Understanding the pharmacologic properties of PTL will assist us in developing its therapeutic application for medical conditions, including arthritis, osteolysis, periodontal disease, cancers, and COVID-19-related disease.
Collapse
Affiliation(s)
- Sipin Zhu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
- *Correspondence: Sipin Zhu, ; Jiake Xu,
| | - Ping Sun
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
- Department of Endocrinology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Samuel Bennett
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
| | - Oscar Charlesworth
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
| | - Renxiang Tan
- The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, Nanjing University, Nanjing, China
| | - Xing Peng
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Qiang Gu
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Omar Kujan
- UWA Dental School, The University of Western Australia, Perth, WA, Australia
| | - Jiake Xu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
- *Correspondence: Sipin Zhu, ; Jiake Xu,
| |
Collapse
|
3
|
Cleminson JR, Pasco JA, Bortolasci CC, Holloway-Kew KL, Hodge JM, Anderson KB, Kotowicz MA, Samarasinghe RM, Williams LJ. Lipopolysaccharide-binding protein and bone health: data from a population-based sample of men. Osteoporos Int 2023; 34:309-317. [PMID: 36409359 DOI: 10.1007/s00198-022-06602-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 11/07/2022] [Indexed: 11/22/2022]
Abstract
UNLABELLED We aimed to investigate the association between serum lipopolysaccharide-binding protein (LBP) and bone health in men. LBP was associated with lower bone density at the mid-forearm and the quantitative heel ultrasound measure, broadband ultrasound attenuation, for heavier participants. Data do not support clear associations between serum LBP and bone health. INTRODUCTION The objective of this study was to investigate the association between serum lipopolysaccharide-binding protein (LBP) and potential downstream effects on skeletal density, quality, and turnover in a population-based sample of men. METHODS This cross-sectional study utilised data from 1149 men (aged 20-96 year) enrolled in the Geelong Osteoporosis Study. Blood samples were obtained and lipopolysaccharide-binding protein (LBP), bone resorption marker, C-telopeptide (CTx), and formation marker, type 1 procollagen amino-terminal-propeptide (P1NP), were measured. Bone mineral density (BMD) was measured using dual-energy X-ray absorptiometry. Stiffness Index (SI), broadband ultrasound attenuation (BUA), and speed of sound (SOS) were derived from quantitative heel ultrasound (QUS). Linear regression models were developed to test associations between log-transformed LBP (ln-LBP), BMD, QUS, and bone turnover, after adjusting for potential covariates. RESULTS Serum LBP ranged from 1.07-208.53 ng/mL (median 16.53 ng/mL). Those with higher levels were older, less mobile, and had lower BMD at the mid-forearm, otherwise, groups were similar. Before and after adjustment for age, ln-LBP was associated with lower BMD at the spine, total body, and mid-forearm. Further adjustment for weight attenuated associations at the spine and total body, yet the relationship at the mid-forearm was sustained (β - 0.014 ± 0.004, p = 0.001). SOS and SI were not associated with ln-LBP either before or after adjustment for age; however, weight was identified as an effect modifier in the relationship between ln-LBP and BUA. An association was observed for those weighing greater than 82.7 kg (β 3.366 ± 0.929, p < 0.001), after adjustment for potential covariates. Neither bone turnover marker was associated with ln-LBP. CONCLUSION Our data do not support a clear association between serum LBP and measures of bone health in this sample of men.
Collapse
Affiliation(s)
- Jasmine R Cleminson
- Deakin University, School of Medicine, The Institute for Mental and Physical Health and Clinical Translation (IMPACT), PO Box 281, Geelong, Victoria, 3220, Australia.
| | - Julie A Pasco
- Deakin University, School of Medicine, The Institute for Mental and Physical Health and Clinical Translation (IMPACT), PO Box 281, Geelong, Victoria, 3220, Australia
- Department of Medicine-Western Health, The University of Melbourne, St Albans, Victoria, Australia
- Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, VIC, Australia
- Barwon Health, University Hospital, Geelong, VIC, Australia
| | - Chiara C Bortolasci
- Deakin University, School of Medicine, The Institute for Mental and Physical Health and Clinical Translation (IMPACT), PO Box 281, Geelong, Victoria, 3220, Australia
| | - Kara L Holloway-Kew
- Deakin University, School of Medicine, The Institute for Mental and Physical Health and Clinical Translation (IMPACT), PO Box 281, Geelong, Victoria, 3220, Australia
| | - Jason M Hodge
- Deakin University, School of Medicine, The Institute for Mental and Physical Health and Clinical Translation (IMPACT), PO Box 281, Geelong, Victoria, 3220, Australia
- Barwon Health, University Hospital, Geelong, VIC, Australia
- Geelong Centre for Emerging Infectious Diseases, Geelong, VIC, 3220, Australia
| | - Kara B Anderson
- Deakin University, School of Medicine, The Institute for Mental and Physical Health and Clinical Translation (IMPACT), PO Box 281, Geelong, Victoria, 3220, Australia
| | - Mark A Kotowicz
- Deakin University, School of Medicine, The Institute for Mental and Physical Health and Clinical Translation (IMPACT), PO Box 281, Geelong, Victoria, 3220, Australia
- Department of Medicine-Western Health, The University of Melbourne, St Albans, Victoria, Australia
- Barwon Health, University Hospital, Geelong, VIC, Australia
| | - Rasika M Samarasinghe
- Deakin University, School of Medicine, The Institute for Mental and Physical Health and Clinical Translation (IMPACT), PO Box 281, Geelong, Victoria, 3220, Australia
| | - Lana J Williams
- Deakin University, School of Medicine, The Institute for Mental and Physical Health and Clinical Translation (IMPACT), PO Box 281, Geelong, Victoria, 3220, Australia
| |
Collapse
|
4
|
FTY720 Attenuates LPS-Induced Inflammatory Bone Loss by Inhibiting Osteoclastogenesis via the NF- κB and HDAC4/ATF Pathways. J Immunol Res 2023; 2023:8571649. [PMID: 36644540 PMCID: PMC9839404 DOI: 10.1155/2023/8571649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 12/14/2022] [Accepted: 12/22/2022] [Indexed: 01/07/2023] Open
Abstract
Osteoclast (OC) abnormalities lead to many osteolytic diseases, such as osteoporosis, inflammatory bone erosion, and tumor-induced osteolysis. Exploring effective strategies to remediate OCs dysregulation is essential. FTY720, also known as fingolimod, has been approved for the treatment of multiple sclerosis and has anti-inflammatory and immunosuppressive effects. Here, we found that FTY720 inhibited osteoclastogenesis and OC function by inhibiting nuclear factor kappa-B (NF-κB) signaling. Interestingly, we also found that FTY720 inhibited osteoclastogenesis by upregulating histone deacetylase 4 (HDAC4) expression levels and downregulating activating transcription factor 4 (ATF4) expression levels. In vivo, FTY720 treatment prevented lipopolysaccharide- (LPS-) induced calvarial osteolysis and significantly reduced the number of tartrate-resistant acid phosphatase- (TRAP-) positive OCs. Taken together, these results demonstrate that FTY720 can inhibit osteoclastogenesis and ameliorate inflammation-induced bone loss. Which may provide evidence of a new therapeutic target for skeletal diseases caused by OC abnormalities.
Collapse
|
5
|
Long F, Chen R, Su Y, Liang J, Xian Y, Yang F, Lian H, Xu J, Zhao J, Liu Q. Epoxymicheliolide inhibits osteoclastogenesis and resists OVX-induced osteoporosis by suppressing ERK1/2 and NFATc1 signaling. Int Immunopharmacol 2022; 107:108632. [DOI: 10.1016/j.intimp.2022.108632] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/30/2022] [Accepted: 02/13/2022] [Indexed: 02/02/2023]
|
6
|
Haseeb M, Javaid N, Yasmeen F, Jeong U, Han JH, Yoon J, Seo JY, Heo JK, Shin HC, Kim MS, Kim W, Choi S. Novel Small-Molecule Inhibitor of NLRP3 Inflammasome Reverses Cognitive Impairment in an Alzheimer's Disease Model. ACS Chem Neurosci 2022; 13:818-833. [PMID: 35196855 DOI: 10.1021/acschemneuro.1c00831] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Aberrant activation of the Nod-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome plays an essential role in multiple diseases, including Alzheimer's disease (AD) and psoriasis. We report a novel small-molecule inhibitor, NLRP3-inhibitory compound 7 (NIC7), and its derivative, which inhibit NLRP3-mediated activation of caspase 1 along with the secretion of interleukin (IL)-1β, IL-18, and lactate dehydrogenase. We examined the therapeutic potential of NIC7 in a disease model of AD by analyzing its effect on cognitive impairment as well as the expression of dopamine receptors and neuronal markers. NIC7 significantly reversed the associated disease symptoms in the mice model. On the other hand, NIC7 did not reverse the disease symptoms in the imiquimod (IMQ)-induced disease model of psoriasis. This indicates that IMQ-based psoriasis is independent of NLRP3. Overall, NIC7 and its derivative have therapeutic prospects to treat AD or NLRP3-mediated diseases.
Collapse
Affiliation(s)
- Muhammad Haseeb
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea
- S&K Therapeutics, Ajou University Campus Plaza 418, 199 Worldcup-ro, Yeongtong-gu, Suwon 16502, Korea
| | - Nasir Javaid
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea
| | - Farzana Yasmeen
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea
| | - Uisuk Jeong
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea
- S&K Therapeutics, Ajou University Campus Plaza 418, 199 Worldcup-ro, Yeongtong-gu, Suwon 16502, Korea
| | - Ji Hye Han
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea
| | - Juhwan Yoon
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea
| | - Jee Yeon Seo
- Whan In Pharmaceutical Co., Ltd., 11, Beobwon-ro 6-gil, Songpa-gu, Seoul 05855, Korea
| | - Jae Kyung Heo
- Whan In Pharmaceutical Co., Ltd., 11, Beobwon-ro 6-gil, Songpa-gu, Seoul 05855, Korea
| | - Ho Chul Shin
- Whan In Pharmaceutical Co., Ltd., 11, Beobwon-ro 6-gil, Songpa-gu, Seoul 05855, Korea
| | - Moon Suk Kim
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea
| | - Wook Kim
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea
| | - Sangdun Choi
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea
- S&K Therapeutics, Ajou University Campus Plaza 418, 199 Worldcup-ro, Yeongtong-gu, Suwon 16502, Korea
| |
Collapse
|
7
|
Parthenolide and Its Soluble Analogues: Multitasking Compounds with Antitumor Properties. Biomedicines 2022; 10:biomedicines10020514. [PMID: 35203723 PMCID: PMC8962426 DOI: 10.3390/biomedicines10020514] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/16/2022] [Accepted: 02/19/2022] [Indexed: 12/23/2022] Open
Abstract
Due to its chemical properties and multiple molecular effects on different tumor cell types, the sesquiterpene lactone parthenolide (PN) can be considered an effective drug with significant potential in cancer therapy. PN has been shown to induce either classic apoptosis or alternative caspase-independent forms of cell death in many tumor models. The therapeutical potential of PN has been increased by chemical design and synthesis of more soluble analogues including dimethylaminoparthenolide (DMAPT). This review focuses on the molecular mechanisms of both PN and analogues action in tumor models, highlighting their effects on gene expression, signal transduction and execution of different types of cell death. Recent findings indicate that these compounds not only inhibit prosurvival transcriptional factors such as NF-κB and STATs but can also determine the activation of specific death pathways, increasing intracellular reactive oxygen species (ROS) production and modifications of Bcl-2 family members. An intriguing property of these compounds is its specific targeting of cancer stem cells. The unusual actions of PN and its analogues make these agents good candidates for molecular targeted cancer therapy.
Collapse
|
8
|
Guan X, He Y, Li Y, Shi C, Wei Z, Zhao R, Han Y, Pan L, Yang J, Hou TZ. Gremlin aggravates periodontitis via activating the NF-κB signaling pathway. J Periodontol 2022; 93:1589-1602. [PMID: 34993960 DOI: 10.1002/jper.21-0474] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/27/2021] [Accepted: 11/20/2021] [Indexed: 11/06/2022]
Abstract
BACKGROUND Gremlin has been reported to regulate inflammation and osteogenesis. Periodontitis is a destructive disease degenerating periodontal tissues, therefore leads to alveolar bone resorption and tooth loss. Based on the importance of Gremlin's bio-activity, the aim of this study is to, in vivo and in vitro, unveil the function of Gremlin in regulating the development of periodontitis and its consequent effects on alveolar bone loss. METHODS Clinical specimens were used to determine the expression of Gremlin in periodontal tissues by immunohistochemical staining and western blot. Then utilizing the rat periodontitis model to investigate the function of gremlin-regulated nuclear factor-kappa B (NF-κB) pathway during the development of periodontal inflammation and the alveolar bone loss. Lastly, the regulation of the osteogenesis of human periodontal ligament stem cells (hPDLSCs) by Gremlin under inflamed condition was analyzed by alkaline phosphatase (ALP) and alizarin red staining (ARS). RESULTS We found clinically and experimentally that the expression of Gremlin is markedly increased in periodontitis tissues. Interestingly, we revealed that Gremlin regulated the progress of periodontitis via regulating the activities of NF-κB pathway and interleukin-1β (IL-1β). Notably, we observed that Gremlin influenced the osteogenesis of hPDLSCs. Thus, our present study identified Gremlin as a new key regulator for development of periodontitis. CONCLUSIONS Our current study illustrated that Gremlin acts as a crucial mediator and possibly serves as a potential diagnostic marker for periodontitis. Discovery of new factors involved in the pathophysiology of periodontitis could contribute to the development of novel therapeutic treatment for the disease. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Xiaoyue Guan
- The Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Department of Endodontics, Stomatological Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Yani He
- The Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Department of Endodontics, Stomatological Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Yingxue Li
- The Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Department of Endodontics, Stomatological Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Chen Shi
- The Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Department of Endodontics, Stomatological Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Zhichen Wei
- The Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Department of Endodontics, Stomatological Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Rui Zhao
- The Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Department of Endodontics, Stomatological Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Yue Han
- The Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Department of Endodontics, Stomatological Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Lifei Pan
- The Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Department of Endodontics, Stomatological Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Jianmin Yang
- The Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Tie Zhou Hou
- The Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Department of Endodontics, Stomatological Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| |
Collapse
|
9
|
OUP accepted manuscript. Eur J Orthod 2022; 44:669-678. [DOI: 10.1093/ejo/cjac030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
10
|
Pan P, Yue Q, Li J, Gao M, Yang X, Ren Y, Cheng X, Cui P, Deng Y. Smart Cargo Delivery System based on Mesoporous Nanoparticles for Bone Disease Diagnosis and Treatment. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2004586. [PMID: 34165902 PMCID: PMC8224433 DOI: 10.1002/advs.202004586] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/11/2021] [Indexed: 05/05/2023]
Abstract
Bone diseases constitute a major issue for modern societies as a consequence of progressive aging. Advantages such as open mesoporous channel, high specific surface area, ease of surface modification, and multifunctional integration are the driving forces for the application of mesoporous nanoparticles (MNs) in bone disease diagnosis and treatment. To achieve better therapeutic effects, it is necessary to understand the properties of MNs and cargo delivery mechanisms, which are the foundation and key in the design of MNs. The main types and characteristics of MNs for bone regeneration, such as mesoporous silica (mSiO2 ), mesoporous hydroxyapatite (mHAP), mesoporous calcium phosphates (mCaPs) are introduced. Additionally, the relationship between the cargo release mechanisms and bone regeneration of MNs-based nanocarriers is elucidated in detail. Particularly, MNs-based smart cargo transport strategies such as sustained cargo release, stimuli-responsive (e.g., pH, photo, ultrasound, and multi-stimuli) controllable delivery, and specific bone-targeted therapy for bone disease diagnosis and treatment are analyzed and discussed in depth. Lastly, the conclusions and outlook about the design and development of MNs-based cargo delivery systems in diagnosis and treatment for bone tissue engineering are provided to inspire new ideas and attract researchers' attention from multidisciplinary areas spanning chemistry, materials science, and biomedicine.
Collapse
Affiliation(s)
- Panpan Pan
- Department of Chemistry, Department of Gastroenterology, Zhongshan Hospital of Fudan University, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China
| | - Qin Yue
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610051, China
| | - Juan Li
- Department of Chemistry, Department of Gastroenterology, Zhongshan Hospital of Fudan University, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China
| | - Meiqi Gao
- Department of Chemistry, Department of Gastroenterology, Zhongshan Hospital of Fudan University, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China
| | - Xuanyu Yang
- Department of Chemistry, Department of Gastroenterology, Zhongshan Hospital of Fudan University, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China
| | - Yuan Ren
- Department of Chemistry, Department of Gastroenterology, Zhongshan Hospital of Fudan University, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China
| | - Xiaowei Cheng
- Department of Chemistry, Department of Gastroenterology, Zhongshan Hospital of Fudan University, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China
| | - Penglei Cui
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Yonghui Deng
- Department of Chemistry, Department of Gastroenterology, Zhongshan Hospital of Fudan University, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China
- State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| |
Collapse
|
11
|
Li X, Jiang J, Yang Z, Jin S, Lu X, Qian Y. Galangin suppresses RANKL-induced osteoclastogenesis via inhibiting MAPK and NF-κB signalling pathways. J Cell Mol Med 2021; 25:4988-5000. [PMID: 33939240 PMCID: PMC8178255 DOI: 10.1111/jcmm.16430] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 02/15/2021] [Accepted: 02/18/2021] [Indexed: 01/22/2023] Open
Abstract
Osteoclasts play a critical role in osteoporosis; thus, inhibiting osteoclastogenesis is a therapeutic strategy for osteoporosis. Galangin, a natural bioflavonoid extracted from a traditional Chinese herb, possesses a variety of biological activities, including anti‐inflammation and anti‐oxidation. However, its effects on osteoporosis have not been elucidated. In this study, we found that galangin treatment dose‐dependently decreased osteoclastogenesis in bone marrow–derived macrophages (BMMs). Moreover, during osteoclastogenesis, osteoclast‐specific genes, such as tartrate‐resistant acid phosphatase (TRAP), cathepsin K (CtsK), ATPase, H + transporting, lysosomal V0 subunit D2 (V‐ATPase d2) and dendritic cell–specific transmembrane protein (DC‐STAMP), were down‐regulated by galangin treatment. Furthermore, the results of the pit formation assay and F‐actin ring staining revealed impaired osteoclastic bone resorption in the galangin‐treated group compared with that in the control group. Additionally, galangin treatment also inhibited the phosphorylation of p38 and ERK of MAPK signalling pathway, as well as downstream factors of NFATc1, C‐Jun and C‐Fos. Consistent with our in vitro results, galangin suppressed lipopolysaccharide (LPS)‐induced bone resorption via inhibition of osteoclastogenesis. Taken together, our findings provide evidence that galangin is a promising natural compound for the treatment of osteoporosis and may be associated with the inhibition of MAPK and NF‐κB signalling pathways.
Collapse
Affiliation(s)
- Xiucheng Li
- Department of Orthopaedics, Shaoxing People's Hospital, Zhejiang University School of Medicine, Shaoxing, China
| | - Jiawei Jiang
- Department of Orthopaedics, Shaoxing People's Hospital, Zhejiang University School of Medicine, Shaoxing, China
| | - Zhifan Yang
- Department of Orthopaedics, Shaoxing People's Hospital, Zhejiang University School of Medicine, Shaoxing, China
| | - Songtao Jin
- Department of Orthopaedics, Shaoxing People's Hospital, Zhejiang University School of Medicine, Shaoxing, China
| | - Xuanyuan Lu
- Department of Orthopaedics, Shaoxing People's Hospital, Zhejiang University School of Medicine, Shaoxing, China
| | - Yu Qian
- Department of Orthopaedics, Shaoxing People's Hospital, Zhejiang University School of Medicine, Shaoxing, China
| |
Collapse
|
12
|
Kim YR, Kim JS, Gu SJ, Jo S, Kim S, Young Kim S, Lee D, Jang K, Choo H, Kim TH, Jung JU, Min SJ, Yang CS. Identification of highly potent and selective inhibitor, TIPTP, of the p22phox-Rubicon axis as a therapeutic agent for rheumatoid arthritis. Sci Rep 2020; 10:4570. [PMID: 32165681 PMCID: PMC7067850 DOI: 10.1038/s41598-020-61630-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 03/02/2020] [Indexed: 01/08/2023] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease linked to oxidative stress, which is associated with significant morbidity. The NADPH oxidase complex (NOX) produces reactive oxygen species (ROS) that are among the key markers for determining RA’s pathophysiology. Therefore, understanding ROS-regulated molecular pathways and their interaction is necessary for developing novel therapeutic approaches for RA. Here, by combining mouse genetics and biochemistry with clinical tissue analysis, we reveal that in vivo Rubicon interacts with the p22phox subunit of NOX, which is necessary for increased ROS-mediated RA pathogenesis. Furthermore, we developed a series of new aryl propanamide derivatives consisting of tetrahydroindazole and thiadiazole as p22phox inhibitors and selected 2-(tetrahydroindazolyl)phenoxy-N-(thiadiazolyl)propanamide 2 (TIPTP, M.W. 437.44), which showed considerably improved potency, reaching an IC50 value up to 100-fold lower than an inhibitor that we previously synthesized reported N8 peptide-mimetic small molecule (blocking p22phox–Rubicon interaction). Notably, TIPTP treatment showed significant therapeutic effects a mouse model for RA. Furthermore, TIPTP had anti-inflammatory effects ex vivo in monocytes from healthy individuals and synovial fluid cells from RA patients. These findings may have clinical applications for the development of TIPTP as a small molecule inhibitor of the p22phox-Rubicon axis for the treatment of ROS-driven diseases such as RA.
Collapse
Affiliation(s)
- Ye-Ram Kim
- Department of Molecular & Life Science, Hanyang University, Ansan, 15588, South Korea.,Department of Bionano Technology, Hanyang University, Seoul, 04673, South Korea
| | - Jae-Sung Kim
- Department of Molecular & Life Science, Hanyang University, Ansan, 15588, South Korea.,Department of Bionano Technology, Hanyang University, Seoul, 04673, South Korea
| | - Su-Jin Gu
- Department of Chemical & Molecular Engineering/Applied Chemistry, Ansan, 15588, South Korea
| | - Sungsin Jo
- Hanyang University Hospital for Rheumatic Diseases, Seoul, 04763, South Korea
| | - Sojin Kim
- Department of Molecular & Life Science, Hanyang University, Ansan, 15588, South Korea
| | - Sun Young Kim
- Department of Molecular & Life Science, Hanyang University, Ansan, 15588, South Korea.,Department of Bionano Technology, Hanyang University, Seoul, 04673, South Korea
| | - Daeun Lee
- Department of Molecular & Life Science, Hanyang University, Ansan, 15588, South Korea
| | - Kiseok Jang
- Department of Pathology, Hanyang University College of Medicine, Seoul, 04763, South Korea
| | - Hyunah Choo
- Center for Neuro-Medicine, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, South Korea
| | - Tae-Hwan Kim
- Hanyang University Hospital for Rheumatic Diseases, Seoul, 04763, South Korea
| | - Jae U Jung
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, USA
| | - Sun-Joon Min
- Department of Chemical & Molecular Engineering/Applied Chemistry, Ansan, 15588, South Korea.
| | - Chul-Su Yang
- Department of Molecular & Life Science, Hanyang University, Ansan, 15588, South Korea. .,Department of Bionano Technology, Hanyang University, Seoul, 04673, South Korea.
| |
Collapse
|
13
|
Assessing the Effects of Parthenolide on Inflammation, Bone Loss, and Glial Cells within a Collagen Antibody-Induced Arthritis Mouse Model. Mediators Inflamm 2020; 2020:6245798. [PMID: 32189995 PMCID: PMC7073477 DOI: 10.1155/2020/6245798] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 12/16/2019] [Accepted: 01/27/2020] [Indexed: 12/21/2022] Open
Abstract
Rheumatoid arthritis is characterised by a chronic inflammatory response resulting in destruction of the joint and significant pain. Although a range of treatments are available to control disease activity in RA, bone destruction and joint pain exist despite suppression of inflammation. This study is aimed at assessing the effects of parthenolide (PAR) on paw inflammation, bone destruction, and pain-like behaviour in a mild collagen antibody-induced arthritis (CAIA) mouse model. CAIA was induced in BALB/c mice and treated daily with 1 mg/kg or 4 mg/kg PAR. Clinical paw inflammation was scored daily, and mechanical hypersensitivity was assessed on alternate days. At end point, bone volume and swelling in the paws were assessed using micro-CT. Paw tissue sections were assessed for inflammation and pre-/osteoclast-like cells. The lumbar spinal cord and the periaqueductal grey (PAG) and rostral ventromedulla (RVM) regions of the brain were stained for glial fibrillary acidic protein (GFAP) and ionised calcium-binding adaptor molecule 1 (IBA1) to assess for glial reactivity. Paw scores increased in CAIA mice from days 5-10 and were reduced with 1 mg/kg and 4 mg/kg PAR on days 8-10. Osteoclast-like cells on the bone surface of the radiocarpal joint and within the soft tissue of the hind paw were significantly lower following PAR treatment (p < 0.005). GFAP- and IBA1-positive cells in the PAG and RVM were significantly lower following treatment with 1 mg/kg (p < 0.0001 and p = 0.0004, respectively) and 4 mg/kg PAR (p < 0.0001 and p = 0.001, respectively). In the lumbar spinal cord, IBA1-positive cells were significantly lower in CAIA mice treated with 4 mg/kg PAR (p = 0.001). The findings indicate a suppressive effect of both low- and moderate-dose PAR on paw inflammation, osteoclast presence, and glial cell reactivity in a mild CAIA mouse model.
Collapse
|
14
|
Akula SM, Candido S, Abrams SL, Steelman LS, Lertpiriyapong K, Cocco L, Ramazzotti G, Ratti S, Follo MY, Martelli AM, Murata RM, Rosalen PL, Bueno-Silva B, Matias de Alencar S, Falasca M, Montalto G, Cervello M, Notarbartolo M, Gizak A, Rakus D, Libra M, McCubrey JA. Abilities of β-Estradiol to interact with chemotherapeutic drugs, signal transduction inhibitors and nutraceuticals and alter the proliferation of pancreatic cancer cells. Adv Biol Regul 2020; 75:100672. [PMID: 31685431 DOI: 10.1016/j.jbior.2019.100672] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 10/12/2019] [Accepted: 10/15/2019] [Indexed: 06/10/2023]
Abstract
Improving the effects of chemotherapy and reducing the side effects are important goals in cancer research. Various approaches have been examined to enhance the effectiveness of chemotherapy. For example, signal transduction inhibitors or hormonal based approaches have been included with chemo- or radio-therapy. MIA-PaCa-2 and BxPC-3 pancreatic ductal adenocarcinoma (PDAC) cells both express the estrogen receptor (ER). The effects of β-estradiol on the growth of PDAC cells has not been examined yet the ER is expressed in PDAC cells. We have examined the effects of combining β-estradiol with chemotherapeutic drugs, signal transcription inhibitors, natural products and nutraceuticals on PDAC. In most cases, inclusion of β-estradiol with chemotherapeutic drugs increased chemosensitivity. These results indicate some approaches involving β-estradiol which may be used to increase the effectiveness of chemotherapeutic and other drugs on the growth of PDAC.
Collapse
Affiliation(s)
- Shaw M Akula
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, 27858, USA
| | - Saverio Candido
- Department of Biomedical and Biotechnological Sciences, Oncological, Clinical and General Pathology Section, University of Catania, Catania, Italy; Research Center for Prevention, Diagnosis and Treatment of Cancer (PreDiCT), University of Catania, Catania, Italy
| | - Stephen L Abrams
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, 27858, USA
| | - Linda S Steelman
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, 27858, USA
| | - Kvin Lertpiriyapong
- Center of Comparative Medicine and Pathology, Memorial Sloan-Kettering Cancer Center, Weill Cornell Medicine and the Hospital for Special Surgery, New York City, New York, USA
| | - Lucio Cocco
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Giulia Ramazzotti
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Stefano Ratti
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Matilde Y Follo
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Alberto M Martelli
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Ramiro M Murata
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, 27858, USA; Department of Foundational Sciences, School of Dental Medicine, East Carolina University, USA
| | - Pedro L Rosalen
- Department of Physiological Sciences, Piracicaba Dental School, State University of Campinas, Piracicaba, Brazil
| | - Bruno Bueno-Silva
- Department of Physiological Sciences, Piracicaba Dental School, State University of Campinas, Piracicaba, Brazil; Dental Research Division, Guarulhos University, Guarulhos, Brazil
| | | | - Marco Falasca
- Metabolic Signalling Group, School of Pharmacy & Biomedical Sciences, Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Perth, Western Australia, 6102, Australia
| | - Giuseppe Montalto
- Dipartimento di Promozione Della Salute, Materno-Infantile, Medicina Interna e Specialistica di Eccellenza (PROMISE), University of Palermo, Palermo, Italy; Institute for Biomedical Research and Innovation, National Research Council (CNR), Palermo, Italy
| | - Melchiorre Cervello
- Institute for Biomedical Research and Innovation, National Research Council (CNR), Palermo, Italy
| | - Monica Notarbartolo
- Department of Biological, Chemical and Pharmaceutical Science and Technology (STEBICEF), University of Palermo, Palermo, Italy
| | - Agnieszka Gizak
- Department of Molecular Physiology and Neurobiology, Wroclaw University, Wroclaw, Poland
| | - Dariusz Rakus
- Department of Molecular Physiology and Neurobiology, Wroclaw University, Wroclaw, Poland
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences, Oncological, Clinical and General Pathology Section, University of Catania, Catania, Italy; Research Center for Prevention, Diagnosis and Treatment of Cancer (PreDiCT), University of Catania, Catania, Italy
| | - James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, 27858, USA.
| |
Collapse
|
15
|
Hu RY, Tian XB, Li B, Luo R, Zhang B, Zhao JM. Individualized Drug Repositioning For Rheumatoid Arthritis Using Weighted Kolmogorov-Smirnov Algorithm. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2019; 12:369-375. [PMID: 31849513 PMCID: PMC6912015 DOI: 10.2147/pgpm.s230751] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 11/06/2019] [Indexed: 12/13/2022]
Abstract
Background Existing drugs are far from enough for investigators and patients to administrate the therapy of rheumatoid arthritis. Drug repositioning has drawn broad attention by reusing marketed drugs and clinical candidates for new uses. Purpose This study attempted to predict candidate drugs for rheumatoid arthritis treatment by mining the similarities of pathway aberrance induced by disease and various drugs, on a personalized or customized basis. Methods We firstly measured the individualized pathway aberrance induced by rheumatoid arthritis based on the microarray data and various drugs from CMap database, respectively. Then, the similarities of pathway aberrances between RA and various drugs were calculated using a Kolmogorov–Smirnov weighted enrichment score algorithm. Results Using this method, we identified 4 crucial pathways involved in rheumatoid arthritis development and predicted 9 underlying candidate drugs for rheumatoid arthritis treatment. Some candidates with current indications to treat other diseases might be repurposed to treat rheumatoid arthritis and complement the drug group for rheumatoid arthritis. Conclusion This study predicts candidate drugs for rheumatoid arthritis treatment through mining the similarities of pathway aberrance induced by disease and various drugs, on a personalized or customized basis. Our framework will provide novel insights in personalized drug discovery for rheumatoid arthritis and contribute to the future application of custom therapeutic decisions.
Collapse
Affiliation(s)
- Ru-Yin Hu
- Department of Orthopaedics, Guangxi Medical University, Nanning 530021, People's Republic of China.,Department of Orthopaedics, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, People's Republic of China.,Department of Orthopaedics, Guizhou Provincial People's Hospital, Guiyang 550002, People's Republic of China
| | - Xiao-Bin Tian
- Department of Orthopaedics, Guizhou Provincial People's Hospital, Guiyang 550002, People's Republic of China
| | - Bo Li
- Department of Orthopaedics, Guizhou Provincial People's Hospital, Guiyang 550002, People's Republic of China
| | - Rui Luo
- Department of Orthopaedics, Guizhou Provincial People's Hospital, Guiyang 550002, People's Republic of China
| | - Bin Zhang
- Department of Orthopaedics, Guizhou Provincial People's Hospital, Guiyang 550002, People's Republic of China
| | - Jin-Min Zhao
- Department of Orthopaedics, Guangxi Medical University, Nanning 530021, People's Republic of China
| |
Collapse
|
16
|
Sun X, Zhang J, Wang Z, Liu B, Zhu S, Zhu L, Peng B. Licorice isoliquiritigenin-encapsulated mesoporous silica nanoparticles for osteoclast inhibition and bone loss prevention. Am J Cancer Res 2019; 9:5183-5199. [PMID: 31410209 PMCID: PMC6691588 DOI: 10.7150/thno.33376] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 06/13/2019] [Indexed: 12/21/2022] Open
Abstract
Mesoporous silica nanoparticles (MSNs) are extensively used in bone tissue regeneration and local drug delivery. However, the effects of MSNs alone on osteoclast formation and function, as well as the utilization of MSNs to deliver natural molecules against bone resorption, remain unexplored. Here, we report the development of licorice-derived bioactive flavonoid isoliquiritigenin (ISL)-encapsulated MSNs (MSNs-ISL) as a potent bone-bioresponsive nanoencapsulation system for prevention of osteoclast-mediated bone loss in vitro and in vivo. Methods: We synthesized MSNs-ISL and then investigated the drug loading and release characteristics of the resulting nanoparticles. In vitro experiments on osteoclast differentiation and bone resorption were performed using mouse primary bone marrow-derived macrophages (BMMs). In vivo animal experiments were conducted using a lipopolysaccharide (LPS)-mediated calvarial bone erosion model. Results: The resulting MSNs-ISL were spherical and highly monodispersed; they possessed a large specific surface area and superior biocompatibility, and allowed acid-sensitive sustained drug release. Compared with free ISL and MSNs alone, MSNs-ISL significantly and additively inhibited receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast generation, decreased the size and quantity of sealing zones, and reduced the osteolytic capacity of osteoclasts in vitro. MSNs-ISL treatment also downregulated RANKL-stimulated mRNA expression of osteoclast-associated genes and transcription factors. Mechanistically, MSNs-ISL remarkably attenuated the RANKL-initiated expression of tumor necrosis factor receptor-associated factor 6 (TRAF6), phosphorylation of mitogen-activated protein kinases (MAPKs), and phosphorylation and degradation of inhibitor of κBα (IκBα), together with the nuclear translocation of nuclear factor-κB (NF-κB) p65 and the activator protein (AP)-1 component c-Fos. Moreover, MSNs-ISL almost completely restrained the expression of nuclear factor of activated T cells (NFATc1). Consistent with the in vitro results, MSNs-ISL could block osteoclast activity; relieve inflammation-related calvarial bone destruction in vivo; and suppress c-Fos, NFATc1, and cathepsin K expression levels. Conclusion: Licorice ISL-encapsulated MSNs exhibit notable anti-osteoclastogenetic effects and protect against inflammatory bone destruction. Our findings reveal the feasibility of applying MSNs-ISL as an effective natural product-based bone-bioresponsive nanoencapsulation system to prevent osteoclast-mediated bone loss.
Collapse
|
17
|
Geranylgeraniol Suppresses the Expression of IRAK1 and TRAF6 to Inhibit NFκB Activation in Lipopolysaccharide-Induced Inflammatory Responses in Human Macrophage-Like Cells. Int J Mol Sci 2019; 20:ijms20092320. [PMID: 31083375 PMCID: PMC6540148 DOI: 10.3390/ijms20092320] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 05/06/2019] [Accepted: 05/08/2019] [Indexed: 12/15/2022] Open
Abstract
Geranylgeraniol (GGOH), a natural isoprenoid found in plants, has anti-inflammatory effects via inhibiting the activation of nuclear factor-kappa B (NFκB). However, its detailed mechanism has not yet been elucidated. Recent studies have revealed that isoprenoids can modulate signaling molecules in innate immune responses. We found that GGOH decreased the expression of lipopolysaccharide (LPS)-induced inflammatory genes in human macrophage-like THP-1 cells. Furthermore, we observed that the suppression of NFκB signaling proteins, in particular interleukin-1 receptor-associated kinase 1 (IRAK1) and tumor necrosis factor receptor-associated factor 6 (TRAF6), occurred in GGOH-treated cells prior to LPS stimulation, suggesting an immunomodulatory effect. These results indicate that GGOH may modulate and help prevent excessive NFκB activation that can lead to numerous diseases.
Collapse
|
18
|
Zhou L, Liu Q, Hong G, Song F, Zhao J, Yuan J, Xu J, Tan RX, Tickner J, Gu Q, Xu J. Cumambrin A prevents OVX-induced osteoporosis via the inhibition of osteoclastogenesis, bone resorption, and RANKL signaling pathways. FASEB J 2019; 33:6726-6735. [PMID: 30807230 DOI: 10.1096/fj.201800883rrr] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Being the principal cells responsible for bone resorption and pathologic bone loss, osteoclasts have become the main target for antiresorptive treatment. Cumambrin A is a natural compound isolated from Chrysanthemum indicum L. and belongs to a member of the sesquiterpene lactone family. To date, the therapeutic effect of cumambrin A on osteoporosis and its mechanisms of action are not known. In this study, we found that cumambrin A can significantly inhibit osteoclast formation and bone resorption through the suppression of receptor activator of NF-κB ligand (RANKL)-induced NF-κB and nuclear factor of activated T-cell activity and ERK phosphorylation. Furthermore, cumambrin A inhibits the expression of osteoclast marker genes including cathepsin K, calcitonin receptor, and V-ATPase d2. Using an in vivo ovariectomized mouse model, we showed that cumambrin A protects against estrogen withdrawal-induced bone loss. Collectively, our results reveal that cumambrin A can suppress osteoclast formation, bone resorption, and RANKL-induced signaling pathways, suggesting that cumambrin A is a potential therapeutic agent for the treatment of osteoporosis.-Zhou, L., Liu, Q., Hong, G., Song, F., Zhao, J., Yuan, J., Xu, J., Tan, R. X., Tickner, J., Gu, Q., Xu, J. Cumambrin A prevents OVX-induced osteoporosis via the inhibition of osteoclastogenesis, bone resorption, and RANKL signaling pathways.
Collapse
Affiliation(s)
- Lin Zhou
- School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia.,Department of Endocrinology, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Qian Liu
- School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia.,Research Centre for Regenerative Medicine, Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, China
| | - Guoju Hong
- School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia.,Orthopedic Department, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Fangming Song
- School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia.,Research Centre for Regenerative Medicine, Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, China
| | - Jinmin Zhao
- Research Centre for Regenerative Medicine, Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, China
| | - Jinbo Yuan
- School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Jun Xu
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Ren Xiang Tan
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, Nanjing University, Nanjing, China
| | - Jennifer Tickner
- School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Qiong Gu
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Jiake Xu
- School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
19
|
Scutellarein inhibits RANKL‐induced osteoclast formation in vitro and prevents LPS‐induced bone loss in vivo. J Cell Physiol 2018; 234:11951-11959. [DOI: 10.1002/jcp.27888] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 11/12/2018] [Indexed: 11/07/2022]
|
20
|
Fan C, Zhang X, Upton Z. Anti-inflammatory effects of shikonin in human periodontal ligament cells. PHARMACEUTICAL BIOLOGY 2018; 56:415-421. [PMID: 30392422 PMCID: PMC7011859 DOI: 10.1080/13880209.2018.1506482] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 07/12/2018] [Accepted: 07/26/2018] [Indexed: 05/26/2023]
Abstract
CONTEXT Shikonin (SHI), an active component extracted from Radix Arnebiae, has been reported to possess anti-inflammatory properties in various cells. However, its effect on lipopolysaccharide (LPS)-stimulated human periodontal ligament cells (hPDLCs) is unknown. OBJECTIVE To investigate the effects of SHI on the expression of inflammatory related cytokines in LPS-stimulated hPDLCs. MATERIALS AND METHODS The effects of SHI (0.125, 0.25, 0.5, 1, and 2 μg/mL) on hPDLCs proliferation for 1, 3 and 7 days were measured using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The expression of interleukin-1 (IL-1), IL-6, tumor necrosis factor-α (TNF-α), matrix metalloproteinase-2 (MMP-2), MMP-9 and cyclooxygenase-2 (COX-2) were detected in hPDLCs following SHI treatment (0.25 and 0.5 μg/mL) using Quantitative Reverse Transcriptase Polymerase Chain Reaction (qRT-PCR). The signaling pathways triggered by SHI in hPDLC were evaluated using western blotting. RESULTS LD50 of SHI is 1.7 μg/mL (day 1) and 1.1 μg/mL (day 3 and 7) in hPDLCs. No morphological changes were observed when hPDLCs were treated with LPS only (1 μg/mL) or LPS with SHI (0.25 and 0.5 μg/mL). Data from qRT-PCR suggests that SHI attenuates LPS-induced increases of IL-1, IL-6, TNF-α, MMP-2, MMP-9 and COX-2 in hPDLCs. Down-regulation of phosphorylated extracellular signal-regulated kinase (ERK) and nuclear factor-κB (NF-κB), and up-regulation of I-κB, were observed in LPS-stimulated hPDLCs after exposed to SHI at 0.25 or 0.5 μg/mL. DISCUSSION AND CONCLUSIONS SHI possesses anti-inflammatory effects in LPS-stimulated hPDLCs via phospho-ERK and NF-κB/I-κB signaling pathways; this suggests that SHI may hold potential as an anti-inflammatory agent against periodontitis.
Collapse
Affiliation(s)
- Chen Fan
- Tissue Repair and Regeneration Program, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
- Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), Singapore
- Skin Research Institute of Singapore, A*STAR, Singapore
| | - Xufang Zhang
- Tissue Repair and Regeneration Program, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
- Guangdong Province Key Laboratory of Stomatology, Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Zee Upton
- Tissue Repair and Regeneration Program, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
- Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), Singapore
- Skin Research Institute of Singapore, A*STAR, Singapore
| |
Collapse
|
21
|
Awad F, Assrawi E, Louvrier C, Jumeau C, Georgin-Lavialle S, Grateau G, Amselem S, Giurgea I, Karabina SA. Inflammasome biology, molecular pathology and therapeutic implications. Pharmacol Ther 2018; 187:133-149. [PMID: 29466702 DOI: 10.1016/j.pharmthera.2018.02.011] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Inflammasomes are intracellular multiprotein signaling complexes, mainly present in myeloid cells. They commonly assemble around a cytoplasmic receptor of the nucleotide-binding leucine-rich repeat containing receptor (NLR) family, although other cytoplasmic receptors like pyrin have been shown to form inflammasomes. The nucleation of the multiprotein scaffolding platform occurs upon detection of a microbial, a danger or a homeostasis pattern by the receptor that will, most commonly, associate with the adaptor protein ASC (apoptosis-associated speck-like protein containing a CARD) through homotypic domain interactions resulting in recruitment of procaspase-1. This will lead to the autoproteolytic activation of caspase-1, which regulates the secretion of proinflammatory IL1β and IL18 cytokines and pyroptosis, a caspase-1-mediated form of cell death. Pyroptosis occurs through cleavage of Gasdermin D, a membrane pore forming protein. Recently, non-canonical inflammasomes have been described, which directly sense intracellular pathogens through caspase-4 and -5 in humans, leading to pyroptosis. Inflammasomes are important in host defense; however, a deregulated activity is associated with a number of inflammatory, immune and metabolic disorders. Furthermore, mutations in inflammasome receptor coding genes are causal for an increasing number of rare autoinflammatory diseases. Biotherapies targeting the products of inflammasome activation as well as molecules that directly or indirectly inhibit inflammasome nucleation and activation are promising therapeutic areas. This review discusses recent advances in inflammasome biology, the molecular pathology of several inflammasomes, and current therapeutic approaches in autoinflammatory diseases and in selected common multifactorial inflammasome-mediated disorders.
Collapse
Affiliation(s)
- Fawaz Awad
- Sorbonne Université, INSERM, UMR_S 933, Assistance Publique Hôpitaux de Paris, Département de Génétique médicale, Hôpital Trousseau, Paris, F-75012, France
| | - Eman Assrawi
- Sorbonne Université, INSERM, UMR_S 933, Assistance Publique Hôpitaux de Paris, Département de Génétique médicale, Hôpital Trousseau, Paris, F-75012, France
| | - Camille Louvrier
- Sorbonne Université, INSERM, UMR_S 933, Assistance Publique Hôpitaux de Paris, Département de Génétique médicale, Hôpital Trousseau, Paris, F-75012, France
| | - Claire Jumeau
- Sorbonne Université, INSERM, UMR_S 933, Assistance Publique Hôpitaux de Paris, Département de Génétique médicale, Hôpital Trousseau, Paris, F-75012, France
| | - Sophie Georgin-Lavialle
- Sorbonne Université, INSERM, UMR_S 933, Assistance Publique Hôpitaux de Paris, Hôpital Tenon, Service de Médecine interne, Paris, F-75012, France
| | - Gilles Grateau
- Sorbonne Université, INSERM, UMR_S 933, Assistance Publique Hôpitaux de Paris, Hôpital Tenon, Service de Médecine interne, Paris, F-75012, France
| | - Serge Amselem
- Sorbonne Université, INSERM, UMR_S 933, Assistance Publique Hôpitaux de Paris, Département de Génétique médicale, Hôpital Trousseau, Paris, F-75012, France.
| | - Irina Giurgea
- Sorbonne Université, INSERM, UMR_S 933, Assistance Publique Hôpitaux de Paris, Département de Génétique médicale, Hôpital Trousseau, Paris, F-75012, France.
| | - Sonia-Athina Karabina
- Sorbonne Université, INSERM, UMR_S 933, Assistance Publique Hôpitaux de Paris, Département de Génétique médicale, Hôpital Trousseau, Paris, F-75012, France.
| |
Collapse
|
22
|
Wei J, Chen S, Huang C, Guo W, Yang S, Feng B, Chu J. The cysteinyl leukotriene receptor 1 (CysLT1R) antagonist montelukast suppresses matrix metalloproteinase-13 expression induced by lipopolysaccharide. Int Immunopharmacol 2017; 55:193-197. [PMID: 29268191 DOI: 10.1016/j.intimp.2017.11.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 09/29/2017] [Accepted: 11/14/2017] [Indexed: 01/18/2023]
Abstract
Bacterial products such as LPS are critical factors responsible for bone destruction. MMP-13, a member of the matrix metalloproteinase family, plays a critical role in the proteolytic degradation of extracellular matrix components, which includes collagen fibrils in the bone matrix. Montelukast is a selective cysteinyl leukotrienes receptor 1 (cysLT1R) antagonist used clinically for the treatment of asthma, as it reduces eosinophilic inflammation in airways. This study aims to explore the role of montelukast in regulating MMP-13 expression induced by LPS in osteoblasts. Our results indicate that LPS stimulated cysLT1R expression in mouse MC3T3-E1 osteoblasts in a dose- and time-dependent manner. Notably, LPS-induced up-regulation of MMP-13 was ameliorated by treatment with montelukast in a dose-dependent manner. Furthermore, treatment with montelukast stimulated the expression of SOCS3, an inhibitor of MMP-13. Silencing of SOCS3 abolished the inhibitory effects of montelukast on MMP-13 expression. Mechanistically, we found that montelukast suppressed LPS-induced nuclear translocation of NF-κB p65 as well as NF-κB transcriptional activity by inhibiting the phosphorylation and degradation of IκBα. These data suggest that montelukast can modulate inflammatory events in bone diseases.
Collapse
Affiliation(s)
- Jinsong Wei
- Department of Orthopaedics, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, Guangdong, China.
| | - Siyuan Chen
- Department of Orthopaedics, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, Guangdong, China
| | - Chengshuo Huang
- Department of Orthopaedics, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, Guangdong, China
| | - Weixiong Guo
- Department of Orthopaedics, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, Guangdong, China
| | - Shukai Yang
- Department of Orthopaedics, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, Guangdong, China
| | - Bailin Feng
- Department of Orthopaedics, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, Guangdong, China
| | - Jiaqi Chu
- Department of Stem Cell Research and Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, Guangdong, China
| |
Collapse
|
23
|
Jiang H, He H, Chen Y, Huang W, Cheng J, Ye J, Wang A, Tao J, Wang C, Liu Q, Jin T, Jiang W, Deng X, Zhou R. Identification of a selective and direct NLRP3 inhibitor to treat inflammatory disorders. J Exp Med 2017; 214:3219-3238. [PMID: 29021150 PMCID: PMC5679172 DOI: 10.1084/jem.20171419] [Citation(s) in RCA: 548] [Impact Index Per Article: 68.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 08/24/2017] [Accepted: 08/30/2017] [Indexed: 12/15/2022] Open
Abstract
Jiang et al. identify a selective and direct small-molecule inhibitor for NLRP3 and provide solid evidence showing that NLRP3 can be targeted in vivo to combat inflammasome-driven diseases. The NLRP3 inflammasome has been implicated in the pathogenesis of a wide variety of human diseases. A few compounds have been developed to inhibit NLRP3 inflammasome activation, but compounds directly and specifically targeting NLRP3 are still not available, so it is unclear whether NLRP3 itself can be targeted to prevent or treat diseases. Here we show that the compound CY-09 specifically blocks NLRP3 inflammasome activation. CY-09 directly binds to the ATP-binding motif of NLRP3 NACHT domain and inhibits NLRP3 ATPase activity, resulting in the suppression of NLRP3 inflammasome assembly and activation. Importantly, treatment with CY-09 shows remarkable therapeutic effects on mouse models of cryopyrin-associated autoinflammatory syndrome (CAPS) and type 2 diabetes. Furthermore, CY-09 is active ex vivo for monocytes from healthy individuals or synovial fluid cells from patients with gout. Thus, our results provide a selective and direct small-molecule inhibitor for NLRP3 and indicate that NLRP3 can be targeted in vivo to combat NLRP3-driven diseases.
Collapse
Affiliation(s)
- Hua Jiang
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, CAS Center for Excellence in Molecular Cell Sciences, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, China.,Innovation Center for Cell Signaling Network, University of Science and Technology of China, Hefei, China.,Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, China
| | - Hongbin He
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, CAS Center for Excellence in Molecular Cell Sciences, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, China
| | - Yun Chen
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Wei Huang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Jinbo Cheng
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, CAS Center for Excellence in Molecular Cell Sciences, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, China
| | - Jin Ye
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, CAS Center for Excellence in Molecular Cell Sciences, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, China
| | - Aoli Wang
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, CAS Center for Excellence in Molecular Cell Sciences, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, China.,High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, Anhui, China
| | - Jinhui Tao
- Department of Rheumatology and Immunology, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei, Anhui, China
| | - Chao Wang
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, CAS Center for Excellence in Molecular Cell Sciences, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, China
| | - Qingsong Liu
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, CAS Center for Excellence in Molecular Cell Sciences, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, China.,High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, Anhui, China
| | - Tengchuan Jin
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, CAS Center for Excellence in Molecular Cell Sciences, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, China
| | - Wei Jiang
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, CAS Center for Excellence in Molecular Cell Sciences, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, China .,Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, China
| | - Xianming Deng
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Rongbin Zhou
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, CAS Center for Excellence in Molecular Cell Sciences, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, China .,Innovation Center for Cell Signaling Network, University of Science and Technology of China, Hefei, China.,Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, China
| |
Collapse
|
24
|
Zhang X, Chen Q, Liu J, Fan C, Wei Q, Chen Z, Mao X. Parthenolide Promotes Differentiation of Osteoblasts Through the Wnt/β-Catenin Signaling Pathway in Inflammatory Environments. J Interferon Cytokine Res 2017; 37:406-414. [DOI: 10.1089/jir.2017.0023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Xufang Zhang
- Guangdong Province Key Laboratory of Stomatology, Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Qingpiao Chen
- Guangdong Province Key Laboratory of Stomatology, Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Jianwei Liu
- Guangdong Province Key Laboratory of Stomatology, Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Chen Fan
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| | - Qi Wei
- Department of Environmental Health Sciences, UCLA Fielding School of Public Health, Los Angeles, California
| | - Zetao Chen
- Guangdong Province Key Laboratory of Stomatology, Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Xueli Mao
- Guangdong Province Key Laboratory of Stomatology, Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, People's Republic of China
| |
Collapse
|
25
|
Song F, Wei C, Zhou L, Qin A, Yang M, Tickner J, Huang Y, Zhao J, Xu J. Luteoloside prevents lipopolysaccharide‐induced osteolysis and suppresses RANKL‐induced osteoclastogenesis through attenuating RANKL signaling cascades. J Cell Physiol 2017; 233:1723-1735. [DOI: 10.1002/jcp.26084] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 07/05/2017] [Indexed: 01/09/2023]
Affiliation(s)
- Fangming Song
- Research Centre for Regenerative MedicineGuangxi Key Laboratory of Regenerative MedicineGuangxi Medical UniversityNanningGuangxiChina
- School of Biomedical SciencesThe University of Western AustraliaPerthWestern AustraliaAustralia
| | - Chengming Wei
- Research Centre for Regenerative MedicineGuangxi Key Laboratory of Regenerative MedicineGuangxi Medical UniversityNanningGuangxiChina
| | - Lin Zhou
- School of Biomedical SciencesThe University of Western AustraliaPerthWestern AustraliaAustralia
| | - An Qin
- Department of Orthopaedics SurgeryShanghai Key Laboratory of Orthopaedic ImplantShanghai Ninth People's HospitalShanghai Jiaotong University School of MedicineShanghaiChina
| | - Mingli Yang
- School of Biomedical SciencesThe University of Western AustraliaPerthWestern AustraliaAustralia
| | - Jennifer Tickner
- School of Biomedical SciencesThe University of Western AustraliaPerthWestern AustraliaAustralia
| | - Yuanjiao Huang
- Medical Scientific Research CenterGuangxi Medical UniversityNanningGuangxiChina
| | - Jinmin Zhao
- Research Centre for Regenerative MedicineGuangxi Key Laboratory of Regenerative MedicineGuangxi Medical UniversityNanningGuangxiChina
- Department of Orthopaedic SurgeryThe First Affiliated Hospital of Guangxi Medical UniversityNanningGuangxiChina
| | - Jiake Xu
- Research Centre for Regenerative MedicineGuangxi Key Laboratory of Regenerative MedicineGuangxi Medical UniversityNanningGuangxiChina
- School of Biomedical SciencesThe University of Western AustraliaPerthWestern AustraliaAustralia
| |
Collapse
|
26
|
11R-VIVIT Peptide Inhibits Calvaria Osteolysis Induced by Experimental Design. J Craniofac Surg 2017; 28:570-573. [PMID: 28114216 DOI: 10.1097/scs.0000000000002975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Wear particles released from prosthetic implants can cause periprosthetic osteolysis, a major cause of implant loosening. The aim of this study was to investigate the effects of the 11R-VIVIT peptide on osteolysis induced by titanium (Ti) particles in vivo. Twenty-four C57BL/J6 mice were divided into 3 groups: sham operation, Ti group, and Ti/VIVIT group. A calvarial osteolysis model was established by implanting Ti particles into mouse calvaria of the Ti and Ti/VIVIT groups. After 2 weeks, 11R-VIVIT peptide (10 mg/kg/day) was intraperitoneally injected into the mice of the Ti/VIVIT group for 14 days. The other 2 groups received saline injection. The calvarial specimens were removed and stained with van Geison staining. The calvarial sagittal suture area was measured to observe bone resorption. The calvarial new bone area was measured to observe bone formation. Compared with the sham group, the area of calvarial new bone and calvarial sagittal suture were higher in the Ti group (P < 0.01). Compared with the Ti group, the area of calvarial new bone was higher and the area of calvarial sagittal suture was lower in the Ti/VIVIT group (P < 0.01). In conclusion, the 11R-VIVIT peptide inhibited bone resorption and enhanced bone formation. This may have contributed to lower wear particle-induced osteolysis. This method could eventually be used to prevent prosthesis loosening after joint replacement and to prolong the life of the prosthesis.
Collapse
|
27
|
Jang YJ, Back MJ, Fu Z, Lee JH, Won JH, Ha HC, Lee HK, Jang JM, Choi JM, Kim DK. Protective effect of sesquiterpene lactone parthenolide on LPS-induced acute lung injury. Arch Pharm Res 2016; 39:1716-1725. [DOI: 10.1007/s12272-016-0716-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 01/28/2016] [Indexed: 12/27/2022]
|
28
|
He L, Duan H, Li X, Wang S, Zhang Y, Lei L, Xu J, Liu S, Li X. Sinomenine down-regulates TLR4/TRAF6 expression and attenuates lipopolysaccharide-induced osteoclastogenesis and osteolysis. Eur J Pharmacol 2016; 779:66-79. [DOI: 10.1016/j.ejphar.2016.03.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 03/04/2016] [Accepted: 03/04/2016] [Indexed: 12/09/2022]
|
29
|
Qin S, Ang E, Dai L, Yang X, Ye D, Chen H, Zhou L, Yang M, Teguh D, Tan R, Xu J, Tickner J, Pavlos NJ, Xu J. Natural Germacrane Sesquiterpenes Inhibit Osteoclast Formation, Bone Resorption, RANKL-Induced NF-κB Activation, and IκBα Degradation. Int J Mol Sci 2015; 16:26599-607. [PMID: 26556352 PMCID: PMC4661831 DOI: 10.3390/ijms161125972] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 10/25/2015] [Accepted: 10/28/2015] [Indexed: 12/21/2022] Open
Abstract
Osteolytic bone diseases are commonly presented with enhanced osteoclast formation and bone resorption. Sesquiterpene lactone natural compounds have been found to possess anti-inflammatory and immune-modulation effects. Here, we identified three germacrane sesquiterpenes using computer-based virtual screening for the structural similarity with sesquiterpene lactone, parthenolide. We showed that natural germacrane sesquiterpene compounds A, B, and C inhibit osteoclast formation and bone resorption in a dose-dependent manner, with relative potency compound A > compound C > compound B based on their equimolar concentrations. Mechanistic studies by Luciferase reporter gene assay and Western blot analysis showed that germacrane sesquiterpene compound A inhibits RANKL-induced activation of NF-κB and IκBα degradation. This study reveals that natural germacrane sesquiterpene compounds are inhibitors for osteoclast formation and bone resorption, and provides evidence that naturally-occurring compounds might be beneficial as alternative medicine for the prevention and treatment of osteolysis.
Collapse
Affiliation(s)
- Shengnan Qin
- Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou 510220, China.
| | - Estabelle Ang
- School of Dentistry, University of Western Australia, Perth, WA 6009, Australia.
| | - Libing Dai
- Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou 510220, China.
| | - Xiaohong Yang
- Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou 510220, China.
| | - Dongping Ye
- Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou 510220, China.
- School of Pathology and Laboratory Medicine, the University of Western Australia, Perth, WA 6009, Australia.
| | - Honghui Chen
- Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou 510220, China.
| | - Lin Zhou
- School of Pathology and Laboratory Medicine, the University of Western Australia, Perth, WA 6009, Australia.
| | - Mingli Yang
- School of Pathology and Laboratory Medicine, the University of Western Australia, Perth, WA 6009, Australia.
| | - Dian Teguh
- School of Pathology and Laboratory Medicine, the University of Western Australia, Perth, WA 6009, Australia.
| | - Renxiang Tan
- Institute of Functional Biomolecules, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, China.
| | - Jun Xu
- Research Center for Drug Discovery (RCDD), School of Pharmaceutical Sciences, Sun Yat-Sen University, 132 East Circle at University City, Guangzhou 510006, China.
| | - Jennifer Tickner
- School of Pathology and Laboratory Medicine, the University of Western Australia, Perth, WA 6009, Australia.
| | - Nathan J Pavlos
- Centre for Orthopaedic Research, School of Surgery, the University of Western Australia, Perth, WA 6009, Australia.
| | - Jiake Xu
- Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou 510220, China.
- School of Pathology and Laboratory Medicine, the University of Western Australia, Perth, WA 6009, Australia.
| |
Collapse
|
30
|
Zawawi MSF, Perilli E, Stansborough RL, Marino V, Cantley MD, Xu J, Dharmapatni AASSK, Haynes DR, Gibson RJ, Crotti TN. Caffeic acid phenethyl ester abrogates bone resorption in a murine calvarial model of polyethylene particle-induced osteolysis. Calcif Tissue Int 2015; 96:565-74. [PMID: 25804981 DOI: 10.1007/s00223-015-9982-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 03/04/2015] [Indexed: 12/26/2022]
Abstract
Particle-induced bone loss by osteoclasts is a common cause of aseptic loosening around implants. This study investigates whether caffeic acid phenethyl ester (CAPE), a potent and specific inhibitor of nuclear factor of activated T cells, cytoplasmic, calcineurin-dependent 1 and nuclear factor kappa B, at a low dose reduces bone resorption in a murine calvarial model of polyethylene (PE) particle-induced osteolysis. The effects of particles and CAPE treatment on gastrointestinal tract (GIT) histopathology were also evaluated. Mice were scanned using in vivo animal micro-computed tomography (μCT) as a baseline measurement. PE particles (2.82 × 10(9) particles/mL) were implanted over the calvariae on day 0. CAPE was administered subcutaneously (1 mg/kg/day) at days 0, 4, 7 and 10. Mice were killed at day 14 and serum was analysed for Type-1 carboxyterminal collagen crosslinks (CTX)-1 and osteoclast-associated receptor (OSCAR) levels. Ex vivo μCT scans were conducted to assess bone volume (BV) change and percentage area of calvarial surface resorbed. Calvarial and GIT tissue was processed for histopathology. By day 14, PE particles significantly induced calvarial bone loss compared with control animals as evidenced by resorption areas adjacent to the implanted PE in three-dimensional μCT images, an increase in percentage of resorbed area (p = 0.0022), reduction in BV (p = 0.0012) and increased Tartrate-resistant acid phosphatase positive cells. Serum CTX-1 (p = 0.0495) and OSCAR levels (p = 0.0006) significantly increased in the PE implant group. CAPE significantly inhibited PE particle-induced calvarial osteolysis, as evidenced by a significant reduction in surface bone resorption (p = 0.0012) and volumetric change (p = 0.0154) compared with PE only, but had no effect on systemic CTX-1. Neither particles nor CAPE had an effect on GIT histopathology.
Collapse
Affiliation(s)
- M S F Zawawi
- Discipline of Anatomy and Pathology, School of Medical Sciences, The University of Adelaide, Adelaide, SA, 5000, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Zawawi MSF, Marino V, Perilli E, Cantley MD, Xu J, Purdue PE, Dharmapatni AASSK, Haynes DR, Crotti TN. Parthenolide reduces empty lacunae and osteoclastic bone surface resorption induced by polyethylene particles in a murine calvarial model of peri-implant osteolysis. J Biomed Mater Res A 2015; 103:3572-9. [PMID: 25903444 DOI: 10.1002/jbm.a.35484] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 03/16/2015] [Accepted: 04/17/2015] [Indexed: 12/17/2022]
Abstract
The study aimed to determine the effects of parthenolide (PAR) on bone volume (BV) and bone surface resorption as assessed by live-animal microcomputed tomography (μCT) and possible osteocyte death as indicated by empty lacunae histologically in polyethylene (PE) particle-induced calvarial osteolysis in mice. Baseline μCT scans were conducted 7 days preimplantation of 2 × 10(8) PE particles/mL over the calvariae (day 0). PAR at 1 mg/kg/day was subcutaneously injected on days 0, 4, 7, and 10. At day 14, BV and surface resorption was analyzed with μCT. Calvarial tissue was processed for histomorphometric osteocyte evaluation. Serum was analyzed for type-1 carboxy-terminal collagen crosslinks (CTX-1) and osteoclast associated receptor (OSCAR) levels by ELISA. PE significantly decreased BV (p = 0.0368), increased surface bone resorption area (p = 0.0022), and increased the percentage of empty lacunae (p = 0.0043). Interestingly, PAR significantly reduced the resorption surface area (p = 0.0022) and the percentage of empty osteocyte lacunae (p = 0.0087) in the PE-calvariae, but it did not affect BV, serum CTX-1 or OSCAR levels. The ability of PAR to inhibit PE-induced surface bone erosion may better reflect the in vivo situation, where bone resorption occurs on the surface at the bone-implant interface and may also be related to the role of osteocytes in this pathology.
Collapse
Affiliation(s)
- Muhamad S F Zawawi
- Discipline of Anatomy and Pathology, School of Medical Sciences, The University of Adelaide, Adelaide, SA, Australia.,School of Medical Sciences, Universiti Sains Malaysia, Malaysia
| | - Victor Marino
- School of Dentistry, The University of Adelaide, Adelaide, SA, Australia
| | - Egon Perilli
- Medical Device Research Institute, School of Computer Science, Engineering and Mathematics, Flinders University, Clovelly Park, SA, Australia
| | - Melissa D Cantley
- Discipline of Anatomy and Pathology, School of Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Jiake Xu
- School of Pathology and Laboratory Medicine, The University of Western Australia, Crawley, WA, Australia
| | | | - Anak A S S K Dharmapatni
- Discipline of Anatomy and Pathology, School of Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - David R Haynes
- Discipline of Anatomy and Pathology, School of Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Tania N Crotti
- Discipline of Anatomy and Pathology, School of Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
32
|
Kim JY, Cheon YH, Yoon KH, Lee MS, Oh J. Parthenolide inhibits osteoclast differentiation and bone resorbing activity by down-regulation of NFATc1 induction and c-Fos stability, during RANKL-mediated osteoclastogenesis. BMB Rep 2015; 47:451-6. [PMID: 24314143 PMCID: PMC4206717 DOI: 10.5483/bmbrep.2014.47.8.206] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Indexed: 11/20/2022] Open
Abstract
Parthenolide, a natural product derived from Feverfew, prevents septic shock and inflammation. We aimed to identify the effects of parthenolide on the RANKL (receptor activator of NF-κB ligand)-induced differentiation and bone resorbing activity of osteoclasts. In this study, parthenolide dose-dependently inhibited RANKL-mediated osteoclast differentiation in BMMs, without any evidence of cytotoxicity and the phosphorylation of p38, ERK, and IκB, as well as IκB degradation by RANKL treatment. Parthenolide suppressed the expression of NFATc1, OSCAR, TRAP, DC-STAMP, and cathepsin K in RANKL-treated BMMs. Furthermore, parthenolide down-regulated the stability of c-Fos protein, but could not suppress the expression of c-Fos. Overexpression of NFATc1 and c-Fos in BMMs reversed the inhibitory effect of parthenolide on RANKL-mediated osteoclast differentiation. Parthenolide also inhibited the bone resorbing activity of mature osteoclasts. Parthenolide inhibits the differentiation and bone-resolving activity of osteoclast by RANKL, suggesting its potential therapeutic value for bone destructive disorders associated with osteoclast-mediated bone resorption. [BMB Reports 2014; 47(8): 451-456]
Collapse
Affiliation(s)
- Ju-Young Kim
- Imaging Science-based Lung and Bone Diseases Research Center, Wonkwang University School of Medicine, Iksan 570-749, Korea
| | - Yoon-Hee Cheon
- Department of Anatomy; BK21plus Program and Department of Smart Life-care Convergence Graduate School, Wonkwang University School of Medicine, Iksan 570-749, Korea
| | - Kwon-Ha Yoon
- Imaging Science-based Lung and Bone Diseases Research Center; Department of Radiology, Wonkwang University School of Medicine, Iksan 570-749, Korea
| | - Myeung Su Lee
- Imaging Science-based Lung and Bone Diseases Research Center; Institute for Skeletal Disease; Department of Rheumatology, Wonkwang University School of Medicine, Iksan 570-749, Korea
| | - Jaemin Oh
- Imaging Science-based Lung and Bone Diseases Research Center; Department of Anatomy; BK21plus Program and Department of Smart Life-care Convergence Graduate School; Institute for Skeletal Disease, Wonkwang University School of Medicine, Iksan 570-749, Korea
| |
Collapse
|
33
|
McKenna S, Wright CJ. Inhibiting IκBβ-NFκB signaling attenuates the expression of select pro-inflammatory genes. J Cell Sci 2015; 128:2143-55. [PMID: 25908863 DOI: 10.1242/jcs.168351] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 04/13/2015] [Indexed: 12/26/2022] Open
Abstract
Multiple mediators of septic shock are regulated by the transcription factor nuclear factor κB (NFκB). However, complete NFκB inhibition can exacerbate disease, necessitating evaluation of targeted strategies to attenuate the pro-inflammatory response. Here, we demonstrate that in murine macrophages, low-dose NFκB inhibitors specifically attenuates lipopolysaccharide (LPS)-induced IκBβ degradation and the expression of a select subset of target genes (encoding IL1β, IL6, IL12β). Gain- and loss-of-function experiments demonstrate the necessary and sufficient role of inhibitor of NFκB family member IκBβ (also known as NFKBIB) in the expression of these genes. Furthermore, both fibroblasts and macrophages isolated from IκBβ overexpressing mice demonstrate attenuated LPS-induced IκBβ-NFκB signaling and IL1β, IL6 and IL12β expression. Further confirming the role of IκBβ and its NFκB subunit binding partner cRel in LPS-induced gene expression, pre-treatment of wild-type mouse embryonic fibroblasts with a cell-permeable peptide containing the cRel nuclear localization sequence attenuated IL6 expression. We prove that LPS-induced IκBβ-NFκB signaling can be selectively modulated to attenuate the expression of select pro-inflammatory target genes, thus providing therapeutic insights for patients exposed to systemic inflammatory stress.
Collapse
Affiliation(s)
- Sarah McKenna
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Clyde J Wright
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| |
Collapse
|
34
|
Zhou C, Liu W, He W, Wang H, Chen Q, Song H. Saikosaponin a inhibits RANKL-induced osteoclastogenesis by suppressing NF-κB and MAPK pathways. Int Immunopharmacol 2015; 25:49-54. [PMID: 25617149 DOI: 10.1016/j.intimp.2015.01.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 01/05/2015] [Accepted: 01/10/2015] [Indexed: 11/19/2022]
Abstract
Inflammatory cytokines play an important role in osteoclastogenesis. Saikosaponin a (SSa) possesses anti-inflammatory activity. However, the role of SSa in osteoporosis is still unclear. Therefore, the objective of this study was to investigate the effects of SSa on receptor activator of the nuclear factor-κB ligand (RANKL)-induced osteoclastogenesis and signaling pathway by in vitro assay. In mouse bone marrow monocytes (BMMs), SSa suppressed RANKL plus macrophage colony-stimulating factor (M-CSF)-induced osteoclast differentiation in a dose-dependent manner. Moreover, SSa decreased osteoclastogenesis-related marker proteins expression, including NFATc1, c-fos and cathepsin K. At molecular levels, SSa inhibited RANKL-induced IκBα phosphorylation, p65 phosphorylation and NF-κB luciferase activity in RAW264.7 cells. And SSa also suppressed RANKL-induced p-38, extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK) phosphorylation. Taken together, these findings suggest that SSa suppresses osteoclastogenesis through inhibiting RANKL-induced p-38, ERK, JNK and NF-κB activation. SSa is a novel agent in the treatment of osteoclast-related diseases, such as osteoporosis.
Collapse
Affiliation(s)
- Chi Zhou
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Wengang Liu
- The 2nd Traditional Chinese Medicine Hospital of Guangdong Province, Guangdong Province, China
| | - Wei He
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Haibin Wang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
| | - Qunqun Chen
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Houpan Song
- Institute of TCM Diagnostic, Hunan University of Chinese Medicine, Changsha, Hunan 410007, China.
| |
Collapse
|
35
|
Anti-inflammatory and antiosteoclastogenic activities of parthenolide on human periodontal ligament cells in vitro. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:546097. [PMID: 25610476 PMCID: PMC4290145 DOI: 10.1155/2014/546097] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 12/08/2014] [Accepted: 12/09/2014] [Indexed: 12/24/2022]
Abstract
Periodontitis is an inflammatory disease that causes osteolysis and tooth loss. It is known that the nuclear factor kappa B (NF-κB) signalling pathway plays a key role in the progression of inflammation and osteoclastogenesis in periodontitis. Parthenolide (PTL), a sesquiterpene lactone extracted from the shoots of Tanacetum parthenium, has been shown to possess anti-inflammatory properties in various diseases. In the study reported herein, we investigated the effects of PTL on the inflammatory and osteoclastogenic response of human periodontal ligament-derived cells (hPDLCs) and revealed the signalling pathways in this process. Our results showed that PTL decreased NF-κB activation, I-κB degradation, and ERK activation in hPDLCs. PTL significantly reduced the expression of inflammatory (IL-1β, IL-6, and TNF-α) and osteoclastogenic (RANKL, OPG, and M-CSF) genes in LPS-stimulated hPDLCs. In addition, PTL attenuated hPDLC-induced osteoclastogenic differentiation of macrophages (RAW264.7 cells), as well as reducing gene expression of osteoclast-related markers in RAW264.7 cells in an hPDLC-macrophage coculture model. Taken together, these results demonstrate the anti-inflammatory and antiosteoclastogenic activities of PTL in hPDLCs in vitro. These data offer fundamental evidence supporting the potential use of PTL in periodontitis treatment.
Collapse
|
36
|
Liu Q, Zhao J, Tan R, Zhou H, Lin Z, Zheng M, Romas E, Xu J, Sims NA. Parthenolide inhibits pro-inflammatory cytokine production and exhibits protective effects on progression of collagen-induced arthritis in a rat model. Scand J Rheumatol 2014; 44:182-91. [DOI: 10.3109/03009742.2014.938113] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
37
|
Abdin AA, Hasby EA. Modulatory effect of celastrol on Th1/Th2 cytokines profile, TLR2 and CD3+ T-lymphocyte expression in a relapsing-remitting model of multiple sclerosis in rats. Eur J Pharmacol 2014; 742:102-112. [PMID: 25218987 DOI: 10.1016/j.ejphar.2014.09.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 08/29/2014] [Accepted: 09/01/2014] [Indexed: 02/05/2023]
Abstract
Multiple sclerosis (MS) is an autoimmune inflammatory demyelinating disease of brain and spinal cord that has an increasing incidence worldwide and classically presents in a relapsing-remitting form. This study was designed to induce a relapsing-remitting model of experimental autoimmune encephalomyelitis (EAE) to investigate the possible modulatory effect of celastrol on Th1/Th2 cytokines profile, immunohistochemical expression of TLR2, and CD3+T-lymphocytic count. Eighteen female Sprague Dawley rats were divided into 3 groups; where group I served as normal control, group II as EAE+vehicle, and group III as EAE treated by celastrol (1mg/kg/day, i.p.) started at 10th day till 42nd day post-immunization. The clinical score of rats in group II (EAE+vehicle) was relapsed after the re-challenge at the 35th day post-immunization and exhibited significant positive association with serum TNF-α, NF-κB expression and nitrites levels in brain and spinal cord, and CD3+ T-lymphocytic count in brain tissues while serum IL-10 showed significant negative association. Treatment of EAE by celastrol caused amelioration of the clinical score and inhibited the relapse. It caused significant shift in cytokines profile from Th1 by decrease in TNF-α towards Th2 pattern by increase in IL-10. Moreover, celastrol treatment resulted in significant reduction in NF-κB expression, nitrites levels, as well as immunohistochemical expression of TLR2 and CD3+ T-lymphocytic count. The beneficial effect of celastrol was further confirmed histopathologically by reduction in H&E score. Collectively, these results provide a promising pre-clinical evidence and conclusion about use of celastrol in treatment of multiple sclerosis that must be accessed in further clinical studies.
Collapse
MESH Headings
- Animals
- Brain/drug effects
- Brain/immunology
- Brain/pathology
- CD3 Complex/metabolism
- Cytokines/metabolism
- Encephalomyelitis, Autoimmune, Experimental/drug therapy
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Female
- Immunologic Factors/pharmacology
- Interleukin-10/blood
- Lymphocyte Count
- Multiple Sclerosis, Relapsing-Remitting/drug therapy
- Multiple Sclerosis, Relapsing-Remitting/immunology
- Multiple Sclerosis, Relapsing-Remitting/pathology
- NF-kappa B/metabolism
- Nitrites/metabolism
- Pentacyclic Triterpenes
- Phytotherapy
- Plants, Medicinal
- Rats
- Rats, Sprague-Dawley
- Spinal Cord/drug effects
- Spinal Cord/immunology
- Spinal Cord/pathology
- T-Lymphocyte Subsets/drug effects
- T-Lymphocyte Subsets/immunology
- Th1 Cells/drug effects
- Th1 Cells/immunology
- Th2 Cells/drug effects
- Th2 Cells/immunology
- Toll-Like Receptor 2/metabolism
- Tripterygium
- Triterpenes/pharmacology
- Tumor Necrosis Factor-alpha/blood
Collapse
Affiliation(s)
- Amany A Abdin
- Department of Pharmacology, Faculty of Medicine, Tanta University, Al-Geish Street, Postal No. 31527, Egypt.
| | - Eiman A Hasby
- Department of Pathology, Faculty of Medicine, Tanta University, Egypt
| |
Collapse
|
38
|
Li Y, Zhang C, Zhou X, Wang H, Mao Y, Wang X. Parthenolide inhibits polyethylene particle-induced mouse calvarial osteolysis in vivo. J Surg Res 2013; 187:176-81. [PMID: 24239147 DOI: 10.1016/j.jss.2013.10.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Revised: 10/07/2013] [Accepted: 10/15/2013] [Indexed: 11/16/2022]
Abstract
BACKGROUND Periprosthetic osteolysis and aseptic loosening (AL) after joint arthroplasty are serious problems encountered after an implant surgery. AL is possibly caused by osteolysis or local bone resorption induced by implant-derived wear particles. However, effective treatments for osteoclastic bone resorption and AL mediated by wear particles have not been developed except surgical revision. Therefore, a new strategy should be developed to improve osteolysis associated with AL via pharmacologic intervention. MATERIALS AND METHODS The effects of parthenolide (PTN), a nuclear factor-kappa B inhibitor and sesquiterpene lactone, on polyethylene particle-induced osteolysis in vivo were investigated using a mouse calvarial model. Bone volume/tissue volume (BV/TV, %), bone surface/bone volume (BS/BV, 1/mm), osteoclast number per bone perimeter (N.Oc/B.Pm, /mm), and eroded surface per bone surface (ES/BS, %) were determined by micro-computed tomography and histologic analyses. RESULTS Severe bone resorption and rapid osteoclast formation were found in the cranium of the subjects after polyethylene particles were implanted. ES/BS (P < 0.001), N.Oc/B.Pm (group III, P < 0.05; group IV, P < 0.001), and BS/BV (P < 0.001) increased compared with those in group II; BS/BV (P < 0.001) decreased in group II but was improved in groups III and IV, which were treated with PTN. No significant difference in these parameters was observed among groups I, III, and IV. CONCLUSIONS PTN possibly elicited therapeutic effects on osteolysis induced by wear particles, indicating that PTN could be used as a therapeutic agent of AL induced by wear particles.
Collapse
Affiliation(s)
- Yuwei Li
- Department of Orthopedics, Luohe Central Hospital, Luohe Medical College, Luohe, Henan province, People's Republic of China
| | - Chao Zhang
- Department of Orthopedics, Kunhua Hospital, Kunming Medical College, Kunming, Yunnan province, People's Republic of China
| | - Xiaoxiao Zhou
- Department of Orthopedics, Taizhou Central Hospital, Wenzhou Medical College, Taizhou, Zhejiang province, People's Republic of China.
| | - Haijiao Wang
- Department of Orthopedics, Luohe Central Hospital, Luohe Medical College, Luohe, Henan province, People's Republic of China
| | - Yuanqin Mao
- Department of Orthopedics, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, People's Republic of China
| | - Xiaoqing Wang
- Department of Orthopedics, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, People's Republic of China
| |
Collapse
|
39
|
Liu Q, Wu H, Chim SM, Zhou L, Zhao J, Feng H, Wei Q, Wang Q, Zheng MH, Tan RX, Gu Q, Xu J, Pavlos N, Tickner J, Xu J. SC-514, a selective inhibitor of IKKβ attenuates RANKL-induced osteoclastogenesis and NF-κB activation. Biochem Pharmacol 2013; 86:1775-83. [PMID: 24091016 DOI: 10.1016/j.bcp.2013.09.017] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 09/19/2013] [Accepted: 09/19/2013] [Indexed: 01/04/2023]
Abstract
The RANKL-induced NF-κB signaling pathway is essential for osteoclastogenesis. This study aims to identify specific inhibitors targeting NF-κB signaling pathway, which might serve as useful small molecule inhibitors for the treatment and alleviation of osteoclast-mediated bone lytic diseases. By screening for compounds that selectively inhibit RANKL-induced NF-κB activation in RAW264.7 cells as monitored by luciferase reporter gene assay, we identified SC-514, a specific inhibitor of IKKβ, as a candidate compound targeting osteoclastogenesis. SC-514 dose-dependently inhibits RANKL-induced osteoclastogenesis with an IC50 of <5μM. At high concentrations, SC-514 (≥12.5μM) induced apoptosis and caspase 3 activation in RAW264.7 cells. Moreover, SC-514 specifically suppressed NF-κB activity owing to delayed RANKL-induced degradation of IκBα and inhibition of p65 nuclear translocation. Taken together, our results indicate that SC-514 impairs RANKL-induced osteoclastogenesis and NF-κB activation. Thus, targeting IKKβ by SC-514 presents as a potential treatment for osteoclast-related disorders such as osteoporosis and cancer-induced bone loss.
Collapse
Affiliation(s)
- Qian Liu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Guangxi Medical University, Guangxi 530021, China; School of Pathology and Laboratory Medicine, The University of Western Australia, Crawley 6009, Western Australia, Australia; Centre for Orthopaedic Research, School of Surgery, The University of Western Australia, Crawley 6009, Western Australia, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Fu YX, Gu JH, Zhang YR, Tong XS, Zhao HY, Yuan Y, Liu XZ, Bian JC, Liu ZP. Influence of osteoprotegerin on differentiation, activation, and apoptosis of Gaoyou duck embryo osteoclasts in vitro. Poult Sci 2013; 92:1613-20. [PMID: 23687158 DOI: 10.3382/ps.2012-02756] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
ABSTRACT The aim of this study was to determine the influence of osteoprotegerin (OPG) on the differentiation, activation, and apoptosis of Gaoyou duck embryo osteoclasts cultured in vitro. Bone marrow cells were harvested from 23-d-old Gaoyou duck embryos and cultured in the presence of different concentrations of OPG (group A: no added factors, group B: 30 ng/mL of OPG, and group C: 100 ng/mL of OPG). Tartrate-resistant acid phosphatase (TRAP) staining, pit formation assay, and co-staining with tetramethylrhodamine isothiocyanate (TRITC)-conjugated phalloidin and Hoechst 33258 were all performed to determine the number of TRAP-positive cells, bone resorption activity, and the level of apoptosis, respectively. The number of TRAP-positive cells and the net expansion of pit formations area peaked on d 7 of culture in all 3 groups. The number of osteoclasts and the total volume of pit formations in OPG-treated groups were significantly lower compared with group A (P < 0.05). At each time point, the net expansion of pit formations area correlated with the number of TRAP-positive cells. The OPG inhibited the de novo formation of filamentous (F)-actin rings and promoted the disruption of existing F-actin rings in mature osteoclasts. In addition, OPG induced apoptosis in mature osteoclasts, as demonstrated by morphological changes in the nuclei. In osteoclast precursors, OPG inhibited differentiation and downregulated the formation of F-actin rings. In mature osteoclasts, OPG suppressed activation and enhanced the development of apoptosis, observed as a decrease in the number of TRAP-positive cells, the disruption of F-actin rings and morphological changes of the nuclei.
Collapse
Affiliation(s)
- Ying-Xiao Fu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, P.R. China
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Cheon YH, Song MJ, Kim JY, Kwak SC, Park JH, Lee CH, Kim JJ, Kim JY, Choi MK, Oh J, Kim YC, Yoon KH, Kwak HB, Lee MS. Costunolide Inhibits Osteoclast Differentiation by Suppressing c-Fos Transcriptional Activity. Phytother Res 2013; 28:586-92. [DOI: 10.1002/ptr.5034] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 05/21/2013] [Accepted: 06/10/2013] [Indexed: 02/06/2023]
Affiliation(s)
- Yoon-Hee Cheon
- Department of Anatomy; Wonkwang University; 460 Iksandae-ro Iksan Jeonbuk 570-749 Korea
| | - Mi Jin Song
- Department of Anatomy; Wonkwang University; 460 Iksandae-ro Iksan Jeonbuk 570-749 Korea
| | - Ju-Young Kim
- Department of Anatomy; Wonkwang University; 460 Iksandae-ro Iksan Jeonbuk 570-749 Korea
| | - Seong Cheoul Kwak
- Department of Anatomy; Wonkwang University; 460 Iksandae-ro Iksan Jeonbuk 570-749 Korea
| | - Ju Ha Park
- Department of Anatomy; Wonkwang University; 460 Iksandae-ro Iksan Jeonbuk 570-749 Korea
| | - Chang Hoon Lee
- Division of Rheumatology, Department of Internal Medicine; Wonkwang University; 460 Iksandae-ro Iksan Jeonbuk 570-749 Korea
| | - Jeong Joong Kim
- Department of Anatomy; Wonkwang University; 460 Iksandae-ro Iksan Jeonbuk 570-749 Korea
- Institute for Skeletal Disease; Wonkwang University; 460 Iksandae-ro Iksan Jeonbuk 570-749 Korea
| | - Jung Young Kim
- Department of Anatomy; Wonkwang University; 460 Iksandae-ro Iksan Jeonbuk 570-749 Korea
| | - Min Kyu Choi
- Department of Anatomy; Wonkwang University; 460 Iksandae-ro Iksan Jeonbuk 570-749 Korea
- Institute for Skeletal Disease; Wonkwang University; 460 Iksandae-ro Iksan Jeonbuk 570-749 Korea
- Institute for Environmental Science; Wonkwang University; 460 Iksandae-ro Iksan Jeonbuk 570-749 Korea
| | - Jaemin Oh
- Department of Anatomy; Wonkwang University; 460 Iksandae-ro Iksan Jeonbuk 570-749 Korea
- Institute for Skeletal Disease; Wonkwang University; 460 Iksandae-ro Iksan Jeonbuk 570-749 Korea
| | - Youn-Chul Kim
- Standardized Material Bank for New Botanical Drugs, College of Pharmacy; Wonkwang University; 460 Iksandae-ro Iksan Jeonbuk 570-749 Korea
| | - Kwon-Ha Yoon
- Radiology, School of Medicine; Wonkwang University; 460 Iksandae-ro Iksan Jeonbuk 570-749 Korea
| | - Han Bok Kwak
- Department of Anatomy; Wonkwang University; 460 Iksandae-ro Iksan Jeonbuk 570-749 Korea
- Institute for Skeletal Disease; Wonkwang University; 460 Iksandae-ro Iksan Jeonbuk 570-749 Korea
| | - Myeung Su Lee
- Division of Rheumatology, Department of Internal Medicine; Wonkwang University; 460 Iksandae-ro Iksan Jeonbuk 570-749 Korea
- Institute for Skeletal Disease; Wonkwang University; 460 Iksandae-ro Iksan Jeonbuk 570-749 Korea
| |
Collapse
|
42
|
Gao A, Kantarci A, Herrera BS, Gao H, Van Dyke TE. A critical role for suppressors of cytokine signaling 3 in regulating LPS-induced transcriptional activation of matrix metalloproteinase-13 in osteoblasts. PeerJ 2013; 1:e51. [PMID: 23638389 PMCID: PMC3628613 DOI: 10.7717/peerj.51] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 02/21/2013] [Indexed: 01/16/2023] Open
Abstract
Suppressor of cytokine signaling 3 (SOCS3) is a key regulator of cytokine signaling in macrophages and T cells. Although SOCS3 seems to contribute to the balance between the pro-inflammatory actions of IL-6 family of cytokines and anti-inflammatory signaling of IL-10 by negatively regulating gp130/Jak/Stat3 signal transduction, how and the molecular mechanisms whereby SOCS3 controls the downstream impact of TLR4 are largely unknown and current data are controversial. Furthermore, very little is known regarding SOCS3 function in cells other than myeloid cells and T cells. Our previous study demonstrates that SOCS3 is expressed in osteoblasts and functions as a critical inhibitor of LPS-induced IL-6 expression. However, the function of SOCS3 in osteoblasts remains largely unknown. In the current study, we report for the first time that LPS stimulation of osteoblasts induces the transcriptional activation of matrix metalloproteinase (MMP)-13, a central regulator of bone resorption. Importantly, we demonstrate that SOCS3 overexpression leads to a significant decrease of LPS-induced MMP-13 expression in both primary murine calvariae osteoblasts and a mouse osteoblast-like cell line, MC3T3-E1. Our findings implicate SOCS3 as an important regulatory mediator in bone inflammatory diseases by targeting MMP-13.
Collapse
Affiliation(s)
- Anqi Gao
- Department of Periodontology, The Forsyth Institute , Cambridge , MA , United States
| | | | | | | | | |
Collapse
|
43
|
Tang JR, Michaelis KA, Nozik-Grayck E, Seedorf GJ, Hartman-Filson M, Abman SH, Wright CJ. The NF-κB inhibitory proteins IκBα and IκBβ mediate disparate responses to inflammation in fetal pulmonary endothelial cells. THE JOURNAL OF IMMUNOLOGY 2013; 190:2913-23. [PMID: 23418625 DOI: 10.4049/jimmunol.1202670] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Exposure to intrauterine inflammation impairs lung growth but paradoxically protects the neonatal pulmonary vasculature from hyperoxic injury. The mechanisms mediating these contradictory effects are unknown. The objective is to identify the role of NF-κB in mediating cytoprotective and proinflammatory responses to inflammation in the fetal pulmonary endothelium. In newborn rats exposed to intra-amniotic LPS, we found increased expression of the NF-κB target gene manganese superoxide dismutase (MnSOD) in the pulmonary endothelium. Supporting these in vivo findings, LPS induced NF-κB activation and MnSOD expression in isolated fetal pulmonary arterial endothelial cells. In addition, LPS exposure caused apoptosis and suppressed cellular growth and induced P-selectin expression. LPS-induced NF-κB activation that proceeded through specific isoforms of the inhibitory protein IκB mediated these diverse responses; NF-κB signaling through IκBα degradation resulted in MnSOD upregulation and preserved cell growth, whereas NF-κB signaling through IκBβ degradation mediated apoptosis and P-selectin expression. These findings suggest that selective inhibition of NF-κB activation that results from IκBβ degradation preserves the enhanced antioxidant defense and protects the developing pulmonary vascular endothelium from ongoing inflammatory injury.
Collapse
Affiliation(s)
- Jen-Ruey Tang
- Department of Pediatrics, Pediatric Heart Lung Center, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Xue F, Zhang C, He Z, Ding L, Xiao H. Analysis of critical molecules and signaling pathways in osteoarthritis and rheumatoid arthritis. Mol Med Rep 2012; 7:603-7. [PMID: 23232804 DOI: 10.3892/mmr.2012.1224] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2012] [Accepted: 10/22/2012] [Indexed: 11/05/2022] Open
Abstract
Osteoarthritis (OA) and rheumatoid arthritis (RA) are the most prevalent forms of arthritis in the elderly. This study aimed to explore the molecular mechanisms of these diseases and identify underlying therapeutic targets. Using GSE1919 microarray data sets downloaded from the Gene Expression Omnibus database, we screened differentially expressed genes (DEGs) in OA and RA cells. The underlying molecular mechanisms of these crucial genes were investigated by Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis. Small molecule expression and SNP analysis were also conducted by searching CMap and dbSNP databases. More than 320 genes changed in the arthritic cells and there were only 196 DEGs between OA and RA. OA and RA activated the classic mitogen-activated protein kinase signaling pathway, insulin signaling pathway, antigen processing and presentation and intestinal immune network for IgA production. Graft-versus-host disease and autoimmune thyroid disease-related pathways were also activated in OA and RA. Parthenolide and alsterpaullone may be treatments for OA and RA and insulin-like growth factor 1, collagen α2(I) chain and special AT-rich sequence-binding protein 2 may be critical SNP molecules in arthritis. Our findings shed new light on the common molecular mechanisms of OA and RA and may provide theoretical support for further clinical therapeutic studies.
Collapse
Affiliation(s)
- Feng Xue
- Department of Orthopaedics, Fengxian Central Hospital, Shanghai 201400, P.R. China
| | | | | | | | | |
Collapse
|
45
|
Dietary supplementation with geranylgeraniol suppresses lipopolysaccharide-induced inflammation via inhibition of nuclear factor-κB activation in rats. Eur J Nutr 2012; 52:1191-9. [PMID: 22847643 DOI: 10.1007/s00394-012-0429-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Accepted: 07/16/2012] [Indexed: 10/28/2022]
Abstract
PURPOSE The isoprenoid geranylgeraniol (GGOH) inhibits nuclear factor-kappa B (NF-κB) activation in the liver, yet the mechanism remains unclear. We investigated the modulation and inhibition of lipopolysaccharide (LPS)-induced NF-κB signaling in the liver of rats fed a GGOH-supplemented diet. METHODS Rats were fed a diet supplemented with or without GGOH for 10 days. Rats were then intraperitoneally injected with 0.5 mg/kg LPS or vehicle (sterilized saline) and fasted for 18 h. Plasma levels of the inflammatory cytokines tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6, and the liver damage indicators alanine and aspartate aminotransferases (ALT and AST) were assessed. Liver mRNA and proteins were assayed for changes in NF-κB target genes and signal transduction genes. RESULTS Rats fed a high-dose, GGOH-supplemented diet showed significantly lower levels of plasma inflammatory cytokines and ALT and AST activities. In the liver, GGOH significantly suppressed NF-κB activation and mRNA expression of its pro-inflammatory target genes. Furthermore, GGOH supplementation substantially suppressed mRNA expression of signal transducer genes upstream of the IκB kinase complex. Western blotting of liver extracts further demonstrated the substantial decrease in total IL-1 receptor-associated kinase 1 (IRAK1) and TNF receptor-associated factor 6 (TRAF6), leading to lower signal transduction and inhibition of NF-κB after LPS. CONCLUSION A 10-day, high-dose, GGOH-supplemented diet was sufficient to inhibit LPS-induced inflammation and activation of NF-κB in rat livers. GGOH significantly modulated NF-κB signaling molecules, inhibiting its signal transduction and activation in the liver, thus protecting against liver damage.
Collapse
|
46
|
Sahoo GC, Dikhit MR, Rani M, Ansari MY, Jha C, Rana S, Das P. Analysis of sequence, structure of GAPDH of Leishmania donovani and its interactions. J Biomol Struct Dyn 2012; 31:258-75. [PMID: 22830998 DOI: 10.1080/07391102.2012.698189] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Drug resistance acquired by Leishmania donovani (Ldv) is a major problem in the treatment and control of visceral leishmaniasis (VL). Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), a major glycolytic enzyme has been targeted as is found in other protozoan which cause diseases like sleeping sickness. GAPDH gene of Ldv (AG83 strain) was amplified, sequenced, and modeled on the basis of crystal structure of Leishmania mexicana. The model of the Ldv GAPDH exhibited NAD-binding domain with Rossmann folding. Virtual screening of different experimentally proved compounds with the crystal and the modeled structures of GAPDH of Leishmania strains revealed diverse binding affinities of different compounds. Comparison of binding affinities (based on different programs) of compounds revealed that discovery studio v2.5 (Ligandfit) was able to predict the most hit compounds, the best hit compounds against GAPDH of Leishmania strains are hydrazine, vetrazine, and benzyl carbazate. It is predicted that patients suffering from both VL and cardiac disorders (atrial fibrillation) may benefit if they are treated with warfarin in conjunction with first-line antileishmanial therapies such as miltefosine and AmBisome.
Collapse
Affiliation(s)
- Ganesh Chandra Sahoo
- BioMedical Informatics Center, Rajendra Memorial Research Institute of Medical Sciences, Agam Kuan, 800007 Patna, India.
| | | | | | | | | | | | | |
Collapse
|
47
|
King TJ, Georgiou KR, Cool JC, Scherer MA, Ang ESM, Foster BK, Xu J, Xian CJ. Methotrexate chemotherapy promotes osteoclast formation in the long bone of rats via increased pro-inflammatory cytokines and enhanced NF-κB activation. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 181:121-9. [PMID: 22642908 DOI: 10.1016/j.ajpath.2012.03.037] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Revised: 02/27/2012] [Accepted: 03/20/2012] [Indexed: 11/18/2022]
Abstract
Cancer chemotherapy with methotrexate (MTX) is known to cause bone loss. However, the underlying mechanisms remain unclear. This study investigated the potential role of MTX-induced pro-inflammatory cytokines and activation of NF-κB in the associated osteoclastogenesis in rats. MTX (0.75 mg/kg per day) was administered for 5 days, and bone and bone marrow specimens were collected on days 6, 9, and 14. Compared with a normal control, MTX increased the density of osteoclasts within the metaphyseal bone and the osteoclast formation potential of marrow cells on day 9. RT-PCR analysis of mRNA expression for pro-osteoclastogenic cytokines in the metaphysis indicated that, although the receptor activator of NF-κB ligand/osteoprotegerin axis was unaffected, expression of tumor necrosis factor (TNF)-α, IL-1, and IL-6 increased on day 9. Enzyme-linked immunosorbent assay analysis of plasma showed increased levels of TNF-α on day 6 and of IL-6 on day 14. Plasma from treated rats induced osteoclast formation from normal bone marrow cells, which was attenuated by a TNF-α-neutralizing antibody. Indicative of a role for NF-κB signaling, plasma on day 6 increased NF-κB activation in RAW(264.7) cells, and plasma-induced osteoclastogenesis was abolished in the presence of the NF-κB inhibitor, parthenolide. Our results demonstrate mechanisms for MTX-induced osteoclastogenesis and show that MTX induces osteoclast differentiation by generating a pro-osteoclastogenic environment in both bone and the circulation, specifically with increased TNF-α levels and activation of NF-κB.
Collapse
Affiliation(s)
- Tristan J King
- Sansom Institute and the School of Pharmacy and Medical Science, the University of South Australia, Adelaide, Australia
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Ang ESM, Pavlos NJ, Chim SM, Feng HT, Scaife RM, Steer JH, Zheng MH, Xu J. Paclitaxel inhibits osteoclast formation and bone resorption via influencing mitotic cell cycle arrest and RANKL-induced activation of NF-κB and ERK. J Cell Biochem 2012; 113:946-55. [DOI: 10.1002/jcb.23423] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
49
|
Zhou X, Zhang C, Wang X, An B, Zhang P, Zhu Z. Berberine inhibits lipopolysaccharide- and polyethylene particle-induced mouse calvarial osteolysis in vivo. J Surg Res 2011; 173:e47-52. [PMID: 22261583 DOI: 10.1016/j.jss.2011.11.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Revised: 10/27/2011] [Accepted: 11/01/2011] [Indexed: 10/15/2022]
Abstract
BACKGROUND Wear particle-induced osteolysis could lead to the aseptic loosening of implants. Studies have suggested that endotoxins, such as lipopolysaccharides (LPS), may be the primary causes of wear particle-mediated osteolysis, and that osteolysis may originate from subclinical levels of bacterial infection. However, effective therapies against wear particles and gram-negative bacterial or LPS-induced bone resorption are limited. MATERIALS AND METHODS In the current study, the effect of berberine on LPS- and polyethylene (PE) particle-induced osteolysis in vivo was investigated using a mouse calvarial model. Osteoclast number per bone perimeter and eroded surface per bone surface were measured. RESULTS Berberine (10 mg/kg), injected either simultaneously with LPS or 3 d after LPS (25 mg/kg) treatment, blocked LPS-induced osteoclast recruitment and bone resorption in the mouse calvarial model. A daily single-dose of berberine (10 mg/kg), injected either simultaneously with PE particles or 4 d after treatment with PE particles, blocked PE particle-induced osteoclast recruitment and bone resorption. Berberine treatment markedly decreased LPS and PE particle-induced osteoclast recruitment and bone resorption in the murine calvarial model. CONCLUSION These results suggest that berberine may have therapeutic effect for osteolysis induced by wear particles and LPS in gram-negative bacteria.
Collapse
Affiliation(s)
- Xiaoxiao Zhou
- Department of Orthopedics, Taizhou Central Hospital, Taizhou, Zhejiang Province, People's Republic of China
| | | | | | | | | | | |
Collapse
|
50
|
Leister KP, Huang R, Goodwin BL, Chen A, Austin CP, Xia M. Two High Throughput Screen Assays for Measurement of TNF-α in THP-1 Cells. CURRENT CHEMICAL GENOMICS 2011; 5:21-9. [PMID: 21643507 PMCID: PMC3106354 DOI: 10.2174/1875397301105010021] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Revised: 03/23/2011] [Accepted: 03/26/2011] [Indexed: 11/22/2022]
Abstract
Tumor Necrosis Factor-α (TNF-α), a secreted cytokine, plays an important role in inflammatory diseases and immune disorders, and is a potential target for drug development. The traditional assays for detecting TNF-α, enzyme linked immunosorbent assay (ELISA) and radioimmunoassay, are not suitable for the large size compound screens. Both assays suffer from a complicated protocol, multiple plate wash steps and/or excessive radioactive waste. A simple and quick measurement of TNF-α production in a cell based assay is needed for high throughput screening to identify the lead compounds from the compound library. We have developed and optimized two homogeneous TNF-α assays using the HTRF (homogeneous time resolved fluorescence) and AlphaLISA assay formats. We have validated the HTRF based TNF-α assay in a 1536-well plate format by screening a library of 1280 pharmacologically active compounds. The active compounds identified from the screen were confirmed in the AlphaLISA TNF-α assay using a bead-based technology. These compounds were also confirmed in a traditional ELISA assay. From this study, several beta adrenergic agonists have been identified as TNF-α inhibitors. We also identified several novel inhibitors of TNF-α, such as BTO-1, CCG-2046, ellipticine, and PD 169316. The results demonstrated that both homogeneous TNF-α assays are robust and suitable for high throughput screening.
Collapse
Affiliation(s)
- Kristin P Leister
- NIH Chemical Genomics Center, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|