1
|
Cárdenas-Escudero J, Galán-Madruga D, Cáceres JO. Laser-Induced Breakdown Spectroscopy as an Accurate Forensic Tool for Bone Classification and Individual Reassignment. APPLIED SPECTROSCOPY 2025; 79:241-259. [PMID: 39360518 DOI: 10.1177/00037028241277897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
This article provides a detailed discussion of the evidence available to date on the application of laser-induced breakdown spectroscopy (LIBS) and supervised classification methods for the individual reassignment of commingled bone remains. Specialized bone chemistry studies have demonstrated the suitability of bone elemental composition as a distinct individual identifier. Given the widely documented ability of the LIBS technique to provide elemental emission spectra that are considered elemental fingerprints of the samples analyzed, the analytical potential of this technique has been assessed for the investigation of the contexts of commingled bone remains for their individual reassignment. The LIBS bone analysis consists of the direct ablation of micrometric portions of bone samples, either on their surface or within their internal structure. To produce reliable, accurate, and robust bone classifications, however, the available evidence suggests that LIBS spectral information must be processed by appropriate methods. When comparing the performance of seven different supervised classification methods using spectrochemical LIBS data for individual reassociation, those employing artificial intelligence-based algorithms produce analytically conclusive results, concretely individual reassociations with 100% accuracy, sensitivity, and robustness. Compared to LIBS, other techniques used for the purpose of interest exhibit limited performance in terms of robustness, sensitivity, and accuracy, as well as variations in these results depending on the type of bones used in the classification. The available literature supports the suitability of the LIBS technique for reliable individual reassociation of bone remains in a fast, simple, and cost-effective manner without the need for complicated sample processing.
Collapse
Affiliation(s)
- Jafet Cárdenas-Escudero
- Laser Chemistry Research Group, Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, 28040 Madrid, Spain
- Analytical Chemistry Department, FCNET, Universidad de Panamá, Ciudad Universitaria, Estafeta Universitaria, 3366, Panama City, Panama
| | - David Galán-Madruga
- National Centre for Environmental Health, Carlos III Health Institute, 28220 Majadahonda, Madrid, Spain
| | - Jorge O Cáceres
- Laser Chemistry Research Group, Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, 28040 Madrid, Spain
| |
Collapse
|
2
|
Castoldi NM, Pickering E, Sansalone V, Cooper D, Pivonka P. Bone turnover and mineralisation kinetics control trabecular BMDD and apparent bone density: insights from a discrete statistical bone remodelling model. Biomech Model Mechanobiol 2024; 23:893-909. [PMID: 38280951 PMCID: PMC11101591 DOI: 10.1007/s10237-023-01812-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 12/22/2023] [Indexed: 01/29/2024]
Abstract
The mechanical quality of trabecular bone is influenced by its mineral content and spatial distribution, which is controlled by bone remodelling and mineralisation. Mineralisation kinetics occur in two phases: a fast primary mineralisation and a secondary mineralisation that can last from several months to years. Variations in bone turnover and mineralisation kinetics can be observed in the bone mineral density distribution (BMDD). Here, we propose a statistical spatio-temporal bone remodelling model to study the effects of bone turnover (associated with the activation frequency Ac . f ) and mineralisation kinetics (associated with secondary mineralisation T sec ) on BMDD. In this model, individual basic multicellular units (BMUs) are activated discretely on trabecular surfaces that undergo typical bone remodelling periods. Our results highlight that trabecular BMDD is strongly regulated by Ac . f and T sec in a coupled way. Ca wt% increases with lower Ac . f and short T sec . For example, aAc . f = 4 BMU/year/mm3 and T sec = 8 years result in a mean Ca wt% of 25, which is in accordance with Ca wt% values reported in quantitative backscattered electron imaging (qBEI) experiments. However, for lower Ac . f and shorter T sec (from 0.5 to 4 years) one obtains a high Ca wt% and a very narrow skew BMDD to the right. This close link between Ac . f and T sec highlights the importance of considering both characteristics to draw meaningful conclusion about bone quality. Overall, this model represents a new approach to modelling healthy and diseased bone and can aid in developing deeper insights into disease states like osteoporosis.
Collapse
Affiliation(s)
- Natalia M Castoldi
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, Australia.
- UMR 8208, MSME, Univ Paris Est Creteil, Univ Gustave Eiffel, CNRS, Créteil, France.
| | - Edmund Pickering
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, Australia
- Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, Australia
| | - Vittorio Sansalone
- UMR 8208, MSME, Univ Paris Est Creteil, Univ Gustave Eiffel, CNRS, Créteil, France
| | - David Cooper
- Department of Anatomy Physiology and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Peter Pivonka
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, Australia.
| |
Collapse
|
3
|
Wells GA, Hsieh SC, Zheng C, Peterson J, Tugwell P, Liu W. Risedronate for the primary and secondary prevention of osteoporotic fractures in postmenopausal women. Cochrane Database Syst Rev 2022; 5:CD004523. [PMID: 35502787 PMCID: PMC9062986 DOI: 10.1002/14651858.cd004523.pub4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND Osteoporosis is an abnormal reduction in bone mass and bone deterioration leading to increased fracture risk. Risedronate belongs to the bisphosphonate class of drugs which act to inhibit bone resorption by interfering with the activity of osteoclasts. This is an update of a Cochrane Review that was originally published in 2003. OBJECTIVES We assessed the benefits and harms of risedronate in the primary and secondary prevention of osteoporotic fractures for postmenopausal women at lower and higher risk for fractures, respectively. SEARCH METHODS With broader and updated strategies, we searched the Cochrane Central Register of Control Trials (CENTRAL), MEDLINE and Embase. A grey literature search, including the online databases ClinicalTrials.gov, International Clinical Trials Registry Platform (ICTRP), and drug approval agencies, as well as bibliography checks of relevant systematic reviews was also performed. Eligible trials published between 1966 to 24 March 2021 were identified. SELECTION CRITERIA We included randomised controlled trials that assessed the benefits and harms of risedronate in the prevention of fractures for postmenopausal women. Participants must have received at least one year of risedronate, placebo or other anti-osteoporotic drugs, with or without concurrent calcium/vitamin D. Major outcomes were clinical vertebral, non-vertebral, hip and wrist fractures, withdrawals due to adverse events, and serious adverse events. In the interest of clinical relevance and applicability, we classified a study as secondary prevention if its population fulfilled more than one of the following hierarchical criteria: a diagnosis of osteoporosis, a history of vertebral fractures, low bone mineral density (BMD)T score ≤ -2.5, and age ≥ 75 years old. If none of these criteria was met, the study was considered to be primary prevention. DATA COLLECTION AND ANALYSIS We used standard methodology expected by Cochrane. We pooled the relative risk (RR) of fractures using a fixed-effect model based on the expectation that the clinical and methodological characteristics of the respective primary and secondary prevention studies would be homogeneous, and the experience from the previous review suggesting that there would be a small number of studies. The base case included the data available for the longest treatment period in each placebo-controlled trial and a >15% relative change was considered clinically important. The main findings of the review were presented in summary of findings tables, using the GRADE approach. In addition, we looked at benefit and harm comparisons between different dosage regimens for risedronate and between risedronate and other anti-osteoporotic drugs. MAIN RESULTS Forty-three trials fulfilled the eligibility criteria, among which 33 studies (27,348 participants) reported data that could be extracted and quantitatively synthesized. We had concerns about particular domains of risk of bias in each trial. Selection bias was the most frequent concern, with only 24% of the studies describing appropriate methods for both sequence generation and allocation concealment. Fifty per cent and 39% of the studies reporting benefit and harm outcomes, respectively, were subject to high risk. None of the studies included in the quantitative syntheses were judged to be at low risk of bias in all seven domains. The results described below pertain to the comparisons for daily risedronate 5 mg versus placebo which reported major outcomes. Other comparisons are described in the full text. For primary prevention, low- to very low-certainty evidence was collected from four studies (one to two years in length) including 989 postmenopausal women at lower risk of fractures. Risedronate 5 mg/day may make little or no difference to wrist fractures [RR 0.48 ( 95% CI 0.03 to 7.50; two studies, 243 participants); absolute risk reduction (ARR) 0.6% fewer (95% CI 1% fewer to 7% more)] and withdrawals due to adverse events [RR 0.67 (95% CI 0.38 to 1.18; three studies, 748 participants); ARR 2% fewer (95% CI 5% fewer to 1% more)], based on low-certainty evidence. However, its preventive effects on non-vertebral fractures and serious adverse events are not known due to the very low-certainty evidence. There were zero clinical vertebral and hip fractures reported therefore the effects of risedronate for these outcomes are not estimable. For secondary prevention, nine studies (one to three years in length) including 14,354 postmenopausal women at higher risk of fractures provided evidence. Risedronate 5 mg/day probably prevents non-vertebral fractures [RR 0.80 (95% CI 0.72 to 0.90; six studies, 12,173 participants); RRR 20% (95% CI 10% to 28%) and ARR 2% fewer (95% CI 1% fewer to 3% fewer), moderate certainty], and may reduce hip fractures [RR 0.73 (95% CI 0.56 to 0.94); RRR 27% (95% CI 6% to 44%) and ARR 1% fewer (95% CI 0.2% fewer to 1% fewer), low certainty]. Both of these effects are probably clinically important. However, risedronate's effects are not known for wrist fractures [RR 0.64 (95% CI 0.33 to 1.24); three studies,1746 participants); ARR 1% fewer (95% CI 2% fewer to 1% more), very-low certainty] and not estimable for clinical vertebral fractures due to zero events reported (low certainty). Risedronate results in little to no difference in withdrawals due to adverse events [RR 0.98 (95% CI 0.90 to 1.07; eight studies, 9529 participants); ARR 0.3% fewer (95% CI 2% fewer to 1% more); 16.9% in risedronate versus 17.2% in control, high certainty] and probably results in little to no difference in serious adverse events [RR 1.00 (95% CI 0.94 to 1.07; six studies, 9435 participants); ARR 0% fewer (95% CI 2% fewer to 2% more; 29.2% in both groups, moderate certainty). AUTHORS' CONCLUSIONS This update recaps the key findings from our previous review that, for secondary prevention, risedronate 5 mg/day probably prevents non-vertebral fracture, and may reduce the risk of hip fractures. We are uncertain on whether risedronate 5mg/day reduces clinical vertebral and wrist fractures. Compared to placebo, risedronate probably does not increase the risk of serious adverse events. For primary prevention, the benefit and harms of risedronate were supported by limited evidence with high uncertainty.
Collapse
Affiliation(s)
- George A Wells
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Canada
| | - Shu-Ching Hsieh
- Cardiovascular Research Methods Center, University of Ottawa Heart Institute, Ottawa, Canada
| | - Carine Zheng
- University of Ottawa Heart Institute, Ottawa, Canada
- Statistics Canada, Ottawa, Canada
| | - Joan Peterson
- Clinical Epidemiology Unit, Ottawa Civic Hospital / Loeb Research Institute, Ottawa, Canada
| | - Peter Tugwell
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Canada
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Canada
- Department of Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Canada
- WHO Collaborating Centre for Knowledge Translation and Health Technology Assessment in Health Equity, Bruyère Research Institute, Ottawa, Canada
| | - Wenfei Liu
- Cardiovascular Research Methods Center, University of Ottawa Heart Institute, Ottawa, Canada
| |
Collapse
|
4
|
Hartmann MA, Blouin S, Misof BM, Fratzl-Zelman N, Roschger P, Berzlanovich A, Gruber GM, Brugger PC, Zwerina J, Fratzl P. Quantitative Backscattered Electron Imaging of Bone Using a Thermionic or a Field Emission Electron Source. Calcif Tissue Int 2021; 109:190-202. [PMID: 33837801 PMCID: PMC8273060 DOI: 10.1007/s00223-021-00832-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/25/2021] [Indexed: 12/21/2022]
Abstract
Quantitative backscattered electron imaging is an established method to map mineral content distributions in bone and to determine the bone mineralization density distribution (BMDD). The method we applied was initially validated for a scanning electron microscope (SEM) equipped with a tungsten hairpin cathode (thermionic electron emission) under strongly defined settings of SEM parameters. For several reasons, it would be interesting to migrate the technique to a SEM with a field emission electron source (FE-SEM), which, however, would require to work with different SEM parameter settings as have been validated for DSM 962. The FE-SEM has a much better spatial resolution based on an electron source size in the order of several 100 nanometers, corresponding to an about [Formula: see text] to [Formula: see text] times smaller source area compared to thermionic sources. In the present work, we compare BMDD between these two types of instruments in order to further validate the methodology. We show that a transition to higher pixel resolution (1.76, 0.88, and 0.57 μm) results in shifts of the BMDD peak and BMDD width to higher values. Further the inter-device reproducibility of the mean calcium content shows a difference of up to 1 wt% Ca, while the technical variance of each device can be reduced to [Formula: see text] wt% Ca. Bearing in mind that shifts in calcium levels due to diseases, e.g., high turnover osteoporosis, are often in the range of 1 wt% Ca, both the bone samples of the patients as well as the control samples have to be measured on the same SEM device. Therefore, we also constructed new reference BMDD curves for adults to be used for FE-SEM data comparison.
Collapse
Affiliation(s)
- Markus A. Hartmann
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Department Hanusch Hospital, Heinrich Collin Strasse 30, 1140 Vienna, Austria
| | - Stéphane Blouin
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Department Hanusch Hospital, Heinrich Collin Strasse 30, 1140 Vienna, Austria
| | - Barbara M. Misof
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Department Hanusch Hospital, Heinrich Collin Strasse 30, 1140 Vienna, Austria
| | - Nadja Fratzl-Zelman
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Department Hanusch Hospital, Heinrich Collin Strasse 30, 1140 Vienna, Austria
| | - Paul Roschger
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Department Hanusch Hospital, Heinrich Collin Strasse 30, 1140 Vienna, Austria
| | - Andrea Berzlanovich
- Unit of Forensic Gerontology, Center of Forensic Science, Medical University of Vienna, Sensengasse 2, 1090 Vienna, Austria
| | - Gerlinde M. Gruber
- Department of Anatomy and Biomechanics, Karl Landsteiner University of Health Sciences, Dr.-Karl-Dorrek-Straße 30, 3500 Krems, Austria
| | - Peter C. Brugger
- Center for Anatomy and Cell Biology, Department of Anatomy, Medical University of Vienna, Währingerstrasse 13, 1090 Vienna, Austria
| | - Jochen Zwerina
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Department Hanusch Hospital, Heinrich Collin Strasse 30, 1140 Vienna, Austria
| | - Peter Fratzl
- Department of Biomaterials, Max-Planck-Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| |
Collapse
|
5
|
Simon P, Pompe W, Bobeth M, Worch H, Kniep R, Formanek P, Hild A, Wenisch S, Sturm E. Podosome-Driven Defect Development in Lamellar Bone under the Conditions of Senile Osteoporosis Observed at the Nanometer Scale. ACS Biomater Sci Eng 2021; 7:2255-2267. [PMID: 33938726 PMCID: PMC8290401 DOI: 10.1021/acsbiomaterials.0c01493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The degradation mechanism of human trabecular bone harvested from the central part of the femoral head of a patient with a fragility fracture of the femoral neck under conditions of senile osteoporosis was investigated by high-resolution electron microscopy. As evidenced by light microscopy, there is a disturbance of bone metabolism leading to severe and irreparable damages to the bone structure. These defects are evoked by osteoclasts and thus podosome activity. Podosomes create typical pit marks and holes of about 300-400 nm in diameter on the bone surface. Detailed analysis of the stress field caused by the podosomes in the extracellular bone matrix was performed. The calculations yielded maximum stress in the range of few megapascals resulting in formation of microcracks around the podosomes. Disintegration of hydroxyapatite and free lying collagen fibrils were observed at the edges of the plywood structure of the bone lamella. At the ultimate state, the disintegration of the mineralized collagen fibrils to a gelatinous matrix comes along with a delamination of the apatite nanoplatelets resulting in a brittle, porous bone structure. The nanoplatelets aggregate to big hydroxyapatite plates with a size of up to 10 x 20 μm2. The enhanced plate growth can be explained by the interaction of two mechanisms in the ruffled border zone: the accumulation of delaminated hydroxyapatite nanoplatelets near clusters of podosomes and the accelerated nucleation and random growth of HAP nanoplatelets due to a nonsufficient concentration of process-directing carboxylated osteocalcin cOC.
Collapse
Affiliation(s)
- Paul Simon
- Max-Planck-Institut für Chemische Physik fester Stoffe, Nöthnitzer Str. 40, 01187 Dresden, Germany
| | - Wolfgang Pompe
- Technical University of Dresden, Institute of Materials Science, 01069 Dresden, Germany
| | - Manfred Bobeth
- Technical University of Dresden, Institute of Materials Science, 01069 Dresden, Germany
| | - Hartmut Worch
- Technical University of Dresden, Institute of Materials Science, 01069 Dresden, Germany
| | - Rüdiger Kniep
- Max-Planck-Institut für Chemische Physik fester Stoffe, Nöthnitzer Str. 40, 01187 Dresden, Germany
| | - Petr Formanek
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069 Dresden, Germany
| | - Anne Hild
- Clinical Anatomy, Clinic of Small Animals, Justus-Liebig-University, 35385 Giessen, Germany
| | - Sabine Wenisch
- Clinical Anatomy, Clinic of Small Animals, Justus-Liebig-University, 35385 Giessen, Germany
| | - Elena Sturm
- Max-Planck-Institut für Chemische Physik fester Stoffe, Nöthnitzer Str. 40, 01187 Dresden, Germany.,University of Konstanz, Physical Chemistry, POB 714, D-78457 Konstanz, Germany
| |
Collapse
|
6
|
Lerebours C, Weinkamer R, Roschger A, Buenzli PR. Mineral density differences between femoral cortical bone and trabecular bone are not explained by turnover rate alone. Bone Rep 2020; 13:100731. [PMID: 33392366 PMCID: PMC7772649 DOI: 10.1016/j.bonr.2020.100731] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 10/12/2020] [Accepted: 10/25/2020] [Indexed: 11/24/2022] Open
Abstract
Bone mineral density distributions (BMDDs) are a measurable property of bone tissues that depends strongly on bone remodelling and mineralisation processes. These processes can vary significantly in health and disease and across skeletal sites, so there is high interest in analysing these processes from experimental BMDDs. Here, we propose a rigorous hypothesis-testing approach based on a mathematical model of mineral heterogeneity in bone due to remodelling and mineralisation, to help explain differences observed between the BMDD of human femoral cortical bone and the BMDD of human trabecular bone. Recent BMDD measurements show that femoral cortical bone possesses a higher bone mineral density, but a similar mineral heterogeneity around the mean compared to trabecular bone. By combining this data with the mathematical model, we are able to test whether this difference in BMDD can be explained by (i) differences in turnover rate; (ii) differences in osteoclast resorption behaviour; and (iii) differences in mineralisation kinetics between the two bone types. We find that accounting only for differences in turnover rate is inconsistent with the fact that both BMDDs have a similar spread around the mean, and that accounting for differences in osteoclast resorption behaviour leads to biologically inconsistent bone remodelling patterns. We conclude that the kinetics of mineral accumulation in bone matrix must therefore be different in femoral cortical bone and trabecular bone. Although both cortical and trabecular bone are made up of lamellar bone, the different mineralisation kinetics in the two types of bone point towards more profound structural differences than usually assumed.
Collapse
Affiliation(s)
- Chloé Lerebours
- School of Mathematical Sciences, Monash University, Clayton, Australia
| | - Richard Weinkamer
- Max Planck Institute of Colloids and Interfaces, Department of Biomaterials, Potsdam, Germany
| | - Andreas Roschger
- Max Planck Institute of Colloids and Interfaces, Department of Biomaterials, Potsdam, Germany.,Department of the Chemistry and Physics of Materials, Paris-Lodron University of Salzburg, Salzburg, Austria
| | - Pascal R Buenzli
- School of Mathematical Sciences, Queensland University of Technology, Brisbane, Australia
| |
Collapse
|
7
|
Parle E, Tio S, Behre A, Carey JJ, Murphy CG, O'Brien TF, Curtin WA, Kearns SR, McCabe JP, Coleman CM, Vaughan TJ, McNamara LM. Bone Mineral Is More Heterogeneously Distributed in the Femoral Heads of Osteoporotic and Diabetic Patients: A Pilot Study. JBMR Plus 2020; 4:e10253. [PMID: 32149268 PMCID: PMC7017882 DOI: 10.1002/jbm4.10253] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/23/2019] [Accepted: 11/03/2019] [Indexed: 02/06/2023] Open
Abstract
Osteoporosis is associated with systemic bone loss, leading to a significant deterioration of bone microarchitecture and an increased fracture risk. Although recent studies have shown that the distribution of bone mineral becomes more heterogeneous because of estrogen deficiency in animal models of osteoporosis, it is not known whether osteoporosis alters mineral distribution in human bone. Type 2 diabetes mellitus (T2DM) can also increase bone fracture risk and is associated with impaired bone cell function, compromised collagen structure, and reduced mechanical properties. However, it is not known whether alterations in mineral distribution arise in diabetic (DB) patients’ bone. In this study, we quantify mineral content distribution and tissue microarchitecture (by μCT) and mechanical properties (by compression testing) of cancellous bone from femoral heads of osteoporotic (OP; n = 10), DB (n = 7), and osteoarthritic (OA; n = 7) patients. We report that though OP cancellous bone has significantly deteriorated compressive mechanical properties and significantly compromised microarchitecture compared with OA controls, there is also a significant increase in the mean mineral content. Moreover, the heterogeneity of the mineral content in OP bone is significantly higher than controls (+25%) and is explained by a significant increase in bone volume at high mineral levels. We propose that these mineral alterations act to exacerbate the already reduced bone quality caused by reduced cancellous bone volume during osteoporosis. We show for the first time that cancellous bone mineralization is significantly more heterogeneous (+26%) in patients presenting with T2DM compared with OA (non‐DB) controls, and that this heterogeneity is characterized by a significant increase in bone volume at low mineral levels. Despite these mineralization changes, bone microarchitecture and mechanical properties are not significantly different between OA groups with and without T2DM. Nonetheless, the observed alterations in mineral heterogeneity may play an important tissue‐level role in bone fragility associated with OP and DB bone. © 2019 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Eoin Parle
- Department of Biomedical Engineering National University of Ireland Galway Galway Ireland
| | - Sherdya Tio
- Department of Biomedical Engineering National University of Ireland Galway Galway Ireland
| | - Annie Behre
- Department of Bioengineering Lehigh University Bethlehem PA USA
| | - John J Carey
- Department of Rheumatology Galway University Hospitals Galway Ireland
| | - Colin G Murphy
- Department of Orthopaedics Galway University Hospitals Galway Ireland
| | - Timothy F O'Brien
- Department of Endocrinology Galway University Hospitals Galway Ireland
| | - William A Curtin
- Department of Orthopaedics Galway University Hospitals Galway Ireland
| | - Stephen R Kearns
- Department of Orthopaedics Galway University Hospitals Galway Ireland
| | - John P McCabe
- Department of Orthopaedics Galway University Hospitals Galway Ireland
| | - Cynthia M Coleman
- Department of Biomedical Engineering National University of Ireland Galway Galway Ireland
| | - Ted J Vaughan
- Department of Biomedical Engineering National University of Ireland Galway Galway Ireland
| | - Laoise M McNamara
- Department of Biomedical Engineering National University of Ireland Galway Galway Ireland
| |
Collapse
|
8
|
Abstract
Numerous safe and efficient drug therapies are currently available to decrease risk of low trauma fractures in patients with osteoporosis including postmenopausal, male, and secondary osteoporosis. In this chapter, we give first an overview of the most important outcomes regarding fracture risk reduction, change in bone mineral density (BMD by DXA) and/or bone markers of the phase III clinical studies of well-established therapies (such as Bisphosphonates, Denosumab or Teriparatide) and also novel therapies (such as Romosozumab or Abaloparatide) and highlight their mechanisms of action at bone tissue/material level. The latter understanding is not only essential for the choice of drug, duration and discontinuation of treatment but also for the interpretation of the clinical outcomes (in particular of eventual changes in BMD) after drug administration. In the second part of this chapter, we focus on the management of different forms of osteoporosis and give a review of the respective current guidelines for treatment. Adverse effects of treatment such as atypical femoral fractures, osteonecrosis of the jaw or influence of fracture healing are considered also in this context.
Collapse
|
9
|
Black DM, Abrahamsen B, Bouxsein ML, Einhorn T, Napoli N. Atypical Femur Fractures: Review of Epidemiology, Relationship to Bisphosphonates, Prevention, and Clinical Management. Endocr Rev 2019; 40:333-368. [PMID: 30169557 DOI: 10.1210/er.2018-00001] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 05/08/2018] [Indexed: 12/18/2022]
Abstract
Bisphosphonates (BPs) are highly effective in treating osteoporosis and reducing hip, vertebral, and other fractures by as much as 50% to 70%. However, since 2006, atypical femur fractures (AFFs) emerged as potential side effects of BPs and other treatments. These fractures have unusual radiologic features and occur with little trauma. Public concern has led to a >50% decrease in BP usage. AFFs are rare: for each AFF, >1200 fractures, including 135 hip fractures, are prevented. Case definition criteria were updated by the American Society of Bone and Mineral Research in 2014. Many epidemiologic studies have been reported, and although methodologically challenging, generally support a BP-AFF association. However, the magnitude of the association between BPs and AFFs is uncertain: estimates of relative risk for AFFs among BP users vs nonusers range from 1 to 65 with a meta-analysis estimate of 1.7. Although mechanistic studies have proposed several hypotheses explaining how BPs might decrease bone strength, AFF pathogenesis remains uncertain and cannot explain the paradox of efficacy of reduction of common fractures while increasing risk for rare fractures at one site. There are several consistent risk factors, including Asian race (in North America), femoral bowing, and glucocorticoid use, whereas others remain unclear. Consensus is emerging about strategies to prevent AFFs in BP users (including drug holidays after 5 years' use in some patients). In conclusion, AFFs can be devastating, but even under the most pessimistic assumptions, the benefit/risk ratio is highly positive for BPs, particularly during 3 to 5 years of use. As understanding of AFFs increases, it is becoming increasingly possible to maximize BP benefits while minimizing AFF risk.
Collapse
Affiliation(s)
- Dennis M Black
- University of California, San Francisco, San Francisco, California
| | | | | | | | - Nicola Napoli
- Università Campus Bio-Medico di Roma, Rome, Italy.,IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| |
Collapse
|
10
|
Pienkowski D, Wood CL, Malluche HH. Young's modulus and hardness of human trabecular bone with bisphosphonate treatment durations up to 20 years. Osteoporos Int 2019; 30:277-285. [PMID: 30488274 DOI: 10.1007/s00198-018-4760-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 11/01/2018] [Indexed: 10/27/2022]
Abstract
UNLABELLED Bone modulus from patients with osteoporosis treated with bisphosphonates for 1 to 20 years was analyzed. Modulus increases during the first 6 years of treatment and remains unchanged thereafter. INTRODUCTION Bisphosphonates are widely used for treating osteoporosis, but the relationship between treatment duration and bone quality is unclear. Since material properties partially determine bone quality, the present study quantified the relationship between human bone modulus and hardness with bisphosphonate treatment duration. METHODS Iliac crest bone samples from a consecutive case series of 86 osteoporotic Caucasian women continuously treated with oral bisphosphonates for 1.1-20 years were histologically evaluated to assess bone turnover and then tested using nanoindentation. Young's modulus and hardness were measured and related to bisphosphonate treatment duration by statistical modeling. RESULTS All bone samples had low bone turnover. Statistical models showed that with increasing bisphosphonate treatment duration, modulus and hardness increased, peaked, and plateaued. These models used quadratic terms to model modulus increases from 1 to 6 years of bisphosphonate treatment and linear terms to model modulus plateaus from 6 to 20 years of treatment. The treatment duration at which the quadratic-linear transition (join point) occurred also depended upon trabecular location. Hardness increased and peaked at 12.4 years of treatment; it remained constant for the next 7.6 years of treatment and was insensitive to trabecular location. CONCLUSIONS Bone modulus increases with bisphosphonate treatment durations up to 6 years, no additional modulus increases occurred after 6 years of treatment. Although hardness increased, peaked at 12.4 years and remained constant for the next 7.6 years of BP treatment, the clinical relevance of hardness remains unclear.
Collapse
Affiliation(s)
- D Pienkowski
- F. Joseph Halcomb III, MD Department of Biomedical Engineering, University of Kentucky, Lexington, KY, USA
| | - C L Wood
- Department of Statistics, University of Kentucky, Lexington, KY, USA
| | - H H Malluche
- Division of Nephrology, Bone & Mineral Metabolism, Department of Medicine, University of Kentucky Chandler Medical Center, 800 Rose Street, MN-564, Lexington, KY, 40536-0298, USA.
| |
Collapse
|
11
|
Beresheim AC, Pfeiffer SK, Grynpas MD, Alblas A. Use of backscattered scanning electron microscopy to quantify the bone tissues of mid‐thoracic human ribs. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2019; 168:262-278. [DOI: 10.1002/ajpa.23716] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 09/10/2018] [Accepted: 09/11/2018] [Indexed: 01/08/2023]
Affiliation(s)
- Amy C. Beresheim
- Department of AnthropologyUniversity of Toronto Toronto Ontario Canada
| | - Susan K. Pfeiffer
- Department of AnthropologyUniversity of Toronto Toronto Ontario Canada
- Department of ArchaeologyUniversity of Cape Town Rondebosch Cape Town South Africa
- Department of Anthropology and Center for Advanced Study of Human PaleobiologyGeorge Washington University Washington, D.C
| | - Marc D. Grynpas
- Department of Laboratory Medicine and Pathobiology and Institute for Biomaterials and Biomedical EngineeringUniversity of Toronto Toronto Ontario Canada
- Lunenfeld‐Tanenbaum Research Institute, Mount Sinai Hospital Toronto Ontario Canada
| | - Amanda Alblas
- Division of Anatomy and Histology, Department of Biomedical SciencesStellenbosch University Cape Town South Africa
| |
Collapse
|
12
|
Dempster DW, Brown JP, Fahrleitner-Pammer A, Kendler D, Rizzo S, Valter I, Wagman RB, Yin X, Yue SV, Boivin G. Effects of Long-Term Denosumab on Bone Histomorphometry and Mineralization in Women With Postmenopausal Osteoporosis. J Clin Endocrinol Metab 2018; 103:2498-2509. [PMID: 29672714 PMCID: PMC6037073 DOI: 10.1210/jc.2017-02669] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 04/11/2018] [Indexed: 12/13/2022]
Abstract
CONTEXT Denosumab is a potent antiresorptive agent that reduces fractures in postmenopausal women with osteoporosis. OBJECTIVE Determine effects of up to 10 years of denosumab on bone histology, remodeling, and matrix mineralization characteristics. DESIGN AND SETTING International, multicenter, randomized, double-blind trial [Fracture Reduction Evaluation of Denosumab in Osteoporosis Every 6 Months (FREEDOM)] with a long-term open-label extension. PATIENTS Postmenopausal women with osteoporosis (92 women in FREEDOM, 46 in extension) who provided iliac bone biopsies, including 11 who provided biopsies at multiple time points. INTERVENTIONS FREEDOM subjects were randomized 1:1 to subcutaneous denosumab 60 mg or placebo every 6 months for 3 years. Long-term extension subjects continued receiving denosumab, open-label, for 7 additional years. OUTCOMES Bone histology, histomorphometry, matrix mineralization. RESULTS Ten-year denosumab biopsies showed normal histology. Bone histomorphometry indicated normal bone structure and reduced bone remodeling after 10 years of denosumab, similar to levels after 2 and/or 3 and 5 years of denosumab. The degree of mineralization of bone was increased and mineralization heterogeneity was reduced in the denosumab years 2/3 group vs placebo. Changes in these mineralization variables progressed from years 2/3 to year 5 of denosumab, but not thereafter. CONCLUSIONS Denosumab for 2/3, 5, and 10 years was associated with normal histology, low bone remodeling rate, increased matrix mineralization, and lower mineralization heterogeneity compared with placebo. These variables were unchanged from year 5 to year 10. These data, in combination with the maintenance of low fracture rates for up to 10 years as previously reported with denosumab therapy, suggest that strong, prolonged remodeling inhibition does not impair bone strength.
Collapse
Affiliation(s)
- David W Dempster
- Department of Pathology and Cell Biology, Columbia University, New York, New York
- Helen Hayes Hospital, West Haverstraw, New York
- Correspondence and Reprint Requests: David W. Dempster, BSc (Hons), PhD, FRMS, Regional Bone Center, Helen Hayes Hospital, Route 9W, West Haverstraw, New York 10993. E-mail:
| | - Jacques P Brown
- Division of Rheumatology, Faculty of Medicine, Laval University and CHU de Quebec Research Centre, Quebec City, Quebec, Canada
| | | | - David Kendler
- Department of Medicine (Endocrinology), University of British Columbia, Vancouver, British Columbia, Canada
| | - Sebastien Rizzo
- Bone and Chronic Diseases, INSERM, UMR 1033, Univ Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Ivo Valter
- Center for Clinical and Basic Research, Tallinn, Estonia
| | | | - Xiang Yin
- Clinical Development, Amgen Inc., Thousand Oaks, California
| | - Susan V Yue
- Clinical Development, Amgen Inc., Thousand Oaks, California
| | - Georges Boivin
- Bone and Chronic Diseases, INSERM, UMR 1033, Univ Lyon, Université Claude Bernard Lyon 1, Lyon, France
| |
Collapse
|
13
|
Boskey AL, Spevak L, Ma Y, Wang H, Bauer DC, Black DM, Schwartz AV. Insights into the bisphosphonate holiday: a preliminary FTIRI study. Osteoporos Int 2018; 29:699-705. [PMID: 29204959 DOI: 10.1007/s00198-017-4324-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 11/21/2017] [Indexed: 12/23/2022]
Abstract
UNLABELLED Bone composition evaluated by FTIRI analysis of iliac crest biopsies from post-menopausal women treated with alendronate for 10 years, continuously or alendronate for 5 years, followed by a 5-year alendronate-holiday, only differed with the discontinued biopsies having increased cortical crystallinity and heterogeneity of acid phosphate substitution and decreased trabecular crystallinity heterogeneity. INTRODUCTION Bisphosphonates (BP) are the most commonly used and effective drugs to prevent fragility fractures; however, concerns exist that prolonged use may lead to adverse events. Recent recommendations suggest consideration of a BP "holiday" in individuals taking long-term BP therapy not at high risk of fracture. Data supporting or refuting this recommendation based on bone quality are limited. We hypothesized that a "holiday" of 5 years would cause no major bone compositional changes. METHODS We analyzed the 31 available biopsies from the FLEX-Long-term Extension of FIT (Fracture Intervention Trial) using Fourier transform infrared imaging (FTIRI). Biopsies from two groups of post-menopausal women, a "Continuously treated group" (N = 16) receiving alendronate for ~ 10 years and a "Discontinued group" (N = 15), alendronate treated for 5 years taking no antiresorptive medication during the following 5 years. Iliac crest bone biopsies were provided at 10 years. RESULTS Key FTIRI parameters, mineral-to-matrix ratio, carbonate-to-phosphate ratio, acid phosphate substitution, and collagen cross-link ratio as well as heterogeneity of these parameters were similar for Continuously treated and Discontinued groups in age-adjusted models. The Discontinued group had 2% greater cortical crystallinity (p = 0.01), 31% greater cortical acid phosphate heterogeneity (p = 0.02), and 24% lower trabecular crystallinity heterogeneity (p = 0.02). CONCLUSIONS Discontinuation of alendronate for 5 years did not affect key FTIRI parameters, supporting the hypothesis that discontinuation would have little impact on bone composition. Modest differences were observed in three parameters that are not likely to affect bone mechanical properties. These preliminary data suggest that a 5-year BP holiday is not harmful to bone composition.
Collapse
Affiliation(s)
- A L Boskey
- Hospital for Special Surgery, New York, NY, USA
| | - L Spevak
- Hospital for Special Surgery, New York, NY, USA
| | - Y Ma
- The George Washington University, Washington, DC, USA
| | - H Wang
- The George Washington University, Washington, DC, USA
| | - D C Bauer
- University of California San Francisco, San Francisco, CA, USA
| | - D M Black
- University of California San Francisco, San Francisco, CA, USA
| | - A V Schwartz
- University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
14
|
Liu X, Qu X, Nie T, Zhai Z, Li H, Ouyang Z, Qin A, Zhang S, Zhang S, Fan Q, Tang T, Yu Z, Dai M. The Beneficial Effects of Bisphosphonate-enoxacin on Cortical Bone Mass and Strength in Ovariectomized Rats. Front Pharmacol 2017. [PMID: 28638344 PMCID: PMC5461254 DOI: 10.3389/fphar.2017.00355] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Osteoporosis is a major age-related bone disease characterized by low bone mineral density and a high risk of fractures. Bisphosphonates are considered as effective agents treating osteoporosis. However, long-term use of bisphosphonates is associated with some serious side effects, which limits the widespread clinical use of bisphosphonates. Here, we demonstrate a novel type of bone-targeting anti-resorptive agent, bisphosphonate-enoxacin (BE). In this study, ovariectomized rat model was established and treated with PBS, zoledronate (50 μg/kg) and different dose of BE (5 mg/kg and 10 mg/kg), respectively. The rats subjected to sham-operation and PBS treatment were considered as control group. Then, micro-computed tomography scanning, biomechanical tests, nano-indentation test and Raman analysis were used to compare the effects of zoledronate and BE on cortical bone mass, strength, and composition in ovariectomized rats. We found that both zoledronate and BE were beneficial to cortical bone strength. Three-point bending and nano-indentation tests showed that zoledronate- and BE-treated groups had superior general and local biomechanical properties compared to the ovariectomized groups. Interestingly, it seemed that BE-treated group got a better biomechanical property than the zoledronate-treated group. Also, BE-treated group showed significantly increased proteoglycan content compared with the zoledronate-treated group. We hypothesized that the increased bone strength and biomechanical properties was due to altered bone composition after treatment with BE. BE, a new bone-targeting agent, may be considered a more suitable anti-resorptive agent to treat osteoporosis and other bone diseases associated with decreased bone mass.
Collapse
Affiliation(s)
- Xuqiang Liu
- Department of Orthopedics, Shanghai Key Laboratory of Orthopedic Implant, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of MedicineShanghai, China.,Department of Orthopedics, The First Affiliated Hospital of Nanchang University, The Artificial Joint Engineering and Technology Research Center of Jiangxi ProvinceNanchang, China
| | - Xinhua Qu
- Department of Orthopedics, Shanghai Key Laboratory of Orthopedic Implant, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of MedicineShanghai, China
| | - Tao Nie
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, The Artificial Joint Engineering and Technology Research Center of Jiangxi ProvinceNanchang, China
| | - Zanjing Zhai
- Department of Orthopedics, Shanghai Key Laboratory of Orthopedic Implant, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of MedicineShanghai, China
| | - Haowei Li
- Department of Orthopedics, Shanghai Key Laboratory of Orthopedic Implant, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of MedicineShanghai, China
| | - Zhengxiao Ouyang
- Department of Orthopedics, Shanghai Key Laboratory of Orthopedic Implant, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of MedicineShanghai, China.,Department of Orthopedics, The Second Xiangya Hospital, Central South UniversityChangsha, China
| | - An Qin
- Department of Orthopedics, Shanghai Key Laboratory of Orthopedic Implant, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of MedicineShanghai, China
| | - Shuhong Zhang
- Department of Orthopedics, Shanghai Key Laboratory of Orthopedic Implant, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of MedicineShanghai, China
| | - Shuangyan Zhang
- Department of Orthopedics, Shanghai Key Laboratory of Orthopedic Implant, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of MedicineShanghai, China
| | - Qiming Fan
- Department of Orthopedics, Shanghai Key Laboratory of Orthopedic Implant, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of MedicineShanghai, China
| | - Tingting Tang
- Department of Orthopedics, Shanghai Key Laboratory of Orthopedic Implant, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of MedicineShanghai, China
| | - Zhifeng Yu
- Department of Orthopedics, Shanghai Key Laboratory of Orthopedic Implant, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of MedicineShanghai, China
| | - Min Dai
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, The Artificial Joint Engineering and Technology Research Center of Jiangxi ProvinceNanchang, China
| |
Collapse
|
15
|
Paschalis EP, Gamsjaeger S, Hassler N, Fahrleitner-Pammer A, Dobnig H, Stepan JJ, Pavo I, Eriksen EF, Klaushofer K. Vitamin D and calcium supplementation for three years in postmenopausal osteoporosis significantly alters bone mineral and organic matrix quality. Bone 2017; 95:41-46. [PMID: 27826025 DOI: 10.1016/j.bone.2016.11.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 10/30/2016] [Accepted: 11/02/2016] [Indexed: 12/15/2022]
Abstract
Prospective, controlled clinical trials in postmenopausal osteoporosis typically compare effects of an active drug with placebo in addition to vitamin D and calcium supplementation in both treatment arms. While clinical benefits are documented, the effect of this supplementation in the placebo arm and in clinical practice on bone material composition properties is unknown. The purpose of the present study was to evaluate these bone quality indices (specifically mineral/matrix, nanoporosity, glycosaminoglycan content, mineral maturity/crystallinity, and pyridinoline content) in patients that either received long-term vitamin D (400-1200IU) and calcium (1.0-1.5g) supplementation, or did not. We have analyzed by Raman microspectroscopy the bone forming trabecular surfaces of iliac crest in pre-treatment samples of a teriparatide study and the endpoint biopsies of the control arm obtained from the HORIZON trial. In general, the mineral/matrix ratio and the glycosaminoglycan (GAG) content was higher while nanoporosity, (a surrogate for tissue water content), the mineral maturity/crystallinity (MMC) and the pyridinoline (Pyd) content was lower in patients without long-term supplementation. Moreover, all indices were significantly dependent on tissue age. In conclusion, vitamin D and calcium supplementation is associated with altered mineral and organic matrix properties.
Collapse
Affiliation(s)
- E P Paschalis
- Ludwig Boltzmann Institute of Osteology, Hanusch Hospital of WGKK, AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Heinrich Collin Str. 30, A-1140, Vienna, Austria.
| | - S Gamsjaeger
- Ludwig Boltzmann Institute of Osteology, Hanusch Hospital of WGKK, AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Heinrich Collin Str. 30, A-1140, Vienna, Austria
| | - N Hassler
- Ludwig Boltzmann Institute of Osteology, Hanusch Hospital of WGKK, AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Heinrich Collin Str. 30, A-1140, Vienna, Austria
| | | | - H Dobnig
- Thyroid, Endocrinology, and Osteoporosis Institute, Graz, Austria
| | - J J Stepan
- Institute of Rheumatology, Faculty of Medicine 1, Charles University, Prague, Czech Republic
| | - I Pavo
- Endocrinology Dept., Oslo University Hospital, Norway
| | - E F Eriksen
- Endocrinology Dept., Oslo University Hospital, Norway
| | - K Klaushofer
- Ludwig Boltzmann Institute of Osteology, Hanusch Hospital of WGKK, AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Heinrich Collin Str. 30, A-1140, Vienna, Austria
| |
Collapse
|
16
|
|
17
|
Granke M, Makowski AJ, Uppuganti S, Nyman JS. Prevalent role of porosity and osteonal area over mineralization heterogeneity in the fracture toughness of human cortical bone. J Biomech 2016; 49:2748-2755. [PMID: 27344202 PMCID: PMC5056137 DOI: 10.1016/j.jbiomech.2016.06.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 06/01/2016] [Accepted: 06/07/2016] [Indexed: 01/08/2023]
Abstract
Changes in the distribution of bone mineralization occurring with aging, disease, or treatment have prompted concerns that alterations in mineralization heterogeneity may affect the fracture resistance of bone. Yet, so far, studies assessing bone from hip fracture cases and fracture-free women have not reached a consensus on how heterogeneity in tissue mineralization relates to skeletal fragility. Owing to the multifactorial nature of toughening mechanisms occurring in bone, we assessed the relative contribution of heterogeneity in mineralization to fracture resistance with respect to age, porosity, and area fraction of osteonal tissue. The latter parameters were extracted from quantitative backscattered electron imaging of human cortical bone sections following R-curve tests of single-edge notched beam specimens to determine fracture toughness properties. Microstructural heterogeneity was determined as the width of the mineral distribution (bulk) and as the sill of the variogram (local). In univariate analyses of measures from 62 human donors (21 to 101 years), local but not bulk heterogeneity as well as pore clustering negatively correlated with fracture toughness properties. With age as covariate, heterogeneity was a significant predictor of crack initiation, though local had a stronger negative contribution than bulk. When considering all potential covariates, age, cortical porosity and area fraction of osteons explained up to 50% of the variance in bone׳s crack initiation toughness. However, including heterogeneity in mineralization did not improve upon this prediction. The findings of the present work stress the necessity to account for porosity and microstructure when evaluating the potential of matrix-related features to affect skeletal fragility.
Collapse
Affiliation(s)
- Mathilde Granke
- Department of Orthopaedics Surgery & Rehabilitation, Vanderbilt University Medical Center, Nashville, TN 37232, United States; Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN 37232, United States; Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN 37212, United States
| | - Alexander J Makowski
- Department of Orthopaedics Surgery & Rehabilitation, Vanderbilt University Medical Center, Nashville, TN 37232, United States; Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN 37232, United States; Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN 37212, United States; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, United States
| | - Sasidhar Uppuganti
- Department of Orthopaedics Surgery & Rehabilitation, Vanderbilt University Medical Center, Nashville, TN 37232, United States; Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN 37232, United States
| | - Jeffry S Nyman
- Department of Orthopaedics Surgery & Rehabilitation, Vanderbilt University Medical Center, Nashville, TN 37232, United States; Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN 37232, United States; Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN 37212, United States; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, United States.
| |
Collapse
|
18
|
|
19
|
Abstract
Tissue-level mechanical properties characterize mechanical behavior independently of microscopic porosity. Specifically, quasi-static nanoindentation provides measurements of modulus (stiffness) and hardness (resistance to yielding) of tissue at the length scale of the lamella, while dynamic nanoindentation assesses time-dependent behavior in the form of storage modulus (stiffness), loss modulus (dampening), and loss factor (ratio of the two). While these properties are useful in establishing how a gene, signaling pathway, or disease of interest affects bone tissue, they generally do not vary with aging after skeletal maturation or with osteoporosis. Heterogeneity in tissue-level mechanical properties or in compositional properties may contribute to fracture risk, but a consensus on whether the contribution is negative or positive has not emerged. In vivo indentation of bone tissue is now possible, and the mechanical resistance to microindentation has the potential for improving fracture risk assessment, though determinants are currently unknown.
Collapse
Affiliation(s)
- Jeffry S Nyman
- Department of Orthopaedic Surgery and Rehabilitation, Vanderbilt University Medical Center, 1215 21st Ave. S., South Tower, Suite 4200, Nashville, TN, 37232, USA.
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, 37212, USA.
- Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37232, USA.
| | - Mathilde Granke
- Department of Orthopaedic Surgery and Rehabilitation, Vanderbilt University Medical Center, 1215 21st Ave. S., South Tower, Suite 4200, Nashville, TN, 37232, USA
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, 37212, USA
- Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Robert C Singleton
- Materials Science and Engineering Department, University of Tennessee, Knoxville, TN, 37996, USA
| | - George M Pharr
- Materials Science and Engineering Department, University of Tennessee, Knoxville, TN, 37996, USA
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| |
Collapse
|
20
|
Dempster DW, Roschger P, Misof BM, Zhou H, Paschalis EP, Alam J, Ruff VA, Klaushofer K, Taylor KA. Differential Effects of Teriparatide and Zoledronic Acid on Bone Mineralization Density Distribution at 6 and 24 Months in the SHOTZ Study. J Bone Miner Res 2016; 31:1527-35. [PMID: 26931279 DOI: 10.1002/jbmr.2825] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 02/18/2016] [Accepted: 02/26/2016] [Indexed: 12/24/2022]
Abstract
The Skeletal Histomorphometry in Patients on Teriparatide or Zoledronic Acid Therapy (SHOTZ) study assessed the progressive effects of teriparatide (TPTD) and zoledronic acid (ZOL) on bone remodeling and material properties in postmenopausal women with osteoporosis. Previously, we reported that biochemical and histomorphometric bone formation indices were significantly higher in patients receiving TPTD versus ZOL. Here we report bone mineralization density distribution (BMDD) results based on quantitative backscattered electron imaging (qBEI). The 12-month primary study was randomized and double blind until the month 6 biopsy, then open label. Patients (TPTD, n = 28; ZOL, n = 31) were then eligible to enter a 12-month open-label extension with their original treatment: TPTD 20 μg/d (subcutaneous injection) or ZOL 5 mg/yr (intravenous infusion). A second biopsy was collected from the contralateral side at month 24 (TPTD, n = 10; ZOL, n = 10). In cancellous bone, ZOL treatment was associated at 6 and 24 months with significantly higher average degree of mineralization (CaMEAN, +2.2%, p = 0.018; +3.9%, p = 0.009, respectively) and with lower percentage of low mineralized areas (CaLOW , -34.6%, p = 0.029; -33.7%, p = 0.025, respectively) and heterogeneity of mineralization CaWIDTH (-12.3%, p = 0.003; -9.9%, p = 0.012, respectively), indicating higher mineralization density and more homogeneous mineral content versus TPTD. Within the ZOL group, significant changes were found in all parameters from month 6 to 24, indicating a progressive increase in mineralization density. In sharp contrast, mineralization density did not increase over time with TPTD, reflecting ongoing deposition of new bone. Similar results were observed in cortical bone. In this study, TPTD stimulated new bone formation, producing a mineralized bone matrix that remained relatively heterogeneous with a stable mean mineral content. ZOL slowed bone turnover and prolonged secondary mineralization, producing a progressively more homogeneous and highly mineralized bone matrix. Although both TPTD and ZOL increase clinical measures of bone mineral density (BMD), this study shows that the underlying mechanisms of the BMD increases are fundamentally different. © 2016 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- David W Dempster
- Regional Bone Center, Helen Hayes Hospital, West Haverstraw, NY, USA
- Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Paul Roschger
- Ludwig Boltzmann Institute of Osteology, Hanusch Hospital of WGKK and AUVA Trauma Center Meidling, 1st Med. Dept. Hanusch Hospital, Vienna, Austria
| | - Barbara M Misof
- Ludwig Boltzmann Institute of Osteology, Hanusch Hospital of WGKK and AUVA Trauma Center Meidling, 1st Med. Dept. Hanusch Hospital, Vienna, Austria
| | - Hua Zhou
- Regional Bone Center, Helen Hayes Hospital, West Haverstraw, NY, USA
| | - Eleftherios P Paschalis
- Ludwig Boltzmann Institute of Osteology, Hanusch Hospital of WGKK and AUVA Trauma Center Meidling, 1st Med. Dept. Hanusch Hospital, Vienna, Austria
| | | | | | - Klaus Klaushofer
- Ludwig Boltzmann Institute of Osteology, Hanusch Hospital of WGKK and AUVA Trauma Center Meidling, 1st Med. Dept. Hanusch Hospital, Vienna, Austria
| | | |
Collapse
|
21
|
Misof BM, Roschger P, Blouin S, Recker R, Klaushofer K. Bone matrix mineralization is preserved during early perimenopausal stage in healthy women: a paired biopsy study. Osteoporos Int 2016; 27:1795-803. [PMID: 26650378 DOI: 10.1007/s00198-015-3446-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 11/30/2015] [Indexed: 12/14/2022]
Abstract
UNLABELLED Bone matrix mineralization based on quantitative backscatter electron imaging remained unchanged during the first year of menopause in paired transiliac biopsy samples from healthy women. This suggests that the reported early perimenopausal reductions in bone mineral density are caused by factors other than decreases in the degree of mineralization. INTRODUCTION It is unknown whether perimenopausal loss of bone mass is associated with a drop in bone matrix mineralization. METHODS For this purpose, we measured the bone mineralization density distribution (BMDD) by quantitative backscatter electron imaging (qBEI) in n = 17 paired transiliac bone biopsy samples at premenopausal baseline and 12 months after last menses (obtained at average ages of 49 ± 2 and 55 ± 2 years, respectively) in healthy women. For interpretation of BMDD outcomes, previously measured bone mineral density (BMD) and biochemical and histomorphometric markers of bone turnover were revisited for the present biopsy cohort. RESULTS Menopause significantly decreased BMD at the lumbar spine (-4.5 %) and femoral neck (-3.8 %), increased the fasting urinary hydroxyproline/creatinine ratio (+60 %, all p < 0.01) and histomorphometric bone formation rate (+25 %, p < 0.05), but affected neither cancellous nor cortical BMDD variables (paired comparison p > 0.05). Mean calcium concentrations of cancellous (Cn.CaMean) and cortical bone (Ct.CaMean) were within normal range (p > 0.05 compared to established reference data). Ct.CaMean was significantly correlated with Cn.CaMean before (R = 0.81, p < 0.001) and after menopause (R = 0.80, p < 0.001) and to cortical porosity of mineralized tissue (Ct.Po.) after menopause (R = -0.57, p = 0.02). CONCLUSIONS Surprisingly, the BMDD was found not affected by the changes in bone turnover rates in this cohort. This suggests that the substantial increase in bone formation rates took place shortly before the second biopsy, and the bone mineralization changes lag behind. We conclude that during the first year after the last menses, the degree of bone matrix mineralization is preserved and does not contribute to the observed reductions in BMD.
Collapse
Affiliation(s)
- B M Misof
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Kundratstr. 37, A-1120, Vienna, Austria.
| | - P Roschger
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Kundratstr. 37, A-1120, Vienna, Austria
| | - S Blouin
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Kundratstr. 37, A-1120, Vienna, Austria
| | - R Recker
- Osteoporosis Research Center, Creighton University, Omaha, Nebraska, USA
| | - K Klaushofer
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Kundratstr. 37, A-1120, Vienna, Austria
| |
Collapse
|
22
|
Misof BM, Roschger P, Jorgetti V, Klaushofer K, Borba VZC, Boguszewski CL, Cohen A, Shane E, Zhou H, Dempster DW, Moreira CA. Subtle changes in bone mineralization density distribution in most severely affected patients with chronic obstructive pulmonary disease. Bone 2015; 79:1-7. [PMID: 26003953 DOI: 10.1016/j.bone.2015.05.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 04/29/2015] [Accepted: 05/14/2015] [Indexed: 01/07/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is associated with low aBMD as measured by DXA and altered microstructure as assessed by bone histomorphometry and microcomputed tomography. Knowledge of bone matrix mineralization is lacking in COPD. Using quantitative backscatter electron imaging (qBEI), we assessed cancellous (Cn.) and cortical (Ct.) bone mineralization density distribution (BMDD) in 19 postmenopausal women (62.1 ± 7.3 years of age) with COPD. Eight had sustained fragility fractures, and 13 had received treatment with inhaled glucocorticoids. The BMDD outcomes from the patients were compared with healthy reference data and were correlated with previous clinical and histomorphometric findings. In general, the BMDD outcomes for the patients were not significantly different from the reference data. Neither the subgroups of with or without fragility fractures or of who did or did not receive inhaled glucocorticoid treatment, showed differences in BMDD. However, subgroup comparison according to severity revealed 10% decreased cancellous mineralization heterogeneity (Cn.CaWidth) for the most severely affected compared with less affected patients (p=0.042) and compared with healthy premenopausal controls (p=0.021). BMDD parameters were highly correlated with histomorphometric cancellous bone volume (BV/TV) and formation indices: mean degree of mineralization (Cn.CaMean) versus BV/TV (r=0.58, p=0.009), and Cn.CaMean and Ct.CaMean versus bone formation rate (BFR/BS) (r=-0.71, p<0.001). In particular, those with lower BV/TV (<50th percentile) had significantly lower Cn.CaMean (p=0.037) and higher Cn.CaLow (p=0.020) compared with those with higher (>50th percentile) BV/TV. The normality in most of the BMDD parameters and bone formation rates as well as the significant correlations between them suggests unaffected mineralization processes in COPD. Our findings also indicate no significant negative effect of treatment with inhaled glucocorticoids on the bone mineralization pattern. However, the observed concomitant occurrence of relatively lower bone volumes with lower bone matrix mineralization will both contribute to the reduced aBMD in some patients with COPD.
Collapse
Affiliation(s)
- B M Misof
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Vienna, Austria.
| | - P Roschger
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Vienna, Austria
| | - V Jorgetti
- Department of Nephrology, School of Medicine, University of Sao Paulo, SP, Brazil
| | - K Klaushofer
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Vienna, Austria
| | - V Z C Borba
- Endocrine Division (SEMPR), Department of Internal Medicine, Clinical Hospital of the Federal University of Parana, Curitiba, PR, Brazil
| | - C L Boguszewski
- Endocrine Division (SEMPR), Department of Internal Medicine, Clinical Hospital of the Federal University of Parana, Curitiba, PR, Brazil
| | - A Cohen
- Department of Medicine, Division of Endocrinology, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - E Shane
- Department of Medicine, Division of Endocrinology, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - H Zhou
- Regional Bone Center, Helen Hayes Hospital, West Haverstraw, New York, USA
| | - D W Dempster
- Department of Pathology, Columbia University College of Physicians and Surgeons, New York, NY, USA; Regional Bone Center, Helen Hayes Hospital, West Haverstraw, New York, USA
| | - C A Moreira
- Endocrine Division (SEMPR), Department of Internal Medicine, Clinical Hospital of the Federal University of Parana, Curitiba, PR, Brazil
| |
Collapse
|
23
|
Bala Y, Seeman E. Bone's Material Constituents and their Contribution to Bone Strength in Health, Disease, and Treatment. Calcif Tissue Int 2015; 97:308-26. [PMID: 25712256 DOI: 10.1007/s00223-015-9971-y] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 02/11/2015] [Indexed: 12/24/2022]
Abstract
Type 1 collagen matrix volume, its degree of completeness of its mineralization, the extent of collagen crosslinking and water content, and the non-collagenous proteins like osteopontin and osteocalcin comprise the main constituents of bone's material composition. Each influences material strength and change in different ways during advancing age, health, disease, and drug therapy. These traits are not quantifiable using bone densitometry and their plurality is better captured by the term bone 'qualities' than 'quality'. These qualities are the subject of this manuscript.
Collapse
Affiliation(s)
- Y Bala
- Laboratoire Vibrations Acoustique, Institut National des Sciences Appliquées de Lyon, Campus LyonTech la Doua, Villeurbanne, France
| | | |
Collapse
|
24
|
Wagermaier W, Klaushofer K, Fratzl P. Fragility of Bone Material Controlled by Internal Interfaces. Calcif Tissue Int 2015; 97:201-12. [PMID: 25772807 PMCID: PMC4525333 DOI: 10.1007/s00223-015-9978-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Accepted: 02/28/2015] [Indexed: 12/14/2022]
Abstract
Bone material is built in a complex multiscale arrangement of mineralized collagen fibrils containing water, proteoglycans and some noncollagenous proteins. This organization is not static as bone is constantly remodeled and thus able to repair damaged tissue and adapt to the loading situation. In preventing fractures, the most important mechanical property is toughness, which is the ability to absorb impact energy without reaching complete failure. There is no simple explanation for the origin of the toughness of bone material, and this property depends in a complex way on the internal architecture of the material on all scales from nanometers to millimeters. Hence, fragility may have different mechanical origins, depending on which toughening mechanism is not working properly. This article reviews the toughening mechanisms described for bone material and attempts to put them in a clinical context, with the hope that future analysis of bone fragility may be guided by this collection of possible mechanistic origins.
Collapse
Affiliation(s)
- Wolfgang Wagermaier
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Research Campus Golm, 14424 Potsdam, Germany
| | - Klaus Klaushofer
- First Medical Department, Hanusch Hospital, Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, Heinrich Collin Str. 30, 1140 Vienna, Austria
| | - Peter Fratzl
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Research Campus Golm, 14424 Potsdam, Germany
| |
Collapse
|
25
|
Long-term safety of antiresorptive treatment: bone material, matrix and mineralization aspects. BONEKEY REPORTS 2015; 4:634. [PMID: 25709811 DOI: 10.1038/bonekey.2015.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 12/12/2014] [Indexed: 12/13/2022]
Abstract
It is well established that long-term antiresorptive use is effective in the reduction of fracture risk in high bone turnover osteoporosis. Nevertheless, during recent years, concerns emerged that longer bone turnover reduction might favor the occurrence of fatigue fractures. However, the underlying mechanisms for both beneficial and suspected adverse effects are not fully understood yet. There is some evidence that their effects on the bone material characteristics have an important role. In principle, the composition and nanostructure of bone material, for example, collagen cross-links and mineral content and crystallinity, is highly dependent on tissue age. Bone turnover determines the age distribution of the bone structural units (BSUs) present in bone, which in turn is decisive for its intrinsic material properties. It is noteworthy that the effects of bone turnover reduction on bone material were observed to be dependent on the duration of the antiresorptive therapy. During the first 2-3 years, significant decreases in the heterogeneity of material properties such as mineralization of the BSUs have been observed. In the long term (5-10 years), the mineralization pattern reverts towards normal heterogeneity and degree of mineralization, with no signs of hypermineralization in the bone matrix. Nevertheless, it has been hypothesized that the occurrence of fatigue fractures (such as atypical femoral fractures) might be linked to a reduced ability of microdamage repair under antiresorptive therapy. The present article examines results from clinical studies after antiresorptive, in particular long-term, therapy with the aforementioned potentially positive or negative effects on bone material.
Collapse
|
26
|
Gourion-Arsiquaud S, Marcott C, Hu Q, Boskey AL. Studying variations in bone composition at nano-scale resolution: a preliminary report. Calcif Tissue Int 2014; 95:413-8. [PMID: 25155443 PMCID: PMC4192085 DOI: 10.1007/s00223-014-9909-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 08/12/2014] [Indexed: 01/25/2023]
Abstract
Bone has a hierarchical structure extending from the micrometer to the nanometer scale. We report here the first analysis of non-human primate osteonal bone obtained using a spectrometer coupled to an AFM microscope (AFM-IR), with a resolution of 50-100 nm. Average spectra correspond to those observed with conventional FTIR spectroscopy. The following validated FTIR parameters were calculated based on intensities observed in scans covering ~60 µm from the osteon center: mineral content (1030/1660 cm(-1)), crystallinity (1030/1020 cm(-1)), collagen maturity (1660/1690 cm(-1)), and acid phosphate content (1128/1096 cm(-1)). A repeating pattern was found in most of these calculated IR parameters corresponding to the reported inter- and intra-lamellar spacing in human bone, indicating that AFM-IR measurements will be able to provide novel compositional information on the variation in bone at the nanometer level.
Collapse
|
27
|
Amugongo SK, Yao W, Jia J, Dai W, Lay YAE, Jiang L, Harvey D, Zimmermann EA, Schaible E, Dave N, Ritchie RO, Kimmel DB, Lane NE. Effect of sequential treatments with alendronate, parathyroid hormone (1-34) and raloxifene on cortical bone mass and strength in ovariectomized rats. Bone 2014; 67:257-68. [PMID: 25016965 PMCID: PMC4157684 DOI: 10.1016/j.bone.2014.04.033] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Revised: 04/03/2014] [Accepted: 04/16/2014] [Indexed: 01/10/2023]
Abstract
UNLABELLED Anti-resorptive and anabolic agents are often prescribed for the treatment of osteoporosis continuously or sequentially for many years. However their impact on cortical bone quality and bone strength is not clear. METHODS Six-month old female rats were either sham operated or ovariectomized (OVX). OVX rats were left untreated for two months and then were treated with vehicle (Veh), hPTH (1-34) (PTH), alendronate (Aln), or raloxifene (Ral) sequentially for three month intervals, for a total of three periods. Mid-tibial cortical bone architecture, mass, mineralization, and strength were measured on necropsy samples obtained after each period. Bone indentation properties were measured on proximal femur necropsy samples. RESULTS Eight or more months of estrogen deficiency in rats resulted in decreased cortical bone area and thickness. Treatment with PTH for 3months caused the deposition of endocortical lamellar bone that increased cortical bone area, thickness, and strength. These improvements were lost when PTH was withdrawn without followup treatment, but were maintained for the maximum times tested, six months with Ral and three months with Aln. Pre-treatment with anti-resorptives was also somewhat successful in ultimately preserving the additional endocortical lamellar bone formed under PTH treatment. These treatments did not affect bone indentation properties. SUMMARY Sequential therapy that involved both PTH and anti-resorptive agents was required to achieve lasting improvements in cortical area, thickness, and strength in OVX rats. Anti-resorptive therapy, either prior to or following PTH, was required to preserve gains attributable to an anabolic agent.
Collapse
Affiliation(s)
- Sarah K Amugongo
- Musculoskeletal Research Unit, Department of Medicine, University of California Davis Medical Center, Sacramento, CA 95817, USA
| | - Wei Yao
- Musculoskeletal Research Unit, Department of Medicine, University of California Davis Medical Center, Sacramento, CA 95817, USA
| | - Junjing Jia
- Musculoskeletal Research Unit, Department of Medicine, University of California Davis Medical Center, Sacramento, CA 95817, USA
| | - Weiwei Dai
- Musculoskeletal Research Unit, Department of Medicine, University of California Davis Medical Center, Sacramento, CA 95817, USA
| | - Yu-An E Lay
- Musculoskeletal Research Unit, Department of Medicine, University of California Davis Medical Center, Sacramento, CA 95817, USA
| | - Li Jiang
- Musculoskeletal Research Unit, Department of Medicine, University of California Davis Medical Center, Sacramento, CA 95817, USA
| | - Danielle Harvey
- Division of Biostatistics, Department of Public Health Sciences, University of California, Davis, CA 95616, USA
| | - Elizabeth A Zimmermann
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Eric Schaible
- Experimental Systems Group, Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Neil Dave
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Robert O Ritchie
- Musculoskeletal Research Unit, Department of Medicine, University of California Davis Medical Center, Sacramento, CA 95817, USA; Department of Materials Science and Engineering, University of California, Berkeley, CA 94720, USA
| | - Donald B Kimmel
- Osteoporosis Research Center, School of Medicine, Creighton University, Omaha, NE 68131, USA
| | - Nancy E Lane
- Musculoskeletal Research Unit, Department of Medicine, University of California Davis Medical Center, Sacramento, CA 95817, USA.
| |
Collapse
|
28
|
Misof BM, Dempster DW, Zhou H, Roschger P, Fratzl-Zelman N, Fratzl P, Silverberg SJ, Shane E, Cohen A, Stein E, Nickolas TL, Recker RR, Lappe J, Bilezikian JP, Klaushofer K. Relationship of bone mineralization density distribution (BMDD) in cortical and cancellous bone within the iliac crest of healthy premenopausal women. Calcif Tissue Int 2014; 95:332-9. [PMID: 25134800 PMCID: PMC4464772 DOI: 10.1007/s00223-014-9901-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 07/18/2014] [Indexed: 02/04/2023]
Abstract
Bone mineralization density distribution (BMDD) is an important determinant of bone mechanical properties. The most available skeletal site for access to the BMDD is the iliac crest. Compared to cancellous bone much less information on BMDD is available for cortical bone. Hence, we analyzed complete transiliac crest bone biopsy samples from premenopausal women (n = 73) aged 25-48 years, clinically classified as healthy, by quantitative backscattered electron imaging for cortical (Ct.) and cancellous (Cn.) BMDD. The Ct.BMDD was characterized by the arithmetic mean of the BMDD of the cortical plates. We found correlations between Ct. and Cn. BMDD variables with correlation coefficients r between 0.42 and 0.73 (all p < 0.001). Additionally to this synchronous behavior of cortical and cancellous compartments, we found that the heterogeneity of mineralization densities (Ct.Ca(Width)), as well as the cortical porosity (Ct.Po) was larger for a lower average degree of mineralization (Ct.Ca(Mean)). Moreover, Ct.Po correlated negatively with the percentage of highly mineralized bone areas (Ct.Ca(High)) and positively with the percentage of lowly mineralized bone areas (Ct.Ca(Low)). In conclusion, the correlation of cortical with cancellous BMDD in the iliac crest of the study cohort suggests coordinated regulation of bone turnover between both bone compartments. Only in a few cases, there was a difference in the degree of mineralization of >1wt % between both cortices suggesting a possible modeling situation. This normative dataset of healthy premenopausal women will provide a reference standard by which disease- and treatment-specific effects can be assessed at the level of cortical bone BMDD.
Collapse
Affiliation(s)
- B. M. Misof
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, First Medical Department, Hanusch Hospital, Heinrich Collin-Str. 30, 1140 Vienna, Austria
| | - D. W. Dempster
- Regional Bone Center, Helen Hayes Hospital, West Haverstraw, New York, NY, USA
- College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Hua Zhou
- Regional Bone Center, Helen Hayes Hospital, West Haverstraw, New York, NY, USA
| | - P. Roschger
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, First Medical Department, Hanusch Hospital, Heinrich Collin-Str. 30, 1140 Vienna, Austria
| | - N. Fratzl-Zelman
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, First Medical Department, Hanusch Hospital, Heinrich Collin-Str. 30, 1140 Vienna, Austria
| | - P. Fratzl
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - S. J. Silverberg
- Department of Medicine and Pathology, Columbia University, New York, NY, USA
| | - E. Shane
- Department of Medicine and Pathology, Columbia University, New York, NY, USA
| | - A. Cohen
- Department of Medicine and Pathology, Columbia University, New York, NY, USA
| | - E. Stein
- Department of Medicine and Pathology, Columbia University, New York, NY, USA
| | - T. L. Nickolas
- Department of Medicine and Pathology, Columbia University, New York, NY, USA
| | - R. R. Recker
- Creighton University Osteoporosis Research Center, Omaha, NE, USA
| | - J. Lappe
- Creighton University Osteoporosis Research Center, Omaha, NE, USA
| | - J. P. Bilezikian
- Department of Medicine and Pathology, Columbia University, New York, NY, USA
| | - K. Klaushofer
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, First Medical Department, Hanusch Hospital, Heinrich Collin-Str. 30, 1140 Vienna, Austria
| |
Collapse
|
29
|
Roschger P, Misof B, Paschalis E, Fratzl P, Klaushofer K. Changes in the degree of mineralization with osteoporosis and its treatment. Curr Osteoporos Rep 2014; 12:338-50. [PMID: 24947951 DOI: 10.1007/s11914-014-0218-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The diagnosis of osteoporosis is based on low bone mineral density (BMD) and/or the occurrence of fragility fractures. The majority of patients, however, have also abnormally low bone matrix mineralization. The latter is indicative of alterations in bone turnover rates and/or in kinetics of mineral accumulation within the newly formed bone matrix. Osteoporosis therapies can alter the bone matrix mineralization according to their action on bone turnover and/or mineralization kinetics. Antiresorptives, including the most widely used bisphosphonates, reduce the bone turnover rate resulting in a decrease in heterogeneity and an increase in the degree of mineralization toward to or even beyond normal values. Anabolic agents increase the bone volume and the amount of newly formed bone resulting in a likely transient decrease in mean degree and homogeneity of mineralization. Hence, the measurement of bone matrix mineralization is a sensitive tool to evaluate the response to therapy.
Collapse
Affiliation(s)
- Paul Roschger
- 1st Medical Department, Hanusch Hospital, Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, Heinrich Collin Str. 30, A-1140, Vienna, Austria,
| | | | | | | | | |
Collapse
|
30
|
Ross RD, Edwards LH, Acerbo AS, Ominsky MS, Virdi AS, Sena K, Miller LM, Sumner DR. Bone matrix quality after sclerostin antibody treatment. J Bone Miner Res 2014; 29:1597-607. [PMID: 24470143 DOI: 10.1002/jbmr.2188] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 01/21/2014] [Accepted: 01/22/2014] [Indexed: 11/10/2022]
Abstract
Sclerostin antibody (Scl-Ab) is a novel bone-forming agent that is currently undergoing preclinical and clinical testing. Scl-Ab treatment is known to dramatically increase bone mass, but little is known about the quality of the bone formed during treatment. In the current study, global mineralization of bone matrix in rats and nonhuman primates treated with vehicle or Scl-Ab was assayed by backscattered scanning electron microscopy (bSEM) to quantify the bone mineral density distribution (BMDD). Additionally, fluorochrome labeling allowed tissue age-specific measurements to be made in the primate model with Fourier-transform infrared microspectroscopy to determine the kinetics of mineralization, carbonate substitution, crystallinity, and collagen cross-linking. Despite up to 54% increases in the bone volume after Scl-Ab treatment, the mean global mineralization of trabecular and cortical bone was unaffected in both animal models investigated. However, there were two subtle changes in the BMDD after Scl-Ab treatment in the primate trabecular bone, including an increase in the number of pixels with a low mineralization value (Z5) and a decrease in the standard deviation of the distribution. Tissue age-specific measurements in the primate model showed that Scl-Ab treatment did not affect the mineral-to-matrix ratio, crystallinity, or collagen cross-linking in the endocortical, intracortical, or trabecular compartments. Scl-Ab treatment was associated with a nonsignificant trend toward accelerated mineralization intracortically and a nearly 10% increase in carbonate substitution for tissue older than 2 weeks in the trabecular compartment (p < 0.001). These findings suggest that Scl-Ab treatment does not negatively impact bone matrix quality.
Collapse
Affiliation(s)
- Ryan D Ross
- Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, IL, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Misof BM, Patsch JM, Roschger P, Muschitz C, Gamsjaeger S, Paschalis EP, Prokop E, Klaushofer K, Pietschmann P, Resch H. Intravenous treatment with ibandronate normalizes bone matrix mineralization and reduces cortical porosity after two years in male osteoporosis: a paired biopsy study. J Bone Miner Res 2014; 29:440-9. [PMID: 23832525 DOI: 10.1002/jbmr.2035] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 06/11/2013] [Accepted: 06/29/2013] [Indexed: 11/10/2022]
Abstract
The spectrum of therapeutic options and the amount of clinical trials for male osteoporosis (mOP) is lower than those for postmenopausal osteoporosis. Therefore, we examined the effects of 24 months of ibandronate (IBN) treatment (3 mg/3 mL intravenously every 3 months) on bone material quality in 19 subjects with mOP within an open-label, single-center, prospective phase III study (Eudract number 2006-006692-20). Patients (median age [25th, 75th percentiles] 53.0 [44.5; 57.0] years) were included if they had low bone mineral density (BMD) and/or at least one low trauma fracture and no secondary cause of osteoporosis. The primary endpoint was to evaluate IBN effects on cancellous (Cn.) and cortical (Ct.) bone mineralization density distribution (BMDD) based on quantitative backscattered electron imaging (qBEI) of paired transiliacal bone biopsies (baseline, 24 months). Secondary endpoints included changes in areal bone mineral density (BMD by dual-energy X-ray absorptiometry [DXA]) and serum markers of bone turnover including type I collagen peptides CrossLaps (CTX), procollagen type 1 amino-terminal propeptide (P1NP), and osteocalcin (OC). At baseline, cancellous bone matrix mineralization from mOP was lower than published reference data (mean degree of mineralization Cn.CaMean -1.8%, p < 0.01). IBN treatment increased calcium concentrations versus baseline (Cn.CaMean +2.4%, Ct.CaMean, +3.0% both p < 0.01), and reduced heterogeneity of mineralization (Cn.CaWidth -14%, p = 0.044; Ct.CaWidth, -16%, p = 0.001), leading to cancellous BMDD within normal range. IBN treatment was associated with a decrease in porosity of mineralized cortical tissue (-25%, p = 0.01); increases in BMD at the lumbar spine, the femoral neck, and the total hip (+3.3%, +1.9%, and +5.6%, respectively, p ≤ 0.01); and reductions in CTX (-37.5%), P1NP (-44.4%), and OC (-36.3%, all p < 0.01). Our BMDD findings are in line with the reduction of bone turnover markers and the increase in BMD by IBN in our patients and suggest that the latter mainly reflects the increase in matrix mineralization and the reduction of cortical porosity in this cohort with mOP.
Collapse
Affiliation(s)
- Barbara M Misof
- Ludwig Boltzmann Institute of Osteology, Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Vienna, Austria
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Boskey AL. Bone composition: relationship to bone fragility and antiosteoporotic drug effects. BONEKEY REPORTS 2013; 2:447. [PMID: 24501681 DOI: 10.1038/bonekey.2013.181] [Citation(s) in RCA: 211] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 09/27/2013] [Indexed: 02/06/2023]
Abstract
The composition of a bone can be described in terms of the mineral phase, hydroxyapatite, the organic phase, which consists of collagen type I, noncollagenous proteins, other components and water. The relative proportions of these various components vary with age, site, gender, disease and treatment. Any drug therapy could change the composition of a bone. This review, however, will only address those pharmaceuticals used to treat or prevent diseases of bone: fragility fractures in particular, and the way they can alter the composition. As bone is a heterogeneous tissue, its composition must be discussed in terms of the chemical makeup, properties of its chemical constituents and their distributions in the ever-changing bone matrix. Emphasis, in this review, is placed on changes in composition as a function of age and various diseases of bone, particularly osteoporosis. It is suggested that while some of the antiosteoporotic drugs can and do modify composition, their positive effects on bone strength may be balanced by negative ones.
Collapse
Affiliation(s)
- Adele L Boskey
- Musculoskeletal Integrity Program, Hospital for Special Surgery, affiliated with Weill Medical College of Cornell University , New York, NY, USA ; Department of Biophysics and Systems Biology, Weill Medical College of Cornell University , New York, NY, USA
| |
Collapse
|
33
|
Bala Y, Farlay D, Boivin G. Bone mineralization: from tissue to crystal in normal and pathological contexts. Osteoporos Int 2013; 24:2153-66. [PMID: 23229470 DOI: 10.1007/s00198-012-2228-y] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 11/12/2012] [Indexed: 10/27/2022]
Abstract
Bone is a complex and structured material; its mechanical behavior results from an interaction between the properties of each level of its structural hierarchy. The degree of mineralization of bone (bone density measured at tissue level) and the characteristics of the mineral deposited (apatite crystals) are major determinants of bone strength. Bone remodeling activity acts as a regulator of the degree of mineralization and of the distribution of mineral at the tissue level, directly impacting bone mechanical properties. Recent findings have highlighted the need to understand the underlying process occurring at the nanostructure level that may be independent of bone remodeling itself. A more global comprehension of bone qualities will need further works designed to characterize what are the consequences on whole bone strength of changes at nano- or microstructure levels relative to each other.
Collapse
Affiliation(s)
- Y Bala
- Endocrine Center, Austin Health, University of Melbourne, Melbourne, Australia.
| | | | | |
Collapse
|
34
|
Pritchard JM, Papaioannou A, Tomowich C, Giangregorio LM, Atkinson SA, Beattie KA, Adachi JD, DeBeer J, Winemaker M, Avram V, Schwarcz HP. Bone mineralization is elevated and less heterogeneous in adults with type 2 diabetes and osteoarthritis compared to controls with osteoarthritis alone. Bone 2013; 54:76-82. [PMID: 23356988 PMCID: PMC5096932 DOI: 10.1016/j.bone.2013.01.032] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 01/08/2013] [Accepted: 01/15/2013] [Indexed: 01/22/2023]
Abstract
PURPOSE The purpose of this study was to determine whether trabecular bone mineralization differed in adults with type 2 diabetes compared to adults without type 2 diabetes. METHODS Proximal femur specimens were obtained following a total hip replacement procedure from men and women ≥65 years of age with and without type 2 diabetes. A scanning electron microscope was used for quantitative backscattered electron imaging (qBEI) analysis of trabecular bone samples from the femoral neck. Gray scale images (pixel size=5.6 μm(2)) were uploaded to ImageJ software and gray level (GL) values were converted to calcium concentrations (weight [wt] % calcium [Ca]) using data obtained with energy dispersive X-ray spectrometry. The following bone mineralization density distribution (BMDD) outcomes were collected: the weighted mean bone calcium concentration (CaMEAN), the most frequently occurring bone calcium concentration (CaPEAK) and mineralization heterogeneity (CaWIDTH). Differences between groups were assessed using the Student's t-test for normally distributed data and Mann-Whitney U-test for non-normally distributed data. An alpha value of <0.05 was considered significant. RESULTS Thirty-five Caucasian participants were recruited (mean [standard deviation, SD] age, 75.5 [6.5]years): 14 adults with type 2 diabetes (years since type 2 diabetes diagnosis, 13.5 [7.4]years) and 21 adults without type 2 diabetes. In the adults with type 2 diabetes, bone CaMEAN was 4.9% greater (20.36 [0.98]wt.% Ca versus 19.40 [1.07]wt.% Ca, p=0.015) and CaWIDTH was 9.4% lower (median [interquartile range] 3.55 [2.99-4.12]wt.% Ca versus 3.95 [0.71]wt.% Ca, p<0.001) compared to controls. There was no between-group difference in CaPEAK (21.12 [0.97]wt.% Ca for type 2 diabetes versus 20.44 [1.30]wt.% Ca for controls, p=0.121). CONCLUSION The combination of elevated mean calcium concentration in bone and lower mineralization heterogeneity in adults with type 2 diabetes may have deleterious effects on the biomechanical properties of bone. These microscopic alterations in bone mineralization, which may be mediated by suppressed bone remodeling, further elucidate higher fracture risk in adults with type 2 diabetes.
Collapse
Affiliation(s)
- J M Pritchard
- Faculty of Health Sciences, McMaster University, 1280 Main St West, Hamilton ON, Canada L8S 4K1.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Teixeira MZ. Antiresorptive drugs (bisphosphonates), atypical fractures and rebound effect: new evidence of similitude. HOMEOPATHY 2013; 101:231-42. [PMID: 23089219 DOI: 10.1016/j.homp.2012.07.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 07/14/2012] [Accepted: 07/23/2012] [Indexed: 11/29/2022]
Abstract
BACKGROUND Homeopathy is based on treatment by similitude ('like cures like') administering to sick individuals substances that cause similar symptoms in healthy individuals, employing the secondary and paradoxical action of the organism as therapeutic response. This vital or homeostatic reaction of the organism can be scientifically explained by the rebound effect of drugs, resulting in worsening of symptoms after suspension of treatment. Bisphosphonates (BPs) reduce 'typical' fractures in patients with osteoporosis, but recent studies report 'atypical' fractures of the femur after stopping the BPs, a rebound effect may be the causal mechanism. METHOD Review of the literature concerning the relationship between atypical femoral fractures and antiresorptive drugs (bisphosphonates), identifying the pathogenesis of this adverse event. RESULTS Several studies have described multiple cases of 'atypical' low-impact subtrochanteric stress fractures or complete fractures of the femur. These fractures are often bilateral, preceded by pain in the affected thigh, may have a typical X-ray appearance, and may delayed healing. Rebound of osteoclastic activity after suspension of antiresorptive drugs is a plausible mechanism to explain this phenomenon. CONCLUSION As for other classes of drugs, the rebound effect of antiresorptive drugs supports Hahnemann's similitude principle (primary action of the drugs followed by secondary and opposite action of the organism), and clarifies this 'unresolved' issue. Unfortunately, the rebound effect is little discussed among health professionals, depriving them of important knowledge ensure safe management of drugs.
Collapse
Affiliation(s)
- Marcus Zulian Teixeira
- Department of Internal Medicine, Faculty of Medicine, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
36
|
Misof BM, Roschger P, Gabriel D, Paschalis EP, Eriksen EF, Recker RR, Gasser JA, Klaushofer K. Annual intravenous zoledronic acid for three years increased cancellous bone matrix mineralization beyond normal values in the HORIZON biopsy cohort. J Bone Miner Res 2013; 28:442-8. [PMID: 23044788 DOI: 10.1002/jbmr.1780] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Revised: 08/31/2012] [Accepted: 09/14/2012] [Indexed: 11/11/2022]
Abstract
The efficacy of 3 years of annual intravenous administration of zoledronic acid (ZOL) in reducing vertebral and nonvertebral fractures in postmenopausal osteoporosis has been shown by the HORIZON pivotal fracture trial. Histomorphometric analysis of transiliac bone biopsies from the HORIZON participants revealed significantly improved trabecular architecture and reduced bone remodeling for the ZOL-treated versus placebo-treated patients. The aim of our study was to evaluate the cancellous and cortical bone mineralization density distribution (BMDD) in these biopsies by quantitative backscattered electron imaging (qBEI). The study cohort comprised 82 patients on active treatment (ZOL, yearly doses of 5 mg) and 70 treated with placebo, and all received adequate Ca and VitD supplementation. Comparison of ZOL-treated versus placebo-treated cancellous (Cn.) and cortical (Ct.) BMDD-derived variables resulted in significantly higher average (Cn.CaMean + 3.2%, Ct.CaMean + 2.7%) and mode calcium concentrations (Cn.CaPeak + 2.1%, Ct.CaPeak + 1.5%), increased percentages of highly mineralized bone areas (Cn.CaHigh + 64%, Ct.CaHigh + 31%), lower heterogeneity of mineralization (Cn.CaWidth -14%, Ct.CaWidth -13%), and decreased percentages of low mineralized bone areas (Cn.CaLow -22%, Ct.CaLow -26%) versus placebo (all p < 0.001). Cn. BMDD from the patients on active treatment also revealed a statistically significant shift to higher Ca concentrations when compared to a historical normal reference BMDD. These differences in BMDD from ZOL patients compared to the other groups were in line with the correlation of BMDD variables with previously determined cancellous mineralizing surface per bone surface (Cn. MS/BS, a primary histomorphometric index for bone turnover), showing that those with lower Cn. MS/BS had a higher degree of bone matrix mineralization. However, the differences in BMDD variables between the study groups remained when adjusted for Cn. MS/BS, suggesting that other factors in addition to reduced bone turnover might contribute to the higher bone matrix mineralization after ZOL treatment.
Collapse
Affiliation(s)
- Barbara M Misof
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Vienna, Austria.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Fratzl-Zelman N, Roschger P, Fisher JE, Duong LT, Klaushofer K. Effects of Odanacatib on bone mineralization density distribution in thoracic spine and femora of ovariectomized adult rhesus monkeys: a quantitative backscattered electron imaging study. Calcif Tissue Int 2013. [PMID: 23179105 DOI: 10.1007/s00223-012-9673-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Odanacatib (ODN) has been developed as a selective inhibitor of cathepsin K, the major cysteine protease in osteoclasts. In adult rhesus monkeys, treatment with ODN prevents ovariectomy-induced bone loss in lumbar vertebrae and hip. In this study, we evaluate the effects of ODN on bone mineralization density distribution (BMDD) by quantitative backscattered electron imaging in vertebral spongiosa, distal femoral metaphyseal and cortical shaft from monkeys (aged 16-23 years), treated with vehicle (n=5) or ODN (6 mg/kg, n=4 or 30 mg/kg, n=4, PO daily) for 21 months. Dual-energy X-ray absorptiometry was measured in a subset of distal femoral samples. In lumbar vertebrae there was a shift to higher mineralization in samples from ODN-treated groups, compared to vehicle: CaMean (+4%), CaPeak (+3%), CaWidth (-9%), CaLow (-28%) in the 6 mg/kg group and CaMean (+5.1%, p<0.023), CaPeak (+3.4%, p<0.046), CaWidth (-15.7%, p=0.06) and CaLow (-38.2%, p<0.034) in the 30 mg/kg group. In distal femoral metaphyseal cancellous bone, there was a clear tendency toward a dose-dependent increase in matrix mineralization, as in the spine. However, primary and osteonal bone of the distal cortical diaphyses showed no significant change in BMDD, whereas bone mineral density was significantly increased after treatment. In ovariectomized monkeys, this study shows that ODN treatment increased trabecular BMDD, consistent with its previously reported ability to reduce cancellous remodeling. Here, ODN also showed no changes in BMDD in cortical bone sites, consistent with its actions on maintaining endocortical and stimulating periosteal bone formation.
Collapse
Affiliation(s)
- Nadja Fratzl-Zelman
- Ludwig Boltzmann Institute of Osteology of WGKK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, 1140, Vienna, Austria.
| | | | | | | | | |
Collapse
|
38
|
Quantifying mineralization using bone mineral density distribution in the mandible. J Craniofac Surg 2013; 23:1502-6. [PMID: 22976646 DOI: 10.1097/scs.0b013e3182519a76] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Micro-computed tomography is an efficient method for quantifying the density and mineralization of mandibular microarchitecture. Conventional radiomorphometrics such as bone and tissue mineral density are useful in determining the average overall mineral content of a scanned specimen; however, relying solely on these metrics has limitations. Using bone mineral density distribution (BMDD), the complex array of mineralization densities within a bone sample can be portrayed. This information is particularly useful as a computational feature reflective of the rate of bone turnover. We demonstrate the utility of BMDD analyses in the rat mandible and generate a platform for further exploration of mandibular pathology and treatment. METHODS Male Sprague-Dawley rats (n = 8) underwent micro-computed tomography, and histogram data were generated from a selected volume of interest. A standard curve was derived for each animal, and reference criteria were defined. An average histogram was produced for the group, and descriptive analyses including the means and SDs are reported for each of the normative metrics. RESULTS M(peak) (3444 Hounsfield units [SD, 138]) and M(width) (2221 Hounsfield units [SD, 628]) are 2 metrics demonstrating reproducible parameters of BMDD with minimal variance. A total of 8 valuable metrics quantifying biologically significant events concerning mineralization are reported. CONCLUSIONS We quantify the vast wealth of information depicted in the complete spectrum of mineralization established by the BMDD analysis. We demonstrate its potential in delivering mineralization data that encompass and enhance conventional reporting of radiomorphometrics. Moreover, we explore its role and translational potential in craniofacial experimentation.
Collapse
|
39
|
Jia J, Yao W, Amugongo S, Shahnazari M, Dai W, Lay YE, Olvera D, Zimmermann EA, Ritchie RO, Li CS, Alliston T, Lane NE. Prolonged alendronate treatment prevents the decline in serum TGF-β1 levels and reduces cortical bone strength in long-term estrogen deficiency rat model. Bone 2013; 52:424-32. [PMID: 23088940 PMCID: PMC3804116 DOI: 10.1016/j.bone.2012.10.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Revised: 10/14/2012] [Accepted: 10/15/2012] [Indexed: 12/18/2022]
Abstract
INTRODUCTION While the anti-resorptive effects of the bisphosphonates (BPs) are well documented, many questions remain about their mechanisms of action, particularly following long-term use. This study evaluated the effects of alendronate (Ale) treatment on TGF-β1 signaling in mesenchymal stem cells (MSCs) and osteocytes, and the relationship between prolonged alendronate treatment on systemic TGF-β1 levels and bone strength. METHODS TGF-β1 expression and signaling were evaluated in MSCs and osteocytic MLO-Y4 cells following Ale treatment. Serum total TGF-β1 levels, a bone resorption marker (DPD/Cr), three-dimensional microCT scans and biomechanical tests from both the trabecular and cortical bone were measured in ovariectomized rats that either received continuous Ale treatment for 360 days or Ale treatment for 120 days followed by 240 days of vehicle. Linear regression tests were performed to determine the association of serum total TGF-β1 levels and both the trabecular (vertebrae) and cortical (tibiae) bone strength. RESULTS Ale increased TGF-β1 signaling in the MSCs but not in the MLO-Y4 cells. Ale treatment increased serum TGF-β1 levels and the numbers of TGF-β1-positive osteocytes and periosteal cells in cortical bone. Serum TGF-β1 levels were not associated with vertebral maximum load and strength but was negatively associated with cortical bone maximum load and ultimate strength. CONCLUSIONS The increase of serum TGF-β1 levels during acute phase of estrogen deficiency is likely due to increased osteoclast-mediated release of matrix-derived latent TGF-β1. Long-term estrogen-deficiency generally results in a decline in serum TGF-β1 levels that are maintained by Ale treatment. Measuring serum total TGF-β1 levels may help to determine cortical bone quality following alendronate treatment.
Collapse
Affiliation(s)
- Junjing Jia
- Musculoskeletal Research Unit, Department of Medicine, University of California Davis Medical Center, Sacramento, CA 95817
| | - Wei Yao
- Musculoskeletal Research Unit, Department of Medicine, University of California Davis Medical Center, Sacramento, CA 95817
| | - Sarah Amugongo
- Musculoskeletal Research Unit, Department of Medicine, University of California Davis Medical Center, Sacramento, CA 95817
| | - Mohammad Shahnazari
- Musculoskeletal Research Unit, Department of Medicine, University of California Davis Medical Center, Sacramento, CA 95817
- Veterans Administration Medical Center, University of California, San Francisco, CA 94121
| | | | - Yuan E. Lay
- Musculoskeletal Research Unit, Department of Medicine, University of California Davis Medical Center, Sacramento, CA 95817
| | - Diana Olvera
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | | | - Robert O. Ritchie
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
- Department of Materials Science and Engineering, University of California, Berkeley, CA 94720
| | - Chin-Shang Li
- Division of Biostatistics, Department of Public Health Sciences, University of California, Davis, CA 95616
| | - Tamara Alliston
- Department of Orthopaedic Surgery, University of California, San Francisco, CA 94143
| | - Nancy E. Lane
- Musculoskeletal Research Unit, Department of Medicine, University of California Davis Medical Center, Sacramento, CA 95817
| |
Collapse
|
40
|
Misof BM, Gamsjaeger S, Cohen A, Hofstetter B, Roschger P, Stein E, Nickolas TL, Rogers HF, Dempster D, Zhou H, Recker R, Lappe J, McMahon D, Paschalis EP, Fratzl P, Shane E, Klaushofer K. Bone material properties in premenopausal women with idiopathic osteoporosis. J Bone Miner Res 2012; 27:2551-61. [PMID: 22777919 PMCID: PMC3502637 DOI: 10.1002/jbmr.1699] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Revised: 06/19/2012] [Accepted: 06/26/2012] [Indexed: 12/19/2022]
Abstract
Idiopathic osteoporosis (IOP) in premenopausal women is characterized by fragility fractures at low or normal bone mineral density (BMD) in otherwise healthy women with normal gonadal function. Histomorphometric analysis of transiliac bone biopsy samples has revealed microarchitectural deterioration of cancellous bone and thinner cortices. To examine bone material quality, we measured the bone mineralization density distribution (BMDD) in biopsy samples by quantitative backscattered electron imaging (qBEI), and mineral/matrix ratio, mineral crystallinity/maturity, relative proteoglycan content, and collagen cross-link ratio at actively bone forming trabecular surfaces by Raman microspectroscopy and Fourier transform infrared microspectroscopy (FTIRM) techniques. The study groups included: premenopausal women with idiopathic fractures (IOP, n = 45), or idiopathic low BMD (Z-score ≤ -2.0 at spine and/or hip) but no fractures (ILBMD, n = 19), and healthy controls (CONTROL, n = 38). BMDD of cancellous bone showed slightly lower mineral content in IOP (both the average degree of mineralization of cancellous bone [Cn.Ca(Mean) ] and mode calcium concentration [Cn.Ca(Peak) ] are 1.4% lower) and in ILBMD (both are 1.6% lower, p < 0.05) versus CONTROL, but no difference between IOP and ILBMD. Similar differences were found when affected groups were combined versus CONTROL. The differences remained significant after adjustment for cancellous mineralizing surface (MS/BS), suggesting that the reduced mineralization of bone matrix cannot be completely accounted for by differences in bone turnover. Raman microspectroscopy and FTIRM analysis at forming bone surfaces showed no differences between combined IOP/ILBMD groups versus CONTROL, with the exceptions of increased proteoglycan content per mineral content and increased collagen cross-link ratio. When the two affected subgroups were considered individually, mineral/matrix ratio and collagen cross-link ratio were higher in IOP than ILBMD. In conclusion, our findings suggest that bone material properties differ between premenopausal women with IOP/ILBMD and normal controls. In particular, the altered collagen properties at sites of active bone formation support the hypothesis that affected women have osteoblast dysfunction that may play a role in bone fragility.
Collapse
Affiliation(s)
- Barbara M Misof
- Ludwig Boltzmann Institute of Osteology, Hanusch Hospital of Social Health Insurance Vienna (WGKK) and Austrian Social Insurance for Occupational Risk (AUVA) Trauma Centre Meidling, 1st Medical Department Hanusch Hospital, Vienna, Austria.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Hofstaetter JG, Hofstaetter SG, Nawrot-Wawrzyniak K, Hiertz H, Grohs JG, Trieb K, Windhager R, Klaushofer K, Roschger P. Mineralization pattern of vertebral bone material following fragility fracture of the spine. J Orthop Res 2012; 30:1089-94. [PMID: 22228585 DOI: 10.1002/jor.22026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2011] [Accepted: 11/08/2011] [Indexed: 02/04/2023]
Abstract
Little is known whether trabecular bone matrix mineralization is altered at the site of osteoporotic vertebral fractures. Bone mineralization density distribution (BMDD) was assessed in trabecular bone of acute, single-level compression fractures of the spine at various stages of fracture repair using quantitative backscattered electron imaging (qBEI). The grading of the repair stage was performed by histological methods. From 20 patients, who underwent either kyphoplasty (n=18) or vertebroplasty (n=2), a vertebral bone biopsy was taken prior to cement augmentation. Six patients took bisphosphonates (BP) prior to fracture. Three study groups were formed: N1=early-, N2=late-healing and B=BP treatment at late healing stage. In general, all groups had an altered BMDD when compared to historical normative reference data. Mean matrix mineralization (CaMean) was significantly (p<0.001) lower in all groups (N1: -5%, N2: -16%, and B2: -16%). In N2, CaMean was -13.1% (p<0.001) lower than N1. At this stage, deposition of new bone matrix and/or formation of woven bone are seen, which also explains the more heterogeneous matrix mineralization (CaWidth). Moreover, BP treatment (B2) led to a significant reduction in CaWidth (-28.5%, p<0.001), when compared to N2. Bone tissue from vertebrae with acute compression fractures reveals a large variation in matrix mineralization depending on the stage of repair. Bisphosphonate treatment does affect the mineralization pattern of tissue repair. The low mineralization values found in early stage of repair suggest that altered bone material properties may play a role in the occurrence of fragility fractures of the spine.
Collapse
Affiliation(s)
- Jochen G Hofstaetter
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, 1st Medical Department Hanusch Hospital, Vienna, Austria.
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Zoehrer R, Perilli E, Kuliwaba JS, Shapter JG, Fazzalari NL, Voelcker NH. Human bone material characterization: integrated imaging surface investigation of male fragility fractures. Osteoporos Int 2012; 23:1297-309. [PMID: 21695535 DOI: 10.1007/s00198-011-1688-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Accepted: 05/27/2011] [Indexed: 02/06/2023]
Abstract
UNLABELLED The interrelation of calcium and phosphorus was evaluated as a function of bone material quality in femoral heads from male fragility fracture patients via surface analytical imaging as well as scanning microscopy techniques. A link between fragility fractures and increased calcium to phosphorus ratio was observed despite normal mineralization density distribution. INTRODUCTION Bone fragility in men has been recently recognized as a public health issue, but little attention has been devoted to bone material quality and the possible efficacy in fracture risk prevention. Clinical routine fracture risk estimations do not consider the quality of the mineralized matrix and the critical role played by the different chemical components that are present. This study uses a combination of different imaging and analytical techniques to gain insights into both the spatial distribution and the relationship of phosphorus and calcium in bone. METHODS X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry imaging techniques were used to investigate the relationship between calcium and phosphorus in un-embedded human femoral head specimens from fragility fracture patients and non-fracture age-matched controls. The inclusion of the bone mineral density distribution via backscattered scanning electron microscopy provides information about the mineralization status between the groups. RESULTS A link between fragility fracture and increased calcium and decreased phosphorus in the femoral head was observed despite normal mineralization density distribution. Results exhibited significantly increased calcium to phosphorus ratio in the fragility fracture group, whereas the non-fracture control group ratio was in agreement with the literature value of 1.66 M ratio in mature bone. CONCLUSIONS Our results highlight the potential importance of the relationship between calcium and phosphorus, especially in areas of new bone formation, when estimating fracture risk of the femoral head. The determination of calcium and phosphorus fractions in bone mineral density measurements may hold the key to better fracture risk assessment as well as more targeted therapies.
Collapse
Affiliation(s)
- R Zoehrer
- School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Bedford Park, Adelaide, SA 5042, Australia
| | | | | | | | | | | |
Collapse
|
43
|
Tjhia CK, Odvina CV, Rao DS, Stover SM, Wang X, Fyhrie DP. Mechanical property and tissue mineral density differences among severely suppressed bone turnover (SSBT) patients, osteoporotic patients, and normal subjects. Bone 2011; 49:1279-89. [PMID: 21958843 PMCID: PMC3221814 DOI: 10.1016/j.bone.2011.09.042] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 09/01/2011] [Accepted: 09/06/2011] [Indexed: 11/25/2022]
Abstract
Pathogenesis of atypical fractures in patients on long term bisphosphonate therapy is poorly understood, and the type, the manner in which they occur and the fracture sites are quite different from the usual osteoporotic fractures. We hypothesized that the tissue-level mechanical properties and mean degree of mineralization of the iliac bone would differ among 1) patients with atypical fractures and severely suppressed bone turnover (SSBT) associated with long-term bisphosphonate therapy, 2) age-matched, treatment-naïve osteoporotic patients with vertebral fracture, 3) age-matched normals and 4) young normals. Large differences in tissue-level mechanical properties and/or mineralization among these groups could help explain the underlying mechanism(s) for the occurrence of typical osteoporotic and the atypical femoral shaft fractures. Elastic modulus, contact hardness, plastic deformation resistance, and tissue mineral densities of cortical and trabecular bone regions of 55 iliac bone biopsies--12 SSBT patients (SSBT; aged 49-77), 11 age-matched untreated osteoporotic patients with vertebral fracture (Osteoporotic), 12 age-matched subjects without bone fracture (Age-Matched Normal), and 20 younger subjects without bone fracture (Young Normal)--were measured using nanoindentation and quantitative backscattered electron microscopy. For cortical bone nanoindentation properties, only plastic deformation resistance was different among the groups (p<0.05), with greater resistance to plastic deformation in the SSBT group compared to all other groups. For trabecular bone, all nanoindentation properties and mineral density of the trabecular bone were different among the groups (p<0.05). The SSBT group had greater plastic deformation resistance and harder trabecular bone compared to the other three groups, stiffer bone compared to the Osteoporotic and Young Normal groups, and a trend of higher mineral density compared to the Age-Matched Normal and Osteoporotic groups. Lower heterogeneity of modulus and contact hardness for cortical bone of the SSBT and trabecular bone of the Osteoporotic fracture groups, respectively, compared to the non-fractured groups, may contribute to fracture susceptibility due to lowered ability to prevent crack propagation. We tentatively conclude that, in addition to extremely low bone formation rate, atypical fractures in SSBT and/or long-term bisphosphonate treatment may be associated with greater mean plastic deformation resistance properties and less heterogeneous elastic properties of the bone.
Collapse
Affiliation(s)
- Crystal K Tjhia
- Department of Orthopaedic Surgery, University of California Davis Medical Center, Sacramento, CA 95817, USA.
| | | | | | | | | | | |
Collapse
|
44
|
Fuchs RK, Faillace ME, Allen MR, Phipps RJ, Miller LM, Burr DB. Bisphosphonates do not alter the rate of secondary mineralization. Bone 2011; 49:701-5. [PMID: 21619951 DOI: 10.1016/j.bone.2011.05.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Revised: 04/19/2011] [Accepted: 05/10/2011] [Indexed: 11/16/2022]
Abstract
Bisphosphonates function to reduce bone turnover, which consequently increases the mean degree of tissue mineralization at an organ level. However, it is not clear if bisphosphonates alter the length of time required for an individual bone-modeling unit (BMU) to fully mineralize. We have recently demonstrated that it takes ~350 days (d) for normal, untreated cortical bone to fully mineralize. The aim of this study was to determine the rate at which newly formed trabecular BMUs become fully mineralized in rabbits treated for up to 414 d with clinical doses of either risedronate (RIS) or alendronate (ALN). Thirty-six, 4-month old virgin female New Zealand white rabbits were allocated to RIS (n=12; 2.4 μg/kg body weight), ALN (n=12; 2.4 μg/kg body weight), or volume-matched saline controls (CON; n=12). Fluorochrome labels were administered at specific time intervals to quantify the rate and level of mineralization of trabecular bone from the femoral neck (FN) by Fourier transform infrared microspectroscopy (FTIRM). The organic (collagen) and inorganic (phosphate and carbonate) IR spectral characteristics of trabecular bone from undecalcified 4 micron thick tissue sections were quantified from fluorescently labels regions that had mineralized for 1, 8, 18, 35, 70, 105, 140, 210, 280, and 385 d (4 rabbits per time point and treatment group). All groups exhibited a rapid increase in mineralization over the first 18 days, the period of primary mineralization, with no significant differences between treatments. Mineralization continued to increase, at a slower rate up, to 385 days (secondary mineralization), and was not different among treatments. There were no significant differences between treatments for the rate of mineralization within an individual BMU; however, ALN and RIS both increased global tissue mineralization as demonstrated by areal bone mineral density from DXA. We conclude that increases in tissue mineralization that occur following a period of bisphosphonate treatment is a function of the suppressed rate of remodeling that allows for a greater number of BMUs to obtain a greater degree of mineralization.
Collapse
Affiliation(s)
- Robyn K Fuchs
- Department of Physical Therapy, School of Health and Rehabilitation Science, Indiana University, 1140 W Michigan, Coleman Hall 326, Indianapolis, IN, USA.
| | | | | | | | | | | |
Collapse
|
45
|
Weinkamer R, Fratzl P. Mechanical adaptation of biological materials — The examples of bone and wood. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2011. [DOI: 10.1016/j.msec.2010.12.002] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
46
|
Bousson V, Bergot C, Wu Y, Jolivet E, Zhou LQ, Laredo JD. Greater tissue mineralization heterogeneity in femoral neck cortex from hip-fractured females than controls. A microradiographic study. Bone 2011; 48:1252-9. [PMID: 21397739 DOI: 10.1016/j.bone.2011.03.673] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Revised: 02/04/2011] [Accepted: 03/04/2011] [Indexed: 12/29/2022]
Abstract
In addition to bone quantity, bone quality affects bone strength. Bone quality depends in part on the degree of mineralization of bone tissue (DMB). The relationship between the DMB distribution and the risk of osteoporotic hip fractures remains incompletely investigated. Here, our aim was to compare DMB distribution in femoral neck cortex specimens from 23 women with hip fractures (age, 65-96 years) and 14 control women (age, 75-103 years). Mineralization was determined using quantitative microradiography. We evaluated the following parameters of DMB frequency histograms, for both osteons and interstitial tissue: mode (oDMB(Al)mode and intDMB(Al)mode, respectively); 25th (oDMB(Al)q25, intDMB(Al)q25), 50th (oDMB(Al)q50, intDMB(Al)q50), and 75th (oDMB(Al)q75, intDMB(Al)q75) percentiles; and interquartile range (oDMB(Al)iqr, intDMB(Al)iqr). For each specimen, we also calculated the variance of pixel mineral content for osteons and interstitial tissue (oDMB(Al)var and intDMB(Al)var). We used nonparametric tests to compare frequency histogram parameters between hip-fractured women and controls and Fisher's test to compare variances between groups. All frequency histogram parameters for osteons and interstitial tissue except the 25th percentile, and the variances of pixel mineral content in osteons and interstitial tissue, were significantly different between hip-fractured women and controls, indicating greater heterogeneity of mineralization in the hip-fracture patients than in the controls. These cross-sectional data suggest that bone fragility may be related to greater DMB heterogeneity in osteons and interstitial tissue.
Collapse
Affiliation(s)
- Valérie Bousson
- Laboratoire de Radiologie Expérimentale, Faculté de Médecine Lariboisière-Saint Louis, Université Paris VII, CNRS UMR 7052, 75010 Paris, France.
| | | | | | | | | | | |
Collapse
|
47
|
Martin RM, Correa PHS. Bone quality and osteoporosis therapy. ACTA ACUST UNITED AC 2011; 54:186-99. [PMID: 20485908 DOI: 10.1590/s0004-27302010000200015] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Accepted: 02/28/2010] [Indexed: 01/10/2023]
Abstract
Although BMD measured by DXA is a useful clinical tool for osteoporosis diagnosis, changes resulting from osteoporosis treatment only partially explain the observed reduction in fractures. Several other bone properties that influence its resistance to fractures and explain this discrepancy have been defined as "bone quality". Bone quality is determined by its structural and material properties and orchestrated by bone turnover, a continuous process of renewal through which old or damaged bone is replaced by a mechanically healthy bone and calcium homeostasis is maintained. Bone structural properties include its geometry (size and shape) and microarchitecture (trabecular architecture and cortical porosity), while bone material properties include its mineral and collagen composition as well as microdamage and its repair. This review aims to update concepts surrounding bone quality and how drugs employed to treat osteoporosis might influence them.
Collapse
|
48
|
Follet H, Viguet-Carrin S, Burt-Pichat B, Dépalle B, Bala Y, Gineyts E, Munoz F, Arlot M, Boivin G, Chapurlat RD, Delmas PD, Bouxsein ML. Effects of preexisting microdamage, collagen cross-links, degree of mineralization, age, and architecture on compressive mechanical properties of elderly human vertebral trabecular bone. J Orthop Res 2011; 29:481-8. [PMID: 20957742 DOI: 10.1002/jor.21275] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Accepted: 09/02/2010] [Indexed: 02/04/2023]
Abstract
Previous studies have shown that the mechanical properties of trabecular bone are determined by bone volume fraction (BV/TV) and microarchitecture. The purpose of this study was to explore other possible determinants of the mechanical properties of vertebral trabecular bone, namely collagen cross-link content, microdamage, and mineralization. Trabecular bone cores were collected from human L2 vertebrae (n = 49) from recently deceased donors 54-95 years of age (21 men and 27 women). Two trabecular cores were obtained from each vertebra, one for preexisting microdamage and mineralization measurements, and one for BV/TV and quasi-static compression tests. Collagen cross-link content (PYD, DPD, and PEN) was measured on surrounding trabecular bone. Advancing age was associated with impaired mechanical properties, and with increased microdamage, even after adjustment by BV/TV. BV/TV was the strongest determinant of elastic modulus and ultimate strength (r² = 0.44 and 0.55, respectively). Microdamage, mineralization parameters, and collagen cross-link content were not associated with mechanical properties. These data indicate that the compressive strength of human vertebral trabecular bone is primarily determined by the amount of trabecular bone, and notably unaffected by normal variation in other factors, such as cross-link profile, microdamage and mineralization.
Collapse
Affiliation(s)
- Helene Follet
- INSERM U831, University of Lyon, Lyon F-69008, France.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Gallacher SJ, Dixon T. Impact of treatments for postmenopausal osteoporosis (bisphosphonates, parathyroid hormone, strontium ranelate, and denosumab) on bone quality: a systematic review. Calcif Tissue Int 2010; 87:469-84. [PMID: 20872215 DOI: 10.1007/s00223-010-9420-x] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Accepted: 08/27/2010] [Indexed: 10/19/2022]
Abstract
The objective of this systematic review was to examine the influence of treatments for postmenopausal osteoporosis (parathyroid hormone [PTH], bisphosphonates, strontium ranelate, and denosumab) on bone quality and discuss the clinical implications. Most bone-quality data for PTH is from teriparatide. Teriparatide results in a rapid increase in bone-formation markers, followed by increases in bone-resorption markers, opening an "anabolic window," a period of time when PTH is maximally anabolic. Teriparatide reverses the structural damage seen in osteoporosis and restores the structure of trabecular bone. It has a positive effect on cortical bone, and any early increases in cortical porosity appear to be offset by increases in cortical thickness and diameter. Bisphosphonates are antiresorptive agents which reduce bone turnover, improve trabecular microarchitecture, and mineralization. Concerns have been raised that the prolonged antiresorptive action of bisphosphonates may lead to failure to repair microdamage, resulting in microcracks and atypical fragility. Strontium ranelate is thought to have a mixed mode of action, increasing bone formation and decreasing bone resorption. Strontium ranelate improves cortical thickness, trabecular number, and connectivity, with no change in cortical porosity. Denosumab exerts rapid, marked, and sustained effects on bone resorption, resulting in falls in the markers of bone turnover. Evidence from bone-quality studies suggests that treatment-naive women, aged 60-65 years, with very low BMD T scores may benefit from PTH as primary therapy to improve bone substrate and build bone. Post-PTH treatment with bisphosphonates will maintain improvements in bone quality and reduce the risk of fracture.
Collapse
Affiliation(s)
- S J Gallacher
- Southern General Hospital, 1345 Govan Road, Glasgow, G51 4TF, UK.
| | | |
Collapse
|
50
|
Shane E, Burr D, Ebeling PR, Abrahamsen B, Adler RA, Brown TD, Cheung AM, Cosman F, Curtis JR, Dell R, Dempster D, Einhorn TA, Genant HK, Geusens P, Klaushofer K, Koval K, Lane JM, McKiernan F, McKinney R, Ng A, Nieves J, O'Keefe R, Papapoulos S, Sen HT, van der Meulen MCH, Weinstein RS, Whyte M. Atypical subtrochanteric and diaphyseal femoral fractures: report of a task force of the American Society for Bone and Mineral Research. J Bone Miner Res 2010; 25:2267-94. [PMID: 20842676 DOI: 10.1002/jbmr.253] [Citation(s) in RCA: 772] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Reports linking long-term use of bisphosphonates (BPs) with atypical fractures of the femur led the leadership of the American Society for Bone and Mineral Research (ASBMR) to appoint a task force to address key questions related to this problem. A multidisciplinary expert group reviewed pertinent published reports concerning atypical femur fractures, as well as preclinical studies that could provide insight into their pathogenesis. A case definition was developed so that subsequent studies report on the same condition. The task force defined major and minor features of complete and incomplete atypical femoral fractures and recommends that all major features, including their location in the subtrochanteric region and femoral shaft, transverse or short oblique orientation, minimal or no associated trauma, a medial spike when the fracture is complete, and absence of comminution, be present to designate a femoral fracture as atypical. Minor features include their association with cortical thickening, a periosteal reaction of the lateral cortex, prodromal pain, bilaterality, delayed healing, comorbid conditions, and concomitant drug exposures, including BPs, other antiresorptive agents, glucocorticoids, and proton pump inhibitors. Preclinical data evaluating the effects of BPs on collagen cross-linking and maturation, accumulation of microdamage and advanced glycation end products, mineralization, remodeling, vascularity, and angiogenesis lend biologic plausibility to a potential association with long-term BP use. Based on published and unpublished data and the widespread use of BPs, the incidence of atypical femoral fractures associated with BP therapy for osteoporosis appears to be very low, particularly compared with the number of vertebral, hip, and other fractures that are prevented by BPs. Moreover, a causal association between BPs and atypical fractures has not been established. However, recent observations suggest that the risk rises with increasing duration of exposure, and there is concern that lack of awareness and underreporting may mask the true incidence of the problem. Given the relative rarity of atypical femoral fractures, the task force recommends that specific diagnostic and procedural codes be created and that an international registry be established to facilitate studies of the clinical and genetic risk factors and optimal surgical and medical management of these fractures. Physicians and patients should be made aware of the possibility of atypical femoral fractures and of the potential for bilaterality through a change in labeling of BPs. Research directions should include development of animal models, increased surveillance, and additional epidemiologic and clinical data to establish the true incidence of and risk factors for this condition and to inform orthopedic and medical management.
Collapse
Affiliation(s)
- Elizabeth Shane
- Columbia University, College of Physicians and Surgeons, PH 8 West 864, 630 West 168th Street, New York, NY 10032, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|