1
|
Tokavanich N, Chan B, Strauss K, Castro Andrade CD, Arai Y, Nagata M, Foretz M, Brooks DJ, Ono N, Ono W, Wein MN. Control of alveolar bone development, homeostasis, and socket healing by salt-inducible kinases. J Bone Miner Res 2025; 40:656-670. [PMID: 40057979 DOI: 10.1093/jbmr/zjaf038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 02/03/2025] [Accepted: 02/05/2025] [Indexed: 05/26/2025]
Abstract
Alveolar bone supports and anchors teeth. The parathyroid hormone-related protein (PTHrP) pathway plays a key role in alveolar bone biology. Salt-inducible kinases (SIKs) are important downstream regulators of PTH/PTHrP signaling in the appendicular skeleton, where SIK inhibition increases bone formation and trabecular bone mass. However, the function of these kinases in alveolar bone remains unknown. Here, we report a critical role for SIK2/SIK3 in alveolar bone development, homeostasis, and socket healing after tooth extraction. Inducible SIK2/SIK3 (Ubq-creERt;Sik2f/f;Sik3f/f) deletion led to dramatic alveolar bone defects without changes in tooth eruption. Ablating these kinases impairs alveolar bone formation due to disrupted osteoblast maturation, a finding associated with ectopic periostin expression by fibrous cells in regions of absent alveolar bone at steady state and following molar extraction. Notably, this phenotype is the opposite of the increased trabecular bone mass observed in long bones following SIK2/SIK3 deletion. Distinct phenotypic consequences of SIK2/SIK3 deletion in appendicular versus craniofacial bones prompted us to identify a specific transcriptomic signature in alveolar versus long bone osteoblasts. Thus, SIK2/SIK3 deletion illuminates a key role for these kinases in alveolar bone biology and highlights the emerging concept that different osteoblast subsets utilize unique genetic programs.
Collapse
Affiliation(s)
- Nicha Tokavanich
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, United States
- Harvard School of Dental Medicine, Boston, MA, 02115, United States
| | - Byron Chan
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, United States
| | - Katelyn Strauss
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, United States
| | - Christian D Castro Andrade
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, United States
- Molecular, Cellular, and Integrative Physiology, University of California Los Angeles, Los Angeles, CA 90095, United States
| | - Yuki Arai
- University of Texas Health Science Center at Houston School of Dentistry, Houston, TX 77204, United States
| | - Mizuki Nagata
- University of Texas Health Science Center at Houston School of Dentistry, Houston, TX 77204, United States
| | - Marc Foretz
- Université Paris Cité, CNRS, INSERM, Institut Cochin, Paris, France
| | - Daniel J Brooks
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, United States
| | - Noriaki Ono
- University of Texas Health Science Center at Houston School of Dentistry, Houston, TX 77204, United States
| | - Wanida Ono
- University of Texas Health Science Center at Houston School of Dentistry, Houston, TX 77204, United States
| | - Marc N Wein
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, United States
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, United States
- Harvard Stem Cell Institute, Cambridge, MA 02138, United States
| |
Collapse
|
2
|
Watanabe K, Han CM, Altman-Singles AR, Liu J, Guo X, Ni A, Bahador M, Ebrahimian T, Kim J, Lee BS, Liu XS, Kim DG. Multiscale characterization of jawbone treated with osteoporosis therapeutic agents. J Mech Behav Biomed Mater 2025; 169:107036. [PMID: 40345077 DOI: 10.1016/j.jmbbm.2025.107036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/08/2024] [Accepted: 04/22/2025] [Indexed: 05/11/2025]
Abstract
The objective of the current study was to determine whether treatments of bisphosphonate (alendronate (ALN)), parathyroid hormone (PTH), and their combination have an effect on the jawbone in estrogen deficient rats. Six female rats (4-month-old) were used for each sham surgery (SHAM). Twenty-four rats (4-month-old) were ovariectomized and randomly assigned to four equal groups: saline injection (VEH), PTH following saline injection (VEH/PTH), bisphosphonate (ALN), or a combination (ALN/PTH). A hemimandible was randomly dissected from each rat for multiscale (10-2 to 10-7 m) characterization including static and dynamic mechanical stability of teeth in the alveolar socket, tissue mineral density distribution (TMD), and nanoindentation properties of the jawbone matrix. Most jawbone characteristics in OVX and its treatment groups were not significantly different from those of the SHAM group. The surface of alveolar bone (AB) surrounding teeth showed a trend of more erosion and addition of new bone tissues in the OVX rat groups compared to the SHAM group. All TMD parameters rapidly increased up to 60 μm from the periodontal ligament surrounding teeth regardless of the treatment groups. Treatments using each therapeutic agent and its combination did not substantially change those characteristics of jawbones in OVX rats. These findings are different from those of lumbar vertebrae in the same rats that showed a significant bone alteration by OVX and treatments. Thus, the current multiscale characterization of jawbone provides comprehensive information that can help better understand jawbone-specific responses to bone-related complications, including postmenopausal osteoporosis and bisphosphonate-related osteonecrosis of the jaw.
Collapse
Affiliation(s)
- Keiichiro Watanabe
- Division of Orthodontics, College of Dentistry, The Ohio State University, Columbus, OH,USA
| | - Cheol-Min Han
- Division of Orthodontics, College of Dentistry, The Ohio State University, Columbus, OH,USA
| | - Allison R Altman-Singles
- Kinesiology & Mechanical Engineering, Pennsylvania State University, Berks Campus, Reading, PA, USA
| | - Jie Liu
- Division of Orthodontics, College of Dentistry, The Ohio State University, Columbus, OH,USA
| | - Xiaohan Guo
- Division of Biostatistics, College of Public Health, The Ohio State University, Columbus, OH, USA
| | - Ai Ni
- Division of Biostatistics, College of Public Health, The Ohio State University, Columbus, OH, USA
| | - Mason Bahador
- Division of Orthodontics, College of Dentistry, The Ohio State University, Columbus, OH,USA
| | - Tala Ebrahimian
- Division of Orthodontics, College of Dentistry, The Ohio State University, Columbus, OH,USA
| | - Jayoung Kim
- Departments of Surgery and BioMedical Sciences, Cedars-Sinai Medical Center, University of California, Los Angeles, CA, USA
| | - Beth S Lee
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - X Sherry Liu
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, PA, USA
| | - Do-Gyoon Kim
- Division of Orthodontics, College of Dentistry, The Ohio State University, Columbus, OH,USA.
| |
Collapse
|
3
|
Furlan CC, Freire AR, Ferreira-Pileggi BC, Watanabe LNO, Botacin PR, Prado FB, Rossi AC. Does Ovariectomy Affect the Mechanics of the Mandibular Alveolar Bone Structure of Wistar Rats Subjected to Tooth Loss and Modified Diet?-A FEA Study. BIOLOGY 2024; 13:906. [PMID: 39596861 PMCID: PMC11592268 DOI: 10.3390/biology13110906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/01/2024] [Accepted: 08/07/2024] [Indexed: 11/29/2024]
Abstract
The aim of this study was to evaluate the mechanical effect of ovariectomy, diet, and tooth extraction on the bone structure of the mandible of Wistar rats. Mandibles from 40 female Wistar rats were used, divided into rats with ovariectomy surgery or surgical simulation. Half of the rats had the right upper incisor extracted and a soft diet was introduced for half of the animals for 30 days. After euthanasia, microtomography of the mandibles was performed for bone segmentation to construct three-dimensional models. Each mandible was subjected to a three-point bending test. The simulation by finite element method was configured according to the protocol for positioning the part on the support and force action by the load cell defined in the mechanical tests. Stress dissipation was described qualitatively on a color scale distributed in ranges of stress values. All models showed a higher concentration of stresses in the regions of force action and in the support regions, with differences in stress values and locations. Diet and dental condition interfered in the distribution of stresses, with the lateral surface of the mandible being more influenced by diet and the medial surface of the mandible by diet and dental condition.
Collapse
Affiliation(s)
- Camila C. Furlan
- Biosciences Department, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba 13414903, SP, Brazil; (C.C.F.); (A.R.F.); (B.C.F.-P.); (L.N.O.W.); (F.B.P.)
| | - Alexandre R. Freire
- Biosciences Department, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba 13414903, SP, Brazil; (C.C.F.); (A.R.F.); (B.C.F.-P.); (L.N.O.W.); (F.B.P.)
| | - Beatriz C. Ferreira-Pileggi
- Biosciences Department, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba 13414903, SP, Brazil; (C.C.F.); (A.R.F.); (B.C.F.-P.); (L.N.O.W.); (F.B.P.)
| | - Luciane N. O. Watanabe
- Biosciences Department, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba 13414903, SP, Brazil; (C.C.F.); (A.R.F.); (B.C.F.-P.); (L.N.O.W.); (F.B.P.)
| | - Paulo R. Botacin
- Department of Basic Sciences, Araçatuba Dental School, São Paulo State University Júlio de Mesquita Filho—UNESP, Aracatuba 16015050, SP, Brazil;
| | - Felippe B. Prado
- Biosciences Department, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba 13414903, SP, Brazil; (C.C.F.); (A.R.F.); (B.C.F.-P.); (L.N.O.W.); (F.B.P.)
| | - Ana Cláudia Rossi
- Biosciences Department, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba 13414903, SP, Brazil; (C.C.F.); (A.R.F.); (B.C.F.-P.); (L.N.O.W.); (F.B.P.)
| |
Collapse
|
4
|
Tokavanich N, Chan B, Strauss K, Castro Andrade CD, Arai Y, Nagata M, Foretz M, Brooks DJ, Ono N, Ono W, Wein MN. Control of alveolar bone development, homeostasis, and socket healing by salt inducible kinases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.04.611228. [PMID: 39282451 PMCID: PMC11398370 DOI: 10.1101/2024.09.04.611228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2025]
Abstract
Alveolar bone supports and anchors teeth. The parathyroid hormone-related protein (PTHrP) pathway plays a key role in alveolar bone biology. Salt inducible kinases (SIKs) are important downstream regulators of PTH/PTHrP signaling in the appendicular skeleton where SIK inhibition increases bone formation and trabecular bone mass. However, the function of these kinases in alveolar bone remains unknown. Here, we report a critical role for SIK2/SIK3 in alveolar bone development, homeostasis, and socket healing after tooth extraction. Inducible SIK2/SIK3 deletion led to dramatic alveolar bone defects without changes in tooth eruption. Ablating these kinases impairs alveolar bone formation due to disrupted osteoblast maturation, a finding associated with ectopic periostin expression by fibrous cells in regions of absent alveolar bone at steady state and following molar extraction. Distinct phenotypic consequences of SIK2/SIK3 deletion in appendicular versus craniofacial bones prompted us to identify a specific transcriptomic signature in alveolar versus long bone osteoblasts. Thus, SIK2/SIK3 deletion illuminates a key role for these kinases in alveolar bone biology and highlights the emerging concept that different osteoblast subsets utilize unique genetic programs. Summary statement SIK2/SIK3 deletion in alveolar bone reduces bone formation and mass by impairing osteoblast maturation, unlike in long bones, where it increases bone formation and mass.
Collapse
|
5
|
Sung HH, Kwon HH, Stephan C, Reynolds SM, Dai Z, Van der Kraan PM, Caird MS, Blaney Davidson EN, Kozloff KM. Sclerostin antibody enhances implant osseointegration in bone with Col1a1 mutation. Bone 2024; 186:117167. [PMID: 38876270 PMCID: PMC11243590 DOI: 10.1016/j.bone.2024.117167] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/06/2024] [Accepted: 06/10/2024] [Indexed: 06/16/2024]
Abstract
We evaluated the potential of sclerostin antibody (SclAb) therapy to enhance osseointegration of dental and orthopaedic implants in a mouse model (Brtl/+) mimicking moderate to severe Osteogenesis Imperfecta (OI). To address the challenges in achieving stable implant integration in compromised bone conditions, our aim was to determine the effectiveness of sclerostin antibody (SclAb) at improving bone-to-implant contact and implant fixation strength. Utilizing a combination of micro-computed tomography, mechanical push-in testing, immunohistochemistry, and Western blot analysis, we observed that SclAb treatment significantly enhances bone volume fraction (BV/TV) and bone-implant contact (BIC) in Brtl/+ mice, suggesting a normalization of bone structure toward WT levels. Despite variations in implant survival rates between the maxilla and tibia, SclAb treatment consistently improved implant stability and resistance to mechanical forces, highlighting its potential to overcome the inherent challenges of OI in dental and orthopaedic implant integration. These results suggest that SclAb could be a valuable therapeutic approach for enhancing implant success in compromised bone conditions.
Collapse
Affiliation(s)
- Hsiao H Sung
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA; Department of Oral and Maxillofacial Surgery, University of Michigan, Ann Arbor, MI, USA; Experimental Rheumatology, Department of Rheumatology, Radboud Medical Centre, Nijmegen, the Netherlands
| | - Hanna H Kwon
- Department of Oral and Maxillofacial Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Chris Stephan
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Skylar M Reynolds
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Zongrui Dai
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
| | - Peter M Van der Kraan
- Experimental Rheumatology, Department of Rheumatology, Radboud Medical Centre, Nijmegen, the Netherlands
| | - Michelle S Caird
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| | | | - Kenneth M Kozloff
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
6
|
Lucateli RL, Silva PHF, Salvador SL, Ervolino E, Furlaneto FAC, Marciano MA, Antunes TBM, Del Arco MCG, Tardelli MDC, de Sousa LG, Messora MR. Probiotics enhance alveolar bone microarchitecture, intestinal morphology and estradiol levels in osteoporotic animals. J Periodontal Res 2024; 59:758-770. [PMID: 38699835 DOI: 10.1111/jre.13256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 12/07/2023] [Accepted: 02/22/2024] [Indexed: 05/05/2024]
Abstract
BACKGROUND AND OBJECTIVE Osteoporosis is associated with bone microarchitecture alterations, and the depletion of estrogen during menopause is a major contributing factor to its development. The literature highlights the noteworthy role of gut microbiota in bone metabolism, particularly in the progression of osteoporosis. Periodontal disease leads to alveolar bone loss, which may be influenced by estrogen deficiency, and this mechanism is intricately associated with an imbalance in systemic microbiota. The aim of this study was to evaluate the effects of Bifidobacterium animalis subsp. lactis HN019 (B. lactis HN019) and Lacticaseibacillus casei 01 (L. casei 01) administrations on an osteoporosis animal model. MATERIALS AND METHODS Thirty-three female rats were randomly divided into three groups: control (C-OVX), C-OVX-HN019 and C-OVX-LC01. All animals were ovariectomized. In groups C-OVX-HN019 and C-OVX-LC01, the probiotics were administered for 4 months. All animals were euthanized after 16 weeks from ovariectomy. Microtomographic, histopathological and immunohistochemical examinations were conducted on periodontal tissues, whereas histomorphometry, histopathological and immunohistochemical analyses were carried out on the intestine. The levels of estradiol were assessed in blood using an immunoenzymatic assay. The data were subjected to statistical analyses (p < .05). RESULTS The C-OVX-LC01 group exhibited a significant reduction in alveolar bone porosity and an increase in connective tissue density compared to C-OVX (p < .05). The C-OVX-HN019 and C-OVX-LC01 groups presented reduced expression of TRAP and RANKL compared to the C-OVX (p < .05). The C-OVX group presented villi defects, mild neutrophil infiltration, decrease in both villous height and intestinal crypts and reduced expression of intestinal junctional epithelium markers e-cadherin and claudin 01 compared to C-OVX-HN019 and C-OVX-LC01 (p < .05). The C-OVX group had lower estradiol levels than C-OVX-HN019 and C-OVX-LC01 (p < .05). CONCLUSION The probiotic therapy promoted a reduction in alveolar bone destruction and intestinal permeability as well as an increase in estradiol levels in ovariectomized rats. Specifically, the probiotic strain Lacticaseibacillus casei 01 exhibited greater effectiveness compared to Bifidobacterium animalis subsp. lactis HN019, indicating strain-dependent outcomes.
Collapse
Affiliation(s)
- R L Lucateli
- Department of Oral and Maxillofacial Surgery and Periodontology, School of Dentistry of Ribeirão Preto, University of São Paulo - USP, Ribeirão Preto, São Paulo, Brazil
| | - P H F Silva
- Department of Oral and Maxillofacial Surgery and Periodontology, School of Dentistry of Ribeirão Preto, University of São Paulo - USP, Ribeirão Preto, São Paulo, Brazil
| | - S L Salvador
- Department of Clinical Analyses, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo - USP, Ribeirão Preto, São Paulo, Brazil
| | - E Ervolino
- Division of Histology, Department of Basic Sciences, Dental School of Araçatuba, UNESP, Araçatuba, São Paulo, Brazil
| | - F A C Furlaneto
- Department of Oral and Maxillofacial Surgery and Periodontology, School of Dentistry of Ribeirão Preto, University of São Paulo - USP, Ribeirão Preto, São Paulo, Brazil
| | - M A Marciano
- Department of Restorative Dentistry, School of Dentistry of Piracicaba, University of Campinas, Piracicaba, São Paulo, Brazil
| | - T B M Antunes
- Department of Restorative Dentistry, School of Dentistry of Piracicaba, University of Campinas, Piracicaba, São Paulo, Brazil
| | - M C G Del Arco
- Department of Clinical Analyses, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo - USP, Ribeirão Preto, São Paulo, Brazil
| | - M D C Tardelli
- Department of Oral and Maxillofacial Surgery and Periodontology, School of Dentistry of Ribeirão Preto, University of São Paulo - USP, Ribeirão Preto, São Paulo, Brazil
| | - L G de Sousa
- Department of Morphology, Stomatology, and Physiology, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - M R Messora
- Department of Oral and Maxillofacial Surgery and Periodontology, School of Dentistry of Ribeirão Preto, University of São Paulo - USP, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
7
|
Liao Y, Xu J, Zheng Z, Fu R, Zhang X, Gan S, Yang S, Hou C, Xu HHK, Chen W. Novel Nonthermal Atmospheric Plasma Irradiation of Titanium Implants Promotes Osteogenic Effect in Osteoporotic Conditions. ACS Biomater Sci Eng 2024; 10:3255-3267. [PMID: 38684056 DOI: 10.1021/acsbiomaterials.4c00202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Osteoporosis is a metabolic disease characterized by bone density and trabecular bone loss. Bone loss may affect dental implant osseointegration in patients with osteoporosis. To promote implant osseointegration in osteoporotic patients, we further used a nonthermal atmospheric plasma (NTAP) treatment device previously developed by our research group. After the titanium implant (Ti) is placed into the device, the working gas flow and the electrode switches are turned on, and the treatment is completed in 30 s. Previous studies showed that this NTAP device can remove carbon contamination from the implant surface, increase the hydroxyl groups, and improve its wettability to promote osseointegration in normal conditions. In this study, we demonstrated the tremendous osteogenic enhancement effect of NTAP-Ti in osteoporotic conditions in rats for the first time. Compared to Ti, the proliferative potential of osteoporotic bone marrow mesenchymal stem cells on NTAP-Ti increased by 180% at 1 day (P = 0.004), while their osteogenic differentiation increased by 149% at 14 days (P < 0.001). In addition, the results indicated that NTAP-Ti significantly improved osseointegration in osteoporotic rats in vivo. Compared to the Ti, the bone volume fraction (BV/TV) and trabecular number (Tb.N) values of NTAP-Ti in osteoporotic rats, respectively, increased by 18% (P < 0.001) and 25% (P = 0.007) at 6 weeks and the trabecular separation (Tb.Sp) value decreased by 26% (P = 0.02) at 6 weeks. In conclusion, this study proved a novel NTAP irradiation titanium implant that can significantly promote osseointegration in osteoporotic conditions.
Collapse
Affiliation(s)
- Yihan Liao
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jia Xu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Zheng Zheng
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Ruijie Fu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xinyuan Zhang
- Jinjiang Out-Patient Section, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Shuaiqi Gan
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Shuhan Yang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Chuping Hou
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Hockin H K Xu
- Biomaterials and Tissue Engineering Division, Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, Maryland 21201, United States
- Center for Stem Cell Biology and Regenerative Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
- University of Maryland Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
- Department of Biomaterials and Regenerative Dental Medicine, University of Maryland School of Dentistry, Baltimore, Maryland 21201, United States
| | - Wenchuan Chen
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Jinjiang Out-Patient Section, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
8
|
Feng Y, Wang H, Xu S, Huang J, Pei Q, Wang Z. The detection of Gper1 as an important gene promoting jawbone regeneration in the context of estrogen deficiency. Bone 2024; 180:116990. [PMID: 38141748 DOI: 10.1016/j.bone.2023.116990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 12/13/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023]
Abstract
Numerous studies have demonstrated that estrogen deficiency inhibit the proliferation and differentiation of pre-osteoblasts in skeleton by affecting osteogenic signaling, lead to decreased bone mass and impaired regeneration. To explore the mechanisms maintaining bone regeneration under estrogen deficiency, we randomly selected 1102 clinical cases, in which female patients aged between 18 and 75 have underwent tooth extraction in Stomatological Hospital of Tongji University, there is little difference in the healing effect of extraction defects, suggesting that to some extent, the regeneration of jawbone is insensitive to the decreased estrogen level. To illuminate the mechanisms promoting jawbone regeneration under estrogen deficiency, a tooth extraction defect model was established in the maxilla of female rats who underwent ovariectomy (OVX) or sham surgery, and jawbone marrow stromal cells (BMSCs) were isolated for single-cell sequencing. Further quantitative PCR, RNA interference, alizarin red staining, immunohistochemistry and western blotting experiments demonstrated that in the context of ovariectomy, maxillary defects promoted G protein-coupled estrogen receptor 1 (Gper1) expression, stimulate downstream cAMP/PKA/pCREB signaling, and facilitate cell proliferation, and thus provided sufficient progenitors for osteogenesis and enhanced the regeneration capacity of the jawbone. Correspondingly, the heterozygous deletion of the Gper1 gene attenuated the phosphorylation of CREB, led to decreased cell proliferation, and impaired the restoration of maxillary defects. This study demonstrates the importance of Gper1 in maintaining jawbone regeneration, especially in the context of estrogen deficiency.
Collapse
Affiliation(s)
- Yuan Feng
- Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, No.399 Middle Yanchang Road, Shanghai 200072, PR China
| | - Haicheng Wang
- Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, No.399 Middle Yanchang Road, Shanghai 200072, PR China
| | - Shuyu Xu
- Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, No.399 Middle Yanchang Road, Shanghai 200072, PR China
| | - Jie Huang
- Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, No.399 Middle Yanchang Road, Shanghai 200072, PR China
| | - Qingguo Pei
- Department of Stomatology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No.100 Haining Road, Shanghai 200080, PR China
| | - Zuolin Wang
- Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, No.399 Middle Yanchang Road, Shanghai 200072, PR China.
| |
Collapse
|
9
|
Methawit P, Uezono M, Ogasawara T, Techalertpaisarn P, Moriyama K. Cortical bone microdamage affects primary stability of orthodontic miniscrew. J World Fed Orthod 2023; 12:229-236. [PMID: 37423833 DOI: 10.1016/j.ejwf.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/01/2023] [Accepted: 06/10/2023] [Indexed: 07/11/2023]
Abstract
BACKGROUND The aim of this study was to investigate the effects of orthodontic miniscrew pitch and thread shape on microdamage in cortical bone. The relationship between the microdamage and primary stability was also examined. METHODS Ti6Al4V orthodontic miniscrews and 1.0-mm-thick cortical bone pieces from fresh porcine tibia were prepared. The orthodontic miniscrews had custom-made thread height (H) and pitch (P) size geometries, and were classified into three groups: control geometry; HCPC (HC; thread height = 0.12 mm, PC; pitch size = 0.60 mm), geometry with a narrower pitch; HCPN (HC; thread height = 0.12 mm, PN; pitch size = 0.30 mm), and geometry with a taller thread height; HTPC (HT; thread height = 0.36 mm, PC; pitch size = 0.60 mm). The orthodontic miniscrews were inserted into a pilot hole in the cortical bone, and maximum insertion torque and Periotest value were measured. After insertion, the samples were stained with basic fuchsin. Histological thin sections were obtained and the bone microdamage parameters, i.e., total crack length and total damage area, and insertion state parameters, i.e., orthodontic miniscrew surface length and bone compression area were calculated. RESULTS The orthodontic miniscrews with the taller thread height resulted in lower primary stability with minimal bone compression and microdamage; however, the narrower thread pitch led to maximum bone compression and extensive bone microdamage. CONCLUSIONS A wider thread pitch reduced microdamage, and decreased thread height resulted in increased bone compression, ultimately resulting in increased primary stability.
Collapse
Affiliation(s)
- Panida Methawit
- Department of Orthodontics, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand; Department of Maxillofacial Orthognathics, Tokyo Medical and Dental University, Tokyo, Japan; Tokyo Medical and Dental University and Chulalongkorn University International Joint Degree Doctor of Philosophy Program in Orthodontics
| | - Masayoshi Uezono
- Department of Maxillofacial Orthognathics, Tokyo Medical and Dental University, Tokyo, Japan.
| | - Takeshi Ogasawara
- Department of Maxillofacial Orthognathics, Tokyo Medical and Dental University, Tokyo, Japan
| | | | - Keiji Moriyama
- Department of Maxillofacial Orthognathics, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
10
|
Wang Z, Huang M, Zhang Y, Jiang X, Xu L. Comparison of Biological Properties and Clinical Application of Mesenchymal Stem Cells from the Mesoderm and Ectoderm. Stem Cells Int 2023; 2023:4547875. [PMID: 37333060 PMCID: PMC10276766 DOI: 10.1155/2023/4547875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 05/04/2023] [Accepted: 05/23/2023] [Indexed: 06/20/2023] Open
Abstract
Since the discovery of mesenchymal stem cells (MSCs) in the 1970s, they have been widely used in the treatment of a variety of diseases because of their wide sources, strong differentiation potential, rapid expansion in vitro, low immunogenicity, and so on. At present, most of the related research is on mesoderm-derived MSCs (M-MSCs) such as bone marrow MSCs and adipose-derived MSCs. As a type of MSC, ectoderm-derived MSCs (E-MSCs) have a stronger potential for self-renewal, multidirectional differentiation, and immunomodulation and have more advantages than M-MSCs in some specific conditions. This paper analyzes the relevant research development of E-MSCs compared with that of M-MSCs; summarizes the extraction, discrimination and culture, biological characteristics, and clinical application of E-MSCs; and discusses the application prospects of E-MSCs. This summary provides a theoretical basis for the better application of MSCs from both ectoderm and mesoderm in the future.
Collapse
Affiliation(s)
- Zhenning Wang
- Medical School of Chinese PLA, Beijing 100853, China
- Department of Orthodontics, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Meng Huang
- Medical School of Chinese PLA, Beijing 100853, China
- Department of Orthodontics, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Yu Zhang
- Medical School of Chinese PLA, Beijing 100853, China
- Department of Orthodontics, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Xiaoxia Jiang
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Lulu Xu
- Department of Orthodontics, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|
11
|
Jin A, Xu H, Gao X, Sun S, Yang Y, Huang X, Wang X, Liu Y, Zhu Y, Dai Q, Bian Q, Jiang L. ScRNA-Seq Reveals a Distinct Osteogenic Progenitor of Alveolar Bone. J Dent Res 2023; 102:645-655. [PMID: 37148259 DOI: 10.1177/00220345231159821] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2023] Open
Abstract
The metabolism and remodeling of alveolar bone are the most active among the whole skeletal system, which is related to the biological characteristics and heterogeneity of the bone mesenchymal stromal cells (MSCs). However, there is a lack of systematic description of the heterogeneity of MSC-derived osteoblastic lineage cells as well as their distinct osteogenic differentiation trajectory of alveolar bone. In this study, we constructed a single-cell atlas of the mouse alveolar bone cells through single-cell RNA sequencing (scRNA-seq). Remarkably, by comparing the cell compositions between the alveolar bone and long bone, we uncovered a previously undescribed cell population that exhibits a high expression of protocadherin Fat4 (Fat4+ cells) and is specifically enriched around alveolar bone marrow cavities. ScRNA-seq analysis indicated that Fat4+ cells may initiate a distinct osteogenic differentiation trajectory in the alveolar bone. By isolating and cultivating Fat4+ cells in vitro, we demonstrated that they possess colony-forming, osteogenic, and adipogenic capabilities. Moreover, FAT4 knockdown could significantly inhibit the osteogenic differentiation of alveolar bone MSCs. Furthermore, we revealed that the Fat4+ cells exhibit a core transcriptional signature consisting of several key transcription factors, such as SOX6, which are involved in osteogenesis, and further demonstrated that SOX6 is required for the efficient osteogenic differentiation of the Fat4+ cells. Collectively, our high-resolution single-cell atlas of the alveolar bone reveals a distinct osteogenic progenitor that may contribute to the unique physiological characteristics of alveolar bone.
Collapse
Affiliation(s)
- A Jin
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - H Xu
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - X Gao
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - S Sun
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Y Yang
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - X Huang
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - X Wang
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Y Liu
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Y Zhu
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Q Dai
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- The 2nd Dental Center, Ninth People's Hospital, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Q Bian
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Institute of Precision Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - L Jiang
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
| |
Collapse
|
12
|
Soares AP, Fischer H, Aydin S, Steffen C, Schmidt-Bleek K, Rendenbach C. Uncovering the unique characteristics of the mandible to improve clinical approaches to mandibular regeneration. Front Physiol 2023; 14:1152301. [PMID: 37008011 PMCID: PMC10063818 DOI: 10.3389/fphys.2023.1152301] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 03/07/2023] [Indexed: 03/19/2023] Open
Abstract
The mandible (lower jaw) bone is aesthetically responsible for shaping the lower face, physiologically in charge of the masticatory movements, and phonetically accountable for the articulation of different phonemes. Thus, pathologies that result in great damage to the mandible severely impact the lives of patients. Mandibular reconstruction techniques are mainly based on the use of flaps, most notably free vascularized fibula flaps. However, the mandible is a craniofacial bone with unique characteristics. Its morphogenesis, morphology, physiology, biomechanics, genetic profile, and osteoimmune environment are different from any other non-craniofacial bone. This fact is especially important to consider during mandibular reconstruction, as all these differences result in unique clinical traits of the mandible that can impact the results of jaw reconstructions. Furthermore, overall changes in the mandible and the flap post-reconstruction may be dissimilar, and the replacement process of the bone graft tissue during healing can take years, which in some cases can result in postsurgical complications. Therefore, the present review highlights the uniqueness of the jaw and how this factor can influence the outcome of its reconstruction while using an exemplary clinical case of pseudoarthrosis in a free vascularized fibula flap.
Collapse
Affiliation(s)
- Ana Prates Soares
- Department of Oral and Maxillofacial Surgery, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, and Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Julius Wolff Institute for Biomechanics and Musculoskeletal Regeneration, Berlin Institute of Health at Charité—Universitätsmedizin Berlin, Berlin, Germany
- *Correspondence: Ana Prates Soares,
| | - Heilwig Fischer
- Department of Oral and Maxillofacial Surgery, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, and Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Centrum für Muskuloskeletale Chirurgie, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, and Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- BIH Biomedical Innovation Academy, BIH Charité Clinician Scientist Program, Berlin Institute of Health at Charité—Universitätsmedizin Berlin, Berlin, Germany
| | - Sabrin Aydin
- Department of Oral and Maxillofacial Surgery, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, and Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Claudius Steffen
- Department of Oral and Maxillofacial Surgery, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, and Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Katharina Schmidt-Bleek
- Julius Wolff Institute for Biomechanics and Musculoskeletal Regeneration, Berlin Institute of Health at Charité—Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health Centre for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité—Universitätsmedizin Berlin, Berlin, Germany
| | - Carsten Rendenbach
- Department of Oral and Maxillofacial Surgery, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, and Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
13
|
Guo J, Yao H, Li X, Chang L, Wang Z, Zhu W, Su Y, Qin L, Xu J. Advanced Hydrogel systems for mandibular reconstruction. Bioact Mater 2023; 21:175-193. [PMID: 36093328 PMCID: PMC9413641 DOI: 10.1016/j.bioactmat.2022.08.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/16/2022] [Accepted: 08/02/2022] [Indexed: 12/23/2022] Open
Abstract
Mandibular defect becomes a prevalent maxillofacial disease resulting in mandibular dysfunctions and huge psychological burdens to the patients. Considering the routine presence of oral contaminations and aesthetic restoration of facial structures, the current clinical treatments are however limited, incapable to reconstruct the structural integrity and regeneration, spurring the need for cost-effective mandibular tissue engineering. Hydrogel systems possess great merit for mandibular reconstruction with precise involvement of cells and bioactive factors. In this review, current clinical treatments and distinct mode(s) of mandible formation and pathological resorption are summarized, followed by a review of hydrogel-related mandibular tissue engineering, and an update on the advanced fabrication of hydrogels with improved mechanical property, antibacterial ability, injectable form, and 3D bioprinted hydrogel constructs. The exploration of advanced hydrogel systems will lay down a solid foundation for a bright future with more biocompatible, effective, and personalized treatment in mandibular reconstruction.
Collapse
Affiliation(s)
- Jiaxin Guo
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
- Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Hao Yao
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
- Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Xu Li
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
- Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Liang Chang
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
- Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Zixuan Wang
- Department of Mechanical Engineering, Tsinghua University, Beijing, China
| | - Wangyong Zhu
- Division of Oral and Maxillofacial Surgery, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Yuxiong Su
- Division of Oral and Maxillofacial Surgery, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Ling Qin
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
- Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- Corresponding author. Director of Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Jiankun Xu
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
- Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- Corresponding author. Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
14
|
Liu J, Watanabe K, Dabdoub SM, Lee BS, Kim DG. Site-specific characteristics of bone and progenitor cells in control and ovariectomized rats. Bone 2022; 163:116501. [PMID: 35872108 DOI: 10.1016/j.bone.2022.116501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 07/11/2022] [Accepted: 07/18/2022] [Indexed: 11/25/2022]
Abstract
One-third of postmenopausal women experience at least one osteoporotic bone fracture in their lifetime that occurs spontaneously or from low-impact events. However, osteoporosis-associated jaw bone fractures are extremely rare. It was also observed that jaw bone marrow stem cells (BMSCs) have a higher capacity to form mineralized tissues than limb BMSCs. At present, the underlying causes and mechanisms of variations between jaw bone and limb bone during postmenopause are largely unknown. Thus, the objective of the current study was to examine the site-specific effects of estrogen deficiency using comprehensive analysis of bone quantity and quality, and its association with characterization of cellular components of bone. Nine rats (female, 6 months old) for each bilateral sham and ovariectomy (OVX) surgery were obtained and maintained for 2 months after surgery. A hemi-mandible and a femur from each rat were characterized for parameters of volume, mineral density, cortical and trabecular morphology, and static and dynamic mechanical analysis. Another set of 5 rats (female, 9 months old) was obtained for assays of BMSCs. Following cytometry to identify BMSCs, bioassays for proliferation, and osteogenic, adipogenic, chondrogenic differentiation, and cell mitochondrial stress tests were performed. In addition, mRNA expression of BMSCs was analyzed. OVX decreased bone quantity and quality (mineral content, morphology, and energy dissipation) of femur while those of mandible were not influenced. Cellular assays demonstrated that mandible BMSCs showed greater differentiation than femur BMSCs. Gene ontology pathway analysis indicated that the mandibular BMSCs showed most significant differential expression of genes in the regulatory pathways of osteoblast differentiation, SMAD signaling, cartilage development, and glucose transmembrane transporter activity. These findings suggested that active mandibular BMSCs maintain bone formation and mineralization by balancing the rapid bone resorption caused by estrogen deficiency. These characteristics likely help reduce the risk of osteoporotic fracture in postmenopausal jawbone.
Collapse
Affiliation(s)
- Jie Liu
- Division of Orthodontics, College of Dentistry, The Ohio State University, Columbus, OH 43210, USA
| | - Keiichiro Watanabe
- Division of Orthodontics, College of Dentistry, The Ohio State University, Columbus, OH 43210, USA
| | - Shareef M Dabdoub
- Division of Biostatistics and Computational Biology, Department of Periodontics, College of Dentistry and Dental Clinics, The University of Iowa, Iowa City, IA 52242, USA.
| | - Beth S Lee
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Do-Gyoon Kim
- Division of Orthodontics, College of Dentistry, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
15
|
Li J, Cai J, Liu L, Wu Y, Chen Y. Pulsed electromagnetic fields inhibit mandibular bone deterioration depending on the Wnt3a/β-catenin signaling activation in type 2 diabetic db/db mice. Sci Rep 2022; 12:7217. [PMID: 35508623 PMCID: PMC9068619 DOI: 10.1038/s41598-022-10065-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 03/01/2022] [Indexed: 11/21/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) patients have compromised mandibular bone architecture/quality, which markedly increase the risks of tooth loosening, tooth loss, and failure of dental implantation. However, it remains lacks effective and safe countermeasures against T2DM-related mandibular bone deterioration. Herein, we studied the effects of pulsed electromagnetic fields (PEMF) on mandibular bone microstructure/quality and relevant regulatory mechanisms in T2DM db/db mice. PEMF exposure (20 Gs, 15 Hz) for 12 weeks preserved trabecular bone architecture, increased cortical bone thickness, improved material properties and stimulated bone anabolism in mandibles of db/db mice. PEMF also upregulated the expression of canonical Wnt3a ligand (but not Wnt1 or Wnt5a) and its downstream β-catenin. PEMF improved the viability and differentiation of primary osteoblasts isolated from the db/db mouse mandible, and stimulated the specific activation of Wnt3a/β-catenin signaling. These positive effects of PEMF on mandibular osteoblasts of db/db mice were almost totally abolished after Wnt3a silencing in vitro, which were equivalent to the effects following blockade of canonical Wnt signaling using the broad-spectrum antagonist DKK1. Injection with Wnt3a siRNA abrogated the therapeutic effects of PEMF on mandibular bone quantity/quality and bone anabolism in db/db mice. Our study indicates that PEMF might become a non-invasive and safe treatment alternative resisting mandibular bone deterioration in T2DM patients, which is helpful for protecting teeth from loosening/loss and securing the dental implant stability.
Collapse
Affiliation(s)
- Jianjun Li
- Second Clinical Division, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Beijing, 100081, China. .,Beijing Healya Technology Limited, Beijing, 100195, China.
| | - Jing Cai
- College of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Liheng Liu
- Department of Obstetrics, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Yuwei Wu
- Second Clinical Division, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Beijing, 100081, China
| | - Yan Chen
- Second Clinical Division, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Beijing, 100081, China
| |
Collapse
|
16
|
Davis LL, Aragão WAB, de Oliveira Lopes G, Eiró LG, Freire AR, Prado FB, Rossi AC, da Silva Cruz A, das Graças Fernandes Dantas K, Albuquerque ARL, Paz SPA, Angélica RS, Lima RR. Chronic exposure to lead acetate promotes changes in the alveolar bone of rats: microstructural and physical-chemical characterization. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:13930-13940. [PMID: 34599710 DOI: 10.1007/s11356-021-16723-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
There are a few data relating to the effects of lead (Pb) exposure on the alveolar bone, which has very distinct morphophysiological characteristics and is of great importance in the oral cavity. In this context, the aim of this study was to investigate the changes promoted after long-term exposure to Pb in the microstructure of the alveolar bone of rats. Twenty adult Wistar rats were exposed to 50 mg/kg/day of lead acetate for 55 days. These animals were euthanized and had their mandible removed. Each mandible was divided into hemimandibles, and the alveolar bone was used for bone lead quantification, crystallinity analysis, microstructure evaluation by the percentage of bone volume (BV/TV), number of trabeculae (Tb.N), thickness of the trabecular (Tb.Th), and trabecular space (Tb.Sp). Morphometric analysis of the exposed root area was also performed. Long-term exposure to Pb resulted in high levels of Pb in the alveolar bone but showed no changes in the organization of crystallinity. The microstructural analyses showed a reduction of BV/TV, Tb.Th, and Tb.N and increase of Tb.Sp parameters, resulting in an increase in the exposed root area and an alveolar bone loss in height. The findings of this study reveal the ability of Pb to alter the alveolar bone microstructure after long-term exposure to the metal, possibly due to changes in tissue homeostasis, contributing to the reduction of bone quality.
Collapse
Affiliation(s)
- Lodinikki Lemoy Davis
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Augusto Corrêa street, N. 1. Campus do Guamá. - CEP, Belém, PA, 66075-110, Brazil
| | - Walessa Alana Bragança Aragão
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Augusto Corrêa street, N. 1. Campus do Guamá. - CEP, Belém, PA, 66075-110, Brazil
| | - Géssica de Oliveira Lopes
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Augusto Corrêa street, N. 1. Campus do Guamá. - CEP, Belém, PA, 66075-110, Brazil
| | - Luciana Guimaraes Eiró
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Augusto Corrêa street, N. 1. Campus do Guamá. - CEP, Belém, PA, 66075-110, Brazil
| | - Alexandre Rodrigues Freire
- Laboratory of research in Mechanobiology, Piracicaba Dental School, University of Campinas - UNICAMP, Piracicaba, Brazil
| | - Felippe Bevilacqua Prado
- Laboratory of research in Mechanobiology, Piracicaba Dental School, University of Campinas - UNICAMP, Piracicaba, Brazil
| | - Ana Cláudia Rossi
- Laboratory of research in Mechanobiology, Piracicaba Dental School, University of Campinas - UNICAMP, Piracicaba, Brazil
| | - Allan da Silva Cruz
- Group of Applied Analytical Spectrometry, Institute of Natural and Exact Sciences, Federal University of Pará, Belém, PA, Brazil
| | | | - Alan Rodrigo Leal Albuquerque
- Group of Applied Analytical Spectrometry, Institute of Natural and Exact Sciences, Federal University of Pará, Belém, PA, Brazil
| | - Simone Patricia Aranha Paz
- Group of Applied Analytical Spectrometry, Institute of Natural and Exact Sciences, Federal University of Pará, Belém, PA, Brazil
| | - Rômulo Simões Angélica
- Laboratory of Mineral Characterization, Institute of Geology and Geochemistry, Federal University of Pará, Belém, PA, Brazil
| | - Rafael Rodrigues Lima
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Augusto Corrêa street, N. 1. Campus do Guamá. - CEP, Belém, PA, 66075-110, Brazil.
| |
Collapse
|
17
|
Nunes PBDO, Ferreira MKM, Ribeiro Frazão D, Bittencourt LO, Chemelo VDS, Silva MCF, Pereira-Neto AL, Albuquerque ARL, Paz SPA, Angélica RS, Pessanha S, Lima RR. Effects of inorganic mercury exposure in the alveolar bone of rats: an approach of qualitative and morphological aspects. PeerJ 2022; 10:e12573. [PMID: 35127276 PMCID: PMC8800384 DOI: 10.7717/peerj.12573] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 11/09/2021] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND In comparison to organic mercury (MeHg), the environmental inorganic mercury (IHg) can be found in some skin-lightening cosmestics were considered "harmless" for a long time. However, recent studies have shown that long-term exposure to low doses of IHg may affect biological systems. Therefore, this study investigated the effects of IHg long-term exposure to the alveolar bone of adult rats. METHODS Adult Wistar rats were distributed in control and HgCl2 exposed (0.375 mg/kg/day). After 45 days, the rats were euthanized and both blood and hemimandibles were collected. Total blood Hg levels were measured and both inorganic and organic components of the alveolar bone were determined through XRD and ATR-FTIR. The microstructure of the alveolar bone was assessed by using micro-CT and the morphometric analysis was performed by using stereomicroscopy. RESULTS Alterations in the physicochemical components of the alveolar bone of exposed animals were observed. The bone changes represented a tissue reaction at the microstructural level, such as bone volume increase. However, no significant dimensional changes (bone height) were observed. CONCLUSION Exposure to IHg at this dose can promote microstructural changes and alteration in the organic and inorganic components in the alveolar bone.
Collapse
Affiliation(s)
- Paula Beatriz de Oliveira Nunes
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil
| | - Maria Karolina Martins Ferreira
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil
| | - Deborah Ribeiro Frazão
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil
| | - Leonardo Oliveira Bittencourt
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil
| | - Victória dos Santos Chemelo
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil
| | - Márcia Cristina Freitas Silva
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil
| | | | | | | | | | - Sofia Pessanha
- Laboratory of Instrumentation, Biomedical Engineering and Radiation Physics, NOVA School of Sciences and Technology, Caparica, Portugal
| | - Rafael Rodrigues Lima
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil
| |
Collapse
|
18
|
Kwack KH, Lamb NA, Bard JE, Kramer ED, Zhang L, Abrams SI, Kirkwood KL. Discovering Myeloid Cell Heterogeneity in Mandibular Bone - Cell by Cell Analysis. Front Physiol 2021; 12:731549. [PMID: 34658914 PMCID: PMC8514701 DOI: 10.3389/fphys.2021.731549] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 09/06/2021] [Indexed: 01/28/2023] Open
Abstract
The myeloid-derived bone marrow progenitor populations from different anatomical locations are known to have diverse osteoclastogenesis potential. Specifically, myeloid progenitors from the tibia and femur have increased osteoclast differentiation potential compared to myeloid progenitors from the alveolar process. In this study, we explored the differences in the myeloid lineage progenitor cell populations in alveolar (mandibular) bone versus long (femur) bone using flow cytometry and high-throughput single cell RNA sequencing (scRNA-seq) to provide a comprehensive transcriptional landscape. Results indicate that mandibular bone marrow-derived cells exhibit consistent deficits in myeloid differentiation, including significantly fewer myeloid-derived suppressor cell (MDSC)-like populations (CD11b+Ly6C+, CD11b+Ly6G+), as well as macrophages (CD11b+F4/80+). Although significantly fewer in number, MDSCs from mandibular bone exhibited increased immunosuppressive activity compared to MDSCs isolated from long bone. Using flow cytometry panels specific for bone marrow progenitors, analysis of hematopoietic stem cells showed no defects in mandibular bone marrow in LSK (Lin-Sca1+cKit+) cell and LK (Lin-Sca1-cKit+) cell populations. While there was no significant difference in granulocyte progenitors, the granulocyte-monocyte progenitors and monocyte progenitor population were significantly decreased in the mandibular bone marrow. T-lymphocyte subsets were not significantly different between mandibular and femoral bone, except for CD4+CD25+Foxp3+ regulatory T lymphocytes, which were significantly increased in the mandible. In addition, B lymphocytes were significantly increased in mandible. Single cell RNA sequencing from mandible and femur BM revealed distinct differences in transcriptomic profiles in myeloid populations establishing previously unappreciated aspects of mandibular bone marrow populations. These analyses reveal site-specific differences in the myeloid progenitor cellular composition and transcriptional programs providing a deeper appreciation of the complex differences in myeloid cell heterogeneity from different anatomical bone marrow sites.
Collapse
Affiliation(s)
- Kyu Hwan Kwack
- Department of Oral Biology, University at Buffalo, The State University of New York, Buffalo, NY, United States
| | - Natalie A. Lamb
- Genomics and Bioinformatics Core, New York State Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, The State University of New York, Buffalo, NY, United States
| | - Jonathan E. Bard
- Genomics and Bioinformatics Core, New York State Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, The State University of New York, Buffalo, NY, United States
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| | - Elliot D. Kramer
- Department of Medicine, University at Buffalo, Buffalo, NY, United States
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Lixia Zhang
- Department of Oral Biology, University at Buffalo, The State University of New York, Buffalo, NY, United States
| | - Scott I. Abrams
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Keith L. Kirkwood
- Department of Oral Biology, University at Buffalo, The State University of New York, Buffalo, NY, United States
- Department of Head and Neck, Plastic and Reconstructive Surgery, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| |
Collapse
|
19
|
Chatterjee M, Faot F, Correa C, Kerckhofs J, Vandamme K. Is the Jaw Bone Micro-Structure Altered in Response to Osteoporosis and Bisphosphonate Treatment? A Micro-CT Analysis. Int J Mol Sci 2021; 22:6559. [PMID: 34207275 PMCID: PMC8234121 DOI: 10.3390/ijms22126559] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/26/2021] [Accepted: 06/08/2021] [Indexed: 12/23/2022] Open
Abstract
The aim of the study was to quantify the micro-architectural changes of the jaw bone in response to ovariectomy, exposed or not to bisphosphonate treatment. A total of 47 Wistar rats were ovariectomized (OVX) or sham-operated (shOVX) and exposed to osteoporosis preventive treatment for eight weeks either with bisphosphonates (alendronate, ALN; group OVX-ALN) three days/week at a dose of 2 mg/kg or with saline solution (untreated control condition; group OVX). The bone morphometric parameters of the trabecular jaw bone were assessed using ex vivo micro-computed tomography. The regions of interest investigated in the maxilla were the inter-radicular septum of the second molar and the tuber. The regions quantified in the mandible included the three molar regions and the condyle. A one-way analysis of variance followed by pairwise comparison using Tukey's HSD and the Games-Howell test was conducted to explore significant differences between the groups. In the maxilla, OVX decreased the bone volume in the inter-radicular septum of the second molar. Bisphosphonate treatment was able to prevent this deterioration of the jaw bone. The other investigated maxillary regions were not affected by (un)treated ovariectomy. In the mandible, OVX had a significant negative impact on the jaw bone in the buccal region of the first molar and the inter-radicular region of the third molar. Treatment with ALN was able to prevent this jaw bone loss. At the condyle site, OVX significantly deteriorated the trabecular connectivity and shape, whereas preventive bisphosphonate treatment showed a positive effect on this trabecular bone region. No significant results between the groups were observed for the remaining regions of interest. In summary, our results showed that the effects of ovariectomy-induced osteoporosis are manifested at selected jaw bone regions and that bisphosphonate treatment is capable to prevent these oral bone changes.
Collapse
Affiliation(s)
- Marissa Chatterjee
- Department of Oral Health Sciences & Restorative Dentistry, KU Leuven & UZ Leuven, 3000 Leuven, Belgium; (M.C.); (F.F.); (C.C.); (J.K.)
| | - Fernanda Faot
- Department of Oral Health Sciences & Restorative Dentistry, KU Leuven & UZ Leuven, 3000 Leuven, Belgium; (M.C.); (F.F.); (C.C.); (J.K.)
- School of Dentistry, Federal University of Pelotas, Pelotas 96010-610, RS, Brazil
| | - Cassia Correa
- Department of Oral Health Sciences & Restorative Dentistry, KU Leuven & UZ Leuven, 3000 Leuven, Belgium; (M.C.); (F.F.); (C.C.); (J.K.)
- UNICAMP/Piracicaba Dental School, University of Campinas, Piracicaba 13414-903, SP, Brazil
| | - Jente Kerckhofs
- Department of Oral Health Sciences & Restorative Dentistry, KU Leuven & UZ Leuven, 3000 Leuven, Belgium; (M.C.); (F.F.); (C.C.); (J.K.)
| | - Katleen Vandamme
- Department of Oral Health Sciences & Restorative Dentistry, KU Leuven & UZ Leuven, 3000 Leuven, Belgium; (M.C.); (F.F.); (C.C.); (J.K.)
| |
Collapse
|
20
|
Kumar D, Dawoud BES, Kent S, MTReC, Kyzas P. Antibiotic practices in non-condylar mandibular fractures: a Maxillofacial Trainee Research Collaborative (MTReC) UK-wide survey. Br J Oral Maxillofac Surg 2021; 60:291-294. [PMID: 34838340 DOI: 10.1016/j.bjoms.2021.05.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 05/14/2021] [Indexed: 11/24/2022]
Abstract
Non-condylar mandibular fractures are consdered 'open' fractures and as such are thought to require prophylactic antibiotics. There is no overall consensus on the optimal regimen or choice of antibiotic in the preoperative and postoperative periods due to a lack of high-quality evidence. We therefore set out to ascertain the current UK-wide practice of antibiotic prescribing for non-condylar mandibular fractures. We used a web-based online survey (Google Forms) that was disseminated via email and social media platforms to oral and maxillofacial surgery (OMFS) consultants and trainees of all grades. The questions focused on usual antibiotic practices and typical clinical management of non-condylar mandibular fractures. We gathered information on preoperative antibiotics, and on perioperative and postoperative periods. We collected data from 50 different UK OMFS units representing a broad snapshot of national practice. The majority of responders were speciality trainees (36%) followed by dental core trainees (34%). A total of 45/50 centres routinely admitted patients, and preoperative intravenous antibiotics were commenced on admission by 77/89 respondents, intravenous being the chosen route in all cases. In the preoperative period 81% prescribe co-amoxiclav. In 91% of cases, open reduction and internal fixation (ORIF) was on general emergency (CEPOD) operating lists, whilst dedicated OMFS trauma lists accounted for 9%. With respect to timing, 49% aimed to carry out ORIF within 24 hours from the time of admission, 44% aimed for surgery within 24 - 48 hours, and 6% aimed for surgery on a semielective basis (48 hours or more). Postoperative antibiotics were prescribed routinely by 88% of responders. Preoperative intravenous prophylactic antibiotics are commonplace in non-condylar mandibular fractures. This UK-wide survey demonstrated significant variability in antibiotic prescribing practices, especially in the postoperative period. Most units still rely on CEPOD emergency theatres to provide the capacity for ORIF in this patient group.
Collapse
Affiliation(s)
| | - B E S Dawoud
- Department of Oral & Maxillofacial Surgery, North Manchester General Hospital, Manchester University NHS Foundation Trust.
| | - S Kent
- Department of Oral and Maxillofacial Surgery.
| | - MTReC
- Maxillofacial Trainee Research Collaborative
| | - P Kyzas
- Department of Oral and Maxillofacial Surgery, Royal Blackburn Teaching Hospital, East Lancashire Hospitals NHS Trust.
| |
Collapse
|
21
|
Osteogenesis Differences Around Titanium Implant and in Bone Defect Between Jaw Bones and Long Bones. J Craniofac Surg 2021; 31:2193-2198. [PMID: 33136853 DOI: 10.1097/scs.0000000000006795] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The aim of this study is to evaluate the osteogenesis around titanium implant and in bone defect or fracture in jaw bones and long bones in ovariectomized (OVX) animal models. The literature on the osteogenesis around titanium implant and in bone defect or fracture in jaw bones and long bones was reviewed with charts. Fourty-eight rats were randomly divided into OVX group with ovariectomy and SHAM (sham-surgery) group with sham surgery. Titanium implants were inserted in the right mandibles and tibiae; bone defects were created in the left mandibles and tibiae. Two-week postoperatively, mandibles and tibiae of 8 rats were harvested and examined by hematoxylin and eosin staining and histological analysis; 4-week postoperatively, all mandibles and tibiae were harvested and examined by Micro-CT and histological analysis. A total of 52 articles were included in this literature review. Tibial osteogenesis around titanium implant and in bone defect in OVX group were significantly decreased compared with SHAM group. However, osteogenesis differences in the mandible both around titanium implant and in bone defect between groups were not statistically significant. OVX-induced osteoporosis suppresses osteogenesis around titanium implant and in the bone defect or fracture in long bones significantly while has less effect on that in the jaw bones.
Collapse
|
22
|
Lin W, Li Q, Zhang D, Zhang X, Qi X, Wang Q, Chen Y, Liu C, Li H, Zhang S, Wang Y, Shao B, Zhang L, Yuan Q. Mapping the immune microenvironment for mandibular alveolar bone homeostasis at single-cell resolution. Bone Res 2021; 9:17. [PMID: 33723232 PMCID: PMC7960742 DOI: 10.1038/s41413-021-00141-5] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/18/2021] [Accepted: 02/01/2021] [Indexed: 02/04/2023] Open
Abstract
Alveolar bone is the thickened ridge of jaw bone that supports teeth. It is subject to constant occlusal force and pathogens invasion, and is therefore under active bone remodeling and immunomodulation. Alveolar bone holds a distinct niche from long bone considering their different developmental origin and postnatal remodeling pattern. However, a systematic explanation of alveolar bone at single-cell level is still lacking. Here, we construct a single-cell atlas of mouse mandibular alveolar bone through single-cell RNA sequencing (scRNA-seq). A more active immune microenvironment is identified in alveolar bone, with a higher proportion of mature immune cells than in long bone. Among all immune cell populations, the monocyte/macrophage subpopulation most actively interacts with mesenchymal stem cells (MSCs) subpopulation. Alveolar bone monocytes/macrophages express a higher level of Oncostatin M (Osm) compared to long bone, which promotes osteogenic differentiation and inhibits adipogenic differentiation of MSCs. In summary, our study reveals a unique immune microenvironment of alveolar bone, which may provide a more precise immune-modulatory target for therapeutic treatment of oral diseases.
Collapse
Affiliation(s)
- Weimin Lin
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qiwen Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Danting Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiaohan Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xingying Qi
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qian Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yaqian Chen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Caojie Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hanwen Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shiwen Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuan Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Bin Shao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Li Zhang
- Department of Respiratory and Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, Center of Precision Medicine, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
| | - Quan Yuan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China. .,Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
23
|
Hathaway-Schrader JD, Novince CM. Maintaining homeostatic control of periodontal bone tissue. Periodontol 2000 2021; 86:157-187. [PMID: 33690918 DOI: 10.1111/prd.12368] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Alveolar bone is a unique osseous tissue due to the proximity of dental plaque biofilms. Periodontal health and homeostasis are mediated by a balanced host immune response to these polymicrobial biofilms. Dysbiotic shifts within dental plaque biofilms can drive a proinflammatory immune response state in the periodontal epithelial and gingival connective tissues, which leads to paracrine signaling to subjacent bone cells. Sustained chronic periodontal inflammation disrupts "coupled" osteoclast-osteoblast actions, which ultimately result in alveolar bone destruction. This chapter will provide an overview of alveolar bone physiology and will highlight why the oral microbiota is a critical regulator of alveolar bone remodeling. The ecology of dental plaque biofilms will be discussed in the context that periodontitis is a polymicrobial disruption of host homeostasis. The pathogenesis of periodontal bone loss will be explained from both a historical and current perspective, providing the opportunity to revisit the role of fibrosis in alveolar bone destruction. Periodontal immune cell interactions with bone cells will be reviewed based on our current understanding of osteoimmunological mechanisms influencing alveolar bone remodeling. Lastly, probiotic and prebiotic interventions in the oral microbiota will be evaluated as potential noninvasive therapies to support alveolar bone homeostasis and prevent periodontal bone loss.
Collapse
Affiliation(s)
- Jessica D Hathaway-Schrader
- Department of Oral Health Sciences, College of Dental Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Chad M Novince
- Department of Oral Health Sciences, College of Dental Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| |
Collapse
|
24
|
Zhang Y, Yang Y, Xu M, Zheng J, Xu Y, Chen G, Guo Q, Tian W, Guo W. The Dual Effects of Reactive Oxygen Species on the Mandibular Alveolar Bone Formation in SOD1 Knockout Mice: Promotion or Inhibition. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8847140. [PMID: 33613826 PMCID: PMC7878083 DOI: 10.1155/2021/8847140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 12/14/2020] [Accepted: 01/15/2021] [Indexed: 02/05/2023]
Abstract
The status of reactive oxygen species (ROS) correlates closely with the normal development of the oral and maxillofacial tissues. Oxidative stress caused by ROS accumulation not only affects the development of enamel and dentin but also causes pathological changes in periodontal tissues (periodontal ligament and alveolar bone) that surround the root of the tooth. Although previous studies have shown that ROS accumulation plays a pathologic role in some oral and maxillofacial tissues, the effects of ROS on alveolar bone development remain unclear. In this study, we focused on mandibular alveolar bone development of mice deficient in superoxide dismutase1 (SOD1). Analyses were performed using microcomputerized tomography (micro-CT), TRAP staining, immunohistochemical (IHC) staining, and enzyme-linked immunosorbent assay (ELISA). We found for the first time that slightly higher ROS in mandibular alveolar bone of SOD1(-/-) mice at early ages (2-4 months) caused a distinct enlargement in bone size and increased bone volume fraction (BV/TV), trabecular thickness (Tb.Th), and expression of alkaline phosphatase (ALP), Runt-related transcription factor 2 (Runx2), and osteopontin (OPN). With ROS accumulation to oxidative stress level, increased trabecular bone separation (Tb.Sp) and decreased expression of ALP, Runx2, and OPN were found in SOD1(-/-) mice at 6 months. Additionally, dosing with N-acetylcysteine (NAC) effectively mitigated bone loss and normalized expression of ALP, Runx2, and OPN. These results indicate that redox imbalance caused by SOD1 deficiency has dual effects (promotion or inhibition) on mandibular alveolar bone development, which is closely related to the concentration of ROS and the stage of growth. We present a valuable model here for investigating the effects of ROS on mandibular alveolar bone formation and highlight important roles of ROS in regulating tissue development and pathological states, illustrating the complexity of the redox signal.
Collapse
Affiliation(s)
- Yunyan Zhang
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuzhi Yang
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Mingxue Xu
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jingwen Zheng
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuchan Xu
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Guoqing Chen
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qiang Guo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Weidong Tian
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Weihua Guo
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
25
|
Maia CDSF, Queiroz LY, de Oliveira IG, da Silva CCS, Cunha RA, Souza-Monteiro D, Ferreira MKM, Silveira FM, da Silva JC, Balbinot GDS, Collares FM, Martins MAT, Martins MD, Lima RR. Binge-Like Exposure During Adolescence Induces Detrimental Effects in Alveolar Bone that Persist in Adulthood. Alcohol Clin Exp Res 2021; 45:56-63. [PMID: 33165940 DOI: 10.1111/acer.14501] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 10/28/2020] [Indexed: 11/30/2022]
Abstract
BACKGROUND Alcohol (EtOH) intake during adolescence has become an important public health issue. Although the detrimental effects of EtOH intake on the musculoskeletal system are well known, only a few studies have investigated its impact on the stomatognathic system of adolescents. This study aimed to investigate the effect of EtOH binge drinking on the alveolar bone and the long-term consequences after abstinence. METHODS Adolescent female Wistar rats (35 days old) were exposed to 4 cycles of EtOH binge drinking (3 g/kg/d; 3 days On-4 days Off) or distilled water (control group). Alveolar bone micromorphology and vertical bone distance were evaluated at 1, 30, and 60 days after that last EtOH intake through X-ray computed microtomography. The mineral:matrix ratio was assessed through Raman spectroscopy. RESULTS A decrease in both trabecular thickness and volume ratio, and an increase in trabecular separation were observed at the 1-day evaluation (immediate withdrawal). After 30 and 60 days, the alveolar bone parameters were found similar to control, except for the mineral:matrix ratio in the long-term abstinence. CONCLUSIONS EtOH binge drinking during adolescence results in alveolar bone damage that may persist in adulthood, even after abstinence.
Collapse
Affiliation(s)
- Cristiane do Socorro Ferraz Maia
- From the, Laboratory of Pharmacology of Inflammation and Behavior, (CdSFM, LYQ, IGdO, CCSdS), Faculty of Pharmacy, Institute of Health Science, Federal University of Pará, Belém, Pará, Brazil
| | - Letícia Yoshitome Queiroz
- From the, Laboratory of Pharmacology of Inflammation and Behavior, (CdSFM, LYQ, IGdO, CCSdS), Faculty of Pharmacy, Institute of Health Science, Federal University of Pará, Belém, Pará, Brazil
| | - Igor Gonçalves de Oliveira
- From the, Laboratory of Pharmacology of Inflammation and Behavior, (CdSFM, LYQ, IGdO, CCSdS), Faculty of Pharmacy, Institute of Health Science, Federal University of Pará, Belém, Pará, Brazil
| | - Carla Cristiane Soares da Silva
- From the, Laboratory of Pharmacology of Inflammation and Behavior, (CdSFM, LYQ, IGdO, CCSdS), Faculty of Pharmacy, Institute of Health Science, Federal University of Pará, Belém, Pará, Brazil
| | - Rodrigo A Cunha
- CNC-Center for Neurosciences and Cell Biology, (RAC), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Deiweson Souza-Monteiro
- Laboratory of Functional and Structural Biology, (DS-M, MKMF, RRL), Biological Science Institute, Federal University of Pará, Belém, Pará, Brazil
| | - Maria Karolina Martins Ferreira
- Laboratory of Functional and Structural Biology, (DS-M, MKMF, RRL), Biological Science Institute, Federal University of Pará, Belém, Pará, Brazil
| | - Felipe Martins Silveira
- Department of Oral Pathology, (FMS, MDM), School of Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Jordana Conceição da Silva
- Department of Dental Materials, (JCdS, GdSB, FMC), School of Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Gabriela de Souza Balbinot
- Department of Dental Materials, (JCdS, GdSB, FMC), School of Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Fabrício Mezzomo Collares
- Department of Dental Materials, (JCdS, GdSB, FMC), School of Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Marco Antônio Trevizani Martins
- Department of Oral Medcine, (MATM), Hospital de Clínicas de Porto Alegre (HCPA/UFRGS), University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Manoela Domingues Martins
- Department of Oral Pathology, (FMS, MDM), School of Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Rafael Rodrigues Lima
- Laboratory of Functional and Structural Biology, (DS-M, MKMF, RRL), Biological Science Institute, Federal University of Pará, Belém, Pará, Brazil
| |
Collapse
|
26
|
Maia C, Pinheiro BG, Soares da Silva CC, Cunha RA, Souza-Monteiro D, Martins Ferreira MK, Schmidt TR, de Souza Balbinot G, Collares FM, Martins MD, Lima RR. Prolonged caffeine intake decreases alveolar bone damage induced by binge-like ethanol consumption in adolescent female rats. Biomed Pharmacother 2020; 130:110608. [PMID: 32784050 DOI: 10.1016/j.biopha.2020.110608] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/16/2020] [Accepted: 08/02/2020] [Indexed: 12/14/2022] Open
Abstract
Ethanol consumption has been reported to negatively impact on periodontal disease. In particular, oral cavity disorders occur upon ethanol exposure during adolescence, a life period associated with particular patterns of short and intense ('binge-like') ethanol consumption that is most deleterious to oral health. The hazardous central effects of ethanol have been linked to the overfunction of adenosine receptors, which are antagonized by caffeine, a bioactive substance present in numerous natural nutrients, which can also modify bone metabolism. The aim of this study was to investigate the effects of caffeine on alveolar bone damage induced by an ethanol binge drinking paradigm during adolescence. Female Wistar rats (35 days old; n = 30) were allocated to six groups: control (vehicle), ethanol (3 g/kg/day; 3 days On-4 days Off challenge), caffeine (10 mg/kg/day), caffeine plus ethanol, SCH58261 (0.1 mg/kg/day, an antagonist of A2A receptors), and SCH58261 plus ethanol. Bone micromorphology and vertical bone loss were analyzed by computed microtomography. Our data showed that ethanol binge drinking reduced alveolar bone quality, with repercussion on alveolar bone size. This ethanol-induced alveolar bone deterioration was abrogated upon treatment with caffeine, but not with SCH58261. This shows that caffeine prevented the periodontal disorder caused by ethanol binge drinking during adolescence, an effect that was not mediated by adenosine A2A receptor blockade.
Collapse
Affiliation(s)
- Cristiane Maia
- Laboratory of Pharmacology of Inflammation and Behavior, Faculty of Pharmacy, Institute of Health Science, Federal University of Pará, Belém, Pará, Brazil.
| | - Bruno Gonçalves Pinheiro
- Laboratory of Pharmacology of Inflammation and Behavior, Faculty of Pharmacy, Institute of Health Science, Federal University of Pará, Belém, Pará, Brazil
| | - Carla Cristiane Soares da Silva
- Laboratory of Pharmacology of Inflammation and Behavior, Faculty of Pharmacy, Institute of Health Science, Federal University of Pará, Belém, Pará, Brazil
| | - Rodrigo A Cunha
- CNC-Center for Neurosciences and Cell Biology, Faculty of Medicine, University of Coimbra, Portugal
| | - Deiweson Souza-Monteiro
- Laboratory of Functional and Structural Biology, Biological Science Institute, Federal University of Pará, Belém, Pará, Brazil
| | - Maria Karolina Martins Ferreira
- Laboratory of Functional and Structural Biology, Biological Science Institute, Federal University of Pará, Belém, Pará, Brazil
| | - Tuany Rafaeli Schmidt
- Department of Oral Pathology, School of Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Gabriela de Souza Balbinot
- Department of Dental Materials, School of Dentistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Fabrício Mezzomo Collares
- Department of Dental Materials, School of Dentistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Manoela Domingues Martins
- Department of Oral Pathology, School of Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Rafael Rodrigues Lima
- Laboratory of Functional and Structural Biology, Biological Science Institute, Federal University of Pará, Belém, Pará, Brazil
| |
Collapse
|
27
|
Zhang W, Saxena S, Fakhrzadeh A, Rudolph S, Young S, Kohn J, Yelick PC. Use of Human Dental Pulp and Endothelial Cell Seeded Tyrosine-Derived Polycarbonate Scaffolds for Robust in vivo Alveolar Jaw Bone Regeneration. Front Bioeng Biotechnol 2020; 8:796. [PMID: 32766225 PMCID: PMC7380083 DOI: 10.3389/fbioe.2020.00796] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 06/22/2020] [Indexed: 01/05/2023] Open
Abstract
The ability to effectively repair craniomaxillofacial (CMF) bone defects in a fully functional and aesthetically pleasing manner is essential to maintain physical and psychological health. Current challenges for CMF repair therapies include the facts that craniofacial bones exhibit highly distinct properties as compared to axial and appendicular bones, including their unique sizes, shapes and contours, and mechanical properties that enable the ability to support teeth and withstand the strong forces of mastication. The study described here examined the ability for tyrosine-derived polycarbonate, E1001(1K)/β-TCP scaffolds seeded with human dental pulp stem cells (hDPSCs) and human umbilical vein endothelial cells (HUVECs) to repair critical sized alveolar bone defects in an in vivo rabbit mandible defect model. Human dental pulp stem cells are uniquely suited for use in CMF repair in that they are derived from the neural crest, which naturally contributes to CMF development. E1001(1k)/β-TCP scaffolds provide tunable mechanical and biodegradation properties, and are highly porous, consisting of interconnected macro- and micropores, to promote cell infiltration and attachment throughout the construct. Human dental pulp stem cells/HUVECs seeded and acellular E1001(1k)/β-TCP constructs were implanted for one and three months, harvested and analyzed by micro-computed tomography, then demineralized, processed and sectioned for histological and immunohistochemical analyses. Our results showed that hDPSC seeded E1001(1k)/β-TCP constructs to support the formation of osteodentin-like mineralized jawbone tissue closely resembling that of natural rabbit jaw bone. Although unseeded scaffolds supported limited alveolar bone regeneration, more robust and homogeneous bone formation was observed in hDPSC/HUVEC-seeded constructs, suggesting that hDPSCs/HUVECs contributed to enhanced bone formation. Importantly, bioengineered jaw bone recapitulated the characteristic morphology of natural rabbit jaw bone, was highly vascularized, and exhibited active remodeling by the presence of osteoblasts and osteoclasts on newly formed bone surfaces. In conclusion, these results demonstrate, for the first time, that E1001(1K)/ β-TCP scaffolds pre-seeded with human hDPSCs and HUVECs contributed to enhanced bone formation in an in vivo rabbit mandible defect repair model as compared to acellular E1001(1K)/β-TCP constructs. These studies demonstrate the utility of hDPSC/HUVEC-seeded E1001(1K)/β-TCP scaffolds as a potentially superior clinically relevant therapy to repair craniomaxillofacial bone defects.
Collapse
Affiliation(s)
- Weibo Zhang
- Department of Orthodontics, Division of Craniofacial and Molecular Genetics, Tufts University School of Dental Medicine, Boston, MA, United States
| | - Shruti Saxena
- New Jersey Center for Biomaterials, Rutgers University, Piscataway, NJ, United States
| | - Amir Fakhrzadeh
- New Jersey Center for Biomaterials, Rutgers University, Piscataway, NJ, United States
| | - Sara Rudolph
- Department of Orthodontics, Division of Craniofacial and Molecular Genetics, Tufts University School of Dental Medicine, Boston, MA, United States
| | - Simon Young
- Department of Oral and Maxillofacial Surgery, The University of Texas Health Science Center at Houston School of Dentistry, Houston, TX, United States
| | - Joachim Kohn
- New Jersey Center for Biomaterials, Rutgers University, Piscataway, NJ, United States
| | - Pamela C. Yelick
- Department of Orthodontics, Division of Craniofacial and Molecular Genetics, Tufts University School of Dental Medicine, Boston, MA, United States
| |
Collapse
|
28
|
Pilawski I, Tulu US, Ticha P, Schüpbach P, Traxler H, Xu Q, Pan J, Coyac BR, Yuan X, Tian Y, Liu Y, Chen J, Erdogan Y, Arioka M, Armaro M, Wu M, Brunski JB, Helms JA. Interspecies Comparison of Alveolar Bone Biology, Part I: Morphology and Physiology of Pristine Bone. JDR Clin Trans Res 2020; 6:352-360. [PMID: 32660303 DOI: 10.1177/2380084420936979] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
INTRODUCTION Few interspecies comparisons of alveolar bone have been documented, and this knowledge gap raises questions about which animal models most accurately represent human dental conditions or responses to surgical interventions. OBJECTIVES The objective of this study was to employ state-of-the-art quantitative metrics to directly assess and compare the structural and functional characteristics of alveolar bone among humans, mini pigs, rats, and mice. METHODS The same anatomic location (i.e., the posterior maxillae) was analyzed in all species via micro-computed tomographic imaging, followed by quantitative analyses, coupled with histology and immunohistochemistry. Bone remodeling was evaluated with alkaline phosphatase activity and tartrate-resistant acid phosphatase staining to identify osteoblast and osteoclast activities. In vivo fluorochrome labeling was used as a means to assess mineral apposition rates. RESULTS Collectively, these analyses demonstrated that bone volume differed among the species, while bone mineral density was equal. All species showed a similar density of alveolar osteocytes, with a highly conserved pattern of collagen organization. Collagen maturation was equal among mouse, rat, and mini pig. Bone remodeling was a shared feature among the species, with morphologically indistinguishable hemiosteonal appearances, osteocytic perilacunar remodeling, and similar mineral apposition rates in alveolar bone. CONCLUSIONS Our analyses demonstrated equivalencies among the 4 species in a plurality of the biological features of alveolar bone. Despite contradictory results from older studies, we found no evidence for the superiority of pig models over rodent models in representing human bone biology. KNOWLEDGE TRANSFER STATEMENT Animal models are extensively used to evaluate bone tissue engineering strategies, yet there are few state-of-the-art studies that rigorously compare and quantify the factors influencing selection of a given animal model. Consequently, there is an urgent need to assess preclinical animal models for their predictive value to dental research. Our article addresses this knowledge gap and, in doing so, provides a foundation for more effective standardization among animal models commonly used in dentistry.
Collapse
Affiliation(s)
- I Pilawski
- Division of Plastic and Reconstructive Surgery, Department of Surgery, School of Medicine, Stanford University, Stanford, CA, USA
| | - U S Tulu
- Division of Plastic and Reconstructive Surgery, Department of Surgery, School of Medicine, Stanford University, Stanford, CA, USA
| | - P Ticha
- Division of Plastic and Reconstructive Surgery, Department of Surgery, School of Medicine, Stanford University, Stanford, CA, USA
| | - P Schüpbach
- Schupbach Ltd, Service and Research Laboratory, Thalwil, Switzerland
| | - H Traxler
- Center of Anatomy and Cell Biology, Division of Anatomy, Medical University of Vienna, Vienna, Austria
| | - Q Xu
- Division of Plastic and Reconstructive Surgery, Department of Surgery, School of Medicine, Stanford University, Stanford, CA, USA
| | - J Pan
- Division of Plastic and Reconstructive Surgery, Department of Surgery, School of Medicine, Stanford University, Stanford, CA, USA
| | - B R Coyac
- Division of Plastic and Reconstructive Surgery, Department of Surgery, School of Medicine, Stanford University, Stanford, CA, USA
| | - X Yuan
- Division of Plastic and Reconstructive Surgery, Department of Surgery, School of Medicine, Stanford University, Stanford, CA, USA
| | - Y Tian
- Division of Plastic and Reconstructive Surgery, Department of Surgery, School of Medicine, Stanford University, Stanford, CA, USA
| | - Y Liu
- Division of Plastic and Reconstructive Surgery, Department of Surgery, School of Medicine, Stanford University, Stanford, CA, USA
| | - J Chen
- Division of Plastic and Reconstructive Surgery, Department of Surgery, School of Medicine, Stanford University, Stanford, CA, USA
| | - Y Erdogan
- Division of Plastic and Reconstructive Surgery, Department of Surgery, School of Medicine, Stanford University, Stanford, CA, USA
| | - M Arioka
- Division of Plastic and Reconstructive Surgery, Department of Surgery, School of Medicine, Stanford University, Stanford, CA, USA.,Department of Clinical Pharmacology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - M Armaro
- Nobel Biocare Services AG, Zürich-Flughafen, Switzerland
| | - M Wu
- Division of Plastic and Reconstructive Surgery, Department of Surgery, School of Medicine, Stanford University, Stanford, CA, USA
| | - J B Brunski
- Division of Plastic and Reconstructive Surgery, Department of Surgery, School of Medicine, Stanford University, Stanford, CA, USA
| | - J A Helms
- Division of Plastic and Reconstructive Surgery, Department of Surgery, School of Medicine, Stanford University, Stanford, CA, USA
| |
Collapse
|
29
|
Watanabe K, Lewis S, Guo X, Ni A, Lee BS, Deguchi T, Kim DG. Regional variations of jaw bone characteristics in an ovariectomized rat model. J Mech Behav Biomed Mater 2020; 110:103952. [PMID: 32957244 DOI: 10.1016/j.jmbbm.2020.103952] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/21/2020] [Accepted: 06/22/2020] [Indexed: 12/22/2022]
Abstract
Postmenopausal osteoporosis causes severe loss of bone quantity and quality in limb bone but has a lesser effect on jaw bone. Thus, the objective of this study was to examine whether ovariectomy (OVX) and mastication alter the regional variation of jaw bone characteristics. Sprague-Dawley female rats (6 months) were given a bilateral OVX or a sham operation (SHAM) (n = 10 for each group). After 2 months post-OVX, the hemi-mandible from each rat was dissected. A micro-computed tomography based mean, standard deviation (SD), the lower and upper 5th percentile (Low5 and High5) values of tissue mineral density (TMD) histograms were assessed for whole bone (WB), alveolar bone (AB), cortical bone (CB), and trabecular bone (TB) regions. Morphology of TB and periodontal ligament (PDL) was also obtained. Layers of AB were segmented up to 400 μm from the PDL. Mechanical properties at the tissue level were measured by nanoindentation at the same site by a single loading-unloading cycle of indentation in hydration. The AB and TB regions had significantly lower TMD Mean, Low5, and High5 but higher SD than the CB region for both sham and OVX groups (p < 0.01). TMD parameters of the OVX group rapidly increased up to 60 μm away from the PDL and were significantly higher than those of the sham group starting at 280 μm and farther in the CB region (p < 0.05). All values of morphological and nanoindentation parameters were not significantly different between sham and OVX groups (p > 0.06). Estrogen deficiency induced by OVX did not deteriorate bone characteristics including mineral density, morphology, and nanoindentation parameters in rat mandibles. Masticatory loading had an effect on the TMD parameters at the limited region of AB. These results provide insight into why osteoporosis-associated jaw bone fractures are extremely rare.
Collapse
Affiliation(s)
- Keiichiro Watanabe
- Division of Orthodontics, College of Dentistry, The Ohio State University, Columbus, OH, 43210, USA
| | - Samantha Lewis
- Division of Orthodontics, College of Dentistry, The Ohio State University, Columbus, OH, 43210, USA
| | - Xiaohan Guo
- Division of Biostatistics, College of Public Health, The Ohio State University, Columbus, OH, 43210, USA
| | - Ai Ni
- Division of Biostatistics, College of Public Health, The Ohio State University, Columbus, OH, 43210, USA
| | - Beth S Lee
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Toru Deguchi
- Division of Orthodontics, College of Dentistry, The Ohio State University, Columbus, OH, 43210, USA
| | - Do-Gyoon Kim
- Division of Orthodontics, College of Dentistry, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
30
|
Xue H, Guo Y, Zhang S, Xu T, Wen J, Kang N, Yuan Q. The role of USP34 in the fixation of titanium implants in murine models. Eur J Oral Sci 2020; 128:211-217. [PMID: 32363724 DOI: 10.1111/eos.12696] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2020] [Indexed: 02/05/2023]
Abstract
Ubiquitin-specific protease 34 (USP34), a member of the ubiquitin-specific protease family, regulates osteogenic differentiation of bone marrow mesenchymal stem cells via bone morphogenetic protein signaling. This study aimed to investigate the role of USP34 in fixation of titanium implants in mouse models. Eight-week-old Usp34-knockout (Prx1-Cre;Usp34f/f ) mice and their Usp34 wild-type (Usp34f/f ) control littermates were used. Experimental titanium implants were inserted into the distal ends of femurs and the edentulous area of maxillae. Two and four weeks after surgery, samples of femur and maxilla were obtained, and micro-computed tomography scanning, histomorphometric analyses, and push-in tests were performed on the samples. Compared with controls, Prx1-Cre;Usp34f/f mice showed reduced bone volume for both femurs and maxillae; a decreased femoral bone-implant contact ratio (BIC) at 2 wk [mean (standard error of the mean): 62.17% (2.15%) vs. 44.06% (3.45%)] and 4 wk [72.46% (1.61%) vs. 64.53% (1.93%)]; decreases in femoral bone volume fraction (BV/TV) and push-in resistance; and lower BIC and BV/TV of the maxillae. Taken together, our data demonstrate that specific deletion of Usp34 in mesenchymal stem cells impairs fixation of titanium implants in mice.
Collapse
Affiliation(s)
- Hanxiao Xue
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuchen Guo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shiwen Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Tong Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Junru Wen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ning Kang
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Quan Yuan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
31
|
Omi M, Mishina Y. Role of osteoclasts in oral homeostasis and jawbone diseases. ACTA ACUST UNITED AC 2020; 18:14-27. [PMID: 34220275 DOI: 10.1002/osi2.1078] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The jawbone is a unique structure as it serves multiple functions in mastication. Given the fact that the jawbone is remodeled faster than other skeletal bones, bone cells in the jawbone may respond differently to local and systemic cues to regulate bone remodeling and adaptation. Osteoclasts are bone cells responsible for removing old bone, playing an essential role in bone remodeling. Although bone resorption by osteoclasts is required for dental tissue development, homeostasis and repair, excessive osteoclast activity is associated with oral skeletal diseases such as periodontitis. In addition, antiresorptive medications used to prevent bone homeostasis of tumors can cause osteonecrosis of the jaws that is a major concern to the dentist. Therefore, understanding of the role of osteoclasts in oral homeostasis under physiological and pathological conditions leads to better targeted therapeutic options for skeletal diseases to maintain patients' oral health. Here, we highlight the unique features of the jawbone compared to the long bone and the involvement of osteoclasts in the jawbone-specific diseases.
Collapse
Affiliation(s)
- Maiko Omi
- Department of Biologic and Materials Sciences & Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Yuji Mishina
- Department of Biologic and Materials Sciences & Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| |
Collapse
|
32
|
Coutel X, Delattre J, Marchandise P, Falgayrac G, Béhal H, Kerckhofs G, Penel G, Olejnik C. Mandibular bone is protected against microarchitectural alterations and bone marrow adipose conversion in ovariectomized rats. Bone 2019; 127:343-352. [PMID: 31276849 DOI: 10.1016/j.bone.2019.06.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 06/02/2019] [Accepted: 06/29/2019] [Indexed: 02/05/2023]
Abstract
Osteoporosis is a disease that leads to a loss of bone mass and to alterations in the bone microarchitecture that occur in a site-specific manner; however it remains controversial in the jaw. The involvement of bone marrow adipose tissue (BMAT) in the bone metabolism has been suggested in several physiopathological contexts, such as in aging and osteoporosis. To test whether the BMAT content is related to mandibular bone loss, this study aimed to investigate the potential correlations between the trabecular bone microarchitecture on one hand and BMAT content and its spatial distribution in relation to bone surface on the other hand during aging and ovariectomy (OVX) during a long-term follow-up in a mature rat model. No age-related microarchitectural or BMAT changes were observed in the mandible. The OVX-induced bone loss was three-fold lower in the mandible than in the tibia and was observed only in the alveolar bone (not in the condyle). We also report a delayed increase in the mandibular BMAT content that remained 4-6-fold lower compared to tibia. This low BMAT content in the mandible was located at a distance from the trabecular bone surface (only 5% in contact with the bone surface versus 87% in the tibia). These findings highlight a specific mandibular response to OVX, in particular fewer microarchitectural alterations compared to that in the tibia. For the latter, the trabecular bone thickness and surface were correlated with the BMAT content. Oral functions may have a protective effect on the mandibular BMAT conversion in an OVX context.
Collapse
Affiliation(s)
- Xavier Coutel
- Univ. Lille, Univ. Littoral Côte d'Opale, CHU Lille, EA 4490 - PMOI, F-59000 Lille, France.
| | - Jérôme Delattre
- Univ. Lille, Univ. Littoral Côte d'Opale, CHU Lille, EA 4490 - PMOI, F-59000 Lille, France
| | - Pierre Marchandise
- Univ. Lille, Univ. Littoral Côte d'Opale, CHU Lille, EA 4490 - PMOI, F-59000 Lille, France
| | - Guillaume Falgayrac
- Univ. Lille, Univ. Littoral Côte d'Opale, CHU Lille, EA 4490 - PMOI, F-59000 Lille, France
| | - Hélène Béhal
- Univ. Lille, CHU Lille, EA 2694 - Santé publique: épidémiologie et qualité des soins, Unité de Méthodologie et Biostatistiques, F-59000 Lille, France
| | - Greet Kerckhofs
- Biomechanics Lab, Institute of Mechanics, Materials, and Civil Engineering, UCLouvain, Louvain-la-Neuve, Belgium; Institute of Experimental and Clinical Research, UCLouvain, Woluwe, Belgium; Department Materials Engineering, KU Leuven, Leuven, Belgium; Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium
| | - Guillaume Penel
- Univ. Lille, Univ. Littoral Côte d'Opale, CHU Lille, EA 4490 - PMOI, F-59000 Lille, France
| | - Cécile Olejnik
- Univ. Lille, Univ. Littoral Côte d'Opale, CHU Lille, EA 4490 - PMOI, F-59000 Lille, France
| |
Collapse
|
33
|
Liu Y, Li Z, Arioka M, Wang L, Bao C, Helms JA. WNT3A accelerates delayed alveolar bone repair in ovariectomized mice. Osteoporos Int 2019; 30:1873-1885. [PMID: 31338519 PMCID: PMC7007703 DOI: 10.1007/s00198-019-05071-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 06/24/2019] [Indexed: 02/07/2023]
Abstract
Our goal was to evaluate alveolar bone healing in OVX mice, and to assess the functional utility of a WNT-based treatment to accelerate healing in mice with an osteoporotic-like bony phenotype. INTRODUCTION Is osteoporosis a risk factor for dental procedures? This relatively simple question is exceedingly difficult to answer in a clinical setting, for two reasons. First, as an age-related disease, osteoporosis is frequently accompanied by age-related co-morbidities that can contribute to slower tissue repair. Second, the intervals at which alveolar bone repair are assessed in a clinical study are often measured in months to years. This study aimed to evaluate alveolar bone repair in ovariectomized (OVX) mice and provide preclinical evidence to support a WNT-based treatment to accelerate alveolar bone formation. METHODS OVX was performed in young mice to produce an osteoporotic-like bone phenotype. Thereafter, the rate of extraction socket healing and osteotomy repair was assessed. A liposomal WNT3A treatment was tested for its ability to promote alveolar bone formation in this OVX-induced model of bone loss. RESULTS Bone loss was observed throughout the murine skeleton, including the maxilla, and mirrored the pattern of bone loss observed in aged mice. Injuries to the alveolar bone, including tooth extraction and osteotomy site preparation, both healed significantly slower than the same injuries produced in young controls. Given sufficient time, however, all injuries eventually healed. In OVX mice, osteotomies healed significantly faster if they were treated with L-WNT3A. CONCLUSIONS Alveolar bone injuries heal slower in OVX mice that exhibit an osteoporotic-like phenotype. The rate of alveolar bone repair in OVX mice can be significantly promoted with local delivery of L-WNT3A.
Collapse
Affiliation(s)
- Y Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, 14 Third Section, Renmin Nan Road, Chengdu, 610041, China
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, 1651 Page Mill Road, Palo Alto, CA, 94304, USA
| | - Z Li
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, 1651 Page Mill Road, Palo Alto, CA, 94304, USA
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - M Arioka
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, 1651 Page Mill Road, Palo Alto, CA, 94304, USA
- Department of Clinical Pharmacology, Faculty of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - L Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, 14 Third Section, Renmin Nan Road, Chengdu, 610041, China
| | - C Bao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, 14 Third Section, Renmin Nan Road, Chengdu, 610041, China
| | - J A Helms
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, 1651 Page Mill Road, Palo Alto, CA, 94304, USA.
| |
Collapse
|
34
|
Tükel HC, Delilbaşı E. Effects of metabolic syndrome on jawbones and bone metabolic markers in sucrose-fed rats. Odontology 2019; 107:457-464. [DOI: 10.1007/s10266-019-00422-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 03/12/2019] [Indexed: 12/20/2022]
|
35
|
Chavarry NGM, Perrone D, Farias MLF, Dos Santos BC, Domingos AC, Schanaider A, Feres-Filho EJ. Alendronate improves bone density and type I collagen accumulation but increases the amount of pentosidine in the healing dental alveolus of ovariectomized rabbits. Bone 2019; 120:9-19. [PMID: 30282057 DOI: 10.1016/j.bone.2018.09.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 09/23/2018] [Accepted: 09/24/2018] [Indexed: 01/22/2023]
Abstract
BACKGROUND It has been shown that the oral aminobisphosphonate sodium alendronate (ALN) therapy reduces the risk of main fractures in osteoporotic women, but its effect on the jaw bones is poorly known. Here, we hypothesized that ALN affects the newly formed alveolar bone, particularly the quality of the type I collagen cross-linking. METHODS Osteoporosis was induced by ovariectomy (OVX) in 6-month old rabbits. Six weeks following surgery, eight animals were treated by oral gavage with ALN (OVX + ALN) and ten received placebo (OVX + Pbo). Another six rabbits which were sham operated also received placebo (SHAM + Pbo). One month following the beginning of treatment, the upper and lower left first premolars were removed. Six weeks later, the upper and the lower right first premolars were also extracted. One month after the second extraction, biopsies were collected from the maxillary extraction sites and collagen crosslinks were analyzed in the newly formed bone tissue by HPLC. Also, at this time, mandibular bone segments were subjected to μCT. RESULTS Animals treated with ALN achieved a roughly 2-time greater bone volume fraction value at a late healing period than animals in the other groups (p < 0.05). Collagen mean results were 2- to 4-times superior in the OVX + ALN group than in the control groups (p < 0.05). ALN-treated animals presented higher amounts of the non-enzymatic collagen cross-link pentosidine (PEN) than the sham-operated rabbits (p < 0.05), whereas the OVX + Pbo group presented the highest amount of PEN (p < 0.05). CONCLUSION Alendronate increases bone volume and collagen accumulation, but does not fully rescue the non-osteoporotic alveolar tissue quality as is evident from the increased quantity of pentosidine.
Collapse
Affiliation(s)
| | - Daniel Perrone
- Laboratory of Nutritional Biochemistry and Food, Chemistry Institute, Federal University of Rio de Janeiro, RJ CEP 21941-909, Brazil
| | - Maria Lucia Fleiuss Farias
- Division of Endocrinology, School of Medicine, Federal University of Rio de Janeiro, RJ CEP 21941-913, Brazil
| | - Bernardo Camargo Dos Santos
- Department of Nuclear Engineering (COPPE), School of Engineering, Federal University of Rio de Janeiro, RJ CEP 21941-972, Brazil
| | - Andrea Castro Domingos
- Department of Oral Pathology, Oral Radiology and Oral Diagnosis, School of Dentistry, Federal University of Rio de Janeiro, RJ CEP 21941-971, Brazil
| | - Alberto Schanaider
- Department of Surgery, School of Medicine, Federal University of Rio de Janeiro, RJ CEP 21941-913, Brazil
| | - Eduardo Jorge Feres-Filho
- Division of Graduate Periodontics, School of Dentistry, Federal University of Rio de Janeiro, RJ CEP 21941-971, Brazil.
| |
Collapse
|
36
|
Alikhani M, Alikhani M, Alansari S, Almansour A, Hamidaddin MA, Khoo E, Lopez JA, Nervina JM, Nho JY, Oliveira SM, Sangsuwon C, Teixeira CC. Therapeutic effect of localized vibration on alveolar bone of osteoporotic rats. PLoS One 2019; 14:e0211004. [PMID: 30695073 PMCID: PMC6350965 DOI: 10.1371/journal.pone.0211004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 01/04/2019] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES Vibration, in the form of high frequency acceleration (HFA), stimulates alveolar bone formation under physiologic conditions and during healing after dental extractions. It is not known if HFA has an anabolic effect on osteoporotic alveolar bone. Our objective is to determine if HFA has a regenerative effect on osteoporotic alveolar bone. METHODS AND MATERIALS Adult female Sprague-Dawley rats were divided into five groups: 1) Ovariectomized Group (OVX), 2) Sham-OVX Group that received surgery without ovariectomy, 3) OVX-HFA Group that was ovariectomized and treated daily with HFA, 4) OVX+Static Force Group that was ovariectomized and received the same force as HFA, but without vibration, and 5) Control Group that did not receive any treatment. All animals were fed a low mineral diet for 3 months. Osteoporosis was confirmed by micro-CT of the fifth lumbar vertebra and femoral head. HFA was applied to the maxillary first molar for 5 minutes/day for 28 and 56 days. Maxillae were collected for micro-CT, histology, fluorescent microscopy, protein and RNA analysis, and three-point bending mechanical testing. RESULTS Micro-CT analysis revealed significant alveolar bone osteoporosis in the OVX group. Vibration restored the quality and quantity of alveolar bone to levels similar to the Sham-OVX group. Animals exposed to HFA demonstrated higher osteoblast activity and lower osteoclast activity. Osteogenic transcription factors (RUNX2, Foxo1, Osterix and Wnt signaling factors) were upregulated following vibration, while RANKL/RANK and Sclerostin were downregulated. HFA did not affect serum TRAcP-5b or CTx-1 levels. The osteogenic effect was highest at the point of HFA application and extended along the hemimaxillae this effect did not cross to the contra-lateral side. CONCLUSIONS Local application of vibration generated gradients of increased anabolic metabolism and decreased catabolic metabolism in alveolar bone of osteoporotic rats. Our findings suggest that HFA could be a predictable treatment for diminished alveolar bone levels in osteoporosis patients.
Collapse
Affiliation(s)
- Mani Alikhani
- Advanced Graduate Education Program in Orthodontics, Department of Developmental Biology, Harvard School of Dental Medicine, Boston, Massachusetts, United States of America
- The Forsyth Institute, Cambridge, Massachusetts, United States of America
- CTOR Academy, Hoboken, New Jersey, United States of America
| | - Mona Alikhani
- CTOR Academy, Hoboken, New Jersey, United States of America
| | - Sarah Alansari
- The Forsyth Institute, Cambridge, Massachusetts, United States of America
- CTOR Academy, Hoboken, New Jersey, United States of America
| | | | | | - Edmund Khoo
- Department of Orthodontics, New York University College of Dentistry, New York, New York, United States of America
| | - Jose A Lopez
- CTOR Academy, Hoboken, New Jersey, United States of America
| | | | - Joo Y Nho
- CTOR Academy, Hoboken, New Jersey, United States of America
| | - Serafim M Oliveira
- CTOR Academy, Hoboken, New Jersey, United States of America
- Department of Mechanical Engineering, Polytechnic Institute of Viseu, Viseu, Portugal
| | - Chinapa Sangsuwon
- CTOR Academy, Hoboken, New Jersey, United States of America
- Department of Orthodontics, New York University College of Dentistry, New York, New York, United States of America
| | - Cristina C Teixeira
- CTOR Academy, Hoboken, New Jersey, United States of America
- Department of Orthodontics, New York University College of Dentistry, New York, New York, United States of America
- Department of Basic Science & Craniofacial Biology, New York University College of Dentistry, New York, New York, United States of America
| |
Collapse
|
37
|
Osteogenic and angiogenic characterization of mandible and femur osteoblasts. J Mol Histol 2019; 50:105-117. [PMID: 30635760 DOI: 10.1007/s10735-019-09810-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 01/06/2019] [Indexed: 12/13/2022]
|
38
|
Yang XH, Yang K, An YL, Wang LB, Luo G, Hu XH. MicroRNA-705 regulates the differentiation of mouse mandible bone marrow mesenchymal stem cells. PeerJ 2019; 7:e6279. [PMID: 30648022 PMCID: PMC6330203 DOI: 10.7717/peerj.6279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Accepted: 11/12/2018] [Indexed: 12/12/2022] Open
Abstract
The craniofacial skeleton is the foundation of most stomatological treatments, including prosthodontics and maxillofacial surgery. Although histologically similar to the appendicular skeleton, the craniofacial skeleton manifests many unique properties in response to external stimuli and signals. However, the mandibular or maxillary bone marrow mesenchyme, which is the intrinsic foundation of the functions of craniofacial skeleton, has not been well studied, and its homeostasis mechanism remains elusive. Osteoporosis is a systemic disease that affects all skeletons and is characterized by bone mass loss. Osteoporotic bone marrow mesenchymal stem cells (BMMSCs) exhibit disturbed homeostasis and distorted lineage commitment. Many reports have shown that microRNAs (miRNAs) play important roles in regulating MSCs homeostasis. Here, to obtain a better understanding of mandibular bone marrow MSCs homeostasis, we isolated and cultured mandible marrow MSCs from mouse mandibles. Using miR-705 mimics and an inhibitor, we demonstrated that miR-705 played a vital role in shifting the mandibular MSCs lineage commitment in vitro. Utilizing an osteoporosis mouse model, we demonstrated that MSCs from ovariectomized (OVX) mouse mandibular bone marrow exhibited impaired osteogenic and excessive adipogenic differentiation. miR-705 was found overexpressed in OVX mandibular MSCs. The knock down of miR-705 in vitro partially attenuated the differentiation disorder of the OVX mandibular MSCs by upregulating the expression of osteogenic marker genes but suppressing adipogenic genes. Taken together, our findings provide a better understanding of the homeostasis mechanism of mandibular BMMSCs and a novel potential therapeutic target for treating mandibular osteoporosis.
Collapse
Affiliation(s)
- Xiao Hong Yang
- Department of Prosthetics, the Affiliated Stomatology Hospital of Zunyi Medical University, Zunyi Medical University, Zunyi, Guizhou, China
| | - Kun Yang
- Department of Periodontology, the Affiliated Stomatology Hospital of Zunyi Medical University, Zunyi Medical university, Zunyi, Guizhou, China
| | - Yu Lin An
- Department of Stomatology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Li Bo Wang
- Department of Prosthetics, the Affiliated Stomatology Hospital of Zunyi Medical University, Zunyi Medical University, Zunyi, Guizhou, China.,Department of Stomatology, Zunyi Medical University, Zunyi, Guizhou, China
| | - Guo Luo
- Department of Stomatology, Zunyi Medical University, Zunyi, Guizhou, China
| | - Xiao Hua Hu
- Department of Oral and Maxillofacial Surgery, the Affiliated Stomatology Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| |
Collapse
|
39
|
Arioka M, Zhang X, Li Z, Tulu US, Liu Y, Wang L, Yuan X, Helms JA. Osteoporotic Changes in the Periodontium Impair Alveolar Bone Healing. J Dent Res 2019; 98:450-458. [PMID: 30626268 DOI: 10.1177/0022034518818456] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Osteoporosis is associated with decreased bone density and increased bone fragility, but how this disease affects alveolar bone healing is not clear. The objective of this study was to determine the extent to which osteoporosis affects the jaw skeleton and then to evaluate possible mechanisms whereby an osteoporotic phenotype might affect the rate of alveolar bone healing following tooth extraction. Using an ovariectomized mouse model coupled with micro-computed tomographic imaging, histologic, molecular, and cellular assays, we first demonstrated that the appendicular and jaw skeletons both develop osteoporotic phenotypes. Next, we demonstrated that osteoporotic mice exhibit atrophy of the periodontal ligament (PDL) and that this atrophy was accompanied by a reduction in the pool of osteoprogenitor cells in the PDL. The paucity of PDL-derived osteoprogenitor cells in osteoporotic mice was associated with significantly slower extraction socket healing. Collectively, these analyses demonstrate that the jaw skeleton is susceptible to the untoward effects of osteoporosis that manifest as thinner, more porous alveolar bone, PDL thinning, and slower bone repair. These findings have potential clinical significance for older osteopenic patients undergoing reconstructive procedures.
Collapse
Affiliation(s)
- M Arioka
- 1 Division of Plastic and Reconstructive Surgery, Department of Surgery, School of Medicine, Stanford University, Stanford, CA, USA.,2 Department of Clinical Pharmacology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - X Zhang
- 1 Division of Plastic and Reconstructive Surgery, Department of Surgery, School of Medicine, Stanford University, Stanford, CA, USA.,3 State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Z Li
- 1 Division of Plastic and Reconstructive Surgery, Department of Surgery, School of Medicine, Stanford University, Stanford, CA, USA.,4 Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - U S Tulu
- 1 Division of Plastic and Reconstructive Surgery, Department of Surgery, School of Medicine, Stanford University, Stanford, CA, USA
| | - Y Liu
- 1 Division of Plastic and Reconstructive Surgery, Department of Surgery, School of Medicine, Stanford University, Stanford, CA, USA.,3 State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - L Wang
- 3 State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - X Yuan
- 1 Division of Plastic and Reconstructive Surgery, Department of Surgery, School of Medicine, Stanford University, Stanford, CA, USA
| | - J A Helms
- 1 Division of Plastic and Reconstructive Surgery, Department of Surgery, School of Medicine, Stanford University, Stanford, CA, USA
| |
Collapse
|
40
|
Coutel X, Olejnik C, Marchandise P, Delattre J, Béhal H, Kerckhofs G, Penel G. A Novel microCT Method for Bone and Marrow Adipose Tissue Alignment Identifies Key Differences Between Mandible and Tibia in Rats. Calcif Tissue Int 2018; 103:189-197. [PMID: 29383407 DOI: 10.1007/s00223-018-0397-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 01/24/2018] [Indexed: 12/11/2022]
Abstract
Bone homeostasis is influenced by the bone marrow adipose tissue (BMAT). BMAT distribution varies from one anatomical location in the skeleton to another. We developed an advanced microfocus computed tomography imaging and analysis protocol that allows accurate alignment of both the BMAT distribution and bone micro-architecture as well as calculation of the distance of the BMAT adipocytes from the bone surface. Using this protocol, we detected a different spatial BMAT distribution between the rat tibia and mandible: in the proximal metaphysis of the tibia a large amount of BMAT (~ 20% of the total BMAT) was located close to the bone surface (< 20 µm), whereas in the alveolar ridge ~ 30% of the total BMAT was located between 40 and 60 µm from the bone surface. In the alveolar ridge of rats, the trabecular bone volume was 48.3% higher compared to the proximal metaphysis of the tibia (p < 0.0001) and the percentage of adiposity determined to the relative marrow volume was lower (1.5%) compared to the proximal metaphysis of the tibia (9%, p = 0.0002). Interestingly, in the tibia a negative correlation was found between the percentage of adiposity in the total volume and the trabecular thickness (r =- 0.74, p = 0.037). The present study highlights that in comparison to tibial proximal metaphysis, the mandibular bone exhibits a massive trabecular network and a low BMAT content with almost no contact with the bone surface. These findings are of great interest because of the importance of the fat-bone interaction and its potential relevance to several resorptive bone diseases.
Collapse
Affiliation(s)
- Xavier Coutel
- Univ.Lille, Univ. Littoral Côte d'Opale, EA 4490 - PMOI - Physiopathologie des Maladies Osseuses Inflammatoires, 59000, Lille, France.
| | - Cécile Olejnik
- Univ.Lille, Univ. Littoral Côte d'Opale, EA 4490 - PMOI - Physiopathologie des Maladies Osseuses Inflammatoires, 59000, Lille, France
| | - Pierre Marchandise
- Univ.Lille, Univ. Littoral Côte d'Opale, EA 4490 - PMOI - Physiopathologie des Maladies Osseuses Inflammatoires, 59000, Lille, France
| | - Jérôme Delattre
- Univ.Lille, Univ. Littoral Côte d'Opale, EA 4490 - PMOI - Physiopathologie des Maladies Osseuses Inflammatoires, 59000, Lille, France
| | - Hélène Béhal
- Univ. Lille, CHU Lille, EA 2694 - Santé publique: épidémiologie et qualité des soins, Unité de Méthodologie et Biostatistiques, 59000, Lille, France
| | - Greet Kerckhofs
- Department of Development and Regeneration, Skeletal Biology and Engineering Center, KU Leuven, Leuven, Belgium
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium
| | - Guillaume Penel
- Univ.Lille, Univ. Littoral Côte d'Opale, EA 4490 - PMOI - Physiopathologie des Maladies Osseuses Inflammatoires, 59000, Lille, France
| |
Collapse
|
41
|
|
42
|
Abstract
The craniofacial complex is composed of fundamental components such as blood vessels and nerves, and also a variety of specialized tissues such as craniofacial bones, cartilages, muscles, ligaments, and the highly specialized and unique organs, the teeth. Together, these structures provide many functions including speech, mastication, and aesthetics of the craniofacial complex. Craniofacial defects not only influence the structure and function of the jaws and face, but may also result in deleterious psychosocial issues, emphasizing the need for rapid and effective, precise, and aesthetic reconstruction of craniofacial tissues. In a broad sense, craniofacial tissue reconstructions share many of the same issues as noncraniofacial tissue reconstructions. Therefore, many concepts and therapies for general tissue engineering can and have been used for craniofacial tissue regeneration. Still, repair of craniofacial defects presents unique challenges, mainly because of their complex and unique 3D geometry.
Collapse
Affiliation(s)
- Weibo Zhang
- Department of Orthodontics, School of Medicine, School of Engineering, Tufts University, Boston, Massachusetts 02111
| | - Pamela Crotty Yelick
- Department of Orthodontics, School of Medicine, School of Engineering, Tufts University, Boston, Massachusetts 02111
| |
Collapse
|
43
|
Zhang X, Xu X, Liu X, Mao C, Qin A, Lu E. Bis‑enoxacin blocks alveolar bone resorption in rats with ovariectomy‑induced osteoporosis. Mol Med Rep 2017; 17:3232-3238. [PMID: 29257280 DOI: 10.3892/mmr.2017.8223] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 04/07/2017] [Indexed: 11/05/2022] Open
Abstract
Postmenopausal osteoporosis is a common systemic skeletal disease that is associated with estrogen‑deficiency. Bone loss associated with bisphosphonates therapy can increase the risk of developing oral osteonecrosis. Recent studies have indicated that enoxacin may inhibit osteoclast formation and bone resorption via a different mechanism from that of bisphosphonates. Therefore, the authors hypothesized that the use of an enoxacin such as bis‑enoxacin (BE) in association with bisphosphonates may be effective in the treatment of postmenopausal osteoporosis‑associated alveolar bone resorption and reduce the risk of oral osteonecrosis by allowing the dose of bisphosphonates to be reduced. A total of 30 6‑month‑old female Sprague‑Dawley rats were randomly assigned to five groups: The Sham, Vehicle, zoledronic acid (ZOL), low concentrations of BE (BE‑L) and high concentrations of BE (BE‑H) groups. The results demonstrated that the ZOL, BE‑L and BE‑H groups had an increased bone volume/tissue volume, trabecular thickness, mineral apposition rate, mineralizing surface/bone surface and a decreased trabecular separation when compared with the Vehicle group. The microscopic evaluation of histological sections clearly supported the results of the micro‑computed tomography. The number of tartrate‑resistant acid phosphatase‑positive osteoclasts was markedly decreased in the ZOL, BE‑L and BE‑H groups, indicating that BE may inhibit osteoclast formation. The anti‑resorptive effect in the BE‑H group was close to or better than that exhibited by the ZOL group; however, this effect was poorer in the BE‑L group. In conclusion, BE has the potential to block alveolar bone resorption resulting from ovariectomy‑induced osteoporosis in rats in a dose‑dependent manner.
Collapse
Affiliation(s)
- Xi Zhang
- Department of Stomatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, P.R. China
| | - Xinchen Xu
- Department of Stomatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, P.R. China
| | - Xuqiang Liu
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, The Artificial Joint Engineering and Technology Research Center of Jiangxi Province, Nanchang, Jiangxi 330200, P.R. China
| | - Chuanyuan Mao
- Department of Stomatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, P.R. China
| | - An Qin
- Department of Orthopedics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Orthopedic Implants, Shanghai 200011, P.R. China
| | - Eryi Lu
- Department of Stomatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, P.R. China
| |
Collapse
|
44
|
van Bolhuis H, van Hoffen L, van Zijll Langhout M, van Engeldorp Gastelaars H, Hendriks W, Lamberts M, Kik M. Prevalence of dental disorders in degus and evaluation of diagnostic methods to determine dental disease and its prognosis. Vet Rec 2017; 181:627. [DOI: 10.1136/vr.104253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 09/11/2017] [Accepted: 09/24/2017] [Indexed: 12/31/2022]
Affiliation(s)
| | - Lotte van Hoffen
- Faculty of Veterinary Medicine; Utrecht University; Utrecht The Netherlands
| | | | | | - Wouter Hendriks
- Department Clinical Sciences of Companion Animals; Utrecht University; Utrecht The Netherlands
- Department of Animal Sciences, Animal Nutrition Group; Wageningen University & Research; Wageningen The Netherlands
- Department of Farm Animal Health; Utrecht University; Utrecht The Netherlands
| | - Marnix Lamberts
- Department of Veterinary Dentistry; Dierenkliniek Europaplein; Amsterdam The Netherlands
| | - Marja Kik
- Department of Pathobiology, Faculty of Veterinary Medicine; Utrecht University; Utrecht The Netherlands
| |
Collapse
|
45
|
Montalvany-Antonucci CC, Zicker MC, Oliveira MC, Macari S, Madeira MFM, Andrade I, Ferreira AVM, Silva TA. Diet versus jaw bones: Lessons from experimental models and potential clinical implications. Nutrition 2017; 45:59-67. [PMID: 29129238 DOI: 10.1016/j.nut.2017.07.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 06/30/2017] [Accepted: 07/03/2017] [Indexed: 12/25/2022]
Abstract
The consumption of different types of diets influences not only body health but the bone remodeling process as well. Nutritional components can directly affect maxillary and mandibular alveolar bone microarchitecture. In this review, we focus on the current knowledge regarding the influence of diets and dietary supplementation on alveolar bone. Accumulating evidence from experimental models suggests that carbohydrate- and fat-rich diets are detrimental for alveolar bone, whereas protective effects are associated with consumption of calcium, ω-3, and bioactive compounds. Little is known about the effects of protein-free and protein-rich diets, boron, vitamin C, vitamin E, zinc, and caffeine on alveolar bone remodeling. Adipokines and direct effects of nutritional components on bone cells are proposed mechanisms linking diet and bone. Results from animal models substantiate the role of nutritional components on alveolar bone. It is a well-built starting point for clinical studies on nutritional monitoring and intervention for patients with alveolar bone disorders, especially those who are treatment refractory.
Collapse
Affiliation(s)
| | - Marina C Zicker
- Department of Food Science, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Marina C Oliveira
- Department of Food Science, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Soraia Macari
- Department of Pediatric Dentistry and Orthodontics, Faculty of Dentistry, Federal University of Minas Gerais, Minas Gerais, Brazil
| | - Mila Fernandes M Madeira
- Department of Microbiology, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Ildeu Andrade
- Department of Orthodontics, Faculty of Dentistry, Pontifical Catholic University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Adaliene Versiani M Ferreira
- Department of Nutrition, Nursing School, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Tarcilia A Silva
- Department of Oral Surgery and Pathology, Faculty of Dentistry, Federal University of Minas Gerais, Minas Gerais, Brazil.
| |
Collapse
|
46
|
Hao L, Fu J, Tian Y, Wu J. Systematic analysis of lncRNAs, miRNAs and mRNAs for the identification of biomarkers for osteoporosis in the mandible of ovariectomized mice. Int J Mol Med 2017; 40:689-702. [PMID: 28713971 PMCID: PMC5547976 DOI: 10.3892/ijmm.2017.3062] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 06/29/2017] [Indexed: 12/19/2022] Open
Abstract
Osteoporosis is a complex and multifactorial disease caused by an imbalance between bone formation and resorption. Post-menopausal women with endogenous estrogen deficiency suffer from systemic bone loss and osteoporosis, and are at high risk of this affecting the jaw bones. MicroRNAs (miRNAs or miRs) have been implicated in the mechanisms of metabolic bone diseases and are expressed at differential levels in alveolar bone following ovariectomy. In the present study, we systematically analyzed the expression profiles of miRNAs, mRNAs and long non-coding RNA (lncRNAs) in the mandible of ovariectomized (OVX) mice. A complex miRNA-mRNA-lncRNA regulatory network was constructed based on differentially expressed RNAs. Two core differentially expressed genes (DEGs), namely, LRP2 binding protein (Lrp2bp) and perilipin 4 (Plin4), significantly influenced the network targeted by differentially expressed miRNAs. Moreover, peroxisome proliferator-activated receptor (PPAR) and insulin signaling pathways were significantly dysregulated in the mandible of OVX mice. Several differentially expressed lncRNAs were also implicated in the two signaling pathways, which influenced mandible development by forming competing endogenous RNA. On the whole, our data indicate that the comprehensive analysis of miRNAs, mRNAs and lncRNAs provides insight into the pathogenesis of estrogen deficiency-induced osteoporosis in the mandible. This study proposes potential biomarkers for diagnosis or therapeutic targets for osteoporosis which may aid in the development of novel drugs for the treatment of osteoporosis.
Collapse
Affiliation(s)
- Lingyu Hao
- Department of Prosthodontics, School and Hospital of Stomatology, Tongji University and Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai 200072, P.R. China
| | - Jiayao Fu
- Department of Prosthodontics, School and Hospital of Stomatology, Tongji University and Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai 200072, P.R. China
| | - Yawen Tian
- Department of Prosthodontics, School and Hospital of Stomatology, Tongji University and Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai 200072, P.R. China
| | - Junhua Wu
- Department of Prosthodontics, School and Hospital of Stomatology, Tongji University and Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai 200072, P.R. China
| |
Collapse
|
47
|
Abstract
Micro-computed tomography can be applied for the assessment of the micro-architectural characteristics of the cortical and trabecular bones in either physiological or disease conditions. However, reports often lack a detailed description of the methodological steps used to analyse these images, such as the volumes of interest, the algorithms used for image filtration, the approach used for image segmentation, and the bone parameters quantified, thereby making it difficult to compare or reproduce the studies. This study addresses this critical need and aims to provide standardized assessment and consistent parameter reporting related to quantitative jawbone image analysis. Various regions of the rat jawbones were screened for their potential for standardized micro-computed tomography analysis. Furthermore, the volumes of interest that were anticipated to be most susceptible to bone structural changes in response to experimental interventions were defined. In the mandible, two volumes of interest were selected, namely, the condyle and the trabecular bone surrounding the three molars. In the maxilla, the maxillary tuberosity region and the inter-radicular septum of the second molar were considered as volumes of interest. The presented protocol provides a standardized and reproducible methodology for the analysis of relevant jawbone volumes of interest and is intended to ensure global, accurate, and consistent reporting of its morphometry. Furthermore, the proposed methodology has potential, as a variety of rodent animal models would benefit from its implementation.
Collapse
|
48
|
Lezón CE, Pintos PM, Bozzini C, Romero AA, Casavalle P, Friedman SM, Boyer PM. Mechanical mandible competence in rats with nutritional growth retardation. Arch Oral Biol 2017; 80:10-17. [PMID: 28363114 DOI: 10.1016/j.archoralbio.2017.03.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 01/05/2017] [Accepted: 03/12/2017] [Indexed: 10/20/2022]
Abstract
OBJECTIVE In order to provide a better understanding of the sympathetic nervous system as a negative regulator of bone status, the aim of the study was to establish the biomechanical mandible response to different doses of a β-adrenergic antagonist such as propranolol (P) in a stress-induced food restriction model of growth retardation. METHODS Rats were assigned to eight groups: Control (C), C+P3.5 (CP3.5), C+P7 (CP7), C+P14 (CP14), NGR, NGR+P3.5 (NGRP3.5), NGR+P7 (NGRP7) and NGR+P14 (NGRP14). C, CP3.5, CP7 and CP14 rats were freely fed with the standard diet. NGR, NGRP3.5, NGRP7 and NGRP14 rats received, for 4 weeks (W4), 80% of the amount of controls food consumed. Propranolol 3.5, 7 and 14mg/kg/day was injected ip 5days per week in CP3.5 and NGRP3.5, CP7 and NGRP7, CP14 and NGRP14, respectively. At W4, zoometry, mandible morphometry, static histomorphometric and biomechanical competence were performed. RESULTS A dose of Propranolol 7mg/kg/day induced interradicular bone volume accretion reaching a mandible stiffness according to chronological age. CONCLUSION These findings evidenced that sympathetic nervous system activity is a negative regulator of mandible mechanical competence in the nutritional growth retardation model. Propranolol 7mg/kg/day, under the regimen usage, seems to be appropriate to blockade SNS activity on mandible mechanical performance in NGR rats, probably associated to an effect on bone mechanostat system ability to detect disuse mode as an error.
Collapse
Affiliation(s)
- Christian Esteban Lezón
- Department of Physiology, School of Dentistry, University of Buenos Aires, Buenos Aires, Argentina
| | - Patricia Mabel Pintos
- Department of Physiology, School of Dentistry, University of Buenos Aires, Buenos Aires, Argentina
| | - Clarisa Bozzini
- Department of Physiology, School of Dentistry, University of Buenos Aires, Buenos Aires, Argentina
| | - Alan Agüero Romero
- Department of Physiology, School of Dentistry, University of Buenos Aires, Buenos Aires, Argentina
| | - Patricia Casavalle
- Department of General and Oral Biochemistry, School of Dentistry, University of Buenos Aires, Buenos Aires, Argentina; Department of Pediatrics, Nutrition Clinic, Clinical Hospital José de San Martin, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - Silvia María Friedman
- Department of General and Oral Biochemistry, School of Dentistry, University of Buenos Aires, Buenos Aires, Argentina
| | - Patricia Mónica Boyer
- Department of Physiology, School of Dentistry, University of Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
49
|
Szabó A, Janovszky Á, Pócs L, Boros M. The periosteal microcirculation in health and disease: An update on clinical significance. Microvasc Res 2017; 110:5-13. [DOI: 10.1016/j.mvr.2016.11.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 11/18/2016] [Accepted: 11/18/2016] [Indexed: 11/28/2022]
|
50
|
Sánchez LM, De Lucca RC, Lewicki M, Ubios ÁM. Long term bone alterations in aged rats suffering type 1 diabetes. Exp Gerontol 2016; 85:9-12. [PMID: 27616164 DOI: 10.1016/j.exger.2016.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 09/02/2016] [Accepted: 09/07/2016] [Indexed: 11/19/2022]
Abstract
Increasing duration of type 1 diabetes mellitus alters bone metabolism. Clinical studies and experimental studies in long bones of rats with experimentally induced diabetes have reported a decrease in bone density. Few studies have explored this diabetes related alteration in the maxillae. Given that this finding could indicate the possible development of osteopenia in the maxilla in the long term, the present study sought to analyze alterations in alveolar bone in aged rats, 12, 18, and 24weeks after inducing diabetes, and compare alveolar bone response to that of tibial subchondral bone at the same experimental times. Thirty-six male Wistar rats, 130g body weight, were divided into 2 groups: an experimental group (E) receiving a single i.p. 60mg/kg dose of streptozotocin, and a control group (C). Both the control and experimental groups were divided into 3 sub-sets, according to the time of euthanasia: 12, 18 and 24weeks. The alveolar bone and tibiae were examined histologically and histomorphometrically. The results were analyzed using Student's t-test; a value of p<0.05 was considered statistically significant. RESULTS Subchondral bone volume and bone activity/remodeling, mainly bone rest, were significantly lower in diabetic animals compared to controls, at both 12 and 18weeks. No differences in alveolar bone parameters were observed between diabetic and control animals at either of the experimental times. Animals surviving at 24weeks showed few trabeculae at rest and severe destruction of dental and periodontal tissues. The results of the present study show that diabetic osteopenia is evident in the tibia at 12 and at 18weeks, whereas its effects on the maxilla can be seen at 24weeks, with substantial destruction of alveolar bone and of the remaining periodontal and dental tissues. All the above observations highlight the need for preventive oral care in diabetic patients, before irreversible damage to dental and periodontal tissues occurs.
Collapse
Affiliation(s)
- Luciana Marina Sánchez
- Department of Histology and Embryology, School of Dentistry, University of Buenos Aires, Argentina.
| | - Romina Cármen De Lucca
- Department of Histology and Embryology, School of Dentistry, University of Buenos Aires, Argentina
| | - Marianela Lewicki
- Department of Histology and Embryology, School of Dentistry, University of Buenos Aires, Argentina
| | - Ángela Matilde Ubios
- Department of Histology and Embryology, School of Dentistry, University of Buenos Aires, Argentina
| |
Collapse
|