1
|
Wang X, Wang J, Zhang Y, He Y, Chen S. Piezo1 regulates fibrocartilage stem cell in cartilage growth and osteoarthritis. Osteoarthritis Cartilage 2025:S1063-4584(25)01003-9. [PMID: 40345612 DOI: 10.1016/j.joca.2025.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 04/05/2025] [Accepted: 04/22/2025] [Indexed: 05/11/2025]
Abstract
OBJECTIVE The temporomandibular joint (TMJ) is essential for maxillofacial mechanics, with the condyle serving as the primary site for mandibular growth and development. Mechanical forces regulate condylar development and homeostasis, while aberrant loading contributes to temporomandibular joint osteoarthritis (TMJOA). Although mechanical stimuli are known to influence TMJ function, the role of mechanosensitive ion channels, particularly Piezo1, remains underexplored. METHODS To investigate the role of Piezo1, we performed single-cell ribonucleic acid sequencing (scRNA-seq) on human TMJ samples to assess mechanosensitive ion channel expression. Conditional knockout (CKO) mice were generated using Gli1-CreERT2; Piezo1fl/fl mice to delete Piezo1 in Gli1+ cells. Unilateral partial discectomy was performed to model TMJOA, followed by histological and immunohistochemical analyses to evaluate the effects of Piezo1 deletion on condylar development and homeostasis. RESULTS scRNA-seq revealed high expression of PIEZO1 in both cartilage and bone of the human condyle. Piezo1-tdTomato reporter mice confirmed its consistent expression across different ages. CKO of Piezo1 in Gli1+ cells impaired condylar development and homeostasis by disrupting fibrocartilage stem cell (FCSC) differentiation. In the TMJOA model, Piezo1 deletion mitigated arthritic symptoms, preserved condylar morphology, and reduced cartilage damage. CONCLUSION Piezo1 is a key mechanosensitive ion channel in the cartilage, regulating condylar development and homeostasis. Its deletion in Gli1+ cells disrupts FCSC differentiation and endochondral ossification, leading to developmental deficiencies. However, in pathological conditions, Piezo1 deletion protects against TMJOA, highlighting its potential as a therapeutic target for osteoarthritis prevention and treatment.
Collapse
Affiliation(s)
- Xinyu Wang
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China.
| | - Jie Wang
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China.
| | - Yi Zhang
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China.
| | - Yang He
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China.
| | - Shuo Chen
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China.
| |
Collapse
|
2
|
Shi F, Yuan G, Wu Z, Luo Z, Chen Z, Liu Q, Li N, Xu R. Identification and function of periosteal skeletal stem cells in skeletal development, homeostasis, and disease. J Orthop Translat 2025; 51:177-186. [PMID: 40160808 PMCID: PMC11952802 DOI: 10.1016/j.jot.2025.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 10/06/2024] [Accepted: 01/20/2025] [Indexed: 04/02/2025] Open
Abstract
Background Periosteum-resident skeletal stem cells (SSCs) are essential for the growth, maintenance, and repair of the skeletal system. These cells exhibit self-renewal ability and clonal pluripotency. Compared to the diverse bone marrow mesenchymal stem cells (BMSCs), periosteal skeletal stem cells (P-SSCs) represent a purified stem cell population and are preferable for bone tissue engineering. Methods This review covers the histological structure of the periosteum, process of isolating and characterising P-SSCs, and spatiotemporal distribution and characteristics of P-SSCs from different lineages. Additionally, the roles of P-SSCs in bone injury, disease, and periosteal niche regulation are discussed. Results Intramembrane and intraconal ossification of P-SSCs exhibits favourable therapeutic potential. Osteogenesis using P-SSCs is an ideal process for bone repair. Conclusions P-SSCs are vital for bone formation, maintenance, and repair. P-SSCs are essential components of the periosteal microenvironment. Therefore, it is essential to investigate their critical clinical applications and translational functions. By targeting and inducing endogenous stem cells, the in situ repair of bone defects can be facilitated, leading to the development of more effective novel therapies. The translational potential of this article To enhance our understanding of the function of P-SSCs in bone repair and skeleton-related diseases, it is imperative to elucidate the current research status of P-SSCs and ascertain the prospective trajectory for their advancement and refinement in bone tissue engineering. P-SSCs are expected to play an expanded role in treating bone abnormalities, leading to the optimisation of bone tissue treatment.
Collapse
Affiliation(s)
- Fan Shi
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, China
- Research Centre for Regenerative Medicine, Guangxi Medical University, Nanning, China
| | - Guixin Yuan
- The First Affiliated Hospital of Xiamen University-ICMRS Collaborating Center for Skeletal Stem Cells, State Key Laboratory of Cellular Stress Biology, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
- Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, China
| | - Zuoxing Wu
- The First Affiliated Hospital of Xiamen University-ICMRS Collaborating Center for Skeletal Stem Cells, State Key Laboratory of Cellular Stress Biology, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
- Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, China
| | - Zhengqiong Luo
- The First Affiliated Hospital of Xiamen University-ICMRS Collaborating Center for Skeletal Stem Cells, State Key Laboratory of Cellular Stress Biology, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
- Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, China
| | - Zihan Chen
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, China
- Research Centre for Regenerative Medicine, Guangxi Medical University, Nanning, China
| | - Qian Liu
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, China
- Research Centre for Regenerative Medicine, Guangxi Medical University, Nanning, China
| | - Na Li
- The First Affiliated Hospital of Xiamen University-ICMRS Collaborating Center for Skeletal Stem Cells, State Key Laboratory of Cellular Stress Biology, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
- Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, China
| | - Ren Xu
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, China
- Research Centre for Regenerative Medicine, Guangxi Medical University, Nanning, China
- The First Affiliated Hospital of Xiamen University-ICMRS Collaborating Center for Skeletal Stem Cells, State Key Laboratory of Cellular Stress Biology, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
- Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
3
|
Ding Y, Mo C, Geng J, Li J, Sun Y. Identification of Periosteal Osteogenic Progenitors in Jawbone. J Dent Res 2022; 101:1101-1109. [PMID: 35319300 DOI: 10.1177/00220345221084200] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Unlike long bones, jawbone development is mainly accomplished by intramembranous ossification resulting from the differentiation of periosteal progenitor cells. However, the spatiotemporal ontogeny of periosteal progenitor cells during jawbone development and repair remains elusive. In this study, we mapped the transcriptional landscape of the human jawbone periosteum at single-cell resolution and identified a cathepsin K (Ctsk)+ periosteal subset. Lineage tracing analysis indicated that Ctsk-Cre-labeled periosteal cells could make contributions to jawbone development. However, different from the periosteal-specific location of Ctsk+ cells in long bone, we also identified Ctsk+ stromal cells in jawbone marrow and implied the heterogeneity of jawbone Ctsk+ hierarchy. In further analysis of the periosteal progenitor cell subset of heterogeneous Ctsk+ hierarchy, we identified a unique Ctsk+Ly6a+ subset of cells. The additional marker Ly6a helped to further confine the progenitor subset to the jawbone periosteum and was nearly undetectable in the bone marrow. Defects in the jawbone could activate the migration and osteogenic differentiation of Ctsk+Ly6a+ cells. Local ablation of Ctsk+ cells by diphtheria reduced the number of Ctsk+Ly6a+ cells and delayed the repair of the bone defect. Taken together, we identify a novel periosteal osteogenic progenitor subset that is active in jawbone osteogenesis and healing.
Collapse
Affiliation(s)
- Y Ding
- Department of Implantology, School & Hospital of Stomatology, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Tongji University, Shanghai, China
| | - C Mo
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - J Geng
- Department of Implantology, School & Hospital of Stomatology, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Tongji University, Shanghai, China
| | - J Li
- Department of Implantology, School & Hospital of Stomatology, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Tongji University, Shanghai, China
| | - Y Sun
- Department of Implantology, School & Hospital of Stomatology, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Tongji University, Shanghai, China
| |
Collapse
|
4
|
The Bone Regeneration Capacity of BMP-2 + MMP-10 Loaded Scaffolds Depends on the Tissue Status. Pharmaceutics 2021; 13:pharmaceutics13070979. [PMID: 34209593 PMCID: PMC8308972 DOI: 10.3390/pharmaceutics13070979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/16/2021] [Accepted: 06/25/2021] [Indexed: 11/28/2022] Open
Abstract
Biomaterials-mediated bone formation in osteoporosis (OP) is challenging as it requires tissue growth promotion and adequate mineralization. Based on our previous findings, the development of scaffolds combining bone morphogenetic protein 2 (BMP-2) and matrix metalloproteinase 10 (MMP-10) shows promise for OP management. To test our hypothesis, scaffolds containing BMP-2 + MMP-10 at variable ratios or BMP-2 + Alendronate (ALD) were prepared. Systems were characterized and tested in vitro on healthy and OP mesenchymal stem cells and in vivo bone formation was studied on healthy and OP animals. Therapeutic molecules were efficiently encapsulated into PLGA microspheres and embedded into chitosan foams. The use of PLGA (poly(lactic-co-glycolic acid)) microspheres as therapeutic molecule reservoirs allowed them to achieve an in vitro and in vivo controlled release. A beneficial effect on the alkaline phosphatase activity of non-OP cells was observed for both combinations when compared with BMP-2 alone. This effect was not detected on OP cells where all treatments promoted a similar increase in ALP activity compared with control. The in vivo results indicated a positive effect of the BMP-2 + MMP-10 combination at both of the doses tested on tissue repair for OP mice while it had the opposite effect on non-OP animals. This fact can be explained by the scaffold’s slow-release rate and degradation that could be beneficial for delayed bone regeneration conditions but had the reverse effect on healthy animals. Therefore, the development of adequate scaffolds for bone regeneration requires consideration of the tissue catabolic/anabolic balance to obtain biomaterials with degradation/release behaviors suited for the existing tissue status.
Collapse
|
5
|
Riccetti M, Gokey JJ, Aronow B, Perl AKT. The elephant in the lung: Integrating lineage-tracing, molecular markers, and single cell sequencing data to identify distinct fibroblast populations during lung development and regeneration. Matrix Biol 2020; 91-92:51-74. [PMID: 32442602 PMCID: PMC7434667 DOI: 10.1016/j.matbio.2020.05.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 05/08/2020] [Accepted: 05/08/2020] [Indexed: 12/26/2022]
Abstract
During lung development, the mesenchyme and epithelium are dependent on each other for instructive morphogenic cues that direct proliferation, cellular differentiation and organogenesis. Specification of epithelial and mesenchymal cell lineages occurs in parallel, forming cellular subtypes that guide the formation of both transitional developmental structures and the permanent architecture of the adult lung. While epithelial cell types and lineages have been relatively well-defined in recent years, the definition of mesenchymal cell types and lineage relationships has been more challenging. Transgenic mouse lines with permanent and inducible lineage tracers have been instrumental in identifying lineage relationships among epithelial progenitor cells and their differentiation into distinct airway and alveolar epithelial cells. Lineage tracing experiments with reporter mice used to identify fibroblast progenitors and their lineage trajectories have been limited by the number of cell specific genes and the developmental timepoint when the lineage trace was activated. In this review, we discuss major developmental mesenchymal lineages, focusing on time of origin, major cell type, and other lineage derivatives, as well as the transgenic tools used to find and define them. We describe lung fibroblasts using function, location, and molecular markers in order to compare and contrast cells with similar functions. The temporal and cell-type specific expression of fourteen "fibroblast lineage" genes were identified in single-cell RNA-sequencing data from LungMAP in the LGEA database. Using these lineage signature genes as guides, we clustered murine lung fibroblast populations from embryonic day 16.5 to postnatal day 28 (E16.5-PN28) and generated heatmaps to illustrate expression of transcription factors, signaling receptors and ligands in a temporal and population specific manner.
Collapse
Affiliation(s)
- Matthew Riccetti
- The Perinatal Institute and Section of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Molecular and Developmental Biology Graduate Program, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Jason J Gokey
- The Perinatal Institute and Section of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Bruce Aronow
- Department of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, OH, United States
| | - Anne-Karina T Perl
- The Perinatal Institute and Section of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Molecular and Developmental Biology Graduate Program, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, OH, United States.
| |
Collapse
|
6
|
Feigenson M, Jonason JH, Shen J, Loiselle AE, Awad HA, O'Keefe RJ. Inhibition of the Prostaglandin EP-1 Receptor in Periosteum Progenitor Cells Enhances Osteoblast Differentiation and Fracture Repair. Ann Biomed Eng 2019; 48:927-939. [PMID: 30980293 DOI: 10.1007/s10439-019-02264-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 04/04/2019] [Indexed: 01/19/2023]
Abstract
Fracture healing is a complex and integrated process that involves mesenchymal progenitor cell (MPC) recruitment, proliferation and differentiation that eventually results in bone regeneration. Prostaglandin E2 (PGE2) is an important regulator of bone metabolism and has an anabolic effect on fracture healing. Prior work from our laboratory showed EP1-/- mice have enhanced fracture healing, stronger cortical bones, higher trabecular bone volume and increased in vivo bone formation. We also showed that bone marrow MSCs from EP1-/- mice exhibit increased osteoblastic differentiation in vitro. In this study we investigate the changes in the periosteal derived MPCs (PDMPCs), which are crucial for fracture repair, upon EP1 deletion. EP1-/- PDMPCs exhibit increased numbers of total (CFU-F) and osteoblastic colonies (CFU-O) as well as enhanced osteoblastic and chondrogenic differentiation. Moreover, we tested the possible therapeutic application of a specific EP1 receptor antagonist to accelerate fracture repair. Our findings showed that EP1 antagonist administration to wild type mice in the early stages of repair similarly resulted in enhanced CFU-F, CFU-O, and osteoblast differentiation in PDMPCs and resulted in enhanced fracture callus formation at 10 days post fracture and increased bone volume and improved biomechanical healing of femur fractures at 21 days post fracture.
Collapse
Affiliation(s)
- Marina Feigenson
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, USA
| | - Jennifer H Jonason
- Department of Orthopaedics and Rehabilitation, Center for Musculoskeletal Research, University of Rochester School of Medicine and Dentistry, Rochester, USA
| | - Jie Shen
- Department of Orthopaedic Surgery, Washington University School of Medicine, 660 S. Euclid, CB 8233, St. Louis, MO, 63110, USA
| | - Alayna E Loiselle
- Department of Orthopaedics and Rehabilitation, Center for Musculoskeletal Research, University of Rochester School of Medicine and Dentistry, Rochester, USA
| | - Hani A Awad
- Department of Biomedical Engineering, Center for Musculoskeletal Research, University of Rochester School of Medicine and Dentistry, Rochester, USA
| | - Regis J O'Keefe
- Department of Orthopaedic Surgery, Washington University School of Medicine, 660 S. Euclid, CB 8233, St. Louis, MO, 63110, USA.
| |
Collapse
|
7
|
Munro N, Srinageshwar B, Shalabi F, Florendo M, Otero P, Thompson C, Kippe J, Malkowski C, Climie S, Stewart AN, Kim R, Zhou J, Swanson D, Dunbar GL, Sharma A, Rossignol J. A novel approach to label bone marrow-derived mesenchymal stem cells with mixed-surface PAMAM dendrimers. Stem Cell Res Ther 2019; 10:71. [PMID: 30819246 PMCID: PMC6393977 DOI: 10.1186/s13287-019-1171-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/28/2019] [Accepted: 02/11/2019] [Indexed: 11/19/2022] Open
Abstract
Background Transplantation of mesenchymal stem cells has created enormous opportunities as a potential treatment for various diseases including neurodegenerative diseases. Given current techniques, such as Hoechst labeling, have safety and leakage issues, our study focused, as a proof-of-concept, on a new dendrimer-based technique for labeling these stem cells to ensure their efficacy and safety following transplantation into the brain of a healthy mice. Methods and results The bone marrow-derived mesenchymal stem cells (BM-MSCs) were labeled using polyaminoamine (PAMAM) dendrimers following which their stemness based on their proliferation and differentiation ability were analyzed by gold standard methods. These labeled BM-MSCs were transplanted into the striatum of C57BL/6J mice and were tracked using in vivo imaging system (IVIS) and analyzed using tissue imaging, 2 weeks after transplantation. Our results showed that the dendrimer-labeled BM-MSCs were able to successfully maintain their stemness and were tracked in vivo following transplantation. Unlike Hoechst, we did not find the dendrimers to be leaking out of the cells and were very specific to the cells that up took the dendrimers. Moreover, no adverse events were found in the transplanted animals proving that this is a safer method. Conclusions Labeling BM-MSCs using fluorescently tagged PAMAM dendrimers can be used as a potentially safe and efficient method for labeling cells, particularly stem cells, in vitro and in vivo following transplantation in rodents.
Collapse
Affiliation(s)
- Nikolas Munro
- College of Medicine, Central Michigan University, Mount Pleasant, MI, USA.,Field Neurosciences Institute Laboratory for Restorative Neurology, Mount Pleasant, MI, USA.,Program in Neuroscience, Central Michigan University, Mount Pleasant, MI, USA
| | - Bhairavi Srinageshwar
- College of Medicine, Central Michigan University, Mount Pleasant, MI, USA.,Field Neurosciences Institute Laboratory for Restorative Neurology, Mount Pleasant, MI, USA.,Program in Neuroscience, Central Michigan University, Mount Pleasant, MI, USA
| | - Firas Shalabi
- College of Medicine, Central Michigan University, Mount Pleasant, MI, USA
| | - Maria Florendo
- College of Medicine, Central Michigan University, Mount Pleasant, MI, USA
| | - Paulina Otero
- Field Neurosciences Institute Laboratory for Restorative Neurology, Mount Pleasant, MI, USA.,Program in Neuroscience, Central Michigan University, Mount Pleasant, MI, USA
| | - Cassandra Thompson
- Field Neurosciences Institute Laboratory for Restorative Neurology, Mount Pleasant, MI, USA.,Program in Neuroscience, Central Michigan University, Mount Pleasant, MI, USA
| | - Jordyn Kippe
- Program in Neuroscience, Central Michigan University, Mount Pleasant, MI, USA
| | - Clayton Malkowski
- Field Neurosciences Institute Laboratory for Restorative Neurology, Mount Pleasant, MI, USA.,Program in Neuroscience, Central Michigan University, Mount Pleasant, MI, USA
| | - Sydney Climie
- Field Neurosciences Institute Laboratory for Restorative Neurology, Mount Pleasant, MI, USA.,Program in Neuroscience, Central Michigan University, Mount Pleasant, MI, USA
| | - Andrew N Stewart
- Field Neurosciences Institute Laboratory for Restorative Neurology, Mount Pleasant, MI, USA.,Program in Neuroscience, Central Michigan University, Mount Pleasant, MI, USA
| | - Rachel Kim
- College of Medicine, Central Michigan University, Mount Pleasant, MI, USA.,Field Neurosciences Institute Laboratory for Restorative Neurology, Mount Pleasant, MI, USA
| | - Joseph Zhou
- College of Medicine, Central Michigan University, Mount Pleasant, MI, USA.,Field Neurosciences Institute Laboratory for Restorative Neurology, Mount Pleasant, MI, USA
| | - Douglas Swanson
- Department of Chemistry & Biochemistry, Central Michigan University, Mount Pleasant, MI, USA
| | - Gary L Dunbar
- Field Neurosciences Institute Laboratory for Restorative Neurology, Mount Pleasant, MI, USA.,Program in Neuroscience, Central Michigan University, Mount Pleasant, MI, USA.,Department of Psychology, Central Michigan University, Mount Pleasant, MI, USA.,Field Neurosciences Institute, Saginaw, MI, USA
| | - Ajit Sharma
- Department of Chemistry & Biochemistry, Central Michigan University, Mount Pleasant, MI, USA
| | - Julien Rossignol
- College of Medicine, Central Michigan University, Mount Pleasant, MI, USA. .,Field Neurosciences Institute Laboratory for Restorative Neurology, Mount Pleasant, MI, USA. .,Program in Neuroscience, Central Michigan University, Mount Pleasant, MI, USA.
| |
Collapse
|
8
|
Hordeaux J, Yuan Y, Clark PM, Wang Q, Martino RA, Sims JJ, Bell P, Raymond A, Stanford WL, Wilson JM. The GPI-Linked Protein LY6A Drives AAV-PHP.B Transport across the Blood-Brain Barrier. Mol Ther 2019; 27:912-921. [PMID: 30819613 DOI: 10.1016/j.ymthe.2019.02.013] [Citation(s) in RCA: 156] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 02/13/2019] [Accepted: 02/14/2019] [Indexed: 12/30/2022] Open
Abstract
Efficient delivery of gene therapy vectors across the blood-brain barrier (BBB) is the holy grail of neurological disease therapies. A variant of the neurotropic vector adeno-associated virus (AAV) serotype 9, called AAV-PHP.B, was shown to very efficiently deliver transgenes across the BBB in C57BL/6J mice. Based on our recent observation that this phenotype is mouse strain dependent, we used whole-exome sequencing-based genetics to map this phenotype to a specific haplotype of lymphocyte antigen 6 complex, locus A (Ly6a) (stem cell antigen-1 [Sca-1]), which encodes a glycosylphosphatidylinositol (GPI)-anchored protein whose function had been thought to be limited to the biology of hematopoiesis. Additional biochemical and genetic studies definitively linked high BBB transport to the binding of AAV-PHP.B with LY6A (SCA-1). These studies identify, for the first time, a ligand for this GPI-anchored protein and suggest a role for it in BBB transport that could be hijacked by viruses in natural infections or by gene therapy vectors to treat neurological diseases.
Collapse
Affiliation(s)
- Juliette Hordeaux
- Gene Therapy Program, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Yuan Yuan
- Gene Therapy Program, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Peter M Clark
- Gene Therapy Program, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Qiang Wang
- Gene Therapy Program, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - R Alexander Martino
- Gene Therapy Program, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Joshua J Sims
- Gene Therapy Program, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Peter Bell
- Gene Therapy Program, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Angela Raymond
- Regenerative Medicine Program, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON K1H 8L6, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8L6, Canada
| | - William L Stanford
- Regenerative Medicine Program, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON K1H 8L6, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8L6, Canada
| | - James M Wilson
- Gene Therapy Program, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
9
|
Fan J, An X, Yang Y, Xu H, Fan L, Deng L, Li T, Weng X, Zhang J, Chunhua Zhao R. MiR-1292 Targets FZD4 to Regulate Senescence and Osteogenic Differentiation of Stem Cells in TE/SJ/Mesenchymal Tissue System via the Wnt/β-catenin Pathway. Aging Dis 2018; 9:1103-1121. [PMID: 30574422 PMCID: PMC6284756 DOI: 10.14336/ad.2018.1110] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 11/10/2018] [Indexed: 12/12/2022] Open
Abstract
With the expansion of the elderly population, age-related osteoporosis and the resulting bone loss have become a significant health and socioeconomic issue. In Triple Energizer (TE)/San Jiao (SJ)/mesenchymal tissue system, mesenchymal stem cell (MSC) senescence, and impaired osteogenesis are thought to contribute to age-related diseases such as osteoporosis. Therefore, comprehending the molecular mechanisms underlying MSC senescence and osteogenesis is essential to improve the treatment of bone metabolic diseases. With the increasing role of miRNAs in MSC aging and osteogenic differentiation, we need to understand further how miRNAs participate in relevant mechanisms. In this study, we observed that the expression of miR-1292 was augmented during cellular senescence and lessened with osteogenesis in human adipose-derived mesenchymal stem cells (hADSCs). miR-1292 expression was positively correlated with senescence markers and negatively associated with bone formation markers in clinical bone samples. Overexpression of miR-1292 notably accelerated hADSC senescence and restrained osteogenesis, whereas its knockdown decreased senescence and enhanced osteogenic differentiation. Furthermore, miR-1292 upregulation inhibited ectopic bone formation in vivo. Mechanistically, FZD4 was identified as a potential target of miR-1292. Downregulation of FZD4 phenocopied the effect of miR-1292 overexpression on hADSC senescence and osteogenic differentiation. Moreover, the impact of miR-1292 suppression on senescence and osteogenesis were reversed by the FZD4 knockdown. Pathway analysis revealed that miR-1292 regulates hADSC senescence and osteogenesis through the Wnt/β-catenin signaling pathway. Thus, TE/SJ/mesenchymal tissue system is the largest organ composed of various functional cells derived from mesoderm, responsible for maintaining homeostasis and regulating cell senescence. miR-1292 might serve as a novel therapeutic target for the prevention and treatment of osteoporosis or other diseases related to bone metabolism and aging.
Collapse
Affiliation(s)
- Junfen Fan
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Beijing Key Laboratory (No. BZO381), Beijing, China.
| | - Xingyan An
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Beijing Key Laboratory (No. BZO381), Beijing, China.
| | - Yanlei Yang
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Beijing Key Laboratory (No. BZO381), Beijing, China.
| | - Haoying Xu
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Beijing Key Laboratory (No. BZO381), Beijing, China.
| | - Linyuan Fan
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Beijing Key Laboratory (No. BZO381), Beijing, China.
| | - Luchan Deng
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Beijing Key Laboratory (No. BZO381), Beijing, China.
| | - Tao Li
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Beijing, China.
| | - Xisheng Weng
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Beijing, China.
| | - Jianmin Zhang
- Department of Immunology, Research Center on Pediatric Development and Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences and School of Basic Medicine Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing, China
| | - Robert Chunhua Zhao
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Beijing Key Laboratory (No. BZO381), Beijing, China.
| |
Collapse
|
10
|
Fajka-Boja R, Marton A, Tóth A, Blazsó P, Tubak V, Bálint B, Nagy I, Hegedűs Z, Vizler C, Katona RL. Increased insulin-like growth factor 1 production by polyploid adipose stem cells promotes growth of breast cancer cells. BMC Cancer 2018; 18:872. [PMID: 30185144 PMCID: PMC6126028 DOI: 10.1186/s12885-018-4781-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 08/29/2018] [Indexed: 02/08/2023] Open
Abstract
Background Adipose-tissue stem cells (ASCs) are subject of intensive research since their successful use in regenerative therapy. The drawback of ASCs is that they may serve as stroma for cancer cells and assist tumor progression. It is disquieting that ASCs frequently undergo genetic and epigenetic changes during their in vitro propagation. In this study, we describe the polyploidization of murine ASCs and the accompanying phenotypical, gene expressional and functional changes under long term culturing. Methods ASCs were isolated from visceral fat of C57BL/6 J mice, and cultured in vitro for prolonged time. The phenotypical changes were followed by microscopy and flow cytometry. Gene expressional changes were determined by differential transcriptome analysis and changes in protein expression were shown by Western blotting. The tumor growth promoting effect of ASCs was examined by co-culturing them with 4 T1 murine breast cancer cells. Results After five passages, the proliferation of ASCs decreases and cells enter a senescence-like state, from which a proportion of cells escape by polyploidization. The resulting ASC line is susceptible to adipogenic, osteogenic and chondrogenic differentiation, and expresses the stem cell markers CD29 and Sca-1 on an upregulated level. Differential transcriptome analysis of ASCs with normal and polyploid karyotype shows altered expression of genes that are involved in regulation of cancer, cellular growth and proliferation. We verified the increased expression of Klf4 and loss of Nestin on protein level. We found that elevated production of insulin-like growth factor 1 by polyploid ASCs rendered them more potent in tumor growth promotion in vitro. Conclusions Our model indicates how ASCs with altered genetic background may support tumor progression. Electronic supplementary material The online version of this article (10.1186/s12885-018-4781-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Roberta Fajka-Boja
- Biological Research Centre of the Hungarian Academy of Sciences, Institute of Genetics, H-6726 Temesvári krt. 62, Szeged, Hungary
| | - Annamária Marton
- Biological Research Centre of the Hungarian Academy of Sciences, Institute of Biochemistry, H-6726 Temesvári krt. 62, Szeged, Hungary
| | - Anna Tóth
- Biological Research Centre of the Hungarian Academy of Sciences, Institute of Genetics, H-6726 Temesvári krt. 62, Szeged, Hungary
| | - Péter Blazsó
- Biological Research Centre of the Hungarian Academy of Sciences, Institute of Genetics, H-6726 Temesvári krt. 62, Szeged, Hungary
| | - Vilmos Tubak
- Creative Laboratory Ltd, H-6726 Temesvári krt. 62, Szeged, Hungary
| | - Balázs Bálint
- Biological Research Centre of the Hungarian Academy of Sciences, Institute of Biochemistry, H-6726 Temesvári krt. 62, Szeged, Hungary
| | - István Nagy
- Biological Research Centre of the Hungarian Academy of Sciences, Institute of Biochemistry, H-6726 Temesvári krt. 62, Szeged, Hungary
| | - Zoltán Hegedűs
- Biological Research Centre of the Hungarian Academy of Sciences, Institute of Biophysics, H-6726 Temesvári krt. 62, Szeged, Hungary
| | - Csaba Vizler
- Biological Research Centre of the Hungarian Academy of Sciences, Institute of Biochemistry, H-6726 Temesvári krt. 62, Szeged, Hungary
| | - Robert L Katona
- Biological Research Centre of the Hungarian Academy of Sciences, Institute of Genetics, H-6726 Temesvári krt. 62, Szeged, Hungary.
| |
Collapse
|
11
|
Kiernan J, Davies JE, Stanford WL. Concise Review: Musculoskeletal Stem Cells to Treat Age-Related Osteoporosis. Stem Cells Transl Med 2017; 6:1930-1939. [PMID: 28834263 PMCID: PMC6430063 DOI: 10.1002/sctm.17-0054] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 06/14/2017] [Indexed: 01/03/2023] Open
Abstract
Age‐related (type‐II) osteoporosis is a common and debilitating condition driven in part by the loss of bone marrow (BM) mesenchymal stromal cells (MSC) and their osteoblast progeny, leading to reduced bone formation. Current pharmacological regiments targeting age‐related osteoporosis do not directly treat the disease by increasing bone formation, but instead use bisphosphonates to reduce bone resorption—a treatment designed for postmenopausal (type‐I) osteoporosis. Recently, the bone regenerative capacity of MSCs has been found within a very rare population of skeletal stem cells (SSCs) residing within the larger heterogeneous BM‐MSC pool. The osteoregenerative potential of SSCs would be an ideal candidate for cell‐based therapies to treat degenerative bone diseases such as osteoporosis. However, to date, clinical and translational studies attempting to improve bone formation through cell transplantation have used the larger, nonspecific, MSC pool. In this review, we will outline the physiological basis of age‐related osteoporosis, as well as discuss relevant preclinical studies that use exogenous MSC transplantation with the aim of treating osteoporosis in murine models. We will also discuss results from specific clinical trials aimed at treating other systemic bone diseases, and how the discovery of SSC could help realize the full regenerative potential of MSC therapy to increase bone formation. Finally, we will outline how ancillary clinical trials could be initiated to assess MSC/SSC‐mediated bone formation gains in existing and potentially unrelated clinical trials, setting the stage for a dedicated clinical investigation to treat age‐related osteoporosis. Stem Cells Translational Medicine2017;6:1930–1939
Collapse
Affiliation(s)
- Jeffrey Kiernan
- Laboratory Medicine Program, University Health Network, Toronto, Ontario, Canada.,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - John E Davies
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada.,Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - William L Stanford
- Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Departments of Cellular & Molecular Medicine, and Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
12
|
Davies OG, Grover LM, Lewis MP, Liu Y. PDGF is a potent initiator of bone formation in a tissue engineered model of pathological ossification. J Tissue Eng Regen Med 2017; 12:e355-e367. [PMID: 27696748 PMCID: PMC6084375 DOI: 10.1002/term.2320] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 07/27/2016] [Accepted: 09/26/2016] [Indexed: 02/06/2023]
Abstract
Heterotopic ossification (HO) is a debilitating condition defined by the rapid formation of bone in soft tissues. What makes HO fascinating is first the rate at which bone is deposited, and second the fact that this bone is structurally and compositionally similar to that of a healthy adult. If the mechanisms governing HO are understood, they have the potential to be exploited for the development of potent osteoinductive therapies. With this aim, a tissue‐engineered skeletal muscle was used model to better understand the role of inflammation on this debilitating phenomenon. It was shown that myoblasts could be divided into two distinct populations: myogenic cells and undifferentiated ‘reserve’ cells. Gene expression analysis of myogenic and osteoregulatory markers confirmed that ‘reserve’ cells were primed for osteogenic differentiation but had a reduced capacity for myogenesis. Osteogenic differentiation was significantly enhanced in the presence of platelet‐derived growth factor (PDGF)‐BB and bone morphogenetic protein 2 (BMP2), and correlated with conversion to a Sca‐1+/CD73+ phenotype. Alizarin red staining showed that PDGF‐BB promoted significantly more mineral deposition than BMP2. Finally, it was shown that PDGF‐induced mineralization was blocked in the presence of the pro‐inflammatory cytokines tumour necrosis factor‐α and interleukin 1. In conclusion, the present study identified that PDGF‐BB is a potent osteoinductive factor in a model of tissue‐engineered skeletal muscle, and that the osteogenic capacity of this protein was modulated in the presence of pro‐inflammatory cytokines. These findings reveal a possible mechanism by which HO develops following trauma. Importantly, these findings have implications for the induction and control of bone formation for regenerative medicine. © 2016 The Authors Journal of Tissue Engineering and Regenerative Medicine Published by John Wiley & Sons Ltd.
Collapse
Affiliation(s)
- Owen G Davies
- Centre for Biological Engineering, Wolfson School of Mechanical and Manufacturing Engineering, Loughborough University, Loughborough, UK.,School of Sport, Exercise and Health Sciences, National Centre for Sport and Exercise Medicine (NCSEM), Arthritis Research UK Centre for Sport, Exercise and Osteoarthritis, Loughborough University, Loughborough, UK
| | - Liam M Grover
- School of Chemical Engineering, University of Birmingham, Birmingham, UK
| | - Mark P Lewis
- School of Sport, Exercise and Health Sciences, National Centre for Sport and Exercise Medicine (NCSEM), Arthritis Research UK Centre for Sport, Exercise and Osteoarthritis, Loughborough University, Loughborough, UK
| | - Yang Liu
- Centre for Biological Engineering, Wolfson School of Mechanical and Manufacturing Engineering, Loughborough University, Loughborough, UK
| |
Collapse
|
13
|
Hamidouche Z, Rother K, Przybilla J, Krinner A, Clay D, Hopp L, Fabian C, Stolzing A, Binder H, Charbord P, Galle J. Bistable Epigenetic States Explain Age-Dependent Decline in Mesenchymal Stem Cell Heterogeneity. Stem Cells 2016; 35:694-704. [PMID: 27734598 PMCID: PMC5347872 DOI: 10.1002/stem.2514] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 08/31/2016] [Accepted: 09/10/2016] [Indexed: 12/12/2022]
Abstract
The molecular mechanisms by which heterogeneity, a major characteristic of stem cells, is achieved are yet unclear. We here study the expression of the membrane stem cell antigen-1 (Sca-1) in mouse bone marrow mesenchymal stem cell (MSC) clones. We show that subpopulations with varying Sca-1 expression profiles regenerate the Sca-1 profile of the mother population within a few days. However, after extensive replication in vitro, the expression profiles shift to lower values and the regeneration time increases. Study of the promoter of Ly6a unravels that the expression level of Sca-1 is related to the promoter occupancy by the activating histone mark H3K4me3. We demonstrate that these findings can be consistently explained by a computational model that considers positive feedback between promoter H3K4me3 modification and gene transcription. This feedback implicates bistable epigenetic states which the cells occupy with an age-dependent frequency due to persistent histone (de-)modification. Our results provide evidence that MSC heterogeneity, and presumably that of other stem cells, is associated with bistable epigenetic states and suggest that MSCs are subject to permanent state fluctuations. Stem Cells 2017;35:694-704.
Collapse
Affiliation(s)
- Zahia Hamidouche
- INSERM U972, University Paris 11, Hôpital Paul Brousse, Villejuif, France.,Faculty of Biology, Mouloud Mammeri University, Tizi-ouzou, Algeria
| | - Karen Rother
- Interdisciplinary Center for Bioinformatics, University Leipzig, Germany
| | - Jens Przybilla
- Interdisciplinary Center for Bioinformatics, University Leipzig, Germany
| | - Axel Krinner
- Interdisciplinary Center for Bioinformatics, University Leipzig, Germany
| | - Denis Clay
- INSERM U972, University Paris 11, Hôpital Paul Brousse, Villejuif, France
| | - Lydia Hopp
- Interdisciplinary Center for Bioinformatics, University Leipzig, Germany.,LIFE: Leipzig Research Center for Civilization Diseases, University Leipzig, Germany
| | - Claire Fabian
- Interdisciplinary Center for Bioinformatics, University Leipzig, Germany.,Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Alexandra Stolzing
- Interdisciplinary Center for Bioinformatics, University Leipzig, Germany
| | - Hans Binder
- Interdisciplinary Center for Bioinformatics, University Leipzig, Germany
| | - Pierre Charbord
- INSERM U972, University Paris 11, Hôpital Paul Brousse, Villejuif, France.,IBPS Laboratory of Developmental Biology, University Pierre & Marie Curie, Paris, France
| | - Joerg Galle
- Interdisciplinary Center for Bioinformatics, University Leipzig, Germany
| |
Collapse
|
14
|
Kiernan J, Hu S, Grynpas MD, Davies JE, Stanford WL. Systemic Mesenchymal Stromal Cell Transplantation Prevents Functional Bone Loss in a Mouse Model of Age-Related Osteoporosis. Stem Cells Transl Med 2016; 5:683-93. [PMID: 26987353 DOI: 10.5966/sctm.2015-0231] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 11/23/2015] [Indexed: 12/13/2022] Open
Abstract
UNLABELLED Age-related osteoporosis is driven by defects in the tissue-resident mesenchymal stromal cells (MSCs), a heterogeneous population of musculoskeletal progenitors that includes skeletal stem cells. MSC decline leads to reduced bone formation, causing loss of bone volume and the breakdown of bony microarchitecture crucial to trabecular strength. Furthermore, the low-turnover state precipitated by MSC loss leads to low-quality bone that is unable to perform remodeling-mediated maintenance--replacing old damaged bone with new healthy tissue. Using minimally expanded exogenous MSCs injected systemically into a mouse model of human age-related osteoporosis, we show long-term engraftment and markedly increased bone formation. This led to improved bone quality and turnover and, importantly, sustained microarchitectural competence. These data establish proof of concept that MSC transplantation may be used to prevent or treat human age-related osteoporosis. SIGNIFICANCE This study shows that a single dose of minimally expanded mesenchymal stromal cells (MSCs) injected systemically into a mouse model of human age-related osteoporosis display long-term engraftment and prevent the decline in bone formation, bone quality, and microarchitectural competence. This work adds to a growing body of evidence suggesting that the decline of MSCs associated with age-related osteoporosis is a major transformative event in the progression of the disease. Furthermore, it establishes proof of concept that MSC transplantation may be a viable therapeutic strategy to treat or prevent human age-related osteoporosis.
Collapse
Affiliation(s)
- Jeffrey Kiernan
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Sally Hu
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Marc D Grynpas
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - John E Davies
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - William L Stanford
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada Department of Cellular and Molecular Medicine and Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
15
|
Wang L, Qiu XM, Gui YY, Xu YP, Gober HJ, Li DJ. Bu-Shen-Ning-Xin Decoction ameliorated the osteoporotic phenotype of ovariectomized mice without affecting the serum estrogen concentration or uterus. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:5019-31. [PMID: 26357466 PMCID: PMC4560509 DOI: 10.2147/dddt.s89505] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
INTRODUCTION Bu-Shen-Ning-Xin Decoction (BSNXD), a traditional Chinese medicinal composition, has been used as a remedy for postmenopausal osteoporosis, but its effects on bone metabolism and the uterus have not been reported. PURPOSE We aimed to determine the respective effects of BSNXD on the bones and the uterus of ovariectomized (OVX) mice to evaluate the efficacy and safety of this herbal formula. MATERIALS AND METHODS Postmenopausal osteoporosis animal models that were generated by ovariectomy were treated with BSNXD. Dual-energy X-ray absorptiometry was performed to analyze the bone mineral density, and histomorphometric analysis was performed to measure the parameters related to bone metabolism. Calcein labeling was performed to detect bone formation. The uteruses from the mice were weighed, and the histomorphometry was analyzed. Drug-derived serum was prepared to assess the 17-β-estradiol concentration via enzyme immunoassay. RESULTS BSNXD administration ameliorated the osteoporotic phenotype of OVX mice, as evidenced by an increase in the bone mineral density and bone volume; these effects could not be abolished by the administration of the aromatase inhibitor letrozole. Moreover, BSNXD had no effect on the serum estrogen concentration or uterus. CONCLUSION These results suggest that BSNXD has ameliorating effects on bone loss due to estrogen deprivation without affecting the peripheral blood estrogen concentration or the uterus in OVX mice.
Collapse
Affiliation(s)
- Ling Wang
- Laboratory for Reproductive Immunology, Hospital and Institute of Obstetrics and Gynecology, IBS, Fudan University Shanghai Medical College, Shanghai, People's Republic of China ; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, People's Republic of China
| | - Xue-Min Qiu
- Laboratory for Reproductive Immunology, Hospital and Institute of Obstetrics and Gynecology, IBS, Fudan University Shanghai Medical College, Shanghai, People's Republic of China ; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, People's Republic of China
| | - Yu-Yan Gui
- Laboratory for Reproductive Immunology, Hospital and Institute of Obstetrics and Gynecology, IBS, Fudan University Shanghai Medical College, Shanghai, People's Republic of China ; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, People's Republic of China
| | - Ying-Ping Xu
- Laboratory for Reproductive Immunology, Hospital and Institute of Obstetrics and Gynecology, IBS, Fudan University Shanghai Medical College, Shanghai, People's Republic of China ; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, People's Republic of China
| | - Hans-Jürgen Gober
- Department of Pharmacy, Wagner Jauregg Hospital and Children's Hospital, Linz, Austria
| | - Da-Jin Li
- Laboratory for Reproductive Immunology, Hospital and Institute of Obstetrics and Gynecology, IBS, Fudan University Shanghai Medical College, Shanghai, People's Republic of China
| |
Collapse
|
16
|
Type 1 diabetes and osteoporosis: from molecular pathways to bone phenotype. J Osteoporos 2015; 2015:174186. [PMID: 25874154 PMCID: PMC4385591 DOI: 10.1155/2015/174186] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 03/09/2015] [Indexed: 01/06/2023] Open
Abstract
The link between type 1 diabetes mellitus (DM1) and osteoporosis, identified decades ago, has gained attention in recent years. While a number of cellular mechanisms have been postulated to mediate this association, it is now established that defects in osteoblast differentiation and activity are the main culprits underlying bone fragility in DM1. Other contributing factors include an accumulation of advanced glycation end products (AGEs) and the development of diabetes complications (such as neuropathy and hypoglycemia), which cause further decline in bone mineral density (BMD), worsening geometric properties within bone, and increased fall risk. As a result, patients with DM1 have a 6.9-fold increased incidence of hip fracture compared to controls. Despite this increased fracture risk, bone fragility remains an underappreciated complication of DM1 and is not addressed in most diabetes guidelines. There is also a lack of data regarding the efficacy of therapeutic strategies to treat osteoporosis in this patient population. Together, our current understanding of bone fragility in DM1 calls for an update of diabetes guidelines, better screening tools, and further research into the use of therapeutic strategies in this patient population.
Collapse
|
17
|
Identification of Lgr5-independent spheroid-generating progenitors of the mouse fetal intestinal epithelium. Cell Rep 2013; 5:421-32. [PMID: 24139799 DOI: 10.1016/j.celrep.2013.09.005] [Citation(s) in RCA: 198] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 07/16/2013] [Accepted: 09/04/2013] [Indexed: 01/27/2023] Open
Abstract
Immortal spheroids were generated from fetal mouse intestine using the culture system initially developed to culture organoids from adult intestinal epithelium. Spheroid proportion progressively decreases from fetal to postnatal period, with a corresponding increase in production of organoids. Like organoids, spheroids show Wnt-dependent indefinite self-renewing properties but display a poorly differentiated phenotype reminiscent of incompletely caudalized progenitors. The spheroid transcriptome is strikingly different from that of adult intestinal stem cells, with minimal overlap of Wnt target gene expression. The receptor LGR4, but not LGR5, is essential for their growth. Trop2/Tacstd2 and Cnx43/Gja1, two markers highly enriched in spheroids, are expressed throughout the embryonic-day-14 intestinal epithelium. Comparison of in utero and neonatal lineage tracing using Cnx43-CreER and Lgr5-CreERT2 mice identified spheroid-generating cells as developmental progenitors involved in generation of the prenatal intestinal epithelium. Ex vivo, spheroid cells have the potential to differentiate into organoids, qualifying as a fetal type of intestinal stem cell.
Collapse
|
18
|
Sardone LD, Renlund R, Willett TL, Fantus IG, Grynpas MD. Effect of rosiglitazone on bone quality in a rat model of insulin resistance and osteoporosis. Diabetes 2011; 60:3271-8. [PMID: 21998400 PMCID: PMC3219933 DOI: 10.2337/db10-1672] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
OBJECTIVE Rosiglitazone (RSG) is an insulin-sensitizing drug used to treat type 2 diabetes mellitus. The A Diabetes Outcome Progression Trial (ADOPT) shows that women taking RSG experienced more fractures than patients taking other type 2 diabetes drugs. These were not osteoporotic vertebral fractures but, rather, occurred in the limbs. The purpose of this study was to investigate how RSG treatment alters bone quality, which leads to fracture risk, using the Zucker fatty rat as a model. RESEARCH DESIGN AND METHODS A total of 61 female 4-month-old rats were divided into six groups. One Sham group was a control and another was administered oral RSG 10 mg/kg/day. Four ovariectomized (OVX) groups were dosed as follows: controls, RSG 10 mg/kg, alendronate (ALN, injected at 0.7 mg/kg/week), and RSG 10 mg/kg plus ALN. After 12 weeks of treatment, bone quality was evaluated by mechanical testing. Microarchitecture, bone mineral density (BMD), cortical bone porosity, and bone remodeling were also measured. RESULTS OVX RSG 10 mg/kg rats had lower vertebral BMD and compromised trabecular architecture versus OVX controls. Increased cortical bone porosity and decreased mechanical properties occurred in these rats. ALN treatment prevented decreased BMD and architectural and mechanical properties in the OVX model. Reduced bone formation, increased marrow adiposity, and excess bone resorption were observed in RSG-treated rats. CONCLUSIONS RSG decreases bone quality. An unusual finding was an increase in cortical bone porosity induced by RSG, consistent with its effect on long bones of women. ALN, an inhibitor of bone resorption, enhanced mechanical strength and may provide an approach to partially counter the deleterious skeletal effects of RSG.
Collapse
Affiliation(s)
- Laura D. Sardone
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Richard Renlund
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Thomas L. Willett
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Ivan G. Fantus
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Medicine, Mount Sinai Hospital, University of Toronto, Ontario, Canada
| | - Marc D. Grynpas
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
- Corresponding author: Marc D. Grynpas,
| |
Collapse
|
19
|
de Jong S, Kas MJH, Kiernan J, de Mooij-van Malsen AG, Oppelaar H, Janson E, Vukobradovic I, Farber CR, Stanford WL, Ophoff RA. Hippocampal gene expression analysis highlights Ly6a/Sca-1 as candidate gene for previously mapped novelty induced behaviors in mice. PLoS One 2011; 6:e20716. [PMID: 21673958 PMCID: PMC3108967 DOI: 10.1371/journal.pone.0020716] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2010] [Accepted: 05/08/2011] [Indexed: 01/19/2023] Open
Abstract
In this study, we show that the covariance between behavior and gene expression in the brain can help further unravel the determinants of neurobehavioral traits. Previously, a QTL for novelty induced motor activity levels was identified on murine chromosome 15 using consomic strains. With the goal of narrowing down the linked region and possibly identifying the gene underlying the quantitative trait, gene expression data from this F2-population was collected and used for expression QTL analysis. While genetic variation in these mice was limited to chromosome 15, eQTL analysis of gene expression showed strong cis-effects as well as trans-effects elsewhere in the genome. Using weighted gene co-expression network analysis, we were able to identify modules of co-expressed genes related to novelty induced motor activity levels. In eQTL analyses, the expression of Ly6a (a.k.a. Sca-1) was found to be cis-regulated by chromosome 15. Ly6a also surfaced in a group of genes resulting from the network analysis that was correlated with behavior. Behavioral analysis of Ly6a knock-out mice revealed reduced novelty induced motor activity levels when compared to wild type controls, confirming functional importance of Ly6a in this behavior, possibly through regulating other genes in a pathway. This study shows that gene expression profiling can be used to narrow down a previously identified behavioral QTL in mice, providing support for Ly6a as a candidate gene for functional involvement in novelty responsiveness.
Collapse
Affiliation(s)
- Simone de Jong
- Department of Medical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Martien J. H. Kas
- Department of Neuroscience and Pharmacology, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jeffrey Kiernan
- Institute of Biomaterials and Biomedical Engineering University of Toronto, Toronto, Ontario, Canada
| | - Annetrude G. de Mooij-van Malsen
- Department of Molecular Animal Physiology, Donders Institute for Brain, Cognition and Behaviour, Nijmegen Center for Neuroscience, Nijmegen, The Netherlands
| | - Hugo Oppelaar
- Department of Neuroscience and Pharmacology, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Esther Janson
- Department of Medical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Igor Vukobradovic
- Centre for Modeling Human Disease, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Charles R. Farber
- Department of Medicine, Department of Biochemistry and Molecular Genetics and Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, United States of America
| | - William L. Stanford
- Institute of Biomaterials and Biomedical Engineering University of Toronto, Toronto, Ontario, Canada
| | - Roel A. Ophoff
- Department of Medical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Psychiatry, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands
- Center for Neurobehavioral Genetics, University of California Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
20
|
Staszkiewicz J, Gimble JM, Dietrich MA, Gawronska-Kozak B. Diet-induced obesity in stem cell antigen-1 KO mice. Stem Cells Dev 2011; 21:249-59. [PMID: 21510817 DOI: 10.1089/scd.2010.0507] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Stem Cell Antigen-1 (Sca-1) is a member of the lymphocyte-activated protein 6 family and has served as a marker for the identification of stem cells in various tissues, including fat depots. In vitro and in vivo studies suggest the possible involvement of Sca-1 in adipogenic differentiation and link Sca-1 antigenicity with adipocyte progenitors. Previously, we showed that Sca-1-enriched populations of ear mesenchymal stem cells possess enhanced capacity to differentiate into adipocytes. Additionally, we determined the natural frequency and localization of Sca-1-positive progenitor/stem cells in brown and white fat in situ. The present study addressed the question whether Sca-1 deficiency alters the white adipose tissue response to a high-saturated-fat diet. Our results show that Sca-1 null mice (Sca-1(-/-)) fed high-fat diet developed obesity equally well as wild-type mice, suggesting either an indirect in vivo effect of Sca-1 or a compensatory response to Sca-1 deficiency. However, contrary to wild-type mice, high fat diet-fed Sca-1(-/-) mice showed no alterations in serum adipocytokines. The data lead to the conclusion that Sca-1 is either redundant or a nonessential marker of adipose progenitor/stem cells. Nevertheless, since Sca-1-deficient mice displayed elevated blood glucose at fasting and exhibited glucose intolerance and insulin resistance, Sca-1 has subtle effects on adipose function. Thus, the Sca-1-deficient mice may provide a useful model for metabolic studies.
Collapse
Affiliation(s)
- Jaroslaw Staszkiewicz
- Regenerative Biology Laboratory, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana 70808, USA
| | | | | | | |
Collapse
|
21
|
Magalhaes JKRS, Grynpas MD, Willett TL, Glogauer M. Deleting Rac1 improves vertebral bone quality and resistance to fracture in a murine ovariectomy model. Osteoporos Int 2011; 22:1481-92. [PMID: 20683708 DOI: 10.1007/s00198-010-1355-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Accepted: 07/06/2010] [Indexed: 12/19/2022]
Abstract
SUMMARY The roles of Rac1 and Rac2 in regulating osteoclast-mediated bone quality in postmenopausal osteoporosis were evaluated using an ovariectomized murine model. Animals' bone composition and architecture were evaluated. Our results demonstrate that the deletion of Rac1 increases vertebral bone quality compared to wild-type bones in an ovariectomized model. INTRODUCTION To determine the roles of the Rho family small GTPases Rac1 and Rac2 in regulating osteoclast-mediated bone quality in a model of postmenopausal osteoporosis. METHODS Twelve-month-old female mice from three genotypes-wild type (WT), Rac1 null (LysM.Rac1 KO), and Rac2 null (Rac2KO)--were studied in control and ovariectomized groups (mice previously ovariectomized at 4 months of age). Animals were sacrificed at 12 months of age, and the femora and vertebrae were harvested for mechanical testing, bone densitometry, micro-computed tomography, and histomorphometric analyses to evaluate bone mineralization and architecture. The results were compared between groups using ANOVA and LSD post-hoc tests. RESULTS We observed that LysM.Rac1 KO mice showed higher vertebral bone mineral density compared to WT in both control and ovariectomized groups. Consistent with this finding, LysM.Rac1 KO vertebrae showed increased resistance to fracture and increased trabecular connectivity compared to WT in both groups. Micro-CT analysis revealed that Rac2KO ovariectomized vertebrae have more trabecular bone compared to WT and LysM.Rac1 KO, but this did not translate into increased fracture resistance. CONCLUSION Our results demonstrate that the deletion of Rac1 increases vertebral bone quality compared to WT bones in a postmenopausal osteoporosis model.
Collapse
Affiliation(s)
- J K R S Magalhaes
- CIHR Group in Matrix Dynamics, Faculty of Dentistry, University of Toronto, Fitzgerald Building-150 College Street, Room 221, Toronto, ON, Canada M5S 3E2
| | | | | | | |
Collapse
|
22
|
Nishikawa K, Nakashima T, Takeda S, Isogai M, Hamada M, Kimura A, Kodama T, Yamaguchi A, Owen MJ, Takahashi S, Takayanagi H. Maf promotes osteoblast differentiation in mice by mediating the age-related switch in mesenchymal cell differentiation. J Clin Invest 2010; 120:3455-65. [PMID: 20877012 DOI: 10.1172/jci42528] [Citation(s) in RCA: 140] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Accepted: 07/14/2010] [Indexed: 12/13/2022] Open
Abstract
Aging leads to the disruption of the homeostatic balance of multiple biological systems. In bone marrow multipotent mesenchymal cells undergo differentiation into various anchorage-dependent cell types, including osteoblasts and adipocytes. With age as well as with treatment of antidiabetic drugs such as thiazolidinediones, mesenchymal cells favor differentiation into adipocytes, resulting in an increased number of adipocytes and a decreased number of osteoblasts, causing osteoporosis. The mechanism behind this differentiation switch is unknown. Here we show an age-related decrease in the expression of Maf in mouse mesenchymal cells, which regulated mesenchymal cell bifurcation into osteoblasts and adipocytes by cooperating with the osteogenic transcription factor Runx2 and inhibiting the expression of the adipogenic transcription factor Pparg. The crucial role of Maf in both osteogenesis and adipogenesis was underscored by in vivo observations of delayed bone formation in perinatal Maf(-/-) mice and an accelerated formation of fatty marrow associated with bone loss in aged Maf(+/-) mice. This study identifies a transcriptional mechanism for an age-related switch in cell fate determination and may provide a molecular basis for novel therapeutic strategies against age-related bone diseases.
Collapse
Affiliation(s)
- Keizo Nishikawa
- Department of Cell Signaling, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Wu C, Amini-Nik S, Nik-Amini S, Nadesan P, Stanford WL, Alman BA. Aggressive fibromatosis (desmoid tumor) is derived from mesenchymal progenitor cells. Cancer Res 2010; 70:7690-8. [PMID: 20841474 DOI: 10.1158/0008-5472.can-10-1656] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The cellular origins from which most tumors arise are poorly defined, especially in mesenchymal neoplasms. Aggressive fibromatosis, also known as desmoid tumor, is a locally invasive soft tissue tumor that has mesenchymal characteristics. We found that aggressive fibromatosis tumors express genes and cell surface markers characteristic of mesenchymal stem cells (MSC). In mice that are genetically predisposed to develop aggressive fibromatosis tumors (Apc(wt/1638N)), we found that the number of tumors formed was proportional to the number of MSCs present. Sca-1(-/-) mice, which develop fewer MSCs, were crossed with Apc(wt/1638N) mice. Doubly mutant mice deficient in Sca-1 developed substantially fewer aggressive fibromatosis tumors than wild-type (WT) littermates, but Sca-1 deficiency had no effect on the formation of epithelial-derived intestinal polyps. MSCs isolated from Apc(wt/1638N) mice (or mice expressing a stabilized form of β-catenin) induced aberrant cellular growth reminiscent of aggressive fibromatosis tumors after engraftment to immunocompromised mice, but WT cells and mature fibroblasts from the same animals did not. Taken together, our findings indicate that aggressive fibromatosis is derived from MSCs, and that β-catenin supports tumorigenesis by maintaining mesenchymal progenitor cells in a less differentiated state. Protecting this progenitor cell population might prevent tumor formation in patients harboring a germline APC mutation, where fibromatosis is currently the leading cause of mortality.
Collapse
Affiliation(s)
- Colleen Wu
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
24
|
Xu XH, Dong SS, Guo Y, Yang TL, Lei SF, Papasian CJ, Zhao M, Deng HW. Molecular genetic studies of gene identification for osteoporosis: the 2009 update. Endocr Rev 2010; 31:447-505. [PMID: 20357209 PMCID: PMC3365849 DOI: 10.1210/er.2009-0032] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2009] [Accepted: 02/02/2010] [Indexed: 12/12/2022]
Abstract
Osteoporosis is a complex human disease that results in increased susceptibility to fragility fractures. It can be phenotypically characterized using several traits, including bone mineral density, bone size, bone strength, and bone turnover markers. The identification of gene variants that contribute to osteoporosis phenotypes, or responses to therapy, can eventually help individualize the prognosis, treatment, and prevention of fractures and their adverse outcomes. Our previously published reviews have comprehensively summarized the progress of molecular genetic studies of gene identification for osteoporosis and have covered the data available to the end of September 2007. This review represents our continuing efforts to summarize the important and representative findings published between October 2007 and November 2009. The topics covered include genetic association and linkage studies in humans, transgenic and knockout mouse models, as well as gene-expression microarray and proteomics studies. Major results are tabulated for comparison and ease of reference. Comments are made on the notable findings and representative studies for their potential influence and implications on our present understanding of the genetics of osteoporosis.
Collapse
Affiliation(s)
- Xiang-Hong Xu
- Institute of Molecular Genetics, Xi'an Jiaotong University, Shaanxi, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Masuda T, Kawai T, Anada T, Kamakura S, Suzuki O. Quality of Regenerated Bone Enhanced by Implantation of Octacalcium Phosphate–Collagen Composite. Tissue Eng Part C Methods 2010; 16:471-8. [DOI: 10.1089/ten.tec.2009.0212] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Affiliation(s)
- Taisuke Masuda
- Division of Craniofacial Function Engineering (CFE), Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Tadashi Kawai
- Division of Craniofacial Function Engineering (CFE), Tohoku University Graduate School of Dentistry, Sendai, Japan
- Division of Oral Surgery, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Takahisa Anada
- Division of Craniofacial Function Engineering (CFE), Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Shinji Kamakura
- Bone Regenerative Engineering Laboratory, Tohoku University Graduate School of Biomedical Engineering, Sendai, Japan
| | - Osamu Suzuki
- Division of Craniofacial Function Engineering (CFE), Tohoku University Graduate School of Dentistry, Sendai, Japan
| |
Collapse
|
26
|
Abstract
Tissue-resident stem cells or primitive progenitors play an integral role in homeostasis of most organ systems. Recent developments in methodologies to isolate and culture embryonic and somatic stem cells have many new applications poised for clinical and preclinical trials, which will enable the potential of regenerative medicine to be realized. Here, we overview the current progress in therapeutic applications of various stem cells and discuss technical and social hurdles that must be overcome for their potential to be realized.
Collapse
Affiliation(s)
- Ali M Riazi
- Department of Chemical Engineering, University of Toronto, Toronto, Ontario, Canada
| | | | | |
Collapse
|
27
|
Choi SC, Kim SJ, Choi JH, Park CY, Shim WJ, Lim DS. Fibroblast growth factor-2 and -4 promote the proliferation of bone marrow mesenchymal stem cells by the activation of the PI3K-Akt and ERK1/2 signaling pathways. Stem Cells Dev 2008; 17:725-36. [PMID: 18788932 DOI: 10.1089/scd.2007.0230] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Bone marrow mesenchymal stem cells (BMMSCs) have the capacity for self-renewal, and differentiation into a variety of cell types. They thus represent an attractive source of material for cell therapy. However, little is known about the mechanisms underlying the proliferation of BMMSCs. The purpose of this study was to identify the factors and signaling pathways involved in the proliferation of stem cell antigen-1(+) (Sca-1(+)) BMMSCs. Among the cytokines and growth factors examined in this study, fibroblast growth factor-2 (FGF-2) and FGF-4 significantly stimulated the proliferation of Sca-1(+) BMMSCs, as determined by bromodeoxyuridine incorporation. PI3K-Akt, ERK1/2, and JAK/STAT3 pathways were investigated after stimulation with FGF-2 or FGF-4 via Western blot analysis. No changes were observed in the total ERK1/2 and Akt; however, the pERK1/2 and pAkt levels were upregulated early within 15 min in the FGF-2- or FGF-4-treated Sca-1(+) BMMSCs. Moreover, the pERK1/2 and pAkt upregulation induced by FGF-2 and -4 were completely abolished by treatment with the MEK1/2 inhibitor, U0126 and the PI3K inhibitor, LY294002. However, no change in pJAK2 or total JAK2 levels was observed in the Sca-1(+) BMMSCs induced by FGF-2 or FGF-4. As a consequence of PI3K-Akt and ERK1/2, the upregulation of c-Jun in the Sca-1(+) BMMSCs, after stimulation with FGF-2 or FGF-4, was observed after 12 and 24 h. Moreover, the activation of c-Jun in FGF-2- and FGF-4-treated Sca-1(+) BMMSCs was significantly reduced by U0126. Taken together, these data suggest that FGF-2 and -4 promote the proliferation of Sca-1(+) BMMSCs by activation of the ERK1/2 and PI3K-Akt signaling pathways.
Collapse
Affiliation(s)
- Seung-Cheol Choi
- Department of Cardiology, College of Medicine, Korea University, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
28
|
Staszkiewicz J, Gimble J, Manuel JA, Gawronska-Kozak B. IFATS collection: Stem cell antigen-1-positive ear mesenchymal stem cells display enhanced adipogenic potential. Stem Cells 2008; 26:2666-73. [PMID: 18599810 PMCID: PMC2761741 DOI: 10.1634/stemcells.2008-0270] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Hyperplasia is a major contributor to the increase in adipose tissue mass that is characteristic of obesity. However, the identity and characteristics of cells that can be committed into adipocyte lineage remain unclear. Stem cell antigen 1 (Sca-1) has been used recently as a candidate marker in the search for tissue-resident stem cells. In our quest for biomarkers of cells that can become adipocytes, we analyzed ear mesenchymal stem cells (EMSC), which can differentiate into adipocytes, osteocytes, chondrocytes, and myocytes. Our previous studies have demonstrated that EMSC abundantly expressed Sca-1. In the present study, we have analyzed the expression of adipogenic transcription factors and adipocyte-specific genes in Sca-1-enriched and Sca-1-depleted EMSC fractions. Sca-1-enriched EMSC accumulated more lipid droplets during adipogenic differentiation than Sca-1-depleted. Similarly, EMSC isolated from Sca-1(-/-) mice displayed reduced lipid accumulation relative to EMSC from wild-type controls (p < .01). Comparative analysis of the adipogenic differentiation process between Sca-1-enriched and Sca-1-depleted populations of EMSC revealed substantial differences in the gene expression. Preadipocyte factor 1, CCAAT enhancer-binding protein (C/EBP) beta, C/EBPalpha, peroxisome proliferator-activated receptor gamma2, lipoprotein lipase, and adipocyte fatty acid binding protein were expressed at significantly higher levels in the Sca-1-enriched EMSC fraction. However, the most striking observation was that leptin was detected only in the conditioned medium of Sca-1-enriched EMSC. In addition, we performed loss-of-function (Sca-1 morpholino oligonucleotide) experiments. The data presented here suggest that Sca-1 is a biomarker for EMSC with the potential to become functionally active adipocytes. Disclosure of potential conflicts of interest is found at the end of this article.
Collapse
Affiliation(s)
- Jaroslaw Staszkiewicz
- Regenerative Biology Laboratory, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana, USA
- Department of Animal Physiology, Warmia & Mazury University in Olsztyn, Olsztyn, Poland
| | - Jeffrey Gimble
- Stem Cell Biology, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana, USA
| | - Jessica A. Manuel
- Regenerative Biology Laboratory, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana, USA
| | - Barbara Gawronska-Kozak
- Regenerative Biology Laboratory, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana, USA
| |
Collapse
|
29
|
Abstract
Age-dependent bone loss has been well documented in both human and animal models. Although the underlying causal mechanisms are probably multifactorial, it has been hypothesized that alterations in progenitor cell number or function are important. Little is known regarding the properties of bone marrow stromal cells (BMSCs) or bone progenitor cells during the aging process, so the question of whether aging alters BMSC/progenitor osteogenic differentiation remains unanswered. In this study, we examined age-dependent changes in bone marrow progenitor cell number and differentiation potential between mature (3 and 6 mo old), middle-aged (12 and 18 mo old), and aged (24 mo old) C57BL/6 mice. BMSCs or progenitors were isolated from five age groups of C57BL/6 mice using negative immunodepletion and positive immunoselection approaches. The osteogenic differentiation potential of multipotent BMSCs was determined using standard osteogenic differentiation procedures. Our results show that both BMSC/progenitor number and differentiation potential increase between the ages of 3 and 18 mo and decrease rapidly thereafter with advancing age. These results are consistent with the changes of the mRNA levels of osteoblast lineage-associated genes. Our data suggest that the decline in BMSC number and osteogenic differentiation capacity are important factors contributing to age-related bone loss.
Collapse
|