1
|
Yamamoto de Almeida L, Dietrich C, Duverger O, Lee JS. Acute hyperlipidemia has transient effects on large-scale bone regeneration in male mice. Sci Rep 2024; 14:25610. [PMID: 39463386 PMCID: PMC11514207 DOI: 10.1038/s41598-024-76992-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 10/18/2024] [Indexed: 10/29/2024] Open
Abstract
Excessive dietary fat intake increases plasma lipid levels and has been associated with reduced bone mineral density (BMD) and increased risk of osteoporotic fracture, especially in older postmenopausal women. The objective of this study was to investigate whether there are sex-related differences in lipid metabolism that could have an impact on large-scale bone regeneration. Because ribs provide a unique exception as the only bones capable of completely regenerating large-scale defects, we used a rib resection mouse model in which human features are recapitulated. After 10 days of exposure to a low-fat diet or high-fat diet (HFD), we performed large-scale rib resection surgeries on male and female mice (6-7 weeks old) with deletion of the low-density lipoprotein (LDL) receptor (Ldlr-/-) and age- and sex-matched wild-type (WT) mice were used as controls. Plasma analysis showed that short-term exposure to HFD significantly increases total cholesterol, LDL cholesterol, and triglycerides levels in Ldlr-/- mice but not in WT, with no differences between males and females. However, under HFD, callus bone volume was significantly reduced exclusively in male Ldlr-/- mice when compared to WT, although these differences were no longer apparent by 21 days after resection. Regardless of diet or genotype, BMD of regenerated ribs did not differ significantly between groups, although male mice typically had lower average BMD values. Together, these results suggest that short-term hyperlipidemia has transient effects on large-scale bone regeneration exclusively in male mice.
Collapse
Affiliation(s)
- Luciana Yamamoto de Almeida
- Craniofacial Anomalies and Regeneration Section, National Institute of Dental and Craniofacial Research (NIDCR), National Institutes of Health (NIH), Bethesda, MD, 20892, USA.
| | - Catharine Dietrich
- Craniofacial Anomalies and Regeneration Section, National Institute of Dental and Craniofacial Research (NIDCR), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Olivier Duverger
- Craniofacial Anomalies and Regeneration Section, National Institute of Dental and Craniofacial Research (NIDCR), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Janice S Lee
- Craniofacial Anomalies and Regeneration Section, National Institute of Dental and Craniofacial Research (NIDCR), National Institutes of Health (NIH), Bethesda, MD, 20892, USA.
| |
Collapse
|
2
|
Shil RK, Mohammed NBB, Dimitroff CJ. Galectin-9 - ligand axis: an emerging therapeutic target for multiple myeloma. Front Immunol 2024; 15:1469794. [PMID: 39386209 PMCID: PMC11461229 DOI: 10.3389/fimmu.2024.1469794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/09/2024] [Indexed: 10/12/2024] Open
Abstract
Galectin-9 (Gal-9) is a tandem-repeat galectin with diverse roles in immune homeostasis, inflammation, malignancy, and autoimmune diseases. In cancer, Gal-9 displays variable expression patterns across different tumor types. Its interactions with multiple binding partners, both intracellularly and extracellularly, influence key cellular processes, including immune cell modulation and tumor microenvironment dynamics. Notably, Gal-9 binding to cell-specific glycoconjugate ligands has been implicated in both promoting and suppressing tumor progression. Here, we provide insights into Gal-9 and its involvement in immune homeostasis and cancer biology with an emphasis on multiple myeloma (MM) pathophysiology, highlighting its complex and context-dependent dual functions as a pro- and anti-tumorigenic molecule and its potential implications for therapy in MM patients.
Collapse
Affiliation(s)
- Rajib K. Shil
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| | - Norhan B. B. Mohammed
- The Ronald O. Perelman Department of Dermatology, NYU Grossman School of Medicine, New York, NY, United States
- Department of Medical Biochemistry, Faculty of Medicine, South Valley University, Qena, Egypt
| | - Charles J. Dimitroff
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| |
Collapse
|
3
|
Guo J, Ai X, Jia B, Zhong X, Liu L, Hu Q, Xie J, Hong X, Chen Y, Liu D. Galectin-9 as an indicator of functional limitations and radiographic joint damage in patients with rheumatoid arthritis. Front Immunol 2024; 15:1419676. [PMID: 38957462 PMCID: PMC11217821 DOI: 10.3389/fimmu.2024.1419676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 05/28/2024] [Indexed: 07/04/2024] Open
Abstract
Background Previous studies have revealed that Galectin-9 (Gal-9) acts as an apoptosis modulator in autoimmunity and rheumatic inflammation. In the present study, we investigated the potential role of Gal-9 as a biomarker in patients with rheumatoid arthritis (RA), especially as an indicator of functional limitations and radiographic joint damage. Methods A total of 146 patients with RA and 52 age- and sex-matched healthy controls were included in this study. Clinical data including disease activity, physical function, and radiographic joint damage were assessed. Functional limitation was defined as the Stanford Health Assessment Questionnaire (HAQ) disability index >1. Subjects with joint erosion >0 or joint space narrowing >0 were considered to have radiographic joint damage. Serum Gal-9 levels were detected by an enzyme-linked immunosorbent assay. Univariate and multivariate logistic regression analysis were used to evaluate the association between Gal-9 and high disease activity and functional limitations, and a prediction model was established to construct predictive nomograms. Results Serum levels of Gal-9 were significantly increased in patients with RA compared to those in healthy controls (median 13.1 ng/mL vs. 7.6 ng/mL). Patients with RA who were older (>65 years), had a longer disease duration (>5 years), longer morning stiffness (>60mins), elevated serum erythrocyte sedimentation rate and C-reactive protein, and difficult-to-treat RA had significantly higher Gal-9 levels than those in the corresponding control subgroups (all p <0.05). Patients with RA were divided into two subgroups according to the cut-off value of Gal-9 of 11.6 ng/mL. Patients with RA with Gal-9 >11.6 ng/mL had a significantly higher core clinical disease activity index, HAQ scores, Sharp/van der Heijde modified Sharp scores, as well as a higher percentage of advanced joint damage (all p<0.05) than patients with Gal-9 ≤11.6 ng/mL. Accordingly, patients with RA presenting either functional limitations or radiographic joint damage had significantly higher serum Gal-9 levels than those without (both p <0.05). Furthermore, multivariate logistic regression analysis showed that a serum level of Gal-9 >11.6 ng/mL was an independent risk factor for high disease activity (OR=3.138, 95% CI 1.150-8.567, p=0.026) and presence of functional limitations (OR=2.455, 95% CI 1.017-5.926, p=0.046), respectively. Conclusion Gal-9 could be considered as a potential indicator in patients with RA, especially with respect to functional limitations and joint damage.
Collapse
Affiliation(s)
- Jiewen Guo
- The Second Clinical Medical College, Jinan University, Shenzhen, Guangdong, China
- Department of Rheumatology and Immunology, Shenzhen People’s Hospital, The Second Clinical Medical College, Jinan University, Shenzhen, Guangdong, China
- Department of Rheumatology and Immunology, Shenzhen People’s Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Xiaoyuan Ai
- The Second Clinical Medical College, Jinan University, Shenzhen, Guangdong, China
- Department of Rheumatology and Immunology, Shenzhen People’s Hospital, The Second Clinical Medical College, Jinan University, Shenzhen, Guangdong, China
- Department of Rheumatology and Immunology, Shenzhen People’s Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Baixue Jia
- The Second Clinical Medical College, Jinan University, Shenzhen, Guangdong, China
- Department of Rheumatology and Immunology, Shenzhen People’s Hospital, The Second Clinical Medical College, Jinan University, Shenzhen, Guangdong, China
- Department of Rheumatology and Immunology, Shenzhen People’s Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Xiaoling Zhong
- Department of Radiology, Shenzhen People’s Hospital, The Second Clinical Medical College, Jinan University, Shenzhen, Guangdong, China
- Department of Radiology, Shenzhen People’s Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Lixiong Liu
- Department of Rheumatology and Immunology, Shenzhen People’s Hospital, The Second Clinical Medical College, Jinan University, Shenzhen, Guangdong, China
- Department of Rheumatology and Immunology, Shenzhen People’s Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Qiu Hu
- Department of Rheumatology and Immunology, Shenzhen People’s Hospital, The Second Clinical Medical College, Jinan University, Shenzhen, Guangdong, China
- Department of Rheumatology and Immunology, Shenzhen People’s Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Jingyi Xie
- Department of Rheumatology and Immunology, Shenzhen People’s Hospital, The Second Clinical Medical College, Jinan University, Shenzhen, Guangdong, China
- Department of Rheumatology and Immunology, Shenzhen People’s Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Xiaoping Hong
- Department of Rheumatology and Immunology, Shenzhen People’s Hospital, The Second Clinical Medical College, Jinan University, Shenzhen, Guangdong, China
- Department of Rheumatology and Immunology, Shenzhen People’s Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Yulan Chen
- Department of Rheumatology and Immunology, Shenzhen People’s Hospital, The Second Clinical Medical College, Jinan University, Shenzhen, Guangdong, China
- Department of Rheumatology and Immunology, Shenzhen People’s Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Dongzhou Liu
- Department of Rheumatology and Immunology, Shenzhen People’s Hospital, The Second Clinical Medical College, Jinan University, Shenzhen, Guangdong, China
- Department of Rheumatology and Immunology, Shenzhen People’s Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, China
| |
Collapse
|
4
|
Kato H, Nagao M, Furukawa K, Mishima Y, Ichikawa S, Sato T, Miyazawa K, Hamamura K. Globo-series Gb4 activates ERK and promotes the proliferation of osteoblasts. J Oral Biosci 2024; 66:41-48. [PMID: 37939880 DOI: 10.1016/j.job.2023.10.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 10/30/2023] [Accepted: 10/30/2023] [Indexed: 11/10/2023]
Abstract
OBJECTIVES Globo-series Gb4 (globoside) is involved in the immune system and disease pathogenesis. We recently reported that systemic Gb4 deficiency in mice led to decreased bone formation due to a reduction in osteoblast number. However, it remains unclear whether Gb4 expressed in osteoblasts promotes their proliferation. Therefore, we investigated the role of Gb4 in osteoblast proliferation in vitro. METHODS We examined osteoblast proliferation in Gb3 synthase knockout mice lacking Gb4. We investigated the effects of Gb4 synthase knockdown in the mouse osteoblast cell line MC3T3-E1 on its proliferation. Furthermore, we administered Gb4 to MC3T3-E1 cells in which Gb4 was suppressed by a glucosylceramide synthase (GCS) inhibitor and evaluated its effects on their proliferation. To elucidate the mechanisms by which Gb4 promotes osteoblast proliferation, the phosphorylated extracellular signal-regulated kinases 1 and 2 (ERK1/2) levels were measured in MC3T3-E1 cells. RESULTS Osteoblast proliferation was lower in Gb3 synthase knockout mice lacking Gb4 than in wild-type mice. Proliferation was inhibited by Gb4 synthase knockdown in MC3T3-E1 cells. Furthermore, the administration of Gb4 to MC3T3-E1 cells, in which a GCS inhibitor suppressed Gb4, promoted their proliferation. Moreover, it increased the phosphorylated ERK1/2 levels in MC3T3-E1 cells. CONCLUSIONS Our results suggest that Gb4 expressed in osteoblasts promotes their proliferation through ERK1/2 activation.
Collapse
Affiliation(s)
- Hanami Kato
- Department of Pharmacology, School of Dentistry, Aichi Gakuin University, Nagoya, Japan; Department of Orthodontics, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| | - Mayu Nagao
- Department of Pharmacology, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| | - Koichi Furukawa
- Department of Biomedical Sciences, Chubu University College of Life and Health Sciences, Kasugai, Aichi, Japan
| | - Yoshitaka Mishima
- Department of Pharmacology, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| | - Shota Ichikawa
- Department of Pharmacology, School of Dentistry, Aichi Gakuin University, Nagoya, Japan; Department of Orthodontics, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| | - Takuma Sato
- Department of Orthodontics, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| | - Ken Miyazawa
- Department of Orthodontics, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| | - Kazunori Hamamura
- Department of Pharmacology, School of Dentistry, Aichi Gakuin University, Nagoya, Japan.
| |
Collapse
|
5
|
Ren Y, Bäcker H, Müller M, Kienzle A. The role of myeloid derived suppressor cells in musculoskeletal disorders. Front Immunol 2023; 14:1139683. [PMID: 36936946 PMCID: PMC10020351 DOI: 10.3389/fimmu.2023.1139683] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 02/21/2023] [Indexed: 03/06/2023] Open
Abstract
The immune system is closely linked to bone homeostasis and plays a pivotal role in several pathological and inflammatory conditions. Through various pathways it modulates various bone cells and subsequently sustains the physiological bone metabolism. Myeloid-derived suppressor cells (MDSCs) are a group of heterogeneous immature myeloid-derived cells that can exert an immunosuppressive function through a direct cell-to-cell contact, secretion of anti-inflammatory cytokines or specific exosomes. These cells mediate the innate immune response to chronic stress on the skeletal system. In chronic inflammation, MDSCs act as an inner offset to rebalance overactivation of the immune system. Moreover, they have been found to be involved in processes responsible for bone remodeling in different musculoskeletal disorders, autoimmune diseases, infection, and cancer. These cells can not only cause bone erosion by differentiating into osteoclasts, but also alleviate the immune reaction, subsequently leading to long-lastingly impacted bone remodeling. In this review, we discuss the impact of MDSCs on the bone metabolism under several pathological conditions, the involved modulatory pathways as well as potential therapeutic targets in MDSCs to improve bone health.
Collapse
Affiliation(s)
- Yi Ren
- Center for Musculoskeletal Surgery, Clinic for Orthopedics, Charité University Hospital, Berlin, Germany
| | - Henrik Bäcker
- Department of Orthopedics, Auckland City Hospital, Auckland, New Zealand
| | - Michael Müller
- Center for Musculoskeletal Surgery, Clinic for Orthopedics, Charité University Hospital, Berlin, Germany
| | - Arne Kienzle
- Center for Musculoskeletal Surgery, Clinic for Orthopedics, Charité University Hospital, Berlin, Germany
- BIH Charité Clinician Scientist Program, BIH Biomedical Innovation Academy, Berlin Institute of Health, Charité — Universitätsmedizin Berlin, Berlin, Germany
- *Correspondence: Arne Kienzle,
| |
Collapse
|
6
|
Jeethy Ram T, Lekshmi A, Somanathan T, Sujathan K. Galectin-3: A factotum in carcinogenesis bestowing an archery for prevention. Tumour Biol 2021; 43:77-96. [PMID: 33998569 DOI: 10.3233/tub-200051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Cancer metastasis and therapy resistance are the foremost hurdles in oncology at the moment. This review aims to pinpoint the functional aspects of a unique multifaceted glycosylated molecule in both intracellular and extracellular compartments of a cell namely galectin-3 along with its metastatic potential in different types of cancer. All materials reviewed here were collected through the search engines PubMed, Scopus, and Google scholar. Among the 15 galectins identified, the chimeric gal-3 plays an indispensable role in the differentiation, transformation, and multi-step process of tumor metastasis. It has been implicated in the molecular mechanisms that allow the cancer cells to survive in the intravascular milieu and promote tumor cell extravasation, ultimately leading to metastasis. Gal-3 has also been found to have a pivotal role in immune surveillance and pro-angiogenesis and several studies have pointed out the importance of gal-3 in establishing a resistant phenotype, particularly through the epithelial-mesenchymal transition process. Additionally, some recent findings suggest the use of gal-3 inhibitors in overcoming therapeutic resistance. All these reports suggest that the deregulation of these specific lectins at the cellular level could inhibit cancer progression and metastasis. A more systematic study of glycosylation in clinical samples along with the development of selective gal-3 antagonists inhibiting the activity of these molecules at the cellular level offers an innovative strategy for primary cancer prevention.
Collapse
Affiliation(s)
- T Jeethy Ram
- Division of Cancer Research, Regional Cancer Centre, Medical College, Trivandrum, Kerala, India
| | - Asha Lekshmi
- Division of Cancer Research, Regional Cancer Centre, Medical College, Trivandrum, Kerala, India
| | - Thara Somanathan
- Division of Pathology, Regional Cancer Centre, Medical College, Trivandrum, Kerala, India
| | - K Sujathan
- Regional Cancer Centre, Thiruvananthapuram, Kerala, India
| |
Collapse
|
7
|
Moar P, Tandon R. Galectin-9 as a biomarker of disease severity. Cell Immunol 2021; 361:104287. [PMID: 33494007 DOI: 10.1016/j.cellimm.2021.104287] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/26/2020] [Accepted: 01/09/2021] [Indexed: 12/16/2022]
Abstract
Galectin-9 (Gal-9) is a β-galactoside binding lectin known for its immunomodulatory role in various microbial infections. Gal-9 is expressed in all organ systems and localized in the nucleus, cell surface, cytoplasm and the extracellular matrix. It mediates host-pathogen interactions and regulates cell signalling via binding to its receptors. Gal-9 is involved in many physiological functions such as cell growth, differentiation, adhesion, communication and death. However, recent studies have emphasized on the elevated levels of Gal-9 in autoimmune disorders, viral infections, parasitic invasion, cancer, acute liver failure, atopic dermatitis, chronic kidney disease, type-2 diabetes, coronary artery disease, atherosclerosis and benign infertility-related gynecological disorders. In this paper we have reviewed the potential of Gal-9 as a reliable, sensitive and non-invasive biomarker of disease severity. Tracking changes in Gal-9 levels and its implementation as a biomarker in clinical practice will be an important tool to monitor disease activity and facilitate personalized treatment decisions.
Collapse
Affiliation(s)
- Preeti Moar
- Laboratory of AIDS Research and Immunology, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India.
| | - Ravi Tandon
- Laboratory of AIDS Research and Immunology, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India.
| |
Collapse
|
8
|
Yin J, Li L, Wang C, Zhang Y. Increased Galectin-9 expression, a prognostic biomarker of aGVHD, regulates the immune response through the Galectin-9 induced MDSC pathway after allogeneic hematopoietic stem cell transplantation. Int Immunopharmacol 2020; 88:106929. [PMID: 32889240 DOI: 10.1016/j.intimp.2020.106929] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 08/17/2020] [Accepted: 08/19/2020] [Indexed: 02/06/2023]
Abstract
Galectin-9 (Gal-9) is a β-galactoside-binding soluble lectin family member that exerts its primary biological functions via specific glycoconjugate interactions. Gal-9 expression is closely related to tumor occurrence, development, metastasis and prognosis. In transplant immunology, a high level of Gal-9 expression has been shown to markedly reduce the severity of acute graft rejection and effectively prolong survival time in organ and bone marrow transplantation (BMT) models. The main mechanism of Gal-9-mediated immunoregulation involves the Tim-3/Gal-9 axis in T cells. However, myeloid-derived suppressor cell (MDSC) accumulation in transgenic mice with persistently high Gal-9 expression was observed in a model of lung inflammation, indicating that a potential immunosuppressive mechanism distinct from the Gal-9/Tim-3 axis might exist. In the present study, increased Gal-9 expression and MDSC frequencies before acute graft-versus-host disease (aGVHD) onset were observed in patients who developed aGVHD. Patients with higher Gal-9 expression (≥14.8417 ng/ml) exhibited reduced overall survival and increased cumulative incidences of GVHD at +100 day. We considered the elevated Gal-9 expression before aGVHD onset a secondary inflammatory response. This increase might be part of a negative feedback pathway corresponding to aGVHD pathogenesis. Additionally, a high Gal-9 concentration induced MDSC proliferation in vivo and in vitro. Gal-9-induced MDSCs (G9-MDSCs) suppressed T cell proliferation and activation. An infusion of G9-MDSCs into a graft contributed to the successful control of severe aGVHD and long-term survival in an allogeneic (allo)-BMT mouse model. Thus, we speculated that increased Gal-9 expression after allo-hematopoietic stem cell transplantation is a potential prognostic biomarker of aGVHD. The Gal-9-associated immunosuppressive effects on aGVHD development might occurr through G9-MDSCs and were independent of the Gal-9/Tim-3 axis.
Collapse
Affiliation(s)
- Jin Yin
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jie-Fang Avenue, Wuhan 430030, China
| | - Lin Li
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jie-Fang Avenue, Wuhan 430030, China
| | - Chunyan Wang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jie-Fang Avenue, Wuhan 430030, China
| | - Yicheng Zhang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jie-Fang Avenue, Wuhan 430030, China.
| |
Collapse
|
9
|
Robinson BS, Saeedi B, Arthur CM, Owens J, Naudin C, Ahmed N, Luo L, Jones R, Neish A, Stowell SR. Galectin-9 Is a Novel Regulator of Epithelial Restitution. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:1657-1666. [PMID: 32380082 DOI: 10.1016/j.ajpath.2020.04.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 03/23/2020] [Accepted: 04/08/2020] [Indexed: 12/19/2022]
Abstract
Increasingly, the ß-galactoside binding lectins, termed galectins, are being recognized as critical regulators of cell function and organismal homeostasis. Within the context of the mucosal surface, galectins are established regulators of innate and adaptive immune responses, microbial populations, and several critical epithelial functions, including cell migration, proliferation, and response to injury. However, given their complex tissue distribution and expression patterns, their role within specific processes remains poorly understood. We took a genetic approach to understand the role of endogenous galectin-9 (Gal-9), a mucosal galectin that has been linked to inflammatory bowel disease, within the context of the murine intestine. Gal-9-deficient (Gal9-/-, also known as Lgals9-/-) animals show increased sensitivity to chemically induced colitis and impaired proliferation in the setting of acute injury. Moreover, Gal9-/--derived enteroids showed impaired growth ex vivo. Consistent with a model in which endogenous Gal-9 controls epithelial growth and repair, Gal9-/- animals showed increased sensitivity to intestinal challenge in multiple models of epithelial injury, including acute irradiation injury and ectopic wound biopsies. Finally, regenerating crypts from patient biopsies showed increased expression of Gal-9, indicating these processes may be conserved in humans. Taken together, these studies implicate Gal-9 in the regulation of cellular proliferation and epithelial restitution after intestinal epithelial injury.
Collapse
Affiliation(s)
- Brian S Robinson
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Bejan Saeedi
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Connie M Arthur
- Center for Transfusion and Cellular Therapies, Emory University School of Medicine, Atlanta, Georgia
| | - Josh Owens
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia
| | - Crystal Naudin
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia
| | - Nourine Ahmed
- Center for Transfusion and Cellular Therapies, Emory University School of Medicine, Atlanta, Georgia
| | - Liping Luo
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia
| | - Rheinallt Jones
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia
| | - Andrew Neish
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia.
| | - Sean R Stowell
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia; Center for Transfusion and Cellular Therapies, Emory University School of Medicine, Atlanta, Georgia.
| |
Collapse
|
10
|
Ruvolo PP. Galectins as regulators of cell survival in the leukemia niche. Adv Biol Regul 2018; 71:41-54. [PMID: 30245264 DOI: 10.1016/j.jbior.2018.09.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 09/10/2018] [Accepted: 09/11/2018] [Indexed: 02/08/2023]
Abstract
The microenvironment within the bone marrow (BM) contains support cells that promote leukemia cell survival and suppress host anti-tumor defenses. Galectins are a family of beta-galactoside binding proteins that are critical components in the tumor microenvironment. Galectin 1 (LGALS1) and Galectin 3 (LGALS3) as regulators of RAS signaling intracellularly and as inhibitors of immune cells extracellularly are perhaps the best studied members for their role in leukemia biology. Interest in Galectin 9 (LGALS9) is growing as this galectin has been identified as an immune checkpoint molecule. LGALS9 also supports leukemia stem cells (LSCs) though a mechanism of action is not clear. LGALS1 and LGALS3 each participate in a diverse number of survival pathways that promote drug resistance by supporting pro-tumor molecules such BCL2, MCL-1, and MYC and blocking tumor suppressors like p53. Acute myeloid leukemia (AML) BM mesenchymal stromal cells (MSC) have protein signatures that differ from healthy donor MSC. Elevated LGALS3 protein in AML MSC is associated with refractory disease/relapse demonstrating that MSC derived galectin impacts patient survival. LGALS3 is a critical determining factor whether MSC differentiate into adipocytes or osteoblasts so the galectin influences the cellular composition of the leukemia niche. Both LGALS3 and LGALS1 when secreted can suppress immune function. Both galectins can induce apoptosis of T cells. LGALS3 also modulates T cell receptor endocytosis and impairs interferon mediated chemokine production by binding glycosylated interferon. LGALS3 as a TIM3 binding partner acts to suppress T cell function. Galectins also impact leukemia cell mobilization and may participate in homing mechanisms. LGALS3 participates in transport mechanism of integrins, receptors, and other molecules that control cell adhesion and cell:cell interactions. The diversity of these various functions demonstrate the importance of these galectins in the leukemia niche. This review will cover the role of LGALS1, LGALS3, and LGALS9 in the various processes that are critical for maintaining leukemia cells in the tumor microenvironment.
Collapse
Affiliation(s)
- Peter P Ruvolo
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
11
|
Rapoport EM, Matveeva VK, Vokhmyanina OA, Belyanchikov IM, Gabius HJ, Bovin NV. Localization of Galectins within Glycocalyx. BIOCHEMISTRY (MOSCOW) 2018; 83:727-737. [DOI: 10.1134/s000629791806010x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
12
|
Wang L, Zhao Y, Wang Y, Wu X. The Role of Galectins in Cervical Cancer Biology and Progression. BIOMED RESEARCH INTERNATIONAL 2018; 2018:2175927. [PMID: 29854732 PMCID: PMC5964433 DOI: 10.1155/2018/2175927] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 03/18/2018] [Accepted: 03/27/2018] [Indexed: 02/06/2023]
Abstract
Cervical cancer is one of the malignant tumors with high incidence and high mortality among women in developing countries. The main factors affecting the prognosis of cervical cancer are the late recurrence and metastasis and the effective adjuvant treatment, which is radiation and chemotherapy or combination therapy. Galectins, a family containing many carbohydrate binding proteins, are closely involved in the occurrence and development of tumor. They are involved in tumor cells transformation, angiogenesis, metastasis, immune escape, and sensitivity against radiation and chemotherapy. Therefore, galectins are deemed as the targets of multifunctional cancer treatment. In this review, we mainly focus on the role of galectins, especially galectin-1, galectin-3, galectin-7, and galectin-9 in cervical cancer, and provide theoretical basis for potential targeted treatment of cervical cancer.
Collapse
Affiliation(s)
- Lufang Wang
- Department of Gynecology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yanyan Zhao
- Department of Gynecology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yanshi Wang
- Department of Gynecology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xin Wu
- Department of Gynecology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
13
|
Abstract
Galectins is a family of non-classically secreted, beta-galactoside-binding proteins that has recently received considerable attention in the spatio-temporal regulation of surface 'signal lattice' organization, membrane dynamics, cell-adhesion and disease therapeutics. Galectin-9 is a unique member of this family, with two non-homologous carbohydrate recognition domains joined by a linker peptide sequence of variable lengths, generating isoforms with distinct properties and functions in both physiological and pathological settings, such as during development, immune reaction, neoplastic transformations and metastasis. In this review, we summarize the latest knowledge on the structure, receptors, cellular targets, trafficking pathways and functional properties of galectin-9 and discuss how galectin-9-mediated signalling cascades can be exploited in cancers and immunotherapies.
Collapse
Affiliation(s)
- Sebastian John
- Department of Neurobiology and Genetics, Division of Disease Biology, Rajiv Gandhi Centre for Biotechnology, Poojappura, Thiruvananthapuram 695014, India
| | | |
Collapse
|
14
|
Thiemann S, Man JH, Chang MH, Lee B, Baum LG. Galectin-1 regulates tissue exit of specific dendritic cell populations. J Biol Chem 2015. [PMID: 26216879 PMCID: PMC4566239 DOI: 10.1074/jbc.m115.644799] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
During inflammation, dendritic cells emigrate from inflamed tissue across the lymphatic endothelium into the lymphatic vasculature and travel to regional lymph nodes to initiate immune responses. However, the processes that regulate dendritic cell tissue egress and migration across the lymphatic endothelium are not well defined. The mammalian lectin galectin-1 is highly expressed by vascular endothelial cells in inflamed tissue and has been shown to regulate immune cell tissue entry into inflamed tissue. Here, we show that galectin-1 is also highly expressed by human lymphatic endothelial cells, and deposition of galectin-1 in extracellular matrix selectively regulates migration of specific human dendritic cell subsets. The presence of galectin-1 inhibits migration of immunogenic dendritic cells through the extracellular matrix and across lymphatic endothelial cells, but it has no effect on migration of tolerogenic dendritic cells. The major galectin-1 counter-receptor on both dendritic cell populations is the cell surface mucin CD43; differential core 2 O-glycosylation of CD43 between immunogenic dendritic cells and tolerogenic dendritic cells appears to contribute to the differential effect of galectin-1 on migration. Binding of galectin-1 to immunogenic dendritic cells reduces phosphorylation and activity of the protein-tyrosine kinase Pyk2, an effect that may also contribute to reduced migration of this subset. In a murine lymphedema model, galectin-1(-/-) animals had increased numbers of migratory dendritic cells in draining lymph nodes, specifically dendritic cells with an immunogenic phenotype. These findings define a novel role for galectin-1 in inhibiting tissue emigration of immunogenic, but not tolerogenic, dendritic cells, providing an additional mechanism by which galectin-1 can dampen immune responses.
Collapse
Affiliation(s)
- Sandra Thiemann
- From the Departments of Pathology and Laboratory Medicine and
| | - Jeanette H Man
- From the Departments of Pathology and Laboratory Medicine and
| | - Margaret H Chang
- Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, California 90095 and
| | - Benhur Lee
- From the Departments of Pathology and Laboratory Medicine and Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, California 90095 and the Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Linda G Baum
- From the Departments of Pathology and Laboratory Medicine and
| |
Collapse
|
15
|
Assembly, organization and regulation of cell-surface receptors by lectin–glycan complexes. Biochem J 2015; 469:1-16. [DOI: 10.1042/bj20150461] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Galectins are a family of β-galactoside-binding lectins carrying at least one consensus sequence in the carbohydrate-recognition domain. Properties of glycosylated ligands, such as N- and O-glycan branching, LacNAc (N-acetyl-lactosamine) content and the balance of α2,3- and α2,6-linked sialic acid dramatically influence galectin binding to a preferential set of counter-receptors. The presentation of specific glycans in galectin-binding partners is also critical, as proper orientation and clustering of oligosaccharide ligands on multiple carbohydrate side chains increase the binding avidity of galectins for particular glycosylated receptors. When galectins are released from the cells, they typically concentrate on the cell surface and the local matrix, raising their local concentration. Thus galectins can form their own multimers in the extracellular milieu, which in turn cross-link glycoconjugates on the cell surface generating galectin–glycan complexes that modulate intracellular signalling pathways, thus regulating cellular processes such as apoptosis, proliferation, migration and angiogenesis. Subtle changes in receptor expression, rates of protein synthesis, activities of Golgi enzymes, metabolite concentrations supporting glycan biosynthesis, density of glycans, strength of protein–protein interactions at the plasma membrane and stoichiometry may modify galectin–glycan complexes. Although galectins are key contributors to the formation of these extended glycan complexes leading to promotion of receptor segregation/clustering, and inhibition of receptor internalization by surface retention, when these complexes are disrupted, some galectins, particularly galectin-3 and -4, showed the ability to drive clathrin-independent mechanisms of endocytosis. In the present review, we summarize the data available on the assembly, hierarchical organization and regulation of conspicuous galectin–glycan complexes, and their implications in health and disease.
Collapse
|
16
|
Choi YH, Han Y, Lee SH, Cheong H, Chun KH, Yeo CY, Lee KY. Src enhances osteogenic differentiation through phosphorylation of Osterix. Mol Cell Endocrinol 2015; 407:85-97. [PMID: 25802190 DOI: 10.1016/j.mce.2015.03.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Revised: 03/16/2015] [Accepted: 03/17/2015] [Indexed: 02/06/2023]
Abstract
Osterix, a zinc-finger transcription factor, is required for osteoblast differentiation and new bone formation during embryonic development. The c-Src of tyrosine kinase is involved in a variety of cellular signaling pathways, leading to the induction of DNA synthesis, cell proliferation, and cytoskeletal reorganization. Src activity is tightly regulated and its dysregulation leads to constitutive activation and cellular transformation. The function of Osterix can be also modulated by post-translational modification. But the precise molecular signaling mechanisms between Osterix and c-Src are not known. In this study we investigated the potential regulation of Osterix function by c-Src in osteoblast differentiation. We found that c-Src activation increases protein stability, osteogenic activity and transcriptional activity of Osterix. The siRNA-mediated knockdown of c-Src decreased the protein levels and transcriptional activity of Osterix. Conversely, Src specific inhibitor, SU6656, decreased the protein levels and transcriptional activity of Osterix. The c-Src interacts with and phosphorylates Osterix. These results suggest that c-Src signaling modulates osteoblast differentiation at least in part through Osterix.
Collapse
Affiliation(s)
- You Hee Choi
- College of Pharmacy and Research Institute of Drug Development, Chonnam National University, Gwangju 500-757, South Korea
| | - YounHo Han
- College of Pharmacy and Research Institute of Drug Development, Chonnam National University, Gwangju 500-757, South Korea
| | - Sung Ho Lee
- College of Pharmacy and Research Institute of Drug Development, Chonnam National University, Gwangju 500-757, South Korea
| | - Heesun Cheong
- Research Institute, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 410-769, South Korea
| | - Kwang-Hoon Chun
- Gachon Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University, Incheon 406-799, South Korea
| | - Chang-Yeol Yeo
- Department of Life Science and Division of Life & Pharmaceutical Sciences, Ewha Womans University, Seoul 120-750, South Korea
| | - Kwang Youl Lee
- College of Pharmacy and Research Institute of Drug Development, Chonnam National University, Gwangju 500-757, South Korea.
| |
Collapse
|
17
|
Moussavou G, Kwak DH, Lim MU, Kim JS, Kim SU, Chang KT, Choo YK. Role of gangliosides in the differentiation of human mesenchymal-derived stem cells into osteoblasts and neuronal cells. BMB Rep 2014; 46:527-32. [PMID: 24152915 PMCID: PMC4133840 DOI: 10.5483/bmbrep.2013.46.11.179] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 09/05/2013] [Accepted: 09/11/2013] [Indexed: 01/06/2023] Open
Abstract
Gangliosides are complex glycosphingolipids that are the major component of cytoplasmic cell membranes, and play a role in the control of biological processes. Human mesenchymal stem cells (hMSCs) have received considerable attention as alternative sources of adult stem cells because of their potential to differentiate into multiple cell lineages. In this study, we focus on various functional roles of gangliosides in the differentiation of hMSCs into osteoblasts or neuronal cells. A relationship between gangliosides and epidermal growth factor receptor (EGFR) activation during osteoblastic differentiation of hMSCs was observed, and the gangliosides may play a major role in the regulation of the differentiation. The roles of gangliosides in osteoblast differentiation are dependent on the origin of hMSCs. The reduction of ganglioside biosynthesis inhibited the neuronal differentiation of hMSCs during an early stage of the differentiation process, and the ganglioside expression can be used as a marker for the identification of neuronal differentiation from hMSCs. [BMB Reports 2013; 46(11): 527-532]
Collapse
Affiliation(s)
- Ghislain Moussavou
- Department of Biological Science, Wonkwang University, Iksan 570-749, Korea
| | | | | | | | | | | | | |
Collapse
|
18
|
Viguier M, Advedissian T, Delacour D, Poirier F, Deshayes F. Galectins in epithelial functions. Tissue Barriers 2014; 2:e29103. [PMID: 25097826 PMCID: PMC4117684 DOI: 10.4161/tisb.29103] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 05/02/2014] [Accepted: 05/02/2014] [Indexed: 02/08/2023] Open
Abstract
Galectins are a family of animal lectins comprising 15 members in vertebrates. These proteins are involved in many biological processes including epithelial homeostasis and tumor progression by displaying intracellular and extracellular activities. Hence Galectins can be found either in the cytoplasm or the nucleus, associated with membranes or in the extracellular matrix. Current studies aim at understanding the roles of Galectins in cell-cell and cell-matrix adhesion, cellular polarity and motility. This review discusses recent progress in defining the specificities and mechanisms of action of Galectins as cell regulators in epithelial cells. Physiological, cellular and molecular aspects of Galectin specificities will be treated successively.
Collapse
Affiliation(s)
- Mireille Viguier
- Institut Jacques Monod Umr 7592 Cnrs-Université Paris Diderot ; Paris, France
| | - Tamara Advedissian
- Institut Jacques Monod Umr 7592 Cnrs-Université Paris Diderot ; Paris, France
| | - Delphine Delacour
- Institut Jacques Monod Umr 7592 Cnrs-Université Paris Diderot ; Paris, France
| | - Françoise Poirier
- Institut Jacques Monod Umr 7592 Cnrs-Université Paris Diderot ; Paris, France
| | - Frédérique Deshayes
- Institut Jacques Monod Umr 7592 Cnrs-Université Paris Diderot ; Paris, France
| |
Collapse
|
19
|
Chou FC, Kuo CC, Wang YL, Lin MH, Linju Yen B, Chang DM, Sytwu HK. Overexpression of galectin-9 in islets prolongs grafts survival via downregulation of Th1 responses. Cell Transplant 2012; 22:2135-2145. [PMID: 23067523 DOI: 10.3727/096368912x657891] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The differential activation of T helper (Th) cells and production of cytokines contribute to graft rejection or tolerance. In general, the Th1-type cytokines and cytotoxic T-cells are detected consistently in a host who is undergoing rejection, whereas Th2 responses are linked to a tolerance condition. Galectin-9 modulates Th1 cell immunity by binding to the T-cell immunoglobulin mucin-3 (Tim-3) molecule expressed on the Th1 cells. We investigate whether overexpression of galectin-9 in islets prolongs grafts survival in diabetic recipients. Islets were transduced with lentiviruses carrying galectin-9 and were then transplanted to streptozotocin-induced diabetic NOD/SCID recipients. The normoglycemic recipients then received splenocytes from diabetic NOD mice. Blood glucose concentration was monitored daily after adoptive transfer. The histology of the islet grafts and flow cytometric analyses were assessed at the end of the study. Overexpression of galectin-9 in islets prolonged graft survival in NOD/SCID mice after challenge with diabetogenic splenocytes (mean graft survival, 38.5 vs. 26.0 days, n=10, respectively; p=0.0096). The galectin-9-overexpressed grafts showed decreased infiltration of IFN-γ-producing CD4(+) and CD8(+) T-cells, but not of IL-17-producing CD4(+) T-cells. Strikingly, this islet-specific genetic manipulation did not affect the systemic lymphocyte composition, indicating that galectin-9 may regulate T-cell-mediated inflammation in situ. We demonstrate that galectin-9 protects grafts from Th1 and Tc1 cell-mediated rejections, suggesting that galectin-9 has preventive and/or therapeutic benefit in transplant therapy for autoimmune diabetes and may be applied further to the transplantation of other organs or tissues.
Collapse
Affiliation(s)
- Feng-Cheng Chou
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan
| | | | | | | | | | | | | |
Collapse
|
20
|
Buschow SI, Lasonder E, Szklarczyk R, Oud MM, de Vries IJM, Figdor CG. Unraveling the human dendritic cell phagosome proteome by organellar enrichment ranking. J Proteomics 2011; 75:1547-62. [PMID: 22146474 DOI: 10.1016/j.jprot.2011.11.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Revised: 11/18/2011] [Accepted: 11/22/2011] [Indexed: 12/24/2022]
Abstract
Dendritic cells (DC) take up pathogens through phagocytosis and process them into protein and lipid fragments for presentation to T cells. So far, the proteome of the human DC phagosome, a detrimental compartment for antigen processing and presentation as well as for DC activation, remains largely uncharacterized. Here we have analyzed the protein composition of phagosomes from human monocyte-derived DC. For LC-MS/MS analysis we purified phagosomes from DC using latex beads targeted to DC-SIGN, and quantified proteins using a label-free method. We used organellar enrichment ranking (OER) to select proteins with a high potential to be relevant for phagosome function. The method compares phagosome protein abundance with protein abundance in whole DC. Phagosome enrichment indicates specific recruitment to the phagosome rather than co-purification or passive incorporation. Using OER we extracted the most enriched proteins that we further complemented with functionally associated proteins to define a set of 90 phagosomal proteins that included many proteins with established relevance on DC phagosomes as well as high potential novel candidates. We already experimentally confirmed phagosomal recruitment of Galectin-9, which has not been previously associated with phagocytosis, to both bead and pathogen containing phagosomes, suggesting a role for Galectin-9 in DC phagocytosis.
Collapse
Affiliation(s)
- Sonja I Buschow
- Department of Tumor Immunology at the Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Postbox 9101, 6500 HB Nijmegen, The Netherlands
| | | | | | | | | | | |
Collapse
|
21
|
Xing Y, Gu Y, Xu LC, Siedlecki CA, Donahue HJ, You J. Effects of membrane cholesterol depletion and GPI-anchored protein reduction on osteoblastic mechanotransduction. J Cell Physiol 2011; 226:2350-9. [PMID: 21660958 DOI: 10.1002/jcp.22579] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We previously demonstrated that oscillatory fluid flow activates MC3T3-E1 osteoblastic cell calcium signaling pathways via a mechanism involving ATP releases and P2Y(2) puringeric receptors. However, the molecular mechanisms by which fluid flow initiates cellular responses are still unclear. Accumulating evidence suggests that lipid rafts, one of the important membrane structural components, may play an important role in transducing extracellular fluid shear stress to intracellular responses. Due to the limitations of current techniques, there is no direct approach to study the role of lipid rafts in transmitting fluid shear stress. In this study, we targeted two important membrane components associated with lipid rafts, cholesterol, and glycosylphosphatidylinositol-anchored proteins (GPI-anchored proteins), to disrupt the integrity of cell membrane structures. We first demonstrated that membrane cholesterol depletion with the treatment of methyl-β-cyclodextrin inhibits oscillatory fluid flow induced intracellular calcium mobilization and ERK1/2 phosphorylation in MC3T3-E1 osteoblastic cells. Secondly, we used a novel approach to decrease the levels of GPI-anchored proteins on cell membranes by overexpressing glycosylphosphatidylinositol-specific phospholipase D in MC3T3-E1 osteoblastic cells. This resulted in significant inhibition of intracellular calcium mobilization and ERK1/2 phosphorylation in response to oscillatory fluid flow. Finally, we demonstrated that cholesterol depletion inhibited oscillatory fluid flow induced ATP releases, which were responsible for the activation of calcium signaling pathways in MC3T3-E1 osteoblastic cells. Our findings suggest that cholesterol and GPI-anchored proteins, two membrane structural components related to lipid rafts, may play an important role in osteoblastic cell mechanotransduction.
Collapse
Affiliation(s)
- Yanghui Xing
- Division of Musculoskeletal Sciences, Department of Orthopaedics and Rehabilitation, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA
| | | | | | | | | | | |
Collapse
|
22
|
Wiersma VR, de Bruyn M, Helfrich W, Bremer E. Therapeutic potential of Galectin-9 in human disease. Med Res Rev 2011; 33 Suppl 1:E102-26. [PMID: 21793015 DOI: 10.1002/med.20249] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In recent years, an important role has emerged for the glycan-binding protein Galectin-9 (Gal-9) in health and disease. In normal physiology, Gal-9 seems to be a pivotal modulator of T-cell immunity by inducing apoptosis in specific T-cell subpopulations. Because these T-cell populations are associated with autoimmunity, inflammatory disease, and graft rejection, it was postulated that application of exogenous Gal-9 may limit pathogenic T-cell activity. Indeed, treatment with recombinant Gal-9 ameliorates disease activity in various preclinical models of autoimmunity and allograft graft rejection. In many solid cancers, the loss of Gal-9 expression is closely associated with metastatic progression. In line with this observation, treatment with recombinant Gal-9 prevents metastatic spread in various preclinical cancer models. In addition, various hematological malignancies are sensitive to apoptotic elimination by recombinant Gal-9. Here, we review the biology and physiological role of this versatile lectin and discuss the therapeutic potential of Gal-9 in various diseases, including autoimmunity, asthma, infection, and cancer.
Collapse
Affiliation(s)
- Valerie R Wiersma
- Department of Surgery, Surgical Research Laboratories, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | | | | |
Collapse
|
23
|
Choi RCY, Gao QT, Cheung AWH, Zhu JTT, Lau FTC, Li J, Li WZM, Chu GKY, Duan R, Cheung JKH, Ding AW, Zhao KJ, Dong TTX, Tsim KWK. A chinese herbal decoction, danggui buxue tang, stimulates proliferation, differentiation and gene expression of cultured osteosarcoma cells: genomic approach to reveal specific gene activation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2011; 2011:307548. [PMID: 19131392 PMCID: PMC3136360 DOI: 10.1093/ecam/nen085] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2008] [Accepted: 12/17/2008] [Indexed: 01/28/2023]
Abstract
Danggui Buxue Tang (DBT), a Chinese herbal decoction used to treat ailments in women, contains Radix Astragali (Huangqi; RA) and Radix Angelicae Sinensis (Danggui; RAS). When DBT was applied onto cultured MG-63 cells, an increase of cell proliferation and differentiation of MG-63 cell were revealed: both of these effects were significantly higher in DBT than RA or RAS extract. To search for the biological markers that are specifically regulated by DBT, DNA microarray was used to reveal the gene expression profiling of DBT in MG-63 cells as compared to that of RA- or RAS-treated cells. Amongst 883 DBT-regulated genes, 403 of them are specifically regulated by DBT treatment, including CCL-2, CCL-7, CCL-8, and galectin-9. The signaling cascade of this DBT-regulated gene expression was also elucidated in cultured MG-63 cells. The current results reveal the potential usage of this herbal decoction in treating osteoporosis and suggest the uniqueness of Chinese herbal decoction that requires a well-defined formulation. The DBT-regulated genes in the culture could serve as biological responsive markers for quality assurance of the herbal preparation.
Collapse
Affiliation(s)
- Roy C Y Choi
- Department of Biology and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Boscher C, Dennis JW, Nabi IR. Glycosylation, galectins and cellular signaling. Curr Opin Cell Biol 2011; 23:383-92. [PMID: 21616652 DOI: 10.1016/j.ceb.2011.05.001] [Citation(s) in RCA: 268] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 04/14/2011] [Accepted: 05/04/2011] [Indexed: 12/22/2022]
Abstract
Glycosylation is a common posttranslational modification of proteins and lipids of the secretory pathway that generates binding sites for galactose-specific lectins or galectins. Branching of Asn-linked (N-)glycans by the N-acetylglucosaminyltransferases (Mgat genes) increases affinity for galectins. Both tissue-specific expression of the enzymes and the metabolic supply of sugar-nucleotides to the ER and Golgi regulate glycan distribution while protein sequences specify NXS/T site multiplicity, providing metabolic and genetic contributions to galectin-glycoprotein interactions. Galectins cross-link glycoproteins forming dynamic microdomains or lattices that regulate various mediators of cell adhesion, migration, proliferation, survival and differentiation. There are a similar number of galactose-specific galectins in C. elegans and humans, but expression of higher-affinity branched N-glycans are a more recent feature of vertebrate evolution. Galectins might be considered a reading code for repetition of the minimal units of binding [Gal(NAc)β1-3/4GlcNAc] and NXS/T site multiplicity in proteins. The rapidly evolving and structurally complex Golgi modifications to surface receptors are interpreted through affinity for the lattice, which regulates receptor levels as a function of the cellular environment, and thereby the probability of various cell fates. Many important questions remain concerning the regulation of the galectins, the glycan ligands and lattice interaction with other membrane domains and endocytic pathways.
Collapse
Affiliation(s)
- Cecile Boscher
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | | | | |
Collapse
|
25
|
Chen SJ, Lin CC, Tuan WC, Tseng CS, Huang RN. Effect of recombinant galectin-1 on the growth of immortal rat chondrocyte on chitosan-coated PLGA scaffold. J Biomed Mater Res A 2010; 93:1482-92. [PMID: 19998464 DOI: 10.1002/jbm.a.32658] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The effect of galectin-1 (GAL1) on the growth of immortal rat chondrocyte (IRC) on chitosan-modified PLGA scaffold is investigated. The experimental results showed that water absorption ratio of chitosan-modified PLGA scaffold was 70% higher than that of PLGA alone after immersion in ddH(2)O for 2 weeks, indicating that chitosan-modification significantly enhances the hydrophilicity of PLGA. The experimental results also showed that GALl efficiently and spontaneously coats the chitosan-PLGA scaffold surface to promote adhesion and growth of immortal rat chondrocyte (IRC). To investigate the effect of endogenous GAL1, the full-length GAL1 cDNAs were cloned and constructed into pcDNA3.1 vectors to generate a plasmid expressed in IRC (IRC-GAL1). The results showed that IRC-GAL1 growth was significantly higher than that of IRC on chitosan-PLGA scaffold. The GAL1-potentiated IRC growth on chitosan-PLGA scaffold was dose-dependently inhibited by TDG (specific inhibitor of GAL1 binding). These results strongly suggest that GAL1 is critical for enhancing IRC cell adhesion and growth on chitosan-PLGA scaffold. Moreover, GAL1-coating or expression tends to promote IRC cell-cell aggregation on chitosan-PLGA scaffold and significantly enhances IRC migration. These results suggest that GAL1 probably could induce tissue differentiation and facilitates cartilage reconstruction. In conclusion, the experimental results suggest that both GAL1 and chitosan are important for enhancing IRC cell adhesion and growth on PLGA scaffold, and GAL1 is a potential biomaterial for tissue engineering.
Collapse
Affiliation(s)
- Shiang-Jiuun Chen
- Department of Life Science, Institute of Ecology and Evolutionary Biology and TechComm-5, College of Life Science, National Taiwan University, Taipei 106, Taiwan, Republic of China
| | | | | | | | | |
Collapse
|
26
|
Mechanical and biological characteristics of diamond-like carbon coated poly aryl-ether-ether-ketone. Biomaterials 2010; 31:8181-7. [PMID: 20692699 DOI: 10.1016/j.biomaterials.2010.07.054] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Accepted: 07/13/2010] [Indexed: 01/13/2023]
Abstract
Poly aryl-ether-ether-ketone (PEEK) is an alternative to metal alloys in orthopedic applications. Although the polymer provides many significant advantages such as excellent mechanical properties and non-toxicity, it suffers from insufficient elasticity and biocompatibility. Since the elastic modulus of diamond-like carbon (DLC) is closer to that of cortical bone than PEEK, the DLC/PEEK combination is expected to enhance the stability and surface properties of PEEK in bone replacements. In this work, PEEK is coated with diamond-like carbon (DLC) by plasma immersion ion implantation and deposition (PIII&D) to enhance the surface properties. X-ray photoelectron spectrometry (XPS), Raman spectroscopy, and Fourier transform infrared (FTIR) spectroscopy demonstrate successful deposition of the DLC film on PEEK without an obvious interface due to energetic ion bombardment. Atomic force microscopy (AFM) and contact angle measurements indicate changes in the surface roughness and hydrophilicity, and nanoindentation measurements reveal improved surface hardness on the DLC/PEEK. Cell viability assay, scanning electron microscopy (SEM), and real-time PCR analysis show that osteoblast attachment, proliferation, and differentiation are better on DLC/PEEK than PEEK. DLC/PEEK produced by PIII&D combines the advantages of DLC and PEEK and is more suitable for bone or cartilage replacements.
Collapse
|
27
|
Laderach DJ, Compagno D, Toscano MA, Croci DO, Dergan-Dylon S, Salatino M, Rabinovich GA. Dissecting the signal transduction pathways triggered by galectin-glycan interactions in physiological and pathological settings. IUBMB Life 2010; 62:1-13. [PMID: 20014236 DOI: 10.1002/iub.281] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Galectins are a family of evolutionarily conserved animal lectins with pleiotropic functions and widespread distribution. Fifteen members have been identified in a wide variety of cells and tissues. Through recognition of cell surface glycoproteins and glycolipids, these endogenous lectins can trigger a cascade of intracellular signaling pathways capable of modulating cell differentiation, proliferation, survival, and migration. These cellular events are critical in a variety of biological processes including embryogenesis, angiogenesis, neurogenesis, and immunity and are substantially altered during tumorigenesis, neurodegeneration, and inflammation. In addition, galectins can modulate intracellular functions and this effect involves direct interactions with distinct signaling pathways. In this review, we discuss current knowledge on the intracellular signaling pathways triggered by this multifunctional family of beta-galactoside-binding proteins in selected physiological and pathological settings. Understanding the "galectin signalosome" will be essential to delineate rational therapeutic strategies based on the specific control of galectin expression and function.
Collapse
Affiliation(s)
- Diego J Laderach
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Universidad de Buenos Aires, Buenos Aires C1428, Argentina.
| | | | | | | | | | | | | |
Collapse
|
28
|
Tanikawa R, Tanikawa T, Hirashima M, Yamauchi A, Tanaka Y. Galectin-9 induces osteoblast differentiation through the CD44/Smad signaling pathway. Biochem Biophys Res Commun 2010; 394:317-22. [DOI: 10.1016/j.bbrc.2010.02.175] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Accepted: 02/28/2010] [Indexed: 11/24/2022]
|
29
|
Advanced glycation end products increase endothelial permeability through the RAGE/Rho signaling pathway. FEBS Lett 2010; 584:61-6. [PMID: 19944695 DOI: 10.1016/j.febslet.2009.11.082] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2009] [Revised: 11/16/2009] [Accepted: 11/17/2009] [Indexed: 12/28/2022]
Abstract
Although increased vascular permeability is known to be a major characteristic of diabetic vasculopathy, the precise mechanisms and relevance of advanced glycation end products (AGE) to hyperpermeability of vessels remains unclear. Here, we studied changes in cytoskeletal configuration and the signaling mechanism induced by AGE in human endothelial cells. AGE-BSA stimulation induced Rho activation, intercellular gap formation, prominent actin stress fiber and cell contraction without changing VE-cadherin, and subsequently transendothelial diffusion of FITC-labeled dextran. These processes induced by AGE-BSA were inhibited by either Rho-kinase inhibitor Y27632 or anti-RAGE antibody. We also showed that RhoA and RAGE spontaneously formed a complex. These findings suggest that activation of RAGE/Rho is involved in AGE-BSA-induced hyperpermeability through gap formation and actin reorganization in diabetes.
Collapse
|
30
|
Abstract
Genetic information flows from DNA to macromolecular structures-the dominant force in the molecular organization of life. However, recent work suggests that metabolite availability to the hexosamine and Golgi N-glycosylation pathways exerts control over the assembly of macromolecular complexes on the cell surface and, in this capacity, acts upstream of signaling and gene expression. The structure and number of N-glycans per protein molecule cooperate to regulate lectin binding and thereby the distribution of glycoproteins at the cell surface. Congenital disorders of glycosylation provide insight as extreme hypomorphisms, whereas milder deficiencies may encompass many common chronic conditions, including autoimmunity, metabolic syndrome, and aging.
Collapse
Affiliation(s)
- James W Dennis
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada.
| | | | | |
Collapse
|
31
|
Arikawa T, Matsukawa A, Watanabe K, Sakata KM, Seki M, Nagayama M, Takeshita K, Ito K, Niki T, Oomizu S, Shinonaga R, Saita N, Hirashima M. Galectin-9 accelerates transforming growth factor beta3-induced differentiation of human mesenchymal stem cells to chondrocytes. Bone 2009; 44:849-57. [PMID: 19442617 DOI: 10.1016/j.bone.2009.01.365] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2008] [Revised: 01/13/2009] [Accepted: 01/13/2009] [Indexed: 01/10/2023]
Abstract
Galectin-9 (Gal-9), a beta-galactoside binding lectin, plays a crucial role in innate and adaptive immunity. In the rat collagen-induced arthritis model, administration of Gal-9 induced repair of existing cartilage injury even when joints were already swollen with cartilage destruction. We thus attempted to explore the role of Gal-9 in chondrocyte differentiation utilizing human mesenchymal stem cell (MSC) pellet cultures. During chondrogenesis induced by transforming growth factor beta3 (TGFbeta3), MSCs strongly expressed endogenous Gal-9. Expression of Gal-9 peaked on day 14 and the neutralization of endogenous Gal-9 resulted in the reduced chondrogenesis, indicating possible involvement of Gal-9 in TGFbeta-mediated chondrogenesis. In pellets, addition of Gal-9 significantly enhanced TGFbeta3-induced chondrogenesis, as evidenced by increasing proteoglycan content, but not cell proliferation. In the absence of Gal-9, collagen expression by MSCs switched from type I to type II on 28 days after stimulation with TGFbeta3. When MSCs were co-stimulated with Gal-9, the class switch occurred on day 21. In addition, Gal-9 synergistically enhanced TGFbeta3-induced phosphorylation of Smad2, though Gal-9 did not itself induce detectable Smad2 phosphorylation. These results suggest that Gal-9 has a beneficial effect on cartilage repair in injured joints by induction of differentiation of MSCs into chondrocytes.
Collapse
Affiliation(s)
- Tomohiro Arikawa
- Department of Immunology and Immunopathology, Faculty of Medicine, Kagawa University, Kita-Gun, Kagawa, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Galectin-glycan lattices regulate cell-surface glycoprotein organization and signalling. Biochem Soc Trans 2009; 36:1472-7. [PMID: 19021578 DOI: 10.1042/bst0361472] [Citation(s) in RCA: 158] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The formation of multivalent complexes of soluble galectins with glycoprotein receptors on the plasma membrane helps to organize glycoprotein assemblies on the surface of the cell. In some cell types, this formation of galectin-glycan lattices or scaffolds is critical for organizing plasma membrane domains, such as lipid rafts, or for targeted delivery of glycoproteins to the apical or basolateral surface. Galectin-glycan lattice formation is also involved in regulating the signalling threshold of some cell-surface glycoproteins, including T-cell receptors and growth factor receptors. Finally, galectin-glycan lattices can determine receptor residency time by inhibiting endocytosis of glycoprotein receptors from the cell surface, thus modulating the magnitude or duration of signalling from the cell surface. This paper reviews recent evidence in vitro and in vivo for critical physiological and cellular functions that are regulated by galectin-glycoprotein interactions.
Collapse
|
33
|
Nobumoto A, Nagahara K, Oomizu S, Katoh S, Nishi N, Takeshita K, Niki T, Tominaga A, Yamauchi A, Hirashima M. Galectin-9 suppresses tumor metastasis by blocking adhesion to endothelium and extracellular matrices. Glycobiology 2008; 18:735-44. [PMID: 18579572 DOI: 10.1093/glycob/cwn062] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
We previously described an inverse correlation between galectin-9 (Gal-9) expression and metastasis in patients with malignant melanoma and breast cancer. This study verified the ability of Gal-9 to inhibit lung metastasis in experimental mouse models using highly metastatic B16F10 melanoma and Colon26 colon cancer cells. B16F10 cells transfected with a secreted form of Gal-9 lost their metastatic potential. Intravenous Gal-9 administration reduced the number of metastases of both B16F10 and Colon26 cells in the lung, indicating that secreted Gal-9 suppresses metastasis. Analysis of adhesive molecule expression revealed that B16F10 cells highly express CD44, integrin alpha1, alpha 4, alpha V, and beta1, and that Colon26 cells express CD44, integrin alpha2, alpha 5, alpha V, and beta1, suggesting that Gal-9 may inhibit the adhesion of tumor cells to vascular endothelium and the extracellular matrix (ECM) by binding to such adhesive molecules. Indeed, Gal-9 suppressed the binding of hyaluronic acid to CD44 on both B16F10 and Colon26 cells, and also suppressed the binding of vascular cell adhesion molecule-1 to very late antigen-4 on B16F10 cells. Furthermore, Gal-9 inhibited the binding of tumor cells to ECM components, resulting in the suppression of tumor cell migration. The present results suggest that Gal-9 suppresses both attachment and invasion of tumor cells by inhibiting the binding of adhesive molecules on tumor cells to ligands on vascular endothelium and ECM.
Collapse
Affiliation(s)
- Atsuya Nobumoto
- Department of Immunology and Immunopathology, Kagawa University, Miki-cho, Kita-gun, Kagawa, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|