1
|
Perbal B. The case of Connective Tissue Growth Factor (CTGF) and the pit of misleading and improper nomenclatures. J Cell Commun Signal 2025; 19:e12062. [PMID: 39712858 PMCID: PMC11656398 DOI: 10.1002/ccs3.12062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024] Open
|
2
|
Do HT, Ono M, Wang Z, Kitagawa W, Dang AT, Yonezawa T, Kuboki T, Oohashi T, Kubota S. Inverse genetics tracing the differentiation pathway of human chondrocytes. Osteoarthritis Cartilage 2024; 32:1419-1432. [PMID: 38925474 DOI: 10.1016/j.joca.2024.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 06/16/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024]
Abstract
OBJECTIVE Mammalian somatic cells can be reprogrammed into induced pluripotent stem cells (iPSCs) via the forced expression of Yamanaka reprogramming factors. However, only a limited population of the cells that pass through a particular pathway can metamorphose into iPSCs, while the others do not. This study aimed to clarify the pathways that chondrocytes follow during the reprogramming process. DESIGN The fate of human articular chondrocytes under reprogramming was investigated through a time-coursed single-cell transcriptomic analysis, which we termed an inverse genetic approach. The iPS interference technique was also employed to verify that chondrocytes inversely return to pluripotency following the proper differentiation pathway. RESULTS We confirmed that human chondrocytes could be converted into cells with an iPSC phenotype. Moreover, it was clarified that a limited population that underwent the silencing of SOX9, a master gene for chondrogenesis, at a specific point during the proper transcriptome transition pathway, could eventually become iPSCs. Interestingly, the other cells, which failed to be reprogrammed, followed a distinct pathway toward cells with a surface zone chondrocyte phenotype. The critical involvement of cellular communication network factors (CCNs) in this process was indicated. The idea that chondrocytes, when reprogrammed into iPSCs, follow the differentiation pathway backward was supported by the successful iPS interference using SOX9. CONCLUSIONS This inverse genetic strategy may be useful for seeking candidates for the master genes for the differentiation of various somatic cells. The utility of CCNs in articular cartilage regeneration is also supported.
Collapse
Affiliation(s)
- H T Do
- Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan; Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.
| | - M Ono
- Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan; Department of Oral Rehabilitation and Implantology, Okayama University Hospital, Okayama, Japan.
| | - Z Wang
- Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.
| | - W Kitagawa
- Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan; Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.
| | - A T Dang
- Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan; Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.
| | - T Yonezawa
- Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.
| | - T Kuboki
- Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan; Department of Oral Rehabilitation and Implantology, Okayama University Hospital, Okayama, Japan.
| | - T Oohashi
- Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.
| | - S Kubota
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.
| |
Collapse
|
3
|
Li S, Shao R, Li S, Zhao J, Deng Q, Li P, Wei Z, Xu S, Chen L, Li B, Zou W, Zhang Z. A monoallelic variant in CCN2 causes an autosomal dominant spondyloepimetaphyseal dysplasia with low bone mass. Bone Res 2024; 12:60. [PMID: 39414788 PMCID: PMC11484961 DOI: 10.1038/s41413-024-00364-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 08/08/2024] [Accepted: 08/19/2024] [Indexed: 10/18/2024] Open
Abstract
Cellular communication network factor 2 (CCN2) is a secreted extracellular matrix-associated protein, and its aberrantly increased expression has been implicated in a diversity of diseases involving pathological processes of fibrosis, chronic inflammation, or tissue injury, which has promoted the evaluation of CCN2 as therapeutic targets for multiple disorders. However, human phenotypes associated with CCN2 deficiency have remained enigmatic; variants in CCN2 have not yet been associated with a human phenotype. Here, we collected families diagnosed with spondyloepimetaphyseal dysplasia (SEMD), and screened candidate pathogenic genes for families without known genetic causes using next-generation sequencing. We identified a monoallelic variant in signal peptide of CCN2 (NM_001901.2: c.65 G > C [p.Arg22Pro]) as the cause of SEMD in 14 subjects presenting with different degree of short stature, premature osteoarthritis, and osteoporosis. Affected subjects showed decreased serum CCN2 levels. Cell lines harboring the variant displayed decreased amount of CCN2 proteins in culture medium and an increased intracellular retention, indicating impaired protein secretion. And the variant weakened the stimulation effect of CCN2 on osteogenesis of bone marrow mesenchymal stem cells. Zebrafish ccn2a knockout model and osteoblast lineage-specific Ccn2-deficient mice (Ccn2fl/fl;Prx1Cre) partially recapitulated the phenotypes including low bone mass observed in affected subjects. Pathological mechanism implicated in the skeletal abnormality in Ccn2fl/fl;Prx1Cre mice involved decreased bone formation, increased bone resorption, and abnormal growth plate formation. Collectively, our study indicate that monoallelic variants in CCN2 lead to a human inherited skeletal dysplasia, and highlight the critical role of CCN2 in osteogenesis in human.
Collapse
Affiliation(s)
- Shanshan Li
- Department of Osteoporosis and Bone Diseases, Shanghai Clinical Research Center of Bone Diseases, Shanghai Jiao Tong University of Medicine Affiliated Sixth People's Hospital, Shanghai, China
| | - Rui Shao
- Department of Orthopedic Surgery and Shanghai Institute of Microsurgery on Extremities, Shanghai Jiao Tong University of Medicine Affiliated Sixth People's Hospital, Shanghai, China
| | - Shufa Li
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Jiao Zhao
- Department of Osteoporosis and Bone Diseases, Shanghai Clinical Research Center of Bone Diseases, Shanghai Jiao Tong University of Medicine Affiliated Sixth People's Hospital, Shanghai, China
| | - Qi Deng
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Bio-X Institutes, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Ping Li
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Bio-X Institutes, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Zhanying Wei
- Department of Osteoporosis and Bone Diseases, Shanghai Clinical Research Center of Bone Diseases, Shanghai Jiao Tong University of Medicine Affiliated Sixth People's Hospital, Shanghai, China
| | - Shuqin Xu
- Department of Osteoporosis and Bone Diseases, Shanghai Clinical Research Center of Bone Diseases, Shanghai Jiao Tong University of Medicine Affiliated Sixth People's Hospital, Shanghai, China
| | - Lin Chen
- Department of Wound Repair and Rehabilitation, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Baojie Li
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Bio-X Institutes, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Weiguo Zou
- Department of Orthopedic Surgery and Shanghai Institute of Microsurgery on Extremities, Shanghai Jiao Tong University of Medicine Affiliated Sixth People's Hospital, Shanghai, China.
- Key Laboratory of RNA Innovation, Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
- Hainan Academy of Medical Sciences, Hainan Medical University, Hainan, China.
| | - Zhenlin Zhang
- Department of Osteoporosis and Bone Diseases, Shanghai Clinical Research Center of Bone Diseases, Shanghai Jiao Tong University of Medicine Affiliated Sixth People's Hospital, Shanghai, China.
| |
Collapse
|
4
|
Bertels JC, He G, Long F. Metabolic reprogramming in skeletal cell differentiation. Bone Res 2024; 12:57. [PMID: 39394187 PMCID: PMC11470040 DOI: 10.1038/s41413-024-00374-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 10/13/2024] Open
Abstract
The human skeleton is a multifunctional organ made up of multiple cell types working in concert to maintain bone and mineral homeostasis and to perform critical mechanical and endocrine functions. From the beginning steps of chondrogenesis that prefigures most of the skeleton, to the rapid bone accrual during skeletal growth, followed by bone remodeling of the mature skeleton, cell differentiation is integral to skeletal health. While growth factors and nuclear proteins that influence skeletal cell differentiation have been extensively studied, the role of cellular metabolism is just beginning to be uncovered. Besides energy production, metabolic pathways have been shown to exert epigenetic regulation via key metabolites to influence cell fate in both cancerous and normal tissues. In this review, we will assess the role of growth factors and transcription factors in reprogramming cellular metabolism to meet the energetic and biosynthetic needs of chondrocytes, osteoblasts, or osteoclasts. We will also summarize the emerging evidence linking metabolic changes to epigenetic modifications during skeletal cell differentiation.
Collapse
Affiliation(s)
- Joshua C Bertels
- Department of Surgery, Translational Research Program in Pediatric Orthopedics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Guangxu He
- Department of Surgery, Translational Research Program in Pediatric Orthopedics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Orthopedics, The Second Xiangya Hospital, Changsha, Hunan, China
| | - Fanxin Long
- Department of Surgery, Translational Research Program in Pediatric Orthopedics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Department of Orthopedic Surgery, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
5
|
Chang H, Ng C, Chen Y, Wang Y, Yu I, Lee LJ, Lee L, Lee K. Elevated reactive aggression in forebrain-specific Ccn2 knockout mice. J Cell Commun Signal 2024; 18:e12040. [PMID: 39524137 PMCID: PMC11544641 DOI: 10.1002/ccs3.12040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 11/16/2024] Open
Abstract
Cellular communication network factor 2 (CCN2) is a matricellular protein that plays important roles in connective tissue. CCN2 is also expressed in the nervous system; however, its role is still unclear. To explore CCN2 function in the brain, we generated forebrain-specific Ccn2 knockout (FbCcn2 KO) mice. In this study, we examined the behavioral phenotypes of FbCcn2KO mice. Male mice lacking CCN2 in the forebrain exhibited normal locomotion, sensorimotor gating, and social behaviors but signs of anxiety and elevated reactive aggression. We checked the c-fos expression in aggression-related brain regions following the resident-intruder task (RIT), an aggression test. RIT-induced c-fos levels in the medial amygdala (MeA) were higher in FbCcn2 -/- mice as compared to controls. However, in the prefrontal cortex, RIT-induced c-fos levels in FbCcn2 -/- mice were lower than controls. Our results suggested in male mice lacking CCN2 in the olfaction-related regions, olfactory social cues elicit greater signals in the MeA, resulting in greater reactive aggression in the RIT. Further, lacking CCN2 in the prefrontal cortex, the major area related to inhibitory control and emotion regulation, may lead to signs of anxiety and the failure to suppress aggressive behaviors. Our model is useful in elaborating the mechanism underlying reactive aggression and therapeutic strategies.
Collapse
Affiliation(s)
- Ho‐Ching Chang
- College of MedicineGraduate Institute of Anatomy and Cell BiologyNational Taiwan UniversityTaipeiTaiwan
| | - Chi‐Hou Ng
- College of MedicineGraduate Institute of Anatomy and Cell BiologyNational Taiwan UniversityTaipeiTaiwan
| | - Yu‐Fu Chen
- Department of NeurologyChang Gung Memorial HospitalKeelung BranchKeelungTaiwan
| | - Yu‐Chun Wang
- Department of Otolaryngology, Head and Neck SurgeryChi‐Mei Medical CenterTainanTaiwan
| | - I‐Shing Yu
- Laboratory Animal CenterCollege of MedicineNational Taiwan UniversityTaipeiTaiwan
| | - Lukas Jyuhn‐Hsiarn Lee
- National Institute of Environmental Health SciencesNational Health Research InstitutesMiaoliTaiwan
| | - Li‐Jen Lee
- College of MedicineGraduate Institute of Anatomy and Cell BiologyNational Taiwan UniversityTaipeiTaiwan
- College of MedicineInstitute of Brain and Mind SciencesNational Taiwan UniversityTaipeiTaiwan
- Neurobiology and Cognitive Science CenterNational Taiwan UniversityTaipeiTaiwan
| | - Kuang‐Yung Lee
- Department of NeurologyChang Gung Memorial HospitalKeelung BranchKeelungTaiwan
- College of MedicineChang Gung UniversityTaoyuanTaiwan
| |
Collapse
|
6
|
Guo Z, Zhang H, Huang T, Liu C. CCN3/NOV inhibition attenuates oxidative stress-induced apoptosis of mouse neural stem/progenitor cells by blocking the activation of p38 MAPK: An in vitro study. Brain Res 2024; 1827:148756. [PMID: 38199307 DOI: 10.1016/j.brainres.2024.148756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/20/2023] [Accepted: 01/03/2024] [Indexed: 01/12/2024]
Abstract
Neural stem/progenitor cells (NSPCs) hold immense promise in clinical applications, yet the harsh conditions resulting from central nervous system (CNS) injuries, particularly oxidative stress, lead to the demise of both native and transplanted NSPCs. Cellular communication network factor 3 (CCN3) exhibits a protective effect against oxidative stress in various cell types. This study investigates the impact of CCN3 on NSPCs apoptosis induced by oxidative stress. To establish models of primary cultured mouse NSPCs under oxidative stress, we exposed them to 50 μM H2O2 for 4 h. Remarkably, pre-exposing CCN3 exacerbated the H2O2-induced decline in cell viability in a concentration-dependent manner. However, employing gene-targeted siRNA to inhibit CCN3 protected NSPCs against H2O2-induced cell death. Conversely, CCN3 replenishment reversed this protective effect, as evidenced by TUNEL staining, the ratio of Cleaved-caspase-3 to Pro-caspase-3, and Bcl-2/Bax. Further investigations revealed that CCN3 pretreatment increased the phosphorylation level of p38 MAPK, while silencing CCN3 diminished p38 MAPK activation. Ultimately, the impact of changes in CCN3 protein expression on H2O2-induced apoptosis was nullified using anisomycin (a p38 activator) and SB 203580 (a p38 inhibitor). Our findings suggest that CCN3 inhibition prevents H2O2-induced cell death in cultured mouse NSPCs via the p38 pathway. These discoveries may contribute to the development of strategies aimed at enhancing the survival of both endogenous and transplanted NSPCs following CNS oxidative stress insults.
Collapse
Affiliation(s)
- Zhenyu Guo
- Department of Neurosurgery, The 2nd Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Hanyue Zhang
- Institute of Neurobiology, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Tingqin Huang
- Department of Neurosurgery, The 2nd Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Chongxiao Liu
- Department of Neurosurgery, The 2nd Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
7
|
Yin H, Liu N, Zhou X, Chen J, Duan L. The advance of CCN3 in fibrosis. J Cell Commun Signal 2023:10.1007/s12079-023-00778-3. [PMID: 37378812 DOI: 10.1007/s12079-023-00778-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 06/19/2023] [Indexed: 06/29/2023] Open
Abstract
The extracellular matrix (ECM) is comprised of various extracellular macromolecules, including collagen, enzymes, and glycoproteins, which offer structural and biochemical support to neighboring cells. After tissue injury, extracellular matrix proteins deposit in the damaged tissue to promote tissue healing. However, an imbalance between ECM production and degradation can result in excessive deposition, leading to fibrosis and subsequent organ dysfunction. Acting as a regulatory protein within the extracellular matrix, CCN3 plays a crucial role in numerous biological processes, such as cell proliferation, angiogenesis, tumorigenesis, and wound healing. Many studies have demonstrated that CCN3 can reduce the production of ECM in tissues through diverse mechanisms thereby exerting an inhibitory effect on fibrosis. Consequently, CCN3 emerges as a promising therapeutic target for ameliorating fibrosis.
Collapse
Affiliation(s)
- Hui Yin
- Department of Rheumatology and Clinical Immunology, Jiangxi Provincial People's Hospital, Nanchang, 330006, China
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
- JXHC Key Laboratory of Rheumatology and Immunology, Nanchang, China
| | - Na Liu
- Department of Rheumatology and Clinical Immunology, Jiangxi Provincial People's Hospital, Nanchang, 330006, China
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Xianming Zhou
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jie Chen
- Department of Rheumatology and Clinical Immunology, Jiangxi Provincial People's Hospital, Nanchang, 330006, China
| | - Lihua Duan
- Department of Rheumatology and Clinical Immunology, Jiangxi Provincial People's Hospital, Nanchang, 330006, China.
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China.
- JXHC Key Laboratory of Rheumatology and Immunology, Nanchang, China.
| |
Collapse
|
8
|
Luan Y, Zhang H, Ma K, Liu Y, Lu H, Chen X, Liu Y, Zhang Z. CCN3/NOV Regulates Proliferation and Neuronal Differentiation in Mouse Hippocampal Neural Stem Cells via the Activation of the Notch/PTEN/AKT Pathway. Int J Mol Sci 2023; 24:10324. [PMID: 37373471 DOI: 10.3390/ijms241210324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/05/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Neural stem cells (NSCs) persist in the subgranular zone (SGZ) throughout the lifespan and hold immense potential for the repair and regeneration of the central nervous system, including hippocampal-related diseases. Several studies have demonstrated that cellular communication network protein 3 (CCN3) regulates multiple types of stem cells. However, the role of CCN3 in NSCs remains unknown. In this study, we identified CCN3 expression in mouse hippocampal NSCs and observed that supplementing CCN3 improved cell viability in a concentration-dependent manner. Additionally, in vivo results showed that the injection of CCN3 in the dentate gyrus (DG) increased Ki-67- and SOX2-positive cells while decreasing neuron-specific class III beta-tubulin (Tuj1) and doublecortin (DCX)-positive cells. Consistently with the in vivo results, supplementing CCN3 in the medium increased the number of BrdU and Ki-67 cells and the proliferation index but decreased the number of Tuj1 and DCX cells. Conversely, both the in vivo and in vitro knockdown of the Ccn3 gene in NSCs had opposite effects. Further investigations revealed that CCN3 promoted cleaved Notch1 (NICD) expression, leading to the suppression of PTEN expression and eventual promotion of AKT activation. In contrast, Ccn3 knockdown inhibited the activation of the Notch/PTEN/AKT pathway. Finally, the effects of changes in CCN3 protein expression on NSC proliferation and differentiation were eliminated by FLI-06 (a Notch inhibitor) and VO-OH (a PTEN inhibitor). Our findings imply that while promoting proliferation, CCN3 inhibits the neuronal differentiation of mouse hippocampal NSCs and that the Notch/PTEN/AKT pathway may be a potential intracellular target of CCN3. Our findings may help develop strategies to enhance the intrinsic potential for brain regeneration after injuries, particularly stem cell treatment for hippocampal-related diseases.
Collapse
Affiliation(s)
- Yan Luan
- Institute of Neurobiology, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Hanyue Zhang
- Institute of Neurobiology, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Kaige Ma
- Institute of Neurobiology, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Yingfei Liu
- Institute of Neurobiology, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Haixia Lu
- Institute of Neurobiology, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Xinlin Chen
- Institute of Neurobiology, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Yong Liu
- Institute of Neurobiology, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Zhichao Zhang
- Institute of Neurobiology, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| |
Collapse
|
9
|
Kubota S, Kawaki H, Perbal B, Takigawa M, Kawata K, Hattori T, Nishida T. Do not overwork: cellular communication network factor 3 for life in cartilage. J Cell Commun Signal 2023:10.1007/s12079-023-00723-4. [PMID: 36745317 DOI: 10.1007/s12079-023-00723-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 01/07/2023] [Indexed: 02/07/2023] Open
Abstract
Cellular communication network factor (CCN) 3, which is one of the founding members of the CCN family, displays diverse functions. However, this protein generally represses the proliferation of a variety of cells. Along with skeletal development, CCN3 is produced in cartilaginous anlagen, growth plate cartilage and epiphysial cartilage. Interestingly, CCN3 is drastically induced in the growth plates of mice lacking CCN2, which promotes endochondral ossification. Notably, chondrocytes in these mutant mice with elevated CCN3 production also suffer from impaired glycolysis and energy metabolism, suggesting a critical role of CCN3 in cartilage metabolism. Recently, CCN3 was found to be strongly induced by impaired glycolysis, and in our study, we located an enhancer that mediated CCN3 regulation via starvation. Subsequent investigations specified regulatory factor binding to the X-box 1 (RFX1) as a transcription factor mediating this CCN3 regulation. Impaired glycolysis is a serious problem, resulting in an energy shortage in cartilage without vasculature. CCN3 produced under such starved conditions restricts energy consumption by repressing cell proliferation, leading chondrocytes to quiescence and survival. This CCN3 regulatory system is indicated to play an important role in articular cartilage maintenance, as well as in skeletal development. Furthermore, CCN3 continues to regulate cartilage metabolism even during the aging process, probably utilizing this regulatory system. Altogether, CCN3 seems to prevent "overwork" by chondrocytes to ensure their sustainable life in cartilage by sensing energy metabolism. Similar roles are suspected to exist in relation to systemic metabolism, since CCN3 is found in the bloodstream.
Collapse
Affiliation(s)
- Satoshi Kubota
- Department of Biochemistry and Molecular Dentistry, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan.
| | - Harumi Kawaki
- Department of Oral Biochemistry, Asahi University School of Dentistry, Mizuho, Japan
| | | | - Masaharu Takigawa
- Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences/Dental School, Okayama, Japan
| | - Kazumi Kawata
- Department of Biochemistry and Molecular Dentistry, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
| | - Takako Hattori
- Department of Biochemistry and Molecular Dentistry, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
| | - Takashi Nishida
- Department of Biochemistry and Molecular Dentistry, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
- Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences/Dental School, Okayama, Japan
| |
Collapse
|
10
|
Kawaki H, Kubota S, Takigawa M. Cellular Fluorescence Imaging for the Evaluation of Bioactivity of CCN Family Proteins. Methods Mol Biol 2023; 2582:23-29. [PMID: 36370341 DOI: 10.1007/978-1-0716-2744-0_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The method of labeling proteins of interest with fluorescent dyes that can specifically stain organelles in living cells provides a tool for investigating various cellular processes under a microscope. Visualization (imaging) of the cells using fluorescence has many advantages, including the ability to stain multiple cell organelles and intracellular proteins simultaneously and discriminately, and is used in many research fields. In this chapter, we describe the observation of cell organelles using fluorescence staining to analyze the functions of CCN family proteins involved in various cellular events.
Collapse
Affiliation(s)
- Harumi Kawaki
- Department of Chemistry, Asahi University School of Dentistry, Gifu, Japan.
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.
| | - Satoshi Kubota
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Masaharu Takigawa
- Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Dental School, Okayama, Japan
| |
Collapse
|
11
|
Hirose K, Kuwahara M, Nakata E, Tetsunaga T, Yamada K, Saiga K, Takigawa M, Ozaki T, Kubota S, Hattori T. Elevated Expression of CCN3 in Articular Cartilage Induces Osteoarthritis in Hip Joints Irrespective of Age and Weight Bearing. Int J Mol Sci 2022; 23:15311. [PMID: 36499638 PMCID: PMC9738275 DOI: 10.3390/ijms232315311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 11/29/2022] [Accepted: 12/02/2022] [Indexed: 12/11/2022] Open
Abstract
Osteoarthritis (OA) occurs not only in the knee but also in peripheral joints throughout the whole body. Previously, we have shown that the expression of cellular communication network factor 3 (CCN3), a matricellular protein, increases with age in knee articular cartilage, and the misexpression of CCN3 in cartilage induces senescence-associated secretory phenotype (SASP) factors, indicating that CCN3 promotes cartilage senescence. Here, we investigated the correlation between CCN3 expression and OA degenerative changes, principally in human femoral head cartilage. Human femoral heads obtained from patients who received total hip arthroplasty were categorized into OA and femoral neck fracture (normal) groups without significant age differences. Gene expression analysis of RNA obtained from femoral head cartilage revealed that CCN3 and MMP-13 expression in the non-weight-bearing part was significantly higher in the OA group than in the normal group, whereas the weight-bearing OA parts and normal cartilage showed no significant differences in the expression of these genes. The expression of COL10A1, however, was significantly higher in weight-bearing OA parts compared with normal weight-bearing parts, and was also higher in weight-bearing parts compared with non-weight-bearing parts in the OA group. In contrast, OA primary chondrocytes from weight-bearing parts showed higher expression of CCN3, p16, ADAMTS4, and IL-1β than chondrocytes from the corresponding normal group, and higher ADAMTS4 and IL-1β in the non-weight-bearing part compared with the corresponding normal group. Acan expression was significantly lower in the non-weight-bearing group in OA primary chondrocytes than in the corresponding normal chondrocytes. The expression level of CCN3 did not show significant differences between the weight-bearing part and non-weight-bearing part in both OA and normal primary chondrocytes. Immunohistochemical analysis showed accumulated CCN3 and aggrecan neoepitope staining in both the weight-bearing part and non-weight-bearing part in the OA group compared with the normal group. The CCN3 expression level in cartilage had a positive correlation with the Mankin score. X-ray analysis of cartilage-specific CCN3 overexpression mice (Tg) revealed deformation of the femoral and humeral head in the early stage, and immunohistochemical analysis showed accumulated aggrecan neoepitope staining as well as CCN3 staining and the roughening of the joint surface in Tg femoral and humeral heads. Primary chondrocytes from the Tg femoral head showed enhanced expression of Ccn3, Adamts5, p16, Il-6, and Tnfα, and decreased expression of Col2a1 and -an. These findings indicate a correlation between OA degenerative changes and the expression of CCN3, irrespective of age and mechanical loading. Furthermore, the Mankin score indicates that the expression level of Ccn3 correlates with the progression of OA.
Collapse
Affiliation(s)
- Kazuki Hirose
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
- Department of Orthopaedic Surgery, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan
| | - Miho Kuwahara
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Eiji Nakata
- Department of Orthopaedic Surgery, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan
| | - Tomonori Tetsunaga
- Department of Orthopaedic Surgery, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan
| | - Kazuki Yamada
- Department of Orthopaedic Surgery, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan
| | - Kenta Saiga
- Department of Orthopaedic Surgery, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan
| | - Masaharu Takigawa
- Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Dental School/Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Toshifumi Ozaki
- Department of Orthopaedic Surgery, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan
| | - Satoshi Kubota
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Takako Hattori
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| |
Collapse
|
12
|
Ren J, Wang X, Parry SN, Yee C, Gorrell MD, McLennan SV, Twigg SM. Targeting CCN2 protects against progressive non-alcoholic steatohepatitis in a preclinical model induced by high-fat feeding and type 2 diabetes. J Cell Commun Signal 2022; 16:447-460. [PMID: 35038159 PMCID: PMC9411483 DOI: 10.1007/s12079-022-00667-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 01/06/2022] [Indexed: 02/06/2023] Open
Abstract
Type 2 diabetes is an independent risk factor for non-alcoholic steatohepatitis (NASH) progression and its mediators have not been resolved. In this study, a pathogenic role of cellular communication network factor 2 (CCN2) protein in NASH pathology, was investigated in an established preclinical NASH model. Male wild type C57BL/6 mice received either Chow or high fat diet (HFD) for 26 weeks, with some mice in each group randomly selected to receive low dose streptozotocin (STZ: 3 i.p. injections, 65 mg/kg) at 15 weeks to induce type 2 diabetes. In the final 10 of the 26 weeks mice from each group were administered i.p. either rabbit anti-CCN2 neutralizing antibody (CCN2Ab) or as control normal rabbit IgG, at a dose of 150 µg per mouse twice/week. NASH developed in the HFD plus diabetes (HFD+DM) group. Administration of CCN2Ab significantly downregulated collagen I and collagen III mRNA induction and prevented pro-inflammatory MCP-1 mRNA induction in HFD+DM mice. At the protein level, CCN2Ab significantly attenuated collagen accumulation by PSR stain and collagen I protein induction in HFD+DM. Phosphorylation of the pro-fibrotic ERK signalling pathway in liver in HFD+DM was attenuated by CCN2Ab treatment. Intrahepatic CCN1 mRNA was induced, whereas CCN3 was downregulated at both the mRNA and protein levels in HFD+DM. CCN3 down-regulation was prevented by CCN2Ab treatment. This in vivo study indicates that CCN2 is a molecular target in NASH with high fat diet and diabetes, and that regulation of ERK signalling is implicated in this process.
Collapse
Affiliation(s)
- Jing Ren
- Greg Brown Diabetes and Endocrinology Research Laboratories, Sydney Medical School (Central), Faculty of Medicine and Health, Charles Perkins Centre, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Xiaoyu Wang
- Greg Brown Diabetes and Endocrinology Research Laboratories, Sydney Medical School (Central), Faculty of Medicine and Health, Charles Perkins Centre, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Sarah N Parry
- Greg Brown Diabetes and Endocrinology Research Laboratories, Sydney Medical School (Central), Faculty of Medicine and Health, Charles Perkins Centre, The University of Sydney, Sydney, NSW, 2006, Australia
- Department of Endocrinology, Royal Prince Alfred Hospital, Camperdown, NSW, 2050, Australia
| | - Christine Yee
- Greg Brown Diabetes and Endocrinology Research Laboratories, Sydney Medical School (Central), Faculty of Medicine and Health, Charles Perkins Centre, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Mark D Gorrell
- Centenary Institute, The University of Sydney, Camperdown, NSW, 2050, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Susan V McLennan
- Greg Brown Diabetes and Endocrinology Research Laboratories, Sydney Medical School (Central), Faculty of Medicine and Health, Charles Perkins Centre, The University of Sydney, Sydney, NSW, 2006, Australia
- Department of Endocrinology, Royal Prince Alfred Hospital, Camperdown, NSW, 2050, Australia
- New South Wales Health Pathology, Camperdown, NSW, 2050, Australia
| | - Stephen M Twigg
- Greg Brown Diabetes and Endocrinology Research Laboratories, Sydney Medical School (Central), Faculty of Medicine and Health, Charles Perkins Centre, The University of Sydney, Sydney, NSW, 2006, Australia.
- Department of Endocrinology, Royal Prince Alfred Hospital, Camperdown, NSW, 2050, Australia.
| |
Collapse
|
13
|
Fibroblast Growth Factors and Cellular Communication Network Factors: Intimate Interplay by the Founding Members in Cartilage. Int J Mol Sci 2022; 23:ijms23158592. [PMID: 35955724 PMCID: PMC9369280 DOI: 10.3390/ijms23158592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/28/2022] [Accepted: 07/28/2022] [Indexed: 02/04/2023] Open
Abstract
Fibroblast growth factors (FGFs) constitute a large family of signaling molecules that act in an autocrine/paracrine, endocrine, or intracrine manner, whereas the cellular communication network factors (CCN) family is composed of six members that manipulate extracellular signaling networks. FGFs and CCNs are structurally and functionally distinct, except for the common characteristics as matricellular proteins. Both play significant roles in the development of a variety of tissues and organs, including the skeletal system. In vertebrates, most of the skeletal parts are formed and grow through a process designated endochondral ossification, in which chondrocytes play the central role. The growth plate cartilage is the place where endochondral ossification occurs, and articular cartilage is left to support the locomotive function of joints. Several FGFs, including FGF-2, one of the founding members of this family, and all of the CCNs represented by CCN2, which is required for proper skeletal development, can be found therein. Research over a decade has revealed direct binding of CCN2 to FGFs and FGF receptors (FGFRs), which occasionally affect the biological outcome via FGF signaling. Moreover, a recent study uncovered an integrated regulation of FGF and CCN genes by FGF signaling. In this review, after a brief introduction of these two families, molecular and genetic interactions between CCN and FGF family members in cartilage, and their biological effects, are summarized. The molecular interplay represents the mutual involvement of the other in their molecular functions, leading to collaboration between CCN2 and FGFs during skeletal development.
Collapse
|
14
|
Kubota S, Kawata K, Hattori T, Nishida T. Molecular and Genetic Interactions between CCN2 and CCN3 behind Their Yin-Yang Collaboration. Int J Mol Sci 2022; 23:ijms23115887. [PMID: 35682564 PMCID: PMC9180607 DOI: 10.3390/ijms23115887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/19/2022] [Accepted: 05/19/2022] [Indexed: 12/15/2022] Open
Abstract
Cellular communication network factor (CCN) 2 and 3 are the members of the CCN family that conduct the harmonized development of a variety of tissues and organs under interaction with multiple biomolecules in the microenvironment. Despite their striking structural similarities, these two members show contrastive molecular functions as well as temporospatial emergence in living tissues. Typically, CCN2 promotes cell growth, whereas CCN3 restrains it. Where CCN2 is produced, CCN3 disappears. Nevertheless, these two proteins collaborate together to execute their mission in a yin–yang fashion. The apparent functional counteractions of CCN2 and CCN3 can be ascribed to their direct molecular interaction and interference over the cofactors that are shared by the two. Recent studies have revealed the mutual negative regulation systems between CCN2 and CCN3. Moreover, the simultaneous and bidirectional regulatory system of CCN2 and CCN3 is also being clarified. It is of particular note that these regulations were found to be closely associated with glycolysis, a fundamental procedure of energy metabolism. Here, the molecular interplay and metabolic gene regulation that enable the yin–yang collaboration of CCN2 and CCN3 typically found in cartilage development/regeneration and fibrosis are described.
Collapse
|
15
|
O-fucosylation of thrombospondin type 1 repeats is essential for ECM remodeling and signaling during bone development. Matrix Biol 2022; 107:77-96. [DOI: 10.1016/j.matbio.2022.02.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/18/2022] [Accepted: 02/08/2022] [Indexed: 12/12/2022]
|
16
|
Kubota S, Kawaki H, Perbal B, Kawata K, Hattori T, Nishida T. Cellular communication network factor 3 in cartilage development and maintenance. J Cell Commun Signal 2021; 15:533-543. [PMID: 34125392 PMCID: PMC8642582 DOI: 10.1007/s12079-021-00629-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/27/2021] [Indexed: 12/30/2022] Open
Abstract
Cellular communication network factor (CCN) 3 is one of the classical members of the CCN family, which are characterized by common molecular structures and multiple functionalities. Although this protein was discovered as a gene product overexpressed in a truncated form in nephroblastoma, recent studies have revealed its physiological roles in the development and homeostasis of mammalian species, in addition to its pathological association with a number of diseases. Cartilage is a tissue that creates most of the bony parts and cartilaginous tissues that constitute the human skeleton, in which CCN3 is also differentially produced to exert its molecular missions therein. In this review article, after the summary of the molecular structure and function of CCN3, recent findings on the regulation of ccn3 expression and the roles of CCN3 in endochondral ossification, cartilage development, maintenance and disorders are introduced with an emphasis on the metabolic regulation and function of this matricellular multifunctional molecule.
Collapse
Affiliation(s)
- Satoshi Kubota
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan.
| | - Harumi Kawaki
- Department of Oral Biochemistry, Asahi University School of Dentistry, Mizuho, Japan
| | | | - Kazumi Kawata
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
| | - Takako Hattori
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
| | - Takashi Nishida
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
- Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Dental School, Okayama, Japan
| |
Collapse
|
17
|
Mizukawa T, Nishida T, Akashi S, Kawata K, Kikuchi S, Kawaki H, Takigawa M, Kamioka H, Kubota S. RFX1-mediated CCN3 induction that may support chondrocyte survival under starved conditions. J Cell Physiol 2021; 236:6884-6896. [PMID: 33655492 DOI: 10.1002/jcp.30348] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/12/2021] [Accepted: 02/16/2021] [Indexed: 02/06/2023]
Abstract
Cellular communication network factor (CCN) family members are multifunctional matricellular proteins that manipulate and integrate extracellular signals. In our previous studies investigating the role of CCN family members in cellular metabolism, we found three members that might be under the regulation of energy metabolism. In this study, we confirmed that CCN2 and CCN3 are the only members that are tightly regulated by glycolysis in human chondrocytic cells. Interestingly, CCN3 was induced under a variety of impaired glycolytic conditions. This CCN3 induction was also observed in two breast cancer cell lines with a distinct phenotype, suggesting a basic role of CCN3 in cellular metabolism. Reporter gene assays indicated a transcriptional regulation mediated by an enhancer in the proximal promoter region. As a result of analyses in silico, we specified regulatory factor binding to the X-box 1 (RFX1) as a candidate that mediated the transcriptional activation by impaired glycolysis. Indeed, the inhibition of glycolysis induced the expression of RFX1, and RFX1 silencing nullified the CCN3 induction by impaired glycolysis. Subsequent experiments with an anti-CCN3 antibody indicated that CCN3 supported the survival of chondrocytes under impaired glycolysis. Consistent with these findings in vitro, abundant CCN3 production by chondrocytes in the deep zones of developing epiphysial cartilage, which are located far away from the synovial fluid, was confirmed in vivo. Our present study uncovered that RFX1 is the mediator that enables CCN3 induction upon cellular starvation, which may eventually assist chondrocytes in retaining their viability, even when there is an energy supply shortage.
Collapse
Affiliation(s)
- Tomomi Mizukawa
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
- Department of Orthodontics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Takashi Nishida
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
- Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Dental School, Okayama, Japan
| | - Sho Akashi
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
- Department of Oral and Maxillofacial Reconstructive Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Kazumi Kawata
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Sumire Kikuchi
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Harumi Kawaki
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
- Department of Oral Biochemistry, Asahi University School of Dentistry, Mizuho, Japan
| | - Masaharu Takigawa
- Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Dental School, Okayama, Japan
| | - Hiroshi Kamioka
- Department of Orthodontics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Satoshi Kubota
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
18
|
CCN proteins in the musculoskeletal system: current understanding and challenges in physiology and pathology. J Cell Commun Signal 2021; 15:545-566. [PMID: 34228239 PMCID: PMC8642527 DOI: 10.1007/s12079-021-00631-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/14/2021] [Indexed: 02/07/2023] Open
Abstract
The acronym for the CCN family was recently revised to represent “cellular communication network”. These six, small, cysteine-enriched and evolutionarily conserved proteins are secreted matricellular proteins, that convey and modulate intercellular communication by interacting with structural proteins, signalling factors and cell surface receptors. Their role in the development and physiology of musculoskeletal system, constituted by connective tissues where cells are interspersed in the cellular matrix, has been broadly studied. Previous research has highlighted a crucial balance of CCN proteins in mesenchymal stem cell commitment and a pivotal role for CCN1, CCN2 and their alter ego CCN3 in chondrogenesis and osteogenesis; CCN4 plays a minor role and the role of CCN5 and CCN6 is still unclear. CCN proteins also participate in osteoclastogenesis and myogenesis. In adult life, CCN proteins serve as mechanosensory proteins in the musculoskeletal system providing a steady response to environmental stimuli and participating in fracture healing. Substantial evidence also supports the involvement of CCN proteins in inflammatory pathologies, such as osteoarthritis and rheumatoid arthritis, as well as in cancers affecting the musculoskeletal system and bone metastasis. These matricellular proteins indeed show involvement in inflammation and cancer, thus representing intriguing therapeutic targets. This review discusses the current understanding of CCN proteins in the musculoskeletal system as well as the controversies and challenges associated with their multiple and complex roles, and it aims to link the dispersed knowledge in an effort to stimulate and guide readers to an area that the writers consider to have significant impact and relevant potentialities.
Collapse
|
19
|
Lim PJ, Marfurt S, Lindert U, Opitz L, Ndarugendamwo T, Srikanthan P, Poms M, Hersberger M, Langhans CD, Haas D, Rohrbach M, Giunta C. Omics Profiling of S2P Mutant Fibroblasts as a Mean to Unravel the Pathomechanism and Molecular Signatures of X-Linked MBTPS2 Osteogenesis Imperfecta. Front Genet 2021; 12:662751. [PMID: 34093655 PMCID: PMC8176293 DOI: 10.3389/fgene.2021.662751] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/26/2021] [Indexed: 12/03/2022] Open
Abstract
Osteogenesis imperfecta (OI) is an inherited skeletal dysplasia characterized by low bone density, bone fragility and recurrent fractures. The characterization of its heterogeneous genetic basis has allowed the identification of novel players in bone development. In 2016, we described the first X-linked recessive form of OI caused by hemizygous MBTPS2 missense variants resulting in moderate to severe phenotypes. MBTPS2 encodes site-2 protease (S2P), which activates transcription factors involved in bone (OASIS) and cartilage development (BBF2H7), ER stress response (ATF6) and lipid metabolism (SREBP) via regulated intramembrane proteolysis. In times of ER stress or sterol deficiency, the aforementioned transcription factors are sequentially cleaved by site-1 protease (S1P) and S2P. Their N-terminal fragments shuttle to the nucleus to activate gene transcription. Intriguingly, missense mutations at other positions of MBTPS2 cause the dermatological spectrum condition Ichthyosis Follicularis, Atrichia and Photophobia (IFAP) and Keratosis Follicularis Spinulosa Decalvans (KFSD) without clinical overlap with OI despite the proximity of some of the pathogenic variants. To understand how single amino acid substitutions in S2P can lead to non-overlapping phenotypes, we aimed to compare the molecular features of MBTPS2-OI and MBTPS2-IFAP/KFSD, with the ultimate goal to unravel the pathomechanisms underlying MBTPS2-OI. RNA-sequencing-based transcriptome profiling of primary skin fibroblasts from healthy controls (n = 4), MBTPS2-OI (n = 3), and MBTPS2-IFAP/KFSD (n = 2) patients was performed to identify genes that are differentially expressed in MBTPS2-OI and MBTPS2-IFAP/KFSD individuals compared to controls. We observed that SREBP-dependent genes are more downregulated in OI than in IFAP/KFSD. This is coupled to alterations in the relative abundance of fatty acids in MBTPS2-OI fibroblasts in vitro, while no consistent alterations in the sterol profile were observed. Few OASIS-dependent genes are suppressed in MBTPS2-OI, while BBF2H7- and ATF6-dependent genes are comparable between OI and IFAP/KFSD patients and control fibroblasts. Importantly, we identified genes involved in cartilage physiology that are differentially expressed in MBTPS2-OI but not in MBTPS2-IFAP/KFSD fibroblasts. In conclusion, our data provide clues to how pathogenic MBTPS2 mutations cause skeletal deformities via altered fatty acid metabolism or cartilage development that may affect bone development, mineralization and endochondral ossification.
Collapse
Affiliation(s)
- Pei Jin Lim
- Connective Tissue Unit, Division of Metabolism and Children's Research Centre, University Children's Hospital, Zurich, Switzerland.,University of Zürich, Zurich, Switzerland
| | - Severin Marfurt
- Connective Tissue Unit, Division of Metabolism and Children's Research Centre, University Children's Hospital, Zurich, Switzerland.,University of Zürich, Zurich, Switzerland
| | - Uschi Lindert
- Connective Tissue Unit, Division of Metabolism and Children's Research Centre, University Children's Hospital, Zurich, Switzerland.,University of Zürich, Zurich, Switzerland
| | - Lennart Opitz
- Functional Genomics Center Zurich, University of Zurich/ETH Zurich, Zurich, Switzerland
| | - Timothée Ndarugendamwo
- Connective Tissue Unit, Division of Metabolism and Children's Research Centre, University Children's Hospital, Zurich, Switzerland.,University of Zürich, Zurich, Switzerland
| | - Pakeerathan Srikanthan
- University of Zürich, Zurich, Switzerland.,Division of Clinical Chemistry and Biochemistry, University Children's Hospital Zurich, Zurich, Switzerland
| | - Martin Poms
- University of Zürich, Zurich, Switzerland.,Division of Clinical Chemistry and Biochemistry, University Children's Hospital Zurich, Zurich, Switzerland
| | - Martin Hersberger
- University of Zürich, Zurich, Switzerland.,Division of Clinical Chemistry and Biochemistry, University Children's Hospital Zurich, Zurich, Switzerland
| | - Claus-Dieter Langhans
- Department of Pediatrics, Centre for Pediatric and Adolescent Medicine, Division of Neuropediatrics and Metabolic Medicine, University Hospital, Heidelberg, Germany
| | - Dorothea Haas
- Department of Pediatrics, Centre for Pediatric and Adolescent Medicine, Division of Neuropediatrics and Metabolic Medicine, University Hospital, Heidelberg, Germany
| | - Marianne Rohrbach
- Connective Tissue Unit, Division of Metabolism and Children's Research Centre, University Children's Hospital, Zurich, Switzerland.,University of Zürich, Zurich, Switzerland
| | - Cecilia Giunta
- Connective Tissue Unit, Division of Metabolism and Children's Research Centre, University Children's Hospital, Zurich, Switzerland.,University of Zürich, Zurich, Switzerland
| |
Collapse
|
20
|
Leguit RJ, Raymakers RAP, Hebeda KM, Goldschmeding R. CCN2 (Cellular Communication Network factor 2) in the bone marrow microenvironment, normal and malignant hematopoiesis. J Cell Commun Signal 2021; 15:25-56. [PMID: 33428075 PMCID: PMC7798015 DOI: 10.1007/s12079-020-00602-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 12/20/2020] [Indexed: 02/06/2023] Open
Abstract
CCN2, formerly termed Connective Tissue Growth Factor, is a protein belonging to the Cellular Communication Network (CCN)-family of secreted extracellular matrix-associated proteins. As a matricellular protein it is mainly considered to be active as a modifier of signaling activity of several different signaling pathways and as an orchestrator of their cross-talk. Furthermore, CCN2 and its fragments have been implicated in the regulation of a multitude of biological processes, including cell proliferation, differentiation, adhesion, migration, cell survival, apoptosis and the production of extracellular matrix products, as well as in more complex processes such as embryonic development, angiogenesis, chondrogenesis, osteogenesis, fibrosis, mechanotransduction and inflammation. Its function is complex and context dependent, depending on cell type, state of differentiation and microenvironmental context. CCN2 plays a role in many diseases, especially those associated with fibrosis, but has also been implicated in many different forms of cancer. In the bone marrow (BM), CCN2 is highly expressed in mesenchymal stem/stromal cells (MSCs). CCN2 is important for MSC function, supporting its proliferation, migration and differentiation. In addition, stromal CCN2 supports the maintenance and longtime survival of hematopoietic stem cells, and in the presence of interleukin 7, stimulates the differentiation of pro-B lymphocytes into pre-B lymphocytes. Overexpression of CCN2 is seen in the majority of B-acute lymphoblastic leukemias, especially in certain cytogenetic subgroups associated with poor outcome. In acute myeloid leukemia, CCN2 expression is increased in MSCs, which has been associated with leukemic engraftment in vivo. In this review, the complex function of CCN2 in the BM microenvironment and in normal as well as malignant hematopoiesis is discussed. In addition, an overview is given of data on the remaining CCN family members regarding normal and malignant hematopoiesis, having many similarities and some differences in their function.
Collapse
Affiliation(s)
- Roos J. Leguit
- Department of Pathology, University Medical Center Utrecht, H04-312, P.O. Box 85500, 3508 GA Utrecht, The Netherlands
| | - Reinier A. P. Raymakers
- Department of Hematology, UMCU Cancer Center, Heidelberglaan 100 B02.226, 3584 CX Utrecht, The Netherlands
| | - Konnie M. Hebeda
- Department of Pathology, Radboud University Medical Centre, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Roel Goldschmeding
- Department of Pathology, University Medical Centre Utrecht, P.O. Box 85500, 3508 GA Utrecht, The Netherlands
| |
Collapse
|
21
|
Hayashi Y, Kawaki H, Hori M, Shintani K, Hasegawa T, Tanaka M, Kondoh N, Yoshida T, Kawano S, Tamaki Y. Evaluation of the mechanical properties and biocompatibility of gypsum-containing calcium silicate cements. Dent Mater J 2021; 40:863-869. [PMID: 33642445 DOI: 10.4012/dmj.2020-086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Mineral trioxide aggregate (MTA) cement is widely used in the field of endodontic treatment. We herein synthesized calcium silicates from calcium carbonate and silicon dioxide, with the aim of reducing the cost associated with the MTA. Additionally, we prepared gypsum-containing calcium silicate cement to reduce the setting time while enhancing the mechanical strength. We evaluated the physical properties of this cement and investigated the response of human dental pulp stem cells (hDPSCs) grown in culture media containing cement eluate. Our results revealed that calcium silicates could be easily synthesized in lab-scale. Furthermore, we demonstrate that gypsum addition helps shorten the setting time while increasing the compressive strength of dental cements. The synthesized gypsum-containing calcium silicate cement showed minimal cytotoxicity and did not inhibit the proliferation of hDPSCs. These results suggested that the newly developed calcium silicate material could be a promising pulp capping material.
Collapse
Affiliation(s)
- Yumiyo Hayashi
- Department of Endodontics, Division of Oral Functional Science and Rehabilitation, Asahi University School of Dentistry
| | - Harumi Kawaki
- Department of Oral Biochemistry, Division of Oral Structure, Function, and Development, Asahi University School of Dentistry
| | - Masaharu Hori
- Department of Endodontics, Division of Oral Functional Science and Rehabilitation, Asahi University School of Dentistry
| | - Kohei Shintani
- Department of Dental Materials Science, Division of Oral Functional Science and Rehabilitation, Asahi University School of Dentistry
| | - Tomoya Hasegawa
- Department of Endodontics, Division of Oral Functional Science and Rehabilitation, Asahi University School of Dentistry
| | - Masashi Tanaka
- Department of Endodontics, Division of Oral Functional Science and Rehabilitation, Asahi University School of Dentistry
| | - Nobuo Kondoh
- Department of Oral Biochemistry, Division of Oral Structure, Function, and Development, Asahi University School of Dentistry
| | - Takakazu Yoshida
- Department of Endodontics, Division of Oral Functional Science and Rehabilitation, Asahi University School of Dentistry
| | - Satoshi Kawano
- Department of Endodontics, Division of Oral Functional Science and Rehabilitation, Asahi University School of Dentistry
| | - Yukimichi Tamaki
- Department of Dental Materials Science, Division of Oral Functional Science and Rehabilitation, Asahi University School of Dentistry
| |
Collapse
|
22
|
CCN3 (NOV) Drives Degradative Changes in Aging Articular Cartilage. Int J Mol Sci 2020; 21:ijms21207556. [PMID: 33066270 PMCID: PMC7593953 DOI: 10.3390/ijms21207556] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/06/2020] [Accepted: 10/08/2020] [Indexed: 02/06/2023] Open
Abstract
Aging is a major risk factor of osteoarthritis, which is characterized by the degeneration of articular cartilage. CCN3, a member of the CCN family, is expressed in cartilage and has various physiological functions during chondrocyte development, differentiation, and regeneration. Here, we examine the role of CCN3 in cartilage maintenance. During aging, the expression of Ccn3 mRNA in mouse primary chondrocytes from knee cartilage increased and showed a positive correlation with p21 and p53 mRNA. Increased accumulation of CCN3 protein was confirmed. To analyze the effects of CCN3 in vitro, either primary cultured human articular chondrocytes or rat chondrosarcoma cell line (RCS) were used. Artificial senescence induced by H2O2 caused a dose-dependent increase in Ccn3 gene and CCN3 protein expression, along with enhanced expression of p21 and p53 mRNA and proteins, as well as SA-β gal activity. Overexpression of CCN3 also enhanced p21 promoter activity via p53. Accordingly, the addition of recombinant CCN3 protein to the culture increased the expression of p21 and p53 mRNAs. We have produced cartilage-specific CCN3-overexpressing transgenic mice, and found degradative changes in knee joints within two months. Inflammatory gene expression was found even in the rib chondrocytes of three-month-old transgenic mice. Similar results were observed in human knee articular chondrocytes from patients at both mRNA and protein levels. These results indicate that CCN3 is a new senescence marker of chondrocytes, and the overexpression of CCN3 in cartilage may in part promote chondrocyte senescence, leading to the degeneration of articular cartilage through the induction of p53 and p21.
Collapse
|
23
|
Regulation of cellular communication network factor 2 (CCN2) in breast cancer cells via the cell-type dependent interplay between CCN2 and glycolysis. J Oral Biosci 2020; 62:280-288. [DOI: 10.1016/j.job.2020.07.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/22/2020] [Accepted: 07/27/2020] [Indexed: 12/14/2022]
|
24
|
Dynamic CCN3 expression in the murine CNS does not confer essential roles in myelination or remyelination. Proc Natl Acad Sci U S A 2020; 117:18018-18028. [PMID: 32651278 PMCID: PMC7395501 DOI: 10.1073/pnas.1922089117] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Remyelination is a natural regenerative process driven by oligodendrocytes that occurs following myelin damage. Understanding this process holds therapeutic value for demyelinating diseases such as multiple sclerosis, in which remyelination can fail. CCN3 is a matricellular protein previously reported to enhance oligodendrocyte progenitor differentiation and myelination in vitro and ex vivo. Here, we show that despite extensive and dynamic expression in the murine CNS in homeostasis and following toxin-induced myelin damage, CCN3 is not required for myelination or remyelination in vivo. Yet, the anatomically distinct expression pattern suggests unidentified roles of CCN3 in a range of neurological processes. This investigation provides a framework for future investigations of the expression and role of CCN proteins in the CNS. CCN3 is a matricellular protein that promotes oligodendrocyte progenitor cell differentiation and myelination in vitro and ex vivo. CCN3 is therefore a candidate of interest in central nervous system (CNS) myelination and remyelination, and we sought to investigate the expression and role of CCN3 during these processes. We found CCN3 to be expressed predominantly by neurons in distinct areas of the CNS, primarily the cerebral cortex, hippocampus, amygdala, suprachiasmatic nuclei, anterior olfactory nuclei, and spinal cord gray matter. CCN3 was transiently up-regulated following demyelination in the brain of cuprizone-fed mice and spinal cord lesions of mice injected with lysolecithin. However, CCN3−/− mice did not exhibit significantly different numbers of oligodendroglia or differentiated oligodendrocytes in the healthy or remyelinating CNS, compared to WT controls. These results suggest that despite robust and dynamic expression in the CNS, CCN3 is not required for efficient myelination or remyelination in the murine CNS in vivo.
Collapse
|
25
|
Sogi C, Takeshita N, Jiang W, Kim S, Maeda T, Yoshida M, Oyanagi T, Ito A, Kimura S, Seki D, Takano I, Sakai Y, Fujiwara I, Kure S, Takano-Yamamoto T. Methionine Enkephalin Suppresses Osteocyte Apoptosis Induced by Compressive Force through Regulation of Nuclear Translocation of NFATc1. JBMR Plus 2020; 4:e10369. [PMID: 32666020 PMCID: PMC7340448 DOI: 10.1002/jbm4.10369] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 03/26/2020] [Accepted: 04/21/2020] [Indexed: 12/27/2022] Open
Abstract
Mechanical stress stimulates bone remodeling, which occurs through bone formation and resorption, resulting in bone adaptation in response to the mechanical stress. Osteocytes perceive mechanical stress loaded to bones and promote bone remodeling through various cellular processes. Osteocyte apoptosis is considered a cellular process to induce bone resorption during mechanical stress-induced bone remodeling, but the underlying molecular mechanisms are not fully understood. Recent studies have demonstrated that neuropeptides play crucial roles in bone metabolism. The neuropeptide, methionine enkephalin (MENK) regulates apoptosis positively and negatively depending on cell type, but the role of MENK in osteocyte apoptosis, followed by bone resorption, in response to mechanical stress is still unknown. Here, we examined the roles and mechanisms of MENK in osteocyte apoptosis induced by compressive force. We loaded compressive force to mouse parietal bones, resulting in a reduction of MENK expression in osteocytes. A neutralizing connective tissue growth factor (CTGF) antibody inhibited the compressive force-induced reduction of MENK. An increase in osteocyte apoptosis in the compressive force-loaded parietal bones was inhibited by MENK administration. Nuclear translocation of NFATc1 in osteocytes in the parietal bones was enhanced by compressive force. INCA-6, which inhibits NFAT translocation into nuclei, suppressed the increase in osteocyte apoptosis in the compressive force-loaded parietal bones. NFATc1-overexpressing MLO-Y4 cells showed increased expression of apoptosis-related genes. MENK administration reduced the nuclear translocation of NFATc1 in osteocytes in the compressive force-loaded parietal bones. Moreover, MENK suppressed Ca2+ influx and calcineurin and calmodulin expression, which are known to induce the nuclear translocation of NFAT in MLO-Y4 cells. In summary, this study shows that osteocytes expressed MENK, whereas the MENK expression was suppressed by compressive force via CTGF signaling. MENK downregulated nuclear translocation of NFATc1 probably by suppressing Ca2+ signaling in osteocytes and consequently inhibiting compressive force-induced osteocyte apoptosis, followed by bone resorption. © 2020 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Chisumi Sogi
- Department of Pediatrics, Graduate School of Medicine Tohoku University Sendai Japan
| | - Nobuo Takeshita
- Division of Orthodontics and Dentofacial Orthopedics Graduate School of Dentistry, Tohoku University Sendai Japan
| | - Wei Jiang
- Division of Orthodontics and Dentofacial Orthopedics Graduate School of Dentistry, Tohoku University Sendai Japan
| | | | - Toshihiro Maeda
- Division of Orthodontics and Dentofacial Orthopedics Graduate School of Dentistry, Tohoku University Sendai Japan
| | - Michiko Yoshida
- Division of Orthodontics and Dentofacial Orthopedics Graduate School of Dentistry, Tohoku University Sendai Japan
| | - Toshihito Oyanagi
- Division of Orthodontics and Dentofacial Orthopedics Graduate School of Dentistry, Tohoku University Sendai Japan
| | - Arata Ito
- Division of Orthodontics and Dentofacial Orthopedics Graduate School of Dentistry, Tohoku University Sendai Japan
| | - Seiji Kimura
- Division of Orthodontics and Dentofacial Orthopedics Graduate School of Dentistry, Tohoku University Sendai Japan
| | - Daisuke Seki
- Division of Orthodontics and Dentofacial Orthopedics Graduate School of Dentistry, Tohoku University Sendai Japan
| | - Ikuko Takano
- Division of Orthodontics and Dentofacial Orthopedics Graduate School of Dentistry, Tohoku University Sendai Japan
| | - Yuichi Sakai
- Minamihara Sakai Orthodontic Office Nagano Japan
| | - Ikuma Fujiwara
- Department of Pediatrics Sendai City Hospital Sendai Japan
| | - Shigeo Kure
- Department of Pediatrics, Graduate School of Medicine Tohoku University Sendai Japan
| | - Teruko Takano-Yamamoto
- Division of Orthodontics and Dentofacial Orthopedics Graduate School of Dentistry, Tohoku University Sendai Japan.,Department of Biomaterials and Bioengineering Faculty of Dental Medicine, Hokkaido University Sapporo Japan
| |
Collapse
|
26
|
Guinea fowl eggshell quantitative proteomics yield new findings related to its unique structural characteristics and superior mechanical properties. J Proteomics 2019; 209:103511. [PMID: 31493547 DOI: 10.1016/j.jprot.2019.103511] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 08/26/2019] [Accepted: 08/31/2019] [Indexed: 01/13/2023]
Abstract
The Guinea fowl eggshell is a bioceramic material with the remarkable mechanical property of being twice as strong as the chicken eggshell. Both eggshells are composed of 95% calcite and 3.5% organic matrix, which control its structural organization. Chicken eggshell is made of columnar calcite crystals arranged vertically. In the Guinea fowl, the same structure is observed in its inner half, followed by a dramatic change in crystal size and orientation in the outer region. Guinea fowl eggshell is thicker than chicken eggshell. Both structure and shell thickness confer a superior resistance to breakage compared to eggshells of other bird species. To understand the underlying mechanisms controlling the structural organization of this highly resistant material, we used quantitative proteomics to analyze the protein composition of the Guinea fowl eggshell organic matrix at key stages of the biomineralization process. We identified 149 proteins, which were compared to other bird eggshell proteomes and analyzed their potential functions. Among the 149 proteins, 9 are unique to Guinea fowl, some are involved in the control of the calcite precipitation (Lysozyme, Ovocleidin-17-like, Ovocleidin-116 and Ovalbumin), 61 are only found in the zone of microstructure shift and 17 are more abundant in this zone. SIGNIFICANCE: The avian eggshell is a critical physical barrier to protect the contents of this autonomous reproductive enclosure from physical and microbial assault. The Guinea fowl (Numida meleagris) eggshell exhibits a unique microstructure (texture), which confers exceptional mechanical properties compared to eggshells of other species. In order to understand the mechanisms that regulate formation of this texture in the Guinea fowl eggshell, we performed comparative quantitative proteomics at key stages of shell mineralization and particularly during the dramatic shift in shell microstructure. We demonstrate that the Guinea fowl eggshell proteome comprises 149 proteins, of which 61 were specifically associated with the change in size and orientation of calcite crystals. Comparative proteomics analysis with eggshell of other bird species leads to new insights into the biomineralization process. Moreover, our data represents a list of organic compounds as potential additives to regulate material design for industrial fabrication of ceramics. This information also provides molecular markers for efficient genomic selection of chicken strains to lay eggs with improved shell mechanical properties for enhanced food safety.
Collapse
|
27
|
Peidl A, Perbal B, Leask A. Yin/Yang expression of CCN family members: Transforming growth factor beta 1, via ALK5/FAK/MEK, induces CCN1 and CCN2, yet suppresses CCN3, expression in human dermal fibroblasts. PLoS One 2019; 14:e0218178. [PMID: 31170244 PMCID: PMC6553774 DOI: 10.1371/journal.pone.0218178] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 05/28/2019] [Indexed: 12/16/2022] Open
Abstract
The role of the microenvironment in driving connective tissue disease is being increasingly appreciated. Matricellular proteins of the CCN family are signaling modifiers that are secreted by cells into the extracellular matrix microenvironment where they have profound, context-dependent effects on organ development, homeostasis and disease. Indeed, CCN proteins are emergent targets for therapeutic intervention. Recent evidence suggests that, in vivo, CCN3 has effects opposing CCN2. Moreover, when CCN3 expression is high, CCN2 expression is low. That is, they appear to be regulated in a yin/yang fashion, leading to the hypothesis that the CCN2:CCN3 ratio is important to control tissue homeostasis. To begin to test the hypothesis that alterations in CCN2:CCN3 expression might be important in skin biology in vivo, we evaluated the relative ex vivo effects of the profibrotic protein TGFbeta1 on dermal fibroblasts on protein and RNA expression of CCN3 and CCN2, as well as the related protein CCN1. We also used signal transduction inhibitors to begin to identify the signal transduction pathways controlling the ability of fibroblasts to respond to TGFbeta1. As anticipated, CCN1 and CCN2 protein and mRNA were induced by TGFbeta1 in human dermal fibroblasts. This induction was blocked by TAK1, FAK, YAP1 and MEK inhibition. Conversely, TGFbeta1 suppressed CCN3 mRNA expression in a fashion insensitive to FAK, MEK, TAK1 or YAP1 inhibition. Unexpectedly, CCN3 protein was not detected in human dermal fibroblasts basally. These data suggest that, in dermal fibroblasts, the profibrotic protein TGFbeta1 has a divergent effect on CCN3 relative to CCN2 and CCN1, both at the mRNA and protein level. Given that the major source in skin in vivo of CCN proteins are fibroblasts, our data are consistent that alterations in CCN2/CCN1: CCN3 ratios in response to profibrotic agents such as TGFbeta1 may play a role in connective tissue pathologies including fibrosis.
Collapse
Affiliation(s)
- Alexander Peidl
- Department of Physiology and Pharmacology, University of Western Ontario, London, ON, Canada
| | | | - Andrew Leask
- Department of Dentistry, University of Western Ontario, London, ON, Canada
- * E-mail:
| |
Collapse
|
28
|
Xu R, Zhang Z, Toftdal MS, Møller AC, Dagnaes-Hansen F, Dong M, Thomsen JS, Brüel A, Chen M. Synchronous delivery of hydroxyapatite and connective tissue growth factor derived osteoinductive peptide enhanced osteogenesis. J Control Release 2019; 301:129-139. [PMID: 30880079 DOI: 10.1016/j.jconrel.2019.02.037] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 02/21/2019] [Accepted: 02/25/2019] [Indexed: 10/27/2022]
Abstract
In bone tissue engineering, electrospun fibrous scaffolds can provide excellent mechanical support, extracellular matrix mimicking components, such as 3D spacial fibrous environment for cell growth and controlled release of signaling molecules for osteogenesis. Here, a facile strategy comprising the incorporation of an osteogenic inductive peptide H1, derived from the cysteine knot (CT) domain of connective tissue growth factor (CTGF), in the core of Silk Fibroin (SF) was developed for osteogenic induction, synergistically with co-delivering hydroxyapatite (HA) from the shell of poly(l-lactic acid-co-ε-caprolactone) (PLCL). The core-shell nanofibrous structure was confirmed by transmission electron microscopy (TEM). Furthermore, the sustained released H1 has effectively promoted proliferation and osteoblastic differentiation of human induced pluripotent stem cells-derived mesenchymal stem cells (hiPS-MSCs). Moreover, after 8 weeks implantation in mice, this SF-H1/PLCL-HA composite induced bone tissue formation significantly faster than SF/PLCL as indicated by μCT. The present study is the first to demonstrate that release of short hydrophilic peptides derived from CTGF combined with HA potentiated the regenerative capacity for healing critical sized calvarial defect in vivo.
Collapse
Affiliation(s)
- Ruodan Xu
- Department of Engineering, Aarhus University, DK-8000 Aarhus C, Denmark; Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medicine Science, China
| | - Zhongyang Zhang
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, DK-8000 Aarhus C, Denmark
| | | | | | - Frederik Dagnaes-Hansen
- Institute of Biomedicine, Aarhus University, Wilhelm Meyers Allé 4, DK-8000 Aarhus C, Denmark
| | - Mingdong Dong
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, DK-8000 Aarhus C, Denmark.
| | - Jesper Skovhus Thomsen
- Institute of Biomedicine, Aarhus University, Wilhelm Meyers Allé 4, DK-8000 Aarhus C, Denmark
| | - Annemarie Brüel
- Institute of Biomedicine, Aarhus University, Wilhelm Meyers Allé 4, DK-8000 Aarhus C, Denmark
| | - Menglin Chen
- Department of Engineering, Aarhus University, DK-8000 Aarhus C, Denmark; Interdisciplinary Nanoscience Center (iNANO), Aarhus University, DK-8000 Aarhus C, Denmark.
| |
Collapse
|
29
|
de la Vega Gallardo N, Dittmer M, Dombrowski Y, Fitzgerald DC. Regenerating CNS myelin: Emerging roles of regulatory T cells and CCN proteins. Neurochem Int 2018; 130:104349. [PMID: 30513363 DOI: 10.1016/j.neuint.2018.11.024] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 11/19/2018] [Accepted: 11/30/2018] [Indexed: 02/08/2023]
Abstract
Efficient myelin regeneration in the central nervous system (CNS) requires the migration, proliferation and differentiation of oligodendrocyte progenitor cells (OPC) into myelinating oligodendrocytes. In demyelinating diseases such as multiple sclerosis (MS), this regenerative process can fail, and therapies targeting myelin repair are currently completely lacking in the clinic. The immune system is emerging as a key regenerative player in many tissues, such as muscle and heart. We recently reported that regulatory T cells (Treg) are required for efficient CNS remyelination. Furthermore, Treg secrete CCN3, a matricellular protein from the CCN family, implicated in regeneration of other tissues. Treg-derived CCN3 promoted oligodendrocyte differentiation and myelination. In contrast, previous studies showed that CCN2 inhibited myelination. These studies highlight the need for further scrutiny of the roles that CCN proteins play in myelin development and regeneration. Collectively, these findings open up exciting avenues of research to uncover the regenerative potential of the adaptive immune system.
Collapse
Affiliation(s)
- Nira de la Vega Gallardo
- Wellcome Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Northern Ireland, UK
| | - Marie Dittmer
- Wellcome Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Northern Ireland, UK
| | - Yvonne Dombrowski
- Wellcome Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Northern Ireland, UK
| | - Denise C Fitzgerald
- Wellcome Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Northern Ireland, UK.
| |
Collapse
|
30
|
Kamatsuki Y, Aoyama E, Furumatsu T, Miyazawa S, Maehara A, Yamanaka N, Nishida T, Kubota S, Ozaki T, Takigawa M. Possible reparative effect of low-intensity pulsed ultrasound (LIPUS) on injured meniscus. J Cell Commun Signal 2018; 13:193-207. [PMID: 30460593 DOI: 10.1007/s12079-018-0496-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 11/12/2018] [Indexed: 12/11/2022] Open
Abstract
Menisci are a pair of crescent-shaped fibrocartilages, particularly of which their inner region of meniscus is an avascular tissue. It has characteristics similar to those of articular cartilage, and hence is inferior in healing. We previously reported that low-intensity pulsed ultrasound (LIPUS) treatment stimulates the production of CCN2/CTGF, a protein involved in repairing articular cartilage, and the gene expression of major cartilage matrices such as type II collagen and aggrecan in cultured chondrocytes. Therefore, in this present study, we investigated whether LIPUS has also favorable effect on meniscus cells and tissues. LIPUS applied with a 60 mW/cm2 intensity for 20 min stimulated the gene expression and protein production of CCN2 via ERK and p38 signaling pathways, as well as gene expression of SOX9, aggrecan, and collagen type II in human inner meniscus cells in culture, and slightly stimulated the gene expression of CCN2 and promoted the migration in human outer meniscus cells in culture. LIPUS also induced the expression of Ccn2, Sox9, Col2a1, and Vegf in rat intact meniscus. Furthermore, histological evaluations showed that LIPUS treatment for 1 to 4 weeks promoted healing of rat injured lateral meniscus, as evidenced by better and earlier angiogenesis and extracellular matrix synthesis. The data presented indicate that LIPUS treatment might prevent meniscus from degenerative change and exert a reparative effect on injured meniscus via up-regulation of repairing factors such as CCN2 and that it might thus be useful for treatment of an injured meniscus as a non-invasive therapy.
Collapse
Affiliation(s)
- Yusuke Kamatsuki
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kitaku, Okayama, 700-8558, Japan.,Advanced Research Center for Oral and Craniofacial Sciences (ARCOCS), Okayama University Dental School/Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
| | - Eriko Aoyama
- Advanced Research Center for Oral and Craniofacial Sciences (ARCOCS), Okayama University Dental School/Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
| | - Takayuki Furumatsu
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kitaku, Okayama, 700-8558, Japan
| | - Shinichi Miyazawa
- Department of Intelligent Orthopedic System, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Kita-ku, Okayama, Japan
| | - Ami Maehara
- Department of Intelligent Orthopedic System, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Kita-ku, Okayama, Japan
| | | | - Takashi Nishida
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
| | - Satoshi Kubota
- Advanced Research Center for Oral and Craniofacial Sciences (ARCOCS), Okayama University Dental School/Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan.,Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
| | - Toshifumi Ozaki
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kitaku, Okayama, 700-8558, Japan
| | - Masaharu Takigawa
- Advanced Research Center for Oral and Craniofacial Sciences (ARCOCS), Okayama University Dental School/Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan.
| |
Collapse
|
31
|
Perbal B, Tweedie S, Bruford E. The official unified nomenclature adopted by the HGNC calls for the use of the acronyms, CCN1-6, and discontinuation in the use of CYR61, CTGF, NOV and WISP 1-3 respectively. J Cell Commun Signal 2018; 12:625-629. [PMID: 30393824 DOI: 10.1007/s12079-018-0491-1] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 10/18/2018] [Indexed: 12/01/2022] Open
Abstract
An examination of the confusion generated around the use of different acronyms for CCN proteins has been performed by the editors of the HUGO Gene Nomenclature Committee upon the request of the International CCN Society Scientific Committee. After careful consideration of the various arguments, and after polling the community of researchers who have published in the field over the past ten years, the HGNC have decided to adopt and approve the CCN nomenclature for all 6 genes. Effective October 2018, the genes referred to as CYR61, CTGF, NOV and WISP1-3 will be respectively designated by the gene symbols CCN1-6 with corresponding gene names « cellular communication Q2 network factor 1-6 ». We believe that this decision will be a step towards better communication between researchers working in the field, and will set the stage for fruitful collaborative projects. Accordingly, the Journal of Cell Communication and Signaling, the official journal of the International CCN Society, available both in print and online, constitutes a unique window into the CCN field. This official nomenclature will benefit the international scientific community that is supported by the established and renowned professionalism of the Springer-Nature publishing group.
Collapse
Affiliation(s)
| | - Susan Tweedie
- HUGO Gene Nomenclature Committee, EMBL-EBI, Hinxton, CB10 1SD, UK
| | - Elspeth Bruford
- HUGO Gene Nomenclature Committee, EMBL-EBI, Hinxton, CB10 1SD, UK
| |
Collapse
|
32
|
Hiyama A, Morita K, Sakai D, Watanabe M. CCN family member 2/connective tissue growth factor (CCN2/CTGF) is regulated by Wnt-β-catenin signaling in nucleus pulposus cells. Arthritis Res Ther 2018; 20:217. [PMID: 30268161 PMCID: PMC6162946 DOI: 10.1186/s13075-018-1723-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Accepted: 09/11/2018] [Indexed: 12/15/2022] Open
Abstract
Background The aims of this study were to investigate the gene expression of CCN family members in rat intervertebral disc (IVD) cells and to examine whether Wnt–β-catenin signaling regulates the expression of CCN family 2 (CCN2)/connective tissue growth factor (CTGF) in rat nucleus pulposus (NP) cells. Methods The gene expression of CCN family members were assessed in rat IVD cells using real-time reverse transcription polymerase chain reaction (RT-PCR). The expression pattern of CCN2 was also assessed in rat IVD cells using western blot and immunohistochemical analyses. Gain-of-function and loss-of-function experiments were performed to identify the mechanisms by which Wnt–β-catenin signaling influences the activity of the CCN2 promoter. To further determine if the mitogen-activated protein kinase (MAPK) pathway is required for the Wnt–β-catenin signaling-induced regulation of CCN2 expression in the NP cells, CCN2 expression was analyzed by reporter assay, RT-PCR and western blot analysis. Results CCN2 messenger RNA (mRNA) and protein were expressed in rat IVDs. Expression of CCN2 was significantly higher than for mRNA of other CCN family members in both rat NP and annulus fibrosus (AF) cells. The relative activity of the CCN2 promoter decreased 24 h after treatment with 6-bromoindirubin-3′-oxime (1.0 μM) (0.773 (95% 0.735, 0.812) P = 0.0077) in NP cells. In addition, treatment with the WT–β-catenin vector (500 ng) significantly decreased CCN2 promoter activity (0.688 (95% 0.535, 0.842) P = 0.0063), whereas β-catenin small interfering RNA (500 ng) significantly increased CCN2 promoter activity (1.775 (95% 1.435, 2.115) P < 0.001). Activation of Wnt–β-catenin signaling decreased the expression of CCN2 mRNA and protein by NP cells. Regulation of CCN2 by Wnt–β-catenin signaling involved the MAPK pathway in rat NP cells. Conclusions This study shows that Wnt–β-catenin signaling regulates the expression of CCN2 through the MAPK pathway in NP cells. Understanding the balance between Wnt–β-catenin signaling and CCN2 is necessary for developing therapeutic alternatives for the treatment of IVD degeneration. Electronic supplementary material The online version of this article (10.1186/s13075-018-1723-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Akihiko Hiyama
- Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan. .,Research Center for Regenerative Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan.
| | - Kosuke Morita
- Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan.,Research Center for Regenerative Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| | - Daisuke Sakai
- Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan.,Research Center for Regenerative Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| | - Masahiko Watanabe
- Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan.,Research Center for Regenerative Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| |
Collapse
|
33
|
Perbal B. The concept of the CCN protein family revisited: a centralized coordination network. J Cell Commun Signal 2018; 12:3-12. [PMID: 29470822 DOI: 10.1007/s12079-12018-10455-12075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 01/24/2018] [Indexed: 05/28/2023] Open
Abstract
The wide array of biological properties attributed to the CCN family of proteins (Perbal in Lancet 363(9402):62-64, 2004) led me to reconsider the possible relationship and roles that these proteins may play as a team, instead of acting on their own as individual regulators in various signaling pathways. The dynamic model which I present in this review stems from the contribution of the biological properties that we established for CCN3, one of the three founding members of the CCN family, which was identified by our group as the first CCN protein showing growth inhibitory properties (1992), expressed mainly in quiescent cells (1996), and showing anti-tumor activities in several cellular models both ex vivo and in vivo. At the present time CCN3 is the only member of the family that has been reported to negatively act on the progression of the cell cycle. The unique dual localisation of CCN3 in the nucleus and outside cells, either at the membrane or in the extracellular matrix, that I first established in 1999, and that now appears to be shared by several other CCN proteins, is a unique essential feature which can no longer be ignored. Based on the structural and functional properties of CCN3, shared by most of the CCN family members, I propose an « all in one » concept in which CCN proteins are team members with specific functions that are aimed at the same goal. This model accounts both for the functional specificity of the various CCN proteins, their sequential and opposite or complementary effects in various biological context, and for the biological consequences of their physical interaction and biological cross-regulation.
Collapse
Affiliation(s)
- Bernard Perbal
- Université Côte d'Azur, CNRS, GREDEG, International CCN Society, Nice, France.
| |
Collapse
|
34
|
Perbal B. The concept of the CCN protein family revisited: a centralized coordination network. J Cell Commun Signal 2018; 12:3-12. [PMID: 29470822 DOI: 10.1007/s12079-018-0455-5] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 01/24/2018] [Indexed: 11/30/2022] Open
Abstract
The wide array of biological properties attributed to the CCN family of proteins (Perbal in Lancet 363(9402):62-64, 2004) led me to reconsider the possible relationship and roles that these proteins may play as a team, instead of acting on their own as individual regulators in various signaling pathways. The dynamic model which I present in this review stems from the contribution of the biological properties that we established for CCN3, one of the three founding members of the CCN family, which was identified by our group as the first CCN protein showing growth inhibitory properties (1992), expressed mainly in quiescent cells (1996), and showing anti-tumor activities in several cellular models both ex vivo and in vivo. At the present time CCN3 is the only member of the family that has been reported to negatively act on the progression of the cell cycle. The unique dual localisation of CCN3 in the nucleus and outside cells, either at the membrane or in the extracellular matrix, that I first established in 1999, and that now appears to be shared by several other CCN proteins, is a unique essential feature which can no longer be ignored. Based on the structural and functional properties of CCN3, shared by most of the CCN family members, I propose an « all in one » concept in which CCN proteins are team members with specific functions that are aimed at the same goal. This model accounts both for the functional specificity of the various CCN proteins, their sequential and opposite or complementary effects in various biological context, and for the biological consequences of their physical interaction and biological cross-regulation.
Collapse
Affiliation(s)
- Bernard Perbal
- Université Côte d'Azur, CNRS, GREDEG, International CCN Society, Nice, France.
| |
Collapse
|
35
|
Abstract
Western blotting is widely used for protein analysis. We routinely perform such analysis for evaluating the production levels of CCN family proteins in a variety of cells under various conditions. In this chapter, we describe our Western blotting protocol to estimate protein production profiles of CCN family members after having assessed the specificity of the antibodies against each CCN member protein to ensure no cross-reaction with other CCN member proteins.
Collapse
|
36
|
Akashi S, Nishida T, El-Seoudi A, Takigawa M, Iida S, Kubota S. Metabolic regulation of the CCN family genes by glycolysis in chondrocytes. J Cell Commun Signal 2017; 12:245-252. [PMID: 29129024 DOI: 10.1007/s12079-017-0420-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 10/13/2017] [Indexed: 12/31/2022] Open
Abstract
The CCN family consists of 6 genes in the mammalian genome and produces multifunctional proteins involved in a variety of biological processes. Recent reports indicate the profound roles of CCN2 in energy metabolism in chondrocytes, and Ccn2 deficiency is known to alter the expression of 2 other family members including Ccn3. However, almost nothing is known concerning the regulation of the CCN family genes by energy metabolism. In order to gain insight into this critical issue, we initially and comprehensively evaluated the effect of inhibition of glycolysis on the expression of all of the CCN family genes in chondrocytic cells. Upon the inhibition of a glycolytic enzyme, repression of CCN2 expression was observed, whereas CCN3 expression was conversely induced. Similar repression of CCN2 was conferred by the inhibition of aerobic ATP production, which, however, did not induce CCN3 expression. In contrast, glucose starvation significantly enhanced the expression of CCN3 in those cells. The results of a reporter gene assay using a molecular construct containing a CCN3 proximal promoter revealed a dose-dependent induction of the CCN3 promoter activity by the glycolytic inhibitor in chondrocytic cells. These results unveiled a critical role of glycolytic activity in the regulation of CCN2 and CCN3, which activity mediated the mutual regulation of these 2 major CCN family members in chondrocytes.
Collapse
Affiliation(s)
- Sho Akashi
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan.,Department of Oral and Maxillofacial Reconstructive Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
| | - Takashi Nishida
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
| | - Abdellatif El-Seoudi
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
| | - Masaharu Takigawa
- Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Dental School, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan.
| | - Seiji Iida
- Department of Oral and Maxillofacial Reconstructive Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
| | - Satoshi Kubota
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan. .,Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Dental School, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan.
| |
Collapse
|
37
|
Janune D, Abd El Kader T, Aoyama E, Nishida T, Tabata Y, Kubota S, Takigawa M. Novel role of CCN3 that maintains the differentiated phenotype of articular cartilage. J Bone Miner Metab 2017; 35:582-597. [PMID: 27853940 DOI: 10.1007/s00774-016-0793-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 09/25/2016] [Indexed: 02/07/2023]
Abstract
Knowledge of the microenvironment of articular cartilage in health and disease is the key to accomplishing fundamental disease-modifying treatments for osteoarthritis. The proteins comprising the CCN Family are matricellular proteins with a remarkable relevance within the context of cartilage metabolism. CCN2 displays a great capability for regenerating articular cartilage, and CCN3 has been shown to activate the expression of genes related to articular chondrocytes and to repress genes related to endochondral ossification in epiphyseal chondrocytes. Moreover, mice lacking CCN3 protein have been shown to display ostearthritic changes in their knee articular cartilage. In this study, we employed a monoiodoacetic acid (MIA)-induced osteoarthritic model to investigate whether osteoarthritic changes in the cartilage are reciprocally accompanied by CCN3 down-regulation and an inducible overexpression system to evaluate the effects of CCN3 on articular chondrocytes in vitro. Finally, we also investigated the effects of exogenous CCN3 in vivo during the early stages of MIA-induced osteoarthritis. We discovered that CCN3 is expressed by articular chondrocytes in normal rat knees, whereas it is rapidly down-regulated in osteoarthritic knees. In vitro, we also discovered that CCN3 increases the proteoglycan accumulation, the gene expression of type II collagen, tenascin-C and lubricin, as well as the protein production of tenascin-C and lubricin in articular chondrocytes. In vivo, it was discovered that exogenous CCN3 increased tidemark integrity and produced an increased production of lubricin protein. The potential utility of CCN3 as a future therapeutic agent and possible strategies to improve its therapeutic functions are also discussed.
Collapse
Affiliation(s)
- Danilo Janune
- Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Dental School, Okayama, Japan
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
| | - Tarek Abd El Kader
- Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Dental School, Okayama, Japan
| | - Eriko Aoyama
- Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Dental School, Okayama, Japan
| | - Takashi Nishida
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
| | - Yasuhiko Tabata
- Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| | - Satoshi Kubota
- Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Dental School, Okayama, Japan.
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan.
| | - Masaharu Takigawa
- Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Dental School, Okayama, Japan.
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan.
| |
Collapse
|
38
|
Aker L, Ghannam M, Alzuabi MA, Jumah F, Alkhdour SM, Mansour S, Samara A, Cronk K, Massengale J, Holsapple J, Adeeb N, Oskouian RJ, Tubbs RS. Molecular Biology and Interactions in Intervertebral Disc Development, Homeostasis, and Degeneration, with Emphasis on Future Therapies: A Systematic Review. ACTA ACUST UNITED AC 2017. [DOI: 10.26632/ss.3.2017.1.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
39
|
Catabolic effects of FGF-1 on chondrocytes and its possible role in osteoarthritis. J Cell Commun Signal 2017; 11:255-263. [PMID: 28343287 DOI: 10.1007/s12079-017-0384-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 02/21/2017] [Indexed: 02/02/2023] Open
Abstract
Fibroblast growth factor 1 (FGF-1) is a classical member of the FGF family and is produced by chondrocytes cultured from osteoarthritic patients. Also, this growth factor was shown to bind to CCN family protein 2 (CCN2), which regenerates damaged articular cartilage and counteracts osteoarthritis (OA) in an animal model. However, the pathophysiological role of FGF-1 in cartilage has not been well investigated. In this study, we evaluated the effects of FGF-1 in vitro and its production in vivo by use of an OA model. Treatment of human chondrocytic cells with FGF-1 resulted in marked repression of genes for cartilaginous extracellular matrix components, whereas it strongly induced matrix metalloproteinase 13 (MMP-13), representing its catabolic effects on cartilage. Interestingly, expression of the CCN2 gene was dramatically repressed by FGF-1, which repression eventually caused the reduced production of CCN2 protein from the chondrocytic cells. The results of a reporter gene assay revealed that this repression could be ascribed, at least in part, to transcriptional regulation. In contrast, the gene expression of FGF-1 was enhanced by exogenous FGF-1, indicating a positive feedback system in these cells. Of note, induction of FGF-1 was observed in the articular cartilage of a rat OA model. These results collectively indicate a pathological role of FGF-1 in OA development, which includes an insufficient cartilage regeneration response caused by CCN2 down regulation.
Collapse
|
40
|
Nishida T, Kubota S, Takigawa M. Cell Biological Assays for Measuring Chondrogenic Activities of CCN2 Protein. Methods Mol Biol 2017; 1489:219-237. [PMID: 27734380 DOI: 10.1007/978-1-4939-6430-7_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Growth-plate chondrocytes undergo proliferation, maturation, hypertrophic differentiation, and calcification; and these processes can be reproduced in vitro in a chondrocyte culture system. Using this system, we have shown that CCN family protein 2/connective tissue growth factor (CCN2/CTGF) promotes all stages of proliferation, maturation, hypertrophic differentiation, and calcification, thus suggesting that CCN2 is a multifunctional growth factor for chondrocytes and plays important roles in chondrocyte proliferation and differentiation. In this chapter, we describe how to evaluate CCN2 functions in these processes occurring in cultured chondrocytes. Evaluation strategies for cell proliferation include measuring DNA synthesis by [3H]-thymidine incorporation, cellular metabolic activity, and cell number with a hemocytometer. Next, evaluation strategies to assess maturation are analysis of the gene expression of markers of mature chondrocytes, and examination of proteoglycan and collagen synthesis by using radioactive compounds. In addition, cytohistochemical detection of glycosaminoglycans (GAGs), such as chondroitin sulfate, by use of alcian blue and toluidine blue staining is useful to evaluate chondrocyte maturation. These methods can be also used for evaluation of physiological functions of CCN2 in permanent chondrocytes such as articular and auricular chondrocytes, which do not calcify under physiological conditions. Next, evaluation of hypertrophic differentiation is performed by detecting type X collagen, which is specific marker of hypertrophic chondrocytes, and by measuring alkaline phosphatase (ALP) activity. Finally, evaluation of calcification is performed by detecting matrix calcification by use of alizarin red staining and by examining the incorporation of 45Ca into cartilaginous matrix. These methods would be useful for the evaluation not only of CCN2 but also of its derivatives and other CCN proteins.
Collapse
Affiliation(s)
- Takashi Nishida
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Kita-ku, Okayama, 700-8525, Japan.
| | - Satoshi Kubota
- Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Dental School/Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
- Department of Membrane Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Masaharu Takigawa
- Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Dental School/Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Kita-ku, Okayama, 700-8525, Japan.
| |
Collapse
|
41
|
Takano-Yamamoto T, Fukunaga T, Takeshita N. Gene Expression Analysis of CCN Protein in Bone Under Mechanical Stress. Methods Mol Biol 2017; 1489:283-308. [PMID: 27734385 DOI: 10.1007/978-1-4939-6430-7_26] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
To investigate mechanical-dependent bone remodeling, we had previously applied various types of mechanical loading onto the teeth of rats and mice. In vitro cultured bone cells were then used to elucidate the mechanisms underlying the specific phenomenon revealed by in vivo experiments. This review describes the techniques used to upregulate CCN2 expression in bone cells produced by different types of mechanical stress, such as fluid shear stress and substrate strain in vitro, and compression or tension force in vivo.
Collapse
Affiliation(s)
- Teruko Takano-Yamamoto
- Division of Orthodontics and Dentofacial Orthopedics, Tohoku University Graduate School of Dentistry, 4-1, Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan.
| | - Tomohiro Fukunaga
- Division of Orthodontics and Dentofacial Orthopedics, Tohoku University Graduate School of Dentistry, 4-1, Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan
| | - Nobuo Takeshita
- Division of Orthodontics and Dentofacial Orthopedics, Tohoku University Graduate School of Dentistry, 4-1, Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan
| |
Collapse
|
42
|
Abstract
Immunohistochemistry is a major technique to determine the distribution and localization of differentially produced proteins in the context of an intact tissue. It exploits one of the properties of antibodies, specific binding to an antigen, i.e., to the epitope of its target protein, in combination with a color-developing enzymatic reaction or tagged fluorophore. We have clarified the spatial and temporal expression patterns of CCN family proteins in several different types of animal tissues by using this immunohistochemical technique to support our corresponding data obtained in vitro. In this chapter, we provide our protocol for immunohistochemistry optimized for paraffin-embedded sections after having determined the optimal conditions for the use of antibodies against each member of the CCN family.
Collapse
Affiliation(s)
- Harumi Kawaki
- Department of Oral Biochemistry, Division of Oral Structure, Function, and Development, Asahi University School of Dentistry, Gifu, Japan
| | - Satoshi Kubota
- Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Dental School/Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
- Department of MembraneBiochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Masaharu Takigawa
- Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Dental School/Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Kita-ku, Okayama, 700-8525, Japan.
| |
Collapse
|
43
|
Protein Imaging of CCN2 and CCN3 in Living Cells. Methods Mol Biol 2016. [PMID: 27734379 DOI: 10.1007/978-1-4939-6430-7_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Recent progress in molecular imaging technology has had a strong impact on improving our understanding of molecular translocation, receptor internalization, and interactions in living cells. The protocol in this chapter introduces an optimized technique for intracellular localization of CCN2 and CCN3 in live cells, one using GFP-tagged CCN2 and Halo-tagged CCN3.
Collapse
|
44
|
Analysis of Expression of CCN Family Genes in Skeletal Tissue-Derived Cells. Methods Mol Biol 2016. [PMID: 27734363 DOI: 10.1007/978-1-4939-6430-7_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
The quantitative reverse transcription polymerase chain reaction or real-time PCR has become a routine technique for the detection and comparison of amounts of specific mRNA transcripts, done by measuring amplified levels of specific cDNAs. In this chapter, we provide our real-time RT-PCR experimental procedure using SYBR Green I for the quantitative analysis of CCN family gene expression. Especially, we describe the extraction and purification steps for RNA derived from mesenchymal cells, such as chondrocytes and osteoblasts that produce a large amount of extracellular matrix in detail.
Collapse
|
45
|
Analysis of Signaling Pathways Activated by CCN Proteins. Methods Mol Biol 2016. [PMID: 27734373 DOI: 10.1007/978-1-4939-6430-7_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
CCN family proteins activate multiple intracellular phosphorylated kinase cascades to yield the multiple physiological functions of a variety of target cells. In this chapter, we describe our protocol examining the effects of these proteins on signal transduction pathways, especially mitogen-activated protein kinase cascades, activated by CCN member proteins, which examinations have been carried out mainly by using Western blotting methodologies.
Collapse
|
46
|
Perbal A, Perbal B. The CCN family of proteins: a 25th anniversary picture. J Cell Commun Signal 2016; 10:177-190. [PMID: 27581423 DOI: 10.1007/s12079-016-0340-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 07/20/2016] [Indexed: 11/30/2022] Open
Abstract
The CCN family of proteins is composed of six members, which are now well recognized as major players in fundamental biological processes. The first three CCN proteins discovered were designated CYR61, CTGF, and NOV because of the context in which they were identified. Both CYR61 and CTGF were discovered in normal cells, whereas NOV was identified in tumors. Soon after their discovery, it was established that they shared important and unique structural features and distinct biological properties. Based on these structural considerations, the three proteins were proposed to belong to a family that was designated CCN by P. Bork. Hence the CCN1, CCN2 and CCN3 acronyms. The family grew to six members a few years later with the description of three proteins WISP-1, WISP-2 and WISP-3 (CCN4, CCN5 and CCN6), that shared the same tetramodular and conserved structural features. With the functions of the CCN proteins being uncovered, this raised a nomenclature problem. A scientific committee convened in Saint Malo (France) proposed to apply the CCN nomenclature to the six members of the family. Although the unified nomenclature was proposed in order to avoid serious misconceptions and lack of precision associated with the use of the old acronyms, the acceptance of the new acronyms has taken time. In order to evaluate how the use of disparate nomenclatures have had an impact on the CCN protein field, we conducted a survey of the articles that have been published in this area since the discovery of the first CCN proteins and inception of the field. We report in this manuscript the confusion and serious deleterious scientific consequences that have stemmed from a disorganized usage of several unrelated acronyms. The conclusions that we have reached call for a unification that needs to overcome personal habits and feelings. Instead of allowing the CCN field to fully crystalize and gain the recognition that it deserves the usage of many different acronyms represents a danger that everyone must fight against in order to avoid its deliquescence. We hope that the considerations discussed in the present article will encourage all authors working in the CCN field to work jointly and succeed in building a strong and coherent CCN scientific community that will benefit all of us.
Collapse
Affiliation(s)
| | - Bernard Perbal
- Université Côte d'Azur, CNRS, GREDEG, France and International CCN Society, Paris, France.
| |
Collapse
|
47
|
CCN family of proteins: critical modulators of the tumor cell microenvironment. J Cell Commun Signal 2016; 10:229-240. [PMID: 27517291 DOI: 10.1007/s12079-016-0346-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Accepted: 08/02/2016] [Indexed: 02/07/2023] Open
Abstract
The CCN family of proteins consisting of CCN1 (Cyr61), CCN2 (CTGF), CCN3 (NOV), CCN4 (WISP-1), CCN5 (WISP-2) and CCN6 (WISP-3) are considered matricellular proteins operating essentially in the extracellular microenvironment between cells. Evidence has also been gradually building since their first discovery of additional intracellular roles although the major activity is triggered at the cell membrane. The proteins consist of 4 motifs, a signal peptide (for secretion} followed consecutively by the IGFBP, VWC, TSP1 and CT (C-terminal cysteine knot domain) motifs, which signify their potential binding partners and functional connections to a variety of key regulators of physiological processes. With respect to cancer it is now clear that, whereas certain members can facilitate tumor behavior and progression, others can competitively counter the process. It is therefore clear that the net outcome of biological interactions in the matrix and what gets signaled or inhibited can be a function of the interplay of these CCN 1-6 proteins. Because the CCN proteins further interact with other key proteins, like growth factors in the matrix, the balance is not only important but can vary dynamically with the physiological states of tumor cells and the surrounding normal cells. The tumor niche with its many cell players has surfaced as a critical determinant of tumor behavior, invasiveness, and metastasis. It is in this context that CCN proteins should be investigated with the potential of being recognized and validated for future therapeutic approaches.
Collapse
|
48
|
Hara C, Kubota S, Nishida T, Hiasa M, Hattori T, Aoyama E, Moriyama Y, Kamioka H, Takigawa M. Involvement of multiple CCN family members in platelets that support regeneration of joint tissues. Mod Rheumatol 2016; 26:940-949. [PMID: 26915735 DOI: 10.3109/14397595.2016.1155255] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVES Platelet-rich plasma (PRP) has been widely used to enhance the regeneration of damaged joint tissues, such as osteoarthritic and rheumatoid arthritic cartilage. The aim of this study is to clarify the involvement of all of the CCN family proteins that are crucially associated with joint tissue regeneration. METHODS Cyr61-CTGF-NOV (CCN) family proteins in human platelets and megakaryocytic cells were comprehensively analyzed by Western blotting analysis. Production of CCN family proteins in megakaryocytes in vivo was confirmed by immunofluorescence analysis of mouse bone marrow cells. Effects of CCN family proteins found in platelets on chondrocytes were evaluated by using human chondrocytic HCS-2/8 cells. RESULTS Inclusion of CCN2, a mesenchymal tissue regenerator, was confirmed. Of note, CCN3, which counteracts CCN2, was newly found to be encapsulated in platelets. Interestingly, these two family members were not detectable in megakaryocytic cells, but their external origins were suggested. Furthermore, we found for the first time CCN5 and CCN1 that inhibits ADAMTS4 in both platelets and megakaryocytes. Finally, application of a CCN family cocktail mimicking platelets onto HCS-2/8 cells enhanced their chondrocytic phenotype. CONCLUSIONS Multiple inclusion of CCN1, 2 and 3 in platelets was clarified, which supports the harmonized regenerative potential of PRP in joint therapeutics.
Collapse
Affiliation(s)
- Chikako Hara
- a Department of Biochemistry and Molecular Dentistry , and.,b Department of Orthodontics , Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences , Okayama , Japan
| | - Satoshi Kubota
- a Department of Biochemistry and Molecular Dentistry , and.,c Advanced Research Center for Oral and Craniofacial Sciences , Okayama University Dental School , Okayama , Japan , and
| | | | - Miki Hiasa
- d Department of Membrane Biochemistry , Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences , Okayama , Japan
| | - Takako Hattori
- a Department of Biochemistry and Molecular Dentistry , and
| | - Eriko Aoyama
- c Advanced Research Center for Oral and Craniofacial Sciences , Okayama University Dental School , Okayama , Japan , and
| | - Yoshinori Moriyama
- d Department of Membrane Biochemistry , Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences , Okayama , Japan
| | - Hiroshi Kamioka
- b Department of Orthodontics , Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences , Okayama , Japan
| | - Masaharu Takigawa
- a Department of Biochemistry and Molecular Dentistry , and.,c Advanced Research Center for Oral and Craniofacial Sciences , Okayama University Dental School , Okayama , Japan , and
| |
Collapse
|
49
|
Zhang Y, Sheu TJ, Hoak D, Shen J, Hilton MJ, Zuscik MJ, Jonason JH, O’Keefe RJ. CCN1 Regulates Chondrocyte Maturation and Cartilage Development. J Bone Miner Res 2016; 31:549-59. [PMID: 26363286 PMCID: PMC4822413 DOI: 10.1002/jbmr.2712] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 08/27/2015] [Accepted: 09/10/2015] [Indexed: 01/31/2023]
Abstract
WNT/β-CATENIN signaling is involved in multiple aspects of skeletal development, including chondrocyte differentiation and maturation. Although the functions of β-CATENIN in chondrocytes have been extensively investigated through gain-of-function and loss-of-function mouse models, the precise downstream effectors through which β-CATENIN regulates these processes are not well defined. Here, we report that the matricellular protein, CCN1, is induced by WNT/β-CATENIN signaling in chondrocytes. Specifically, we found that β-CATENIN signaling promotes CCN1 expression in isolated primary sternal chondrocytes and both embryonic and postnatal cartilage. Additionally, we show that, in vitro, CCN1 overexpression promotes chondrocyte maturation, whereas inhibition of endogenous CCN1 function inhibits maturation. To explore the role of CCN1 on cartilage development and homeostasis in vivo, we generated a novel transgenic mouse model for conditional Ccn1 overexpression and show that cartilage-specific CCN1 overexpression leads to chondrodysplasia during development and cartilage degeneration in adult mice. Finally, we demonstrate that CCN1 expression increases in mouse knee joint tissues after meniscal/ligamentous injury (MLI) and in human cartilage after meniscal tear. Collectively, our data suggest that CCN1 is an important regulator of chondrocyte maturation during cartilage development and homeostasis.
Collapse
Affiliation(s)
- Yongchun Zhang
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY, USA
| | - Tzong-jen Sheu
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, USA
| | - Donna Hoak
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, USA
| | - Jie Shen
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Matthew J Hilton
- Department of Orthopaedic Surgery, Duke University, Durham, NC, USA
| | - Michael J Zuscik
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, USA
| | - Jennifer H Jonason
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, USA
| | - Regis J O’Keefe
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
50
|
Yoshioka Y, Ono M, Maeda A, Kilts TM, Hara ES, Khattab H, Ueda J, Aoyama E, Oohashi T, Takigawa M, Young MF, Kuboki T. CCN4/WISP-1 positively regulates chondrogenesis by controlling TGF-β3 function. Bone 2016; 83:162-170. [PMID: 26555637 PMCID: PMC5749225 DOI: 10.1016/j.bone.2015.11.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 10/06/2015] [Accepted: 11/06/2015] [Indexed: 01/05/2023]
Abstract
The CCN family of proteins plays important roles in development and homeostasis of bone and cartilage. To understand the role of CCN4 in chondrogenesis, human bone marrow stromal cells (hBMSCs) were transduced with CCN4 adenovirus (adCCN4) or siRNA to CCN4 (siCCN4) in the presence or absence of transforming growth factor-β3 (TGF-β3). Overexpression of CCN4 enhanced TGF-β3-induced SMAD2/3 phosphorylation and chondrogenesis of hBMSCs in an in vitro assay using a micromass culture model. On the other hand, knockdown of CCN4 inhibited the TGF-β3-induced SMAD2/3 phosphorylation and synthesis of cartilage matrix in micromass cultures of hBMSCs. Immunoprecipitation-western blot analysis revealed that CCN4 bound to TGF-β3 and regulated the ability of TGF-β3 to bind to hBMSCs. In vivo analysis confirmed there was a significant decrease in the gene expression levels of chondrocyte markers in cartilage samples from Ccn4-knock out (KO) mice, compared to those from wild type (WT) control. In order to investigate the regenerative properties of the articular cartilage in Ccn4-KO mice, articular cartilage defects were surgically performed in the knee joints of young mice, and the results showed that the cartilage was partially repaired in WT mice, but not in Ccn4-KO mice. In conclusion, these results show, for the first time, that CCN4 has a positive influence on chondrogenic differentiation by modulating the effects of TGF-β3.
Collapse
Affiliation(s)
- Yuya Yoshioka
- Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Mitsuaki Ono
- Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan; Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.
| | - Azusa Maeda
- Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan; Craniofacial and Skeletal Diseases Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Tina M Kilts
- Craniofacial and Skeletal Diseases Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Emilio Satoshi Hara
- Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan; Department of Biomaterials, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hany Khattab
- Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan; Advanced Research Center for Oral & Craniofacial Sciences, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Junji Ueda
- Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Eriko Aoyama
- Advanced Research Center for Oral & Craniofacial Sciences, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Toshitaka Oohashi
- Advanced Research Center for Oral & Craniofacial Sciences, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Masaharu Takigawa
- Advanced Research Center for Oral & Craniofacial Sciences, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Marian F Young
- Craniofacial and Skeletal Diseases Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Takuo Kuboki
- Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|