1
|
Yadav RN, Oravec DJ, Drost J, Flynn MJ, Divine GW, Rao SD, Yeni YN. Textural and geometric measures derived from digital tomosynthesis discriminate women with and without vertebral fracture. Eur J Radiol 2025; 183:111925. [PMID: 39832416 DOI: 10.1016/j.ejrad.2025.111925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 12/10/2024] [Accepted: 01/09/2025] [Indexed: 01/22/2025]
Abstract
Vertebral fractures are a common and debilitating consequence of osteoporosis. Bone mineral density (BMD), measured by dual energy x-ray absorptiometry (DXA), is the clinical standard for assessing overall bone quantity but falls short in accurately predicting vertebral fracture. Fracture risk prediction may be improved by incorporating metrics of microstructural organization from an appropriate imaging modality. Digital tomosynthesis (DTS)-derived textural and microstructural parameters have been previously correlated to vertebral bone strength in vitro, but the in vivo utility has not been explored. Therefore, the current study sought to establish the extent to which DTS-derived measurements of vertebral microstructure and size discriminate patients with and without vertebral fracture. In a cohort of 93 postmenopausal women with or without history of vertebral fracture, DTS-derived microstructural parameters and vertebral width were calculated for T12 and L1 vertebrae, as well as lumbar spine BMD and trabecular bone score (TBS) from DXA images. Fracture patients had lower BMD and TBS, while DTS-derived degree of anisotropy and vertebral width were higher, compared to nonfracture (p < 0.02 to p < 0.003) patients. The addition of DTS-derived parameters (fractal dimension, lacunarity, degree of anisotropy and vertebral width) improved discriminative capability for models of fracture status (AUC = 0.79) compared to BMD alone (AUC = 0.67). For twelve additional participants who were imaged twice, in vivo repeatability errors for DTS parameters were low (0.2 % - 7.3 %). The current results support the complementary use of DTS imaging for assessing bone quality and improving the accuracy of fracture risk assessment beyond that achievable by DXA alone.
Collapse
Affiliation(s)
- Ram N Yadav
- Bone and Joint Center, Henry Ford Health, Detroit, MI, USA
| | | | - Joshua Drost
- Bone and Joint Center, Henry Ford Health, Detroit, MI, USA
| | - Michael J Flynn
- Department of Radiology, Henry Ford Health, Detroit, MI, USA
| | - George W Divine
- Department of Public Health Science, Henry Ford Health, Detroit, MI, USA; Henry Ford Health + Michigan State University Health Sciences, Detroit, MI, USA
| | - Sudhaker D Rao
- Henry Ford Health + Michigan State University Health Sciences, Detroit, MI, USA; Division of Endocrinology, Diabetes and Bone & Mineral Disorders, and Bone & Mineral Research Laboratory, Henry Ford Health, Detroit, MI, USA
| | - Yener N Yeni
- Bone and Joint Center, Henry Ford Health, Detroit, MI, USA; Henry Ford Health + Michigan State University Health Sciences, Detroit, MI, USA.
| |
Collapse
|
2
|
Ong W, Liu RW, Makmur A, Low XZ, Sng WJ, Tan JH, Kumar N, Hallinan JTPD. Artificial Intelligence Applications for Osteoporosis Classification Using Computed Tomography. Bioengineering (Basel) 2023; 10:1364. [PMID: 38135954 PMCID: PMC10741220 DOI: 10.3390/bioengineering10121364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023] Open
Abstract
Osteoporosis, marked by low bone mineral density (BMD) and a high fracture risk, is a major health issue. Recent progress in medical imaging, especially CT scans, offers new ways of diagnosing and assessing osteoporosis. This review examines the use of AI analysis of CT scans to stratify BMD and diagnose osteoporosis. By summarizing the relevant studies, we aimed to assess the effectiveness, constraints, and potential impact of AI-based osteoporosis classification (severity) via CT. A systematic search of electronic databases (PubMed, MEDLINE, Web of Science, ClinicalTrials.gov) was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. A total of 39 articles were retrieved from the databases, and the key findings were compiled and summarized, including the regions analyzed, the type of CT imaging, and their efficacy in predicting BMD compared with conventional DXA studies. Important considerations and limitations are also discussed. The overall reported accuracy, sensitivity, and specificity of AI in classifying osteoporosis using CT images ranged from 61.8% to 99.4%, 41.0% to 100.0%, and 31.0% to 100.0% respectively, with areas under the curve (AUCs) ranging from 0.582 to 0.994. While additional research is necessary to validate the clinical efficacy and reproducibility of these AI tools before incorporating them into routine clinical practice, these studies demonstrate the promising potential of using CT to opportunistically predict and classify osteoporosis without the need for DEXA.
Collapse
Affiliation(s)
- Wilson Ong
- Department of Diagnostic Imaging, National University Hospital, 5 Lower Kent Ridge Rd, Singapore 119074, Singapore (A.M.); (X.Z.L.); (W.J.S.); (J.T.P.D.H.)
| | - Ren Wei Liu
- Department of Diagnostic Imaging, National University Hospital, 5 Lower Kent Ridge Rd, Singapore 119074, Singapore (A.M.); (X.Z.L.); (W.J.S.); (J.T.P.D.H.)
| | - Andrew Makmur
- Department of Diagnostic Imaging, National University Hospital, 5 Lower Kent Ridge Rd, Singapore 119074, Singapore (A.M.); (X.Z.L.); (W.J.S.); (J.T.P.D.H.)
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Drive, Singapore 117597, Singapore
| | - Xi Zhen Low
- Department of Diagnostic Imaging, National University Hospital, 5 Lower Kent Ridge Rd, Singapore 119074, Singapore (A.M.); (X.Z.L.); (W.J.S.); (J.T.P.D.H.)
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Drive, Singapore 117597, Singapore
| | - Weizhong Jonathan Sng
- Department of Diagnostic Imaging, National University Hospital, 5 Lower Kent Ridge Rd, Singapore 119074, Singapore (A.M.); (X.Z.L.); (W.J.S.); (J.T.P.D.H.)
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Drive, Singapore 117597, Singapore
| | - Jiong Hao Tan
- University Spine Centre, Department of Orthopaedic Surgery, National University Health System, 1E Lower Kent Ridge Road, Singapore 119228, Singapore; (J.H.T.); (N.K.)
| | - Naresh Kumar
- University Spine Centre, Department of Orthopaedic Surgery, National University Health System, 1E Lower Kent Ridge Road, Singapore 119228, Singapore; (J.H.T.); (N.K.)
| | - James Thomas Patrick Decourcy Hallinan
- Department of Diagnostic Imaging, National University Hospital, 5 Lower Kent Ridge Rd, Singapore 119074, Singapore (A.M.); (X.Z.L.); (W.J.S.); (J.T.P.D.H.)
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Drive, Singapore 117597, Singapore
| |
Collapse
|
3
|
Thomsen FSL, Iarussi E, Borggrefe J, Boyd SK, Wang Y, Battié MC. Bone-GAN: Generation of virtual bone microstructure of high resolution peripheral quantitative computed tomography. Med Phys 2023; 50:6943-6954. [PMID: 37264564 DOI: 10.1002/mp.16482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 04/06/2023] [Accepted: 04/25/2023] [Indexed: 06/03/2023] Open
Abstract
BACKGROUND Data-driven development of medical biomarkers of bone requires a large amount of image data but physical measurements are generally too restricted in size and quality to perform a robust training. PURPOSE This study aims to provide a reliable in silico method for the generation of realistic bone microstructure with defined microarchitectural properties. Synthetic bone samples may improve training of neural networks and serve for the development of new diagnostic parameters of bone architecture and mineralization. METHODS One hundred-fifty cadaveric lumbar vertebrae from 48 different male human spines were scanned with a high resolution peripheral quantitative CT. After prepocessing the scans, we extracted 10,795 purely spongeous bone patches, each with a side length of 32 voxels (5 mm) and isotropic voxel size of 164 μm. We trained a volumetric generative adversarial network (GAN) in a progressive manner to create synthetic microstructural bone samples. We then added a style transfer technique to allow the generation of synthetic samples with defined microstructure and gestalt by simultaneously optimizing two entangled loss functions. Reliability testing was performed by comparing real and synthetic bone samples on 10 well-understood microstructural parameters. RESULTS The method was able to create synthetic bone samples with visual and quantitative properties that effectively matched with the real samples. The GAN contained a well-formed latent space allowing to smoothly morph bone samples by their microstructural parameters, visual appearance or both. Optimum performance has been obtained for bone samples with voxel size 32 × 32 × 32, but also samples of size 64 × 64 × 64 could be synthesized. CONCLUSIONS Our two-step-approach combines a parameter-agnostic GAN with a parameter-specific style transfer technique. It allows to generate an unlimited anonymous database of microstructural bone samples with sufficient realism to be used for the development of new data-driven methods of bone-biomarkers. Particularly, the style transfer technique can generate datasets of bone samples with specific conditions to simulate certain bone pathologies.
Collapse
Affiliation(s)
- Felix S L Thomsen
- National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
- Department of Radiology, Neuroradiology and Nuclear Medicine, Johannes Wesling University Hospital, Ruhr University Bochum, Bochum, Germany
- Department of Electrical and Computer Engineering, Institute for Computer Science and Engineering, National University of the South (DIEC-ICIC-UNS), Bahía Blanca, Argentina
| | - Emmanuel Iarussi
- National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
- Laboratory of Artificial Intelligence, University Torcuato Di Tella, Buenos Aires, Argentina
| | - Jan Borggrefe
- Department of Radiology, Neuroradiology and Nuclear Medicine, Johannes Wesling University Hospital, Ruhr University Bochum, Bochum, Germany
| | - Steven K Boyd
- McCaig Institute for Bone and Joint Health, University of Calgary, Canada
| | - Yue Wang
- Spine lab, Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Michele C Battié
- Common Spinal Disorders Research Group, Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, Canada
| |
Collapse
|
4
|
Yeni YN, Dix MR, Xiao A, Oravec DJ. Uniaxial compressive properties of human lumbar 1 vertebrae loaded beyond compaction and their relationship to cortical and cancellous microstructure, size and density properties. J Mech Behav Biomed Mater 2022; 133:105334. [DOI: 10.1016/j.jmbbm.2022.105334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 06/13/2022] [Accepted: 06/23/2022] [Indexed: 11/27/2022]
|
5
|
Jin D, Zheng H, Zhao Q, Wang C, Zhang M, Yuan H. Generation of Vertebra Micro-CT-like Image from MDCT: A Deep-Learning-Based Image Enhancement Approach. Tomography 2021; 7:767-782. [PMID: 34842849 PMCID: PMC8628970 DOI: 10.3390/tomography7040064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/05/2021] [Accepted: 11/09/2021] [Indexed: 11/26/2022] Open
Abstract
This paper proposes a deep-learning-based image enhancement approach that can generate high-resolution micro-CT-like images from multidetector computed tomography (MDCT). A total of 12,500 MDCT and micro-CT image pairs were obtained from 25 vertebral specimens. Then, a pix2pixHD model was trained and evaluated using the structural similarity index measure (SSIM) and Fréchet inception distance (FID). We performed subjective assessments of the micro-CT-like images based on five aspects. Micro-CT and micro-CT-like image-derived trabecular bone microstructures were compared, and the underlying correlations were analyzed. The results showed that the pix2pixHD method (SSIM, 0.804 ± 0.037 and FID, 43.598 ± 9.108) outperformed the two control methods (pix2pix and CRN) in enhancing MDCT images (p < 0.05). According to the subjective assessment, the pix2pixHD-derived micro-CT-like images showed no significant difference from the micro-CT images in terms of contrast and shadow (p > 0.05) but demonstrated slightly lower noise, sharpness and trabecular bone texture (p < 0.05). Compared with the trabecular microstructure parameters of micro-CT images, those of pix2pixHD-derived micro-CT-like images showed no significant differences in bone volume fraction (BV/TV) (p > 0.05) and significant correlations in trabecular thickness (Tb.Th) and trabecular spacing (Tb.Sp) (Tb.Th, R = 0.90, p < 0.05; Tb.Sp, R = 0.88, p < 0.05). The proposed method can enhance the resolution of MDCT and obtain micro-CT-like images, which may provide new diagnostic criteria and a predictive basis for osteoporosis and related fractures.
Collapse
Affiliation(s)
- Dan Jin
- Department of Radiology, Peking University Third Hospital, Beijing 100191, China; (D.J.); (Q.Z.); (C.W.); (M.Z.)
| | - Han Zheng
- School of Traffic and Transportation, Beijing Jiaotong University, Beijing 100044, China;
| | - Qingqing Zhao
- Department of Radiology, Peking University Third Hospital, Beijing 100191, China; (D.J.); (Q.Z.); (C.W.); (M.Z.)
| | - Chunjie Wang
- Department of Radiology, Peking University Third Hospital, Beijing 100191, China; (D.J.); (Q.Z.); (C.W.); (M.Z.)
| | - Mengze Zhang
- Department of Radiology, Peking University Third Hospital, Beijing 100191, China; (D.J.); (Q.Z.); (C.W.); (M.Z.)
| | - Huishu Yuan
- Department of Radiology, Peking University Third Hospital, Beijing 100191, China; (D.J.); (Q.Z.); (C.W.); (M.Z.)
- Correspondence:
| |
Collapse
|
6
|
Assessing underlying bone quality in spine surgery patients: a narrative review of dual-energy X-ray absorptiometry (DXA) and alternatives. Spine J 2021; 21:321-331. [PMID: 32890786 DOI: 10.1016/j.spinee.2020.08.020] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 08/15/2020] [Accepted: 08/29/2020] [Indexed: 02/06/2023]
Abstract
Poor bone quality and low bone mineral density (BMD) have been previously tied to higher rates of postoperative mechanical complications in patients undergoing spinal fusion. These include higher rates of proximal junctional kyphosis, screw pullout, pseudoarthrosis, and interbody subsidence. For these reasons, accurate preoperative assessment of a patient's underlying bone quality is paramount for all elective procedures. Dual-energy X-ray absorptiometry (DXA) is currently considered to be the gold standard for assessing BMD. However, a growing body of research has suggested that in vivo assessments of BMD using DXA are inaccurate and have, at best, moderate correlations to postoperative mechanical complications. Consequently, there have been investigations into using alternative methods for assessing in vivo bone quality, including using computed tomography (CT) and magnetic resonance imaging (MRI) volumes that are commonly obtained as part of surgical evaluation. Here we review the data regarding the accuracy of DXA for the evaluation of spine bone quality and describe the alternative imaging modalities currently under investigation.
Collapse
|
7
|
Pumberger M, Issever AS, Diekhoff T, Schwemmer C, Berg S, Palmowski Y, Putzier M. Bone structure determined by HR-MDCT does not correlate with micro-CT of lumbar vertebral biopsies: a prospective cross-sectional human in vivo study. J Orthop Surg Res 2020; 15:398. [PMID: 32912263 PMCID: PMC7488144 DOI: 10.1186/s13018-020-01895-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 08/16/2020] [Indexed: 01/22/2023] Open
Abstract
Background Osteoporosis is characterized by a deterioration of bone structure and quantity that leads to an increased risk of fractures. The primary diagnostic tool for the assessment of the bone quality is currently the dual-energy X-ray absorptiometry (DXA), which however only measures bone quantity. High-resolution multidetector computed tomography (HR-MDCT) offers an alternative approach to assess bone structure, but still lacks evidence for its validity in vivo. The objective of this study was to assess the validity of HR-MDCT for the evaluation of bone architecture in the lumbar spine. Methods We conducted a prospective cross-sectional study to compare the results of preoperative lumbar HR-MDCT scans with those from microcomputed tomography (μCT) analysis of transpedicular vertebral body biopsies. For this purpose, we included patients undergoing spinal surgery in our orthopedic department. Each patient underwent preoperative HR-MDCT scanning (L1-L4). Intraoperatively, transpedicular biopsies were obtained from intact vertebrae. Micro-CT analysis of these biopsies was used as a reference method to assess the actual bone architecture. HR-MDCT results were statistically analyzed regarding the correlation with results from μCT. Results Thirty-four patients with a mean age of 69.09 years (± 10.07) were included in the study. There was no significant correlation for any of the parameters (bone volume/total volume, trabecular separation, trabecular thickness) between μCT and HR-MDCT (bone volume/total volume: r = − 0.026 and p = 0.872; trabecular thickness: r = 0.074 and r = 6.42; and trabecular separation: r = − 0.18 and p = 0.254). Conclusion To our knowledge, this is the first study comparing in vivo HR-MDCT with μCT analysis of vertebral biopsies in human patients. Our findings suggest that lumbar HR-MDCT is not valid for the in vivo evaluation of bone architecture in the lumbar spine. New diagnostic tools for the evaluation of osteoporosis and preoperative orthopedic planning are urgently needed.
Collapse
Affiliation(s)
- Matthias Pumberger
- Spine Department, Center for Musculoskeletal Surgery, Charité University Medicine Berlin, Chariteplatz 1, 10117, Berlin, Germany
| | - Ahi Sema Issever
- Department of Radiology, Charité University Medicine Berlin, Chariteplatz 1, 10117, Berlin, Germany
| | - Torsten Diekhoff
- Department of Radiology, Charité University Medicine Berlin, Chariteplatz 1, 10117, Berlin, Germany
| | - Christin Schwemmer
- Charité University Medicine Berlin, Chariteplatz 1, 10117, Berlin, Germany
| | - Susanne Berg
- Charité University Medicine Berlin, Chariteplatz 1, 10117, Berlin, Germany
| | - Yannick Palmowski
- Spine Department, Center for Musculoskeletal Surgery, Charité University Medicine Berlin, Chariteplatz 1, 10117, Berlin, Germany.
| | - Michael Putzier
- Spine Department, Center for Musculoskeletal Surgery, Charité University Medicine Berlin, Chariteplatz 1, 10117, Berlin, Germany
| |
Collapse
|
8
|
Inai R, Nakahara R, Morimitsu Y, Akagi N, Marukawa Y, Matsushita T, Tanaka T, Tada A, Hiraki T, Nasu Y, Nishida K, Ozaki T, Kanazawa S. Bone microarchitectural analysis using ultra-high-resolution CT in tiger vertebra and human tibia. Eur Radiol Exp 2020; 4:4. [PMID: 31993864 PMCID: PMC6987291 DOI: 10.1186/s41747-019-0135-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 11/13/2019] [Indexed: 02/08/2023] Open
Abstract
Background To reveal trends in bone microarchitectural parameters with increasing spatial resolution on ultra-high-resolution computed tomography (UHRCT) in vivo and to compare its performance with that of conventional-resolution CT (CRCT) and micro-CT ex vivo. Methods We retrospectively assessed 5 tiger vertebrae ex vivo and 16 human tibiae in vivo. Seven-pattern and four-pattern resolution imaging were performed on tiger vertebra using CRCT, UHRCT, and micro-CT, and on human tibiae using UHRCT. We measured six microarchitectural parameters: volumetric bone mineral density (vBMD), trabecular bone volume fraction (bone volume/total volume, BV/TV), trabecular thickness (Tb.Th), trabecular number (Tb.N), trabecular separation (Tb.Sp), and connectivity density (ConnD). Comparisons between different imaging resolutions were performed using Tukey or Dunnett T3 test. Results The vBMD, BV/TV, Tb.N, and ConnD parameters showed an increasing trend, while Tb.Sp showed a decreasing trend both ex vivo and in vivo. Ex vivo, UHRCT at the two highest resolutions (1024- and 2048-matrix imaging with 0.25-mm slice thickness) and CRCT showed significant differences (p ≤ 0.047) in vBMD (51.4 mg/cm3 and 63.5 mg/cm3versus 20.8 mg/cm3), BV/TV (26.5% and 29.5% versus 13.8 %), Tb.N (1.3 l/mm and 1.48 l/mm versus 0.47 l/mm), and ConnD (0.52 l/mm3 and 0.74 l/mm3versus 0.02 l/mm3, respectively). In vivo, the 512- and 1024-matrix imaging with 0.25-mm slice thickness showed significant differences in Tb.N (0.38 l/mm versus 0.67 l/mm, respectively) and ConnD (0.06 l/mm3versus 0.22 l/mm3, respectively). Conclusions We observed characteristic trends in microarchitectural parameters and demonstrated the potential utility of applying UHRCT for microarchitectural analysis.
Collapse
Affiliation(s)
- Ryota Inai
- Department of Radiology, Okayama University Medical School, 2-5-1 Shikatacho, Kitaku, Okayama, 700-8558, Japan.
| | - Ryuichi Nakahara
- Intelligent Orthopaedic System Development, Okayama University Medical School, 2-5-1 Shikatacho, Kitaku, Okayama, 700-8558, Japan
| | - Yusuke Morimitsu
- Devision of Radiology, Medical Support Department, Okayama University Hospital, 2-5-1 Shikatacho, Kitaku, Okayama, 700-8558, Japan
| | - Noriaki Akagi
- Devision of Radiology, Medical Support Department, Okayama University Hospital, 2-5-1 Shikatacho, Kitaku, Okayama, 700-8558, Japan
| | - Youhei Marukawa
- Department of Radiology, Okayama University Medical School, 2-5-1 Shikatacho, Kitaku, Okayama, 700-8558, Japan
| | - Toshi Matsushita
- Devision of Radiology, Medical Support Department, Okayama University Hospital, 2-5-1 Shikatacho, Kitaku, Okayama, 700-8558, Japan
| | - Takashi Tanaka
- Department of Radiology, Okayama University Medical School, 2-5-1 Shikatacho, Kitaku, Okayama, 700-8558, Japan
| | - Akihiro Tada
- Department of Radiology, Okayama University Medical School, 2-5-1 Shikatacho, Kitaku, Okayama, 700-8558, Japan
| | - Takao Hiraki
- Department of Radiology, Okayama University Medical School, 2-5-1 Shikatacho, Kitaku, Okayama, 700-8558, Japan
| | - Yoshihisa Nasu
- Medical materials for musculoskeletal reconstruction, Okayama University Medical School, 2-5-1 Shikatacho, Kitaku, Okayama, 700-8558, Japan
| | - Keiichiro Nishida
- Orthopaedic Surgery, Okayama University Medical School, 2-5-1 Shikatacho, Kitaku, Okayama, 700-8558, Japan
| | - Toshifumi Ozaki
- Orthopaedic Surgery, Okayama University Medical School, 2-5-1 Shikatacho, Kitaku, Okayama, 700-8558, Japan
| | - Susumu Kanazawa
- Department of Radiology, Okayama University Medical School, 2-5-1 Shikatacho, Kitaku, Okayama, 700-8558, Japan
| |
Collapse
|
9
|
Valentinitsch A, Trebeschi S, Kaesmacher J, Lorenz C, Löffler MT, Zimmer C, Baum T, Kirschke JS. Opportunistic osteoporosis screening in multi-detector CT images via local classification of textures. Osteoporos Int 2019; 30:1275-1285. [PMID: 30830261 PMCID: PMC6546649 DOI: 10.1007/s00198-019-04910-1] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 02/18/2019] [Indexed: 11/23/2022]
Abstract
UNLABELLED Our study proposed an automatic pipeline for opportunistic osteoporosis screening using 3D texture features and regional vBMD using multi-detector CT images. A combination of different local and global texture features outperformed the global vBMD and showed high discriminative power to identify patients with vertebral fractures. INTRODUCTION Many patients at risk for osteoporosis undergo computed tomography (CT) scans, usable for opportunistic (non-dedicated) screening. We compared the performance of global volumetric bone mineral density (vBMD) with a random forest classifier based on regional vBMD and 3D texture features to separate patients with and without osteoporotic fractures. METHODS In total, 154 patients (mean age 64 ± 8.5, male; n = 103) were included in this retrospective single-center analysis, who underwent contrast-enhanced CT for other reasons than osteoporosis screening. Patients were dichotomized regarding prevalent vertebral osteoporotic fractures (noFX, n = 101; FX, n = 53). Vertebral bodies were automatically segmented, and trabecular vBMD was calculated with a dedicated phantom. For 3D texture analysis, we extracted gray-level co-occurrence matrix Haralick features (HAR), histogram of gradients (HoG), local binary patterns (LBP), and wavelets (WL). Fractured vertebrae were excluded for texture-feature and vBMD data extraction. The performance to identify patients with prevalent osteoporotic vertebral fractures was evaluated in a fourfold cross-validation. RESULTS The random forest classifier showed a high discriminatory power (AUC = 0.88). Parameters of all vertebral levels significantly contributed to this classification. Importantly, the AUC of the proposed algorithm was significantly higher than that of volumetric global BMD alone (AUC = 0.64). CONCLUSION The presented classifier combining 3D texture features and regional vBMD including the complete thoracolumbar spine showed high discriminatory power to identify patients with vertebral fractures and had a better diagnostic performance than vBMD alone.
Collapse
Affiliation(s)
- A. Valentinitsch
- 0000000123222966grid.6936.aDepartment of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technische Universität München, München, Germany
| | - S. Trebeschi
- 0000000123222966grid.6936.aDepartment of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technische Universität München, München, Germany
| | - J. Kaesmacher
- 0000000123222966grid.6936.aDepartment of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technische Universität München, München, Germany
| | - C. Lorenz
- Philips Research Hamburg, Hamburg, Germany
| | - M. T. Löffler
- 0000000123222966grid.6936.aDepartment of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technische Universität München, München, Germany
| | - C. Zimmer
- 0000000123222966grid.6936.aDepartment of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technische Universität München, München, Germany
| | - T. Baum
- 0000000123222966grid.6936.aDepartment of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technische Universität München, München, Germany
| | - J. S. Kirschke
- 0000000123222966grid.6936.aDepartment of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technische Universität München, München, Germany
| |
Collapse
|
10
|
Rabelo GD, Roux JP, Portero-Muzy N, Gineyts E, Chapurlat R, Chavassieux P. Cortical Fractal Analysis and Collagen Crosslinks Content in Femoral Neck After Osteoporotic Fracture in Postmenopausal Women: Comparison with Osteoarthritis. Calcif Tissue Int 2018; 102:644-650. [PMID: 29249023 DOI: 10.1007/s00223-017-0378-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 12/14/2017] [Indexed: 01/22/2023]
Abstract
The femoral neck (FN) has been previously characterized by thinner cortices in osteoporotic fracture (HF) when compared to hip osteoarthritis (HOA). The purposes of this study were to complete the previous investigations on FNs from HF and HOA by analyzing the complexity of the cortical structure and to approach the intrinsic properties of cortical bone by assessing the collagen crosslink contents. FN samples were obtained during arthroplasty in 35 postmenopausal women (HF; n = 17; mean age 79 ± 2 years; HOA; n = 18; mean age 66 ± 2 years). The cortical fractal dimension (Ct.FD) and lacunarity (Ct.Lac) derived from high-resolution peripheral quantitative tomography (isotropic voxel size: 82 μm) images of FN by using Ctan software and Fraclac running in ImageJ were analyzed. The collagen crosslinks content [pyridinoline, deoxypyridinoline, pentosidine (PEN)] were assessed in cortical bone. Ct.FD was significantly lower (p < 0.0001) in HF than HOA reflecting a decreased complexity and was correlated to the age and BMD. In two sub-groups, BMD- and age-matched, respectively, Ct.FD remained significantly lower in HF than HOA (p < 0.001). Ct.Lac was not different between HF and HOA. PEN content was two times higher in HF than HOA (p < 0.0001) independently of age. In conclusion, FN with HF was characterized by a less complex cortical texture and higher PEN content than HOA. In addition to the decreased bone mass and BMD previously reported, these modifications contribute to the lower bone quality in HF than HOA in postmenopausal women.
Collapse
Affiliation(s)
| | | | | | | | | | - Pascale Chavassieux
- INSERM UMR 1033, Université de Lyon, Lyon, France.
- INSERM UMR 1033, UFR de Médecine Lyon-Est, Domaine Laennec, 7-11, Rue Guillaume Paradin, 69372, Lyon Cedex 08, France.
| |
Collapse
|
11
|
Paine A, Woeller CF, Zhang H, de la Luz Garcia-Hernandez M, Huertas N, Xing L, Phipps RP, Ritchlin CT. Thy1 is a positive regulator of osteoblast differentiation and modulates bone homeostasis in obese mice. FASEB J 2018; 32:3174-3183. [PMID: 29401595 DOI: 10.1096/fj.201701379r] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Thy1 (CD90), a glycosylated, glycophosphatidylinositol-anchored membrane protein highly expressed by subsets of mesenchymal stem cells and fibroblasts, inhibits adipogenesis. The role of Thy1 on bone structure and function has been poorly studied and represents a major knowledge gap. Therefore, we analyzed the long bones of wild-type (WT) and Thy1 knockout (KO) mice with micro-computed tomography (micro-CT) and histomorphometry to compare changes in bone architecture and overall bone structure. micro-CT analysis of long bones revealed Thy1 KO and WT mice fed a high-fat diet demonstrated bone structural parameters at 4 mo that differed significantly between WT and KO mice. A significant reduction in trabecular bone volume was noted in Thy1 KO mice. The most prominent differences were observed in trabecular bone volume ratio and trabecular bone connectivity density. Consistent with micro-CT measurements, histomorphometric analysis also showed decreased bone volume in the obese Thy1 KO mice compared to obese WT mice. In vitro assays revealed that osteogenic conditions increased Thy1 expression during OB differentiation and absence of Thy1 attenuated osteoblastogenesis. Together, these findings support the concept that Thy1 serves as a major mechanistic link to regulate bone formation and negatively regulate adipogenesis.-Paine, A., Woeller, C. F., Zhang, H., Garcia-Hernandez, M. L., Huertas, N., Xing, L., Phipps, R. P., Ritchlin, C. T. Thy1 is a positive regulator of osteoblast differentiation and modulates bone homeostasis in obese mice.
Collapse
Affiliation(s)
- Ananta Paine
- Division of Allergy, Immunology, and Rheumatology, School of Medicine and Dentistry, University of Rochester, Rochester, New York, USA
| | - Collynn F Woeller
- Department of Environmental Medicine, School of Medicine and Dentistry, University of Rochester, Rochester, New York, USA
| | - Hengwei Zhang
- Center for Musculoskeletal Research, University of Rochester Medical Center, University of Rochester, Rochester, New York, USA; and.,Department of Pathology and Laboratory Medicine, School of Medicine and Dentistry, University of Rochester, Rochester, New York, USA
| | - Maria de la Luz Garcia-Hernandez
- Division of Allergy, Immunology, and Rheumatology, School of Medicine and Dentistry, University of Rochester, Rochester, New York, USA
| | - Nelson Huertas
- Division of Allergy, Immunology, and Rheumatology, School of Medicine and Dentistry, University of Rochester, Rochester, New York, USA
| | - Lianping Xing
- Center for Musculoskeletal Research, University of Rochester Medical Center, University of Rochester, Rochester, New York, USA; and.,Department of Pathology and Laboratory Medicine, School of Medicine and Dentistry, University of Rochester, Rochester, New York, USA
| | - Richard P Phipps
- Department of Environmental Medicine, School of Medicine and Dentistry, University of Rochester, Rochester, New York, USA
| | - Christopher T Ritchlin
- Division of Allergy, Immunology, and Rheumatology, School of Medicine and Dentistry, University of Rochester, Rochester, New York, USA
| |
Collapse
|
12
|
Jun BJ, Vasanji A, Ricchetti ET, Rodriguez E, Subhas N, Li ZM, Iannotti JP. Quantification of regional variations in glenoid trabecular bone architecture and mineralization using clinical computed tomography images. J Orthop Res 2018; 36:85-96. [PMID: 28561262 DOI: 10.1002/jor.23620] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 05/19/2017] [Indexed: 02/04/2023]
Abstract
The purpose of this study was to demonstrate feasibility of a clinical CT imaging and analysis technique to quantify regional variations in trabecular bone architecture and mineralization of glenoid bones. Specifically, our objective was to determine to what extent clinical CT imaging of intact upper extremities can describe variations of trabecular bone architectures at anatomic and peri-implant regions by comparing trabecular bone architectures as measured by high-resolution, micro CT imaging of same excised glenoid bones. Bone volume fraction (BVF), trabecular bone thickness (TbTh), number of trabecular bone (TbN), spacing (TbS), pattern factor (TbPf), bone surface area (BSA), and skeletal connectivity (Conn.), in addition to bone mineral content (BMC) and bone mineral density (BMD), were quantified from both clinical and micro CT images using whole bone, anatomic, and peri-implant bone masks. Strong correlations of BVF, TbTh, TbSp, BMC, and BMD were found between clinical CT and micro CT imaging methods. The variations in BVF, TbTh, TbSp, TbN, BMC, and BMD at anatomical and peri-implant regions were larger than those at whole bone regions. In this study, we have demonstrated that this clinical CT imaging methodology can be used to quantify variations of a patient's glenoid bone at anatomic and peri-implant levels. Statement of Clinical Significance. An in vivo quantitative assessment of glenoid trabecular bone architecture in the anatomic and peri-implant regions may improve our understanding on the role of bone quality on glenoid component loosening following total shoulder arthroplasty. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:85-96, 2018.
Collapse
Affiliation(s)
- Bong-Jae Jun
- Department of Orthopaedic Surgery, Cleveland Clinic, Cleveland 44195, Ohio.,Department of Biomedical Engineering, Cleveland Clinic, Cleveland 44195, Ohio
| | | | - Eric T Ricchetti
- Department of Orthopaedic Surgery, Cleveland Clinic, Cleveland 44195, Ohio
| | - Eric Rodriguez
- Department of Orthopaedic Surgery, Cleveland Clinic, Cleveland 44195, Ohio
| | - Naveen Subhas
- Department of Radiology, Cleveland Clinic, Cleveland 44195, Ohio
| | - Zong-Ming Li
- Department of Orthopaedic Surgery, Cleveland Clinic, Cleveland 44195, Ohio.,Department of Biomedical Engineering, Cleveland Clinic, Cleveland 44195, Ohio
| | - Joseph P Iannotti
- Department of Orthopaedic Surgery, Cleveland Clinic, Cleveland 44195, Ohio
| |
Collapse
|
13
|
Dietrich O, Geith T, Reiser MF, Baur-Melnyk A. Diffusion imaging of the vertebral bone marrow. NMR IN BIOMEDICINE 2017; 30:e3333. [PMID: 26114411 DOI: 10.1002/nbm.3333] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 04/27/2015] [Accepted: 05/04/2015] [Indexed: 06/04/2023]
Abstract
Diffusion-weighted MRI (DWI) of the vertebral bone marrow is a clinically important tool for the characterization of bone-marrow pathologies and, in particular, for the differentiation of benign (osteoporotic) and malignant vertebral compression fractures. DWI of the vertebral bone marrow is, however, complicated by some unique MR and tissue properties of vertebral bone marrow. Due to both the spongy microstructure of the trabecular bone and the proximity of the lungs, soft tissue, or large vessels, substantial magnetic susceptibility variations occur, which severely reduce the magnetic field homogeneity as well as the transverse relaxation time T*2 , and thus complicate MRI in particular with echoplanar imaging (EPI) techniques. Therefore, alternative diffusion-weighting pulse sequence types such as single-shot fast-spin-echo sequences or segmented EPI techniques became important alternatives for quantitative DWI of the vertebral bone marrow. This review first describes pulse sequence types that are particularly important for DWI of the vertebral bone marrow. Then, data from 24 studies that made diffusion measurements of normal vertebral bone marrow are reviewed; summarizing all results, the apparent diffusion coefficient (ADC) of normal vertebral bone marrow is typically found to be between 0.2 and 0.6 × 10-3 mm2 /s. Finally, DWI of vertebral compression fractures is discussed. Numerous studies demonstrate significantly greater ADCs in osteoporotic fractures (typically between 1.2 and 2.0 × 10-3 mm2 /s) than in malignant fractures or lesions (typically 0.7-1.3 × 10-3 mm2 /s). Alternatively, several studies used the (qualitative) image contrast of diffusion-weighted acquisitions for differentiation of lesion etiology: a very good lesion differentiation can be achieved, particularly with diffusion-weighted steady-state free precession sequences, which depict malignant lesions as hyperintense relative to normal-appearing vertebral bone marrow, in contrast to hypointense or isointense osteoporotic lesions. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Olaf Dietrich
- Josef Lissner Laboratory for Biomedical Imaging, Institute for Clinical Radiology, Ludwig Maximilian University Hospital Munich, Germany
| | - Tobias Geith
- Institute for Clinical Radiology, Ludwig Maximilian University Hospital Munich, Germany
| | - Maximilian F Reiser
- Josef Lissner Laboratory for Biomedical Imaging, Institute for Clinical Radiology, Ludwig Maximilian University Hospital Munich, Germany
- Institute for Clinical Radiology, Ludwig Maximilian University Hospital Munich, Germany
| | - Andrea Baur-Melnyk
- Institute for Clinical Radiology, Ludwig Maximilian University Hospital Munich, Germany
| |
Collapse
|
14
|
Mao SS, Li D, Luo Y, Syed YS, Budoff MJ. Application of quantitative computed tomography for assessment of trabecular bone mineral density, microarchitecture and mechanical property. Clin Imaging 2016; 40:330-8. [DOI: 10.1016/j.clinimag.2015.09.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 07/17/2015] [Accepted: 09/10/2015] [Indexed: 12/17/2022]
|
15
|
Association of MRS-Based Vertebral Bone Marrow Fat Fraction with Bone Strength in a Human In Vitro Model. J Osteoporos 2015; 2015:152349. [PMID: 25969766 PMCID: PMC4417596 DOI: 10.1155/2015/152349] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 04/05/2015] [Accepted: 04/06/2015] [Indexed: 11/17/2022] Open
Abstract
Bone marrow adiposity has recently gained attention due to its association with bone loss pathophysiology. In this study, ten vertebrae were harvested from fresh human cadavers. Trabecular BMD and microstructure parameters were extracted from MDCT. Bone marrow fat fractions were determined using single-voxel MRS. Failure load (FL) values were assessed by destructive biomechanical testing. Significant correlations (P < 0.05) were observed between MRS-based fat fraction and MDCT-based parameters (up to r = -0.72) and MRS-based fat fraction and FL (r = -0.77). These findings underline the importance of the bone marrow in the pathophysiology and imaging diagnostics of osteoporosis.
Collapse
|
16
|
Baum T, Gräbeldinger M, Räth C, Garcia EG, Burgkart R, Patsch JM, Rummeny EJ, Link TM, Bauer JS. Trabecular bone structure analysis of the spine using clinical MDCT: can it predict vertebral bone strength? J Bone Miner Metab 2014; 32:56-64. [PMID: 23604586 DOI: 10.1007/s00774-013-0465-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 03/22/2013] [Indexed: 12/23/2022]
Abstract
Recent technical improvements have made it possible to determine trabecular bone structure parameters of the spine using clinical multi-detector computed tomography (MDCT). Therefore, the purpose of this study was to analyze trabecular bone structure parameters obtained from clinical MDCT in relation to high resolution peripheral quantitative computed tomography (HR-pQCT) as a standard of reference and to investigate whether clinical MDCT can predict vertebral bone strength. Fourteen functional spinal segment units between T7 and L3 were harvested from 14 formalin-fixed human cadavers (11 women and 3 men; age 84 ± 10 years). All functional spinal segment units were examined using HR-pQCT (isotropic voxel size of 41 μm(3)) and a clinical whole-body MDCT (interpolated voxel size of 146 × 146 × 300 μm(3)). Trabecular bone structure analyses (histomorphometric and texture measures) were performed in the HR-pQCT as well as MDCT images. Vertebral failure load (FL) of the functional spinal segment units was determined in an uniaxial biomechanical test. The HR-pQCT and MDCT derived trabecular bone structure parameters showed correlations ranging from r = 0.60 to r = 0.90 (p < 0.05). Correlations between trabecular bone structure parameters and FL amounted up to r = 0.86 (p < 0.05) using the HR-pQCT images, and up to r = 0.79 (p < 0.05) using the MDCT images. Correlation coefficients of FL versus trabecular bone structure parameters obtained with HR-pQCT and MDCT were not significantly different (p > 0.05). In this cadaver model, the spatial resolution of clinically available whole-body MDCT scanners was suitable for trabecular bone structure analysis of the spine and to predict vertebral bone strength.
Collapse
Affiliation(s)
- Thomas Baum
- Institut für Radiologie, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany,
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Bauer JS, Sidorenko I, Mueller D, Baum T, Issever AS, Eckstein F, Rummeny EJ, Link TM, Raeth CW. Prediction of bone strength by μCT and MDCT-based finite-element-models: how much spatial resolution is needed? Eur J Radiol 2013; 83:e36-42. [PMID: 24274992 DOI: 10.1016/j.ejrad.2013.10.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 10/17/2013] [Accepted: 10/22/2013] [Indexed: 10/26/2022]
Abstract
OBJECTIVES Finite-element-models (FEM) are a promising technology to predict bone strength and fracture risk. Usually, the highest spatial resolution technically available is used, but this requires excessive computation time and memory in numerical simulations of large volumes. Thus, FEM were compared at decreasing resolutions with respect to local strain distribution and prediction of failure load to (1) validate MDCT-based FEM and to (2) optimize spatial resolution to save computation time. MATERIALS AND METHODS 20 cylindrical trabecular bone specimens (diameter 12 mm, length 15-20mm) were harvested from elderly formalin-fixed human thoracic spines. All specimens were examined by micro-CT (isotropic resolution 30 μm) and whole-body multi-row-detector computed tomography (MDCT, 250 μm × 250 μm × 500 μm). The resolution of all datasets was lowered in eight steps to ~ 2,000 μm × 2000 μm × 500 μm and FEM were calculated at all resolutions. Failure load was determined by biomechanical testing. Probability density functions of local micro-strains were compared in all datasets and correlations between FEM-based and biomechanically measured failure loads were determined. RESULTS The distribution of local micro-strains was similar for micro-CT and MDCT at comparable resolutions and showed a shift toward higher average values with decreasing resolution, corresponding to the increasing apparent trabecular thickness. Small micro-strains (εeff<0.005) could be calculated down to 250 μm × 250 μm × 500 μm. Biomechanically determined failure load showed significant correlations with all FEM, up to r=0.85 and did not significantly change with lower resolution but decreased with high thresholds, due to loss of trabecular connectivity. CONCLUSION When choosing connectivity-preserving thresholds, both micro-CT- and MDCT-based finite-element-models well predicted failure load and still accurately revealed the distribution of local micro-strains in spatial resolutions, available in vivo (250 μm × 250 μm × 500 μm), that thus seemed to be the optimal compromise between high accuracy and low computation time.
Collapse
Affiliation(s)
- Jan S Bauer
- Department of Radiology, Technische Universität München, Munich, Germany; Department of Radiology, University of California, San Francisco, CA, United States; Max Planck Institute for Extraterrestrial Physics, Garching, Germany.
| | - Irina Sidorenko
- Max Planck Institute for Extraterrestrial Physics, Garching, Germany
| | - Dirk Mueller
- Department of Radiology, Universität Köln, Germany
| | - Thomas Baum
- Department of Radiology, Technische Universität München, Munich, Germany; Department of Radiology, University of California, San Francisco, CA, United States; Max Planck Institute for Extraterrestrial Physics, Garching, Germany
| | - Ahi Sema Issever
- Department of Radiology, University of California, San Francisco, CA, United States; Department of Radiology, Charite, Berlin, Germany
| | - Felix Eckstein
- Institute of Anatomy and Musculoskeletal Research, Paracelsus Medical University, Salzburg, Austria
| | - Ernst J Rummeny
- Department of Radiology, Technische Universität München, Munich, Germany
| | - Thomas M Link
- Department of Radiology, University of California, San Francisco, CA, United States
| | - Christoph W Raeth
- Max Planck Institute for Extraterrestrial Physics, Garching, Germany
| |
Collapse
|
18
|
Jenkins PJ, Ramaesh R, Pankaj P, Patton JT, Howie CR, Goffin JM, van der Merwe A, Wallace RJ, Porter DE, Simpson AH. A micro-architectural evaluation of osteoporotic human femoral heads to guide implant placement in proximal femoral fractures. Acta Orthop 2013; 84:453-9. [PMID: 24032522 PMCID: PMC3822129 DOI: 10.3109/17453674.2013.842432] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND AND PURPOSE The micro-architecture of bone has been increasingly recognized as an important determinant of bone strength. Successful operative stabilization of fractures depends on bone strength. We evaluated the osseous micro-architecture and strength of the osteoporotic human femoral head. MATERIAL AND METHODS 6 femoral heads, obtained during arthroplasty surgery for femoral neck fracture, underwent micro-computed tomography (microCT) scanning at 30 μm, and bone volume ratio (BV/TV), trabecular thickness, structural model index, connection density, and degree of anisotropy for volumes of interest throughout the head were derived. A further 15 femoral heads underwent mechanical testing of compressive failure stress of cubes of trabecular bone from different regions of the head. RESULTS The greatest density and trabecular thickness was found in the central core that extended from the medial calcar to the physeal scar. This region also correlated with the greatest degree of anisotropy and proportion of plate-like trabeculae. In the epiphyseal region, the trabeculae were organized radially from the physeal scar. The weakest area was found at the apex and peripheral areas of the head. The strongest region was at the center of the head. INTERPRETATION The center of the femoral head contained the strongest trabecular bone, with the thickest, most dense trabeculae. The apical region was weaker. From an anatomical and mechanical point of view, implants that achieve fixation in or below this central core may achieve the most stable fixation during fracture healing.
Collapse
|
19
|
Ibrahim N, Parsa A, Hassan B, van der Stelt P, Wismeijer D. Diagnostic imaging of trabecular bone microstructure for oral implants: a literature review. Dentomaxillofac Radiol 2013; 42:20120075. [PMID: 23420864 DOI: 10.1259/dmfr.20120075] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Several dental implant studies have reported that radiographic evaluation of bone quality can aid in reducing implant failure. Bone quality is assessed in terms of its quantity, density, trabecular characteristics and cells. Current imaging modalities vary widely in their efficiency in assessing trabecular structures, especially in a clinical setting. Most are very costly, require an extensive scanning procedure coupled with a high radiation dose and are only partially suitable for patient use. This review examines the current literature regarding diagnostic imaging assessment of trabecular microstructure prior to oral implant placement and suggests cone beam CT as a method of choice for evaluating trabecular bone microstructure.
Collapse
Affiliation(s)
- N Ibrahim
- Department of General and Specialized Dentistry, Section of Oral Radiology, Academic Center for Dentistry Amsterdam (ACTA), Gustav Mahlerlaan 3004, 1081 LA Amsterdam, Netherlands.
| | | | | | | | | |
Collapse
|
20
|
Issever AS, Kentenich M, Köhlitz T, Diederichs G, Zimmermann E. Osteoporosis and atherosclerosis: a post-mortem MDCT study of an elderly cohort. Eur Radiol 2013; 23:2823-9. [PMID: 23722898 DOI: 10.1007/s00330-013-2903-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 04/07/2013] [Accepted: 04/11/2013] [Indexed: 10/26/2022]
Abstract
OBJECTIVES To evaluate how far fracture status and bone mineral density (BMD) correlate with the vascular calcification score (CS). METHODS On 29 complete human cadavers (17 female, 12 male; mean age at death was 85.57 years), multi-detector computed tomography was performed to assess the spine fracture status (fracture vs non-fracture [FX vs non-FX]) and CS of the coronary arteries (Coro-CS), the aorta (Aorta-CS) and the pelvic vessels (Iliac-CS). Quantitative computed tomography of the lumbar spine was performed to estimate overall BMD (osteoporotic [BMD <80 mg/cm(3)] vs non-osteoporotic [BMD ≥ 80 mg/cm(3)]). RESULTS Gender-specific differences in statistical significance were only observed for Aorta-CS and Iliac-CS but not for Coro-CS. When comparing the osteoporotic with the non-osteoporotic group, statistically significant differences were only found for Iliac-CS (P < 0.05); however, linear regression analysis showed none of the CSs to significantly correlate with BMD. CONCLUSIONS In our small post-mortem elderly population, statistically significant associations of fracture status and BMD with CS were only observed between the osteoporotic and non-osteoporotic groups for the pelvic vessels but not for the coronary arteries and the aorta. KEY POINTS • Gender-specific differences were observed for aortic and iliac calcification score (CS). • There was no difference in coronary CS between females and males. • Only iliac CS was different in osteoporotic and non-osteoporotic subjects. • In linear regression analysis, CS showed no correlation with BMD. • In univariate analysis, gender was a BMD and iliac CS confounder.
Collapse
Affiliation(s)
- A S Issever
- Department of Radiology, Charité Campus Mitte, Charité - Universitaetsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany,
| | | | | | | | | |
Collapse
|
21
|
Osterhoff G, Diederichs G, Tami A, Theopold J, Josten C, Hepp P. Influence of trabecular microstructure and cortical index on the complexity of proximal humeral fractures. Arch Orthop Trauma Surg 2012; 132:509-15. [PMID: 22200902 DOI: 10.1007/s00402-011-1446-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Indexed: 10/14/2022]
Abstract
OBJECTIVES Poor bone quality increases the susceptibility to fractures of the proximal humerus. It is unclear whether local trabecular and cortical measures influence the severity of fracture patterns. The goal of this study was to assess parameters of trabecular and cortical bone properties and to compare these parameters with the severity of fractures and biomechanical testing. METHODS Twenty patients with displaced proximal humeral fractures planned for osteosynthesis were included. Fractures were classified as either 2-part fractures or complex fractures. Bone after core drilling was harvested during surgery from the humeral head in each patient. Twenty bone cores obtained from nonpaired cadaver humeral heads served as nonfractured controls. Micro-CT (μCT) was performed and bone volume/total volume (BV/TV), connectivity density (CD), trabecular number (Tb.N), trabecular thickness (Tb.Th), trabecular spacing (Tb.Sp), and bone mineral density (BMD) were assessed. The cortical index (CI) was determined from AP plain films. Biomechanical testing was done after μCT scanning by axially loading until failure, and ultimate strength and E modulus were recorded. RESULTS BV/TV, BMD and CD showed moderate to strong correlations with biomechanical testing (r = 0.45-0.76, all p < 0.05). No significant differences were detected between the 2-part and complex fracture groups and controls regarding μCT and biomechanical parameters. CI was not significantly different between the 2-part and complex fracture groups. CONCLUSIONS In our study population local trabecular bone structure and cortical index could not predict the severity of proximal humeral fractures in the elderly. Complex fractures do not necessarily imply lower bone quality compared to simple fractures.
Collapse
Affiliation(s)
- Georg Osterhoff
- Department of Trauma and Reconstructive Surgery, University of Leipzig, Germany.
| | | | | | | | | | | |
Collapse
|
22
|
Mintzopoulos D, Ackerman JL, Song YQ. MRI of trabecular bone using a decay due to diffusion in the internal field contrast imaging sequence. J Magn Reson Imaging 2012; 34:361-71. [PMID: 21780229 DOI: 10.1002/jmri.22612] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
PURPOSE To characterize the DDIF (Decay due to Diffusion in the Internal Field) method using intact animal trabecular bone specimens of varying trabecular structure and porosity, under ex vivo conditions closely resembling in vivo physiological conditions. The DDIF method provides a diffusion contrast which is related to the surface-to-volume ratio of the porous structure of bones. DDIF has previously been used successfully to study marrow-free trabecular bone, but the DDIF contrast hitherto had not been tested in intact specimens containing marrow and surrounded by soft tissue. MATERIALS AND METHODS DDIF imaging was implemented on a 4.7 Tesla (T) small-bore, horizontal, animal scanner. Ex vivo results on fresh bone specimens containing marrow were obtained at body temperature. Control measurements were carried out in surrounding tissue and saline. RESULTS Significant DDIF effect was observed for trabecular bone samples, while it was considerably smaller for soft tissue outside the bone and for lipids. Additionally, significant differences were observed between specimens of different trabecular structure. CONCLUSION The DDIF contrast is feasible despite the reduction of the diffusion constant and of T(1) in such conditions, increasing our confidence that DDIF imaging in vivo may be clinically viable for bone characterization.
Collapse
Affiliation(s)
- Dionyssios Mintzopoulos
- Athinoula A Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts 02129, USA.
| | | | | |
Collapse
|
23
|
Mulder L, van Rietbergen B, Noordhoek NJ, Ito K. Determination of vertebral and femoral trabecular morphology and stiffness using a flat-panel C-arm-based CT approach. Bone 2012; 50:200-8. [PMID: 22057082 DOI: 10.1016/j.bone.2011.10.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Revised: 09/22/2011] [Accepted: 10/19/2011] [Indexed: 01/04/2023]
Abstract
The importance of assessing trabecular architecture together with bone mineral density to determine bone stiffness and fracture risk in osteoporosis has been well established. However, no imaging modalities are available to assess trabecular architecture at clinically relevant sites in the axial skeleton. Recently developed flat-panel CT devices, however, offer resolutions that are potentially good enough to resolve bone architecture at these sites. The goal of the present study was to investigate how accurate trabecular architecture and stiffness can be determined based on images from such a device (XperCT, Philips Healthcare). Ten cadaver human C3 vertebrae, twelve T12 vertebrae and 12 proximal femora were scanned with XperCT while mimicking in-vivo scanning conditions and compared to scans of the same bones with microCT. Standard segmentation and morphology quantification algorithms were applied as well as finite element (FE) simulation based on segmented and gray value images. Results showed that mean trabecular separation (Tb.Sp) and number (Tb.N) can be accurately determined at all sites. The accuracy of other parameters, however, depended on the site. For T12 no other structural parameters could be accurately quantified and no FE-results could be obtained from segmented images. When using gray-level images, however, accurate determination of cancellous bone stiffness was possible. For the C3 vertebrae and proximal femora, mean bone volume fraction (BV/TV), Tb.Sp, Tb.N, and anisotropy (C3 only) could be determined accurately. For Tb.Th, structure model index (SMI, femur only), and anisotropy good correlations were obtained but the values were not determined accurately. FE simulations based on segmented images were accurate for the C3 vertebrae, but severely underestimated bone stiffness for the femur. Here also, this was improved by using the gray value models. In conclusion, XperCT does provide a resolution that is good enough to determine trabecular architecture, but the signal to noise ratio is key to the accuracy of the morphology measurement. When the trabeculae are thick e.g. in the femur or the noise is low, e.g. cervical spine, architecture and stiffness could be determined accurately, but when the trabeculae are thin and the noise is high, e.g. thoracic spine, architecture could not be determined accurately and the connectivity was lost and hence no mechanical properties could be calculated directly.
Collapse
Affiliation(s)
- Lars Mulder
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | | | | | | |
Collapse
|
24
|
Boutroy S, Vilayphiou N, Roux JP, Delmas PD, Blain H, Chapurlat RD, Chavassieux P. Comparison of 2D and 3D bone microarchitecture evaluation at the femoral neck, among postmenopausal women with hip fracture or hip osteoarthritis. Bone 2011; 49:1055-61. [PMID: 21856461 DOI: 10.1016/j.bone.2011.07.037] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Revised: 06/30/2011] [Accepted: 07/25/2011] [Indexed: 11/18/2022]
Abstract
OBJECTIVES High resolution peripheral quantitative tomography (HR-pQCT) is used more widely to assess microarchitecture, but we are lacking comparisons between HR-pQCT and histomorphometry, which is considered the gold standard. They have only been assessed on different anatomical regions. The purpose of our study was to assess the microarchitecture and the relative contribution of cortical and trabecular bone in hip fracture with this 3D imaging technique, compared with the 2D histomorphometry. MATERIAL AND METHODS We compared the distribution of cortical and trabecular bone in the ultradistal femoral neck samples (~3mm thick) obtained after total hip replacement in 21 hip osteoarthritis (HOA, 66±8yrs) and 20 hip fracture (HF, 79±8yrs) menopausal women by a direct 3D evaluation method (HR-pQCT: XtremeCT, Scanco Medical AG) and by histomorphometry, performed and averaged on three 10μm-thick sections 800μm apart. RESULTS Significant correlations were found between both techniques for trabecular bone volume, number, thickness, separation and cortical thickness (0.51<r'<0.81, p<0.01). The connectivity was also significantly correlated (r'=0.58, p<0.001) between both techniques, as well as the trabecular bone pattern factor measured in 2D with the structural model index (SMI) measured in 3D (r'=0.62, p<0.001). However HR-pQCT overestimated the absolute value of most parameters, with higher values being even more overestimated. The agreement between the two techniques was weak for cortical porosity. With the 3D measurements we found that trabecular bone volume was 43% lower in HF than HOA (p<0.01), associated with loss of trabecular connectivity (-50%, p<0.01) and a more rod-like structure (SMI, 22%, p<0.01), mainly at the inferior (34%, p<0.01) and posterior (22%, p<0.05) quadrants. Cortical thickness was found to be lower in the posterior quadrants (-22%, p<0.05) and tended to be lower in HF than in HOA at the inferior quadrant (-14%, p=0.08), but it was still the highest at the inferior quadrant in both groups. In conclusion, 3D methods confirmed the alteration of trabecular and cortical bone found by histomorphometry in HF compared with HOA and the frequency of the rod-like structure in HF.
Collapse
|
25
|
Phan CM, Macklin EA, Bredella MA, Dadrich M, Flechsig P, Yoo AJ, Hirsch JA, Gupta R. Trabecular structure analysis using C-arm CT: comparison with MDCT and flat-panel volume CT. Skeletal Radiol 2011; 40:1065-72. [PMID: 20658286 DOI: 10.1007/s00256-010-1002-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Revised: 07/06/2010] [Accepted: 07/06/2010] [Indexed: 02/02/2023]
Abstract
PURPOSE This paper assesses interscan, interreader, and intrareader variability of C-arm CT and compares it to that of flat-panel volume-CT (fpVCT) and high-definition multi-detector-CT (HD-MDCT). METHODS Five cadaver knee specimens were imaged using C-arm-CT, fpVCT, and HD-MDCT. Apparent (app.) trabecular bone volume fraction (BV/TV), app. trabecular number (TbN), app. trabecular spacing (TbSp), and app. trabecular thickness (TbTh) of the proximal tibia were measured by three readers. Interreader, intrareader, and interscan variability for C-arm CT was expressed as coefficient of variation (CV), standard deviation (SD), and intraclass correlation coefficient (ICC). RESULTS With the exception of app.TbSp (CV: 7.05-9.35%, SD: 0.06-0.09, ICC: 0.89-0.94), the variability of C-arm CT was low (CV: 2.41-6.43%, SD: 0.01-0.048, ICC: 0.65-0.98). Its interreader reliability (CV: 2.66-4.55%, SD: 0.01-0.03, ICC: 0.81-0.95) was comparable to that of HD-MDCT (CV: 2.41-4.08%, SD: 0.014-0.016, ICC: 0.95-0.96), and fpVCT (CV: 3.13-5.63%, SD: 0.009-0.036, ICC: 0.64-0.98) for all parameters except app.TbSp. CONCLUSIONS C-arm CT is a reliable method for assessing trabecular bone architectural parameters with the exception of app.TbSp due to spatial resolution limitation.
Collapse
Affiliation(s)
- Catherine M Phan
- Department of Radiology, Massachusetts General Hospital Neuroradiology, GRB-273A, 55 Fruit Street, Boston, MA 02114, USA.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Burghardt AJ, Link TM, Majumdar S. High-resolution computed tomography for clinical imaging of bone microarchitecture. Clin Orthop Relat Res 2011; 469:2179-93. [PMID: 21344275 PMCID: PMC3126972 DOI: 10.1007/s11999-010-1766-x] [Citation(s) in RCA: 185] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND The role of bone structure, one component of bone quality, has emerged as a contributor to bone strength. The application of high-resolution imaging in evaluating bone structure has evolved from an in vitro technology for small specimens to an emerging clinical research tool for in vivo studies in humans. However, many technical and practical challenges remain to translate these techniques into established clinical outcomes. QUESTIONS/PURPOSES We reviewed use of high-resolution CT for evaluating trabecular microarchitecture and cortical ultrastructure of bone specimens ex vivo, extension of these techniques to in vivo human imaging studies, and recent studies involving application of high-resolution CT to characterize bone structure in the context of skeletal disease. METHODS We performed the literature review using PubMed and Google Scholar. Keywords included CT, MDCT, micro-CT, high-resolution peripheral CT, bone microarchitecture, and bone quality. RESULTS Specimens can be imaged by micro-CT at a resolution starting at 1 μm, but in vivo human imaging is restricted to a voxel size of 82 μm (with actual spatial resolution of ~ 130 μm) due to technical limitations and radiation dose considerations. Presently, this mode is limited to peripheral skeletal regions, such as the wrist and tibia. In contrast, multidetector CT can assess the central skeleton but incurs a higher radiation burden on the subject and provides lower resolution (200-500 μm). CONCLUSIONS CT currently provides quantitative measures of bone structure and may be used for estimating bone strength mathematically. The techniques may provide clinically relevant information by enhancing our understanding of fracture risk and establishing the efficacy of antifracture for osteoporosis and other bone metabolic disorders.
Collapse
Affiliation(s)
- Andrew J. Burghardt
- Musculoskeletal Quantitative Imaging Research Group, Department of Radiology and Biomedical Imaging, University of California, San Francisco, Campus Box 2520, QB3 Building, 2nd Floor, Suite 203, 1700 4th Street, San Francisco, CA 94158 USA
| | - Thomas M. Link
- Musculoskeletal Quantitative Imaging Research Group, Department of Radiology and Biomedical Imaging, University of California, San Francisco, Campus Box 2520, QB3 Building, 2nd Floor, Suite 203, 1700 4th Street, San Francisco, CA 94158 USA
| | - Sharmila Majumdar
- Musculoskeletal Quantitative Imaging Research Group, Department of Radiology and Biomedical Imaging, University of California, San Francisco, Campus Box 2520, QB3 Building, 2nd Floor, Suite 203, 1700 4th Street, San Francisco, CA 94158 USA
| |
Collapse
|
27
|
Texture analysis, bone mineral density, and cortical thickness of the proximal femur: fracture risk prediction. J Comput Assist Tomogr 2011; 34:949-57. [PMID: 21084915 DOI: 10.1097/rct.0b013e3181ec05e4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE The objectives of this study were to perform a clinical study analyzing bone quality in multidetector computed tomographic images of the femur using bone mineral density (BMD), cortical thickness, and texture algorithms in differentiating osteoporotic fracture and control subjects; to differentiate fracture types. METHODS Femoral head, trochanteric, intertrochanteric, and upper and lower neck were segmented (fracture, n = 30; control, n = 10). Cortical thickness, BMD, and texture analysis were obtained using co-occurrence matrices, Minkowski dimension, and functional and scaling index method. RESULTS Bone mineral density and cortical thickness performed best in the neck region, and texture measures performed best in the trochanter. Only cortical thickness and texture measures differentiated femoral neck and intertrochanteric fractures. CONCLUSIONS This study demonstrates that differentiation of osteoporotic fracture subjects and controls is achieved with texture measures, cortical thickness, and BMD; however, performance is region specific.
Collapse
|
28
|
Guglielmi G, Nasuto M, La Porta M. Radiological diagnostic progress in skeletal diseases. CLINICAL CASES IN MINERAL AND BONE METABOLISM : THE OFFICIAL JOURNAL OF THE ITALIAN SOCIETY OF OSTEOPOROSIS, MINERAL METABOLISM, AND SKELETAL DISEASES 2011; 8:13-16. [PMID: 22461797 PMCID: PMC3230917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
High-resolution bone imaging has made tremendous progress in the recent past. Both imaging modalities, computed tomography as well as MR imaging, have improved image quality. New developments such as HR-pQCT now make it possible to acquire in vivo images at peripheral sites with isotropic voxel size in a very short time. Further enhancements in the MR field have made it possible to image more central body sites such as the proximal femur with very high spatial resolution. New analysis methods can obtain direct estimates of biomechanical properties and important information related to bone's topology, as well as parameters of scale and orientation. These accomplishments will be essential in the noninvasive assessment of osteoporosis and fracture risk, will provide insight into the mechanisms behind bone loss, and will increasingly play a role as a tool for assessing treatment efficacy.
Collapse
Affiliation(s)
- Giuseppe Guglielmi
- Department of Radiology, University of Foggia, Foggia, Italy
- Department of Radiology, Scientific Institute “Casa Sollievo della Sofferenza” Hospital, San Giovanni Rotondo, Foggia, Italy
| | - Michelangelo Nasuto
- Department of Radiology, Scientific Institute “Casa Sollievo della Sofferenza” Hospital, San Giovanni Rotondo, Foggia, Italy
| | - Michele La Porta
- Department of Radiology, “T. Masselli-Mascia” Hospital, San Severo, Foggia, Italy
| |
Collapse
|
29
|
Spectral analysis and connectivity of porous microstructures in bone. J Biomech 2011; 44:337-44. [DOI: 10.1016/j.jbiomech.2010.10.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Accepted: 10/21/2010] [Indexed: 01/31/2023]
|
30
|
Wegrzyn J, Roux JP, Arlot ME, Boutroy S, Vilayphiou N, Guyen O, Delmas PD, Chapurlat R, Bouxsein ML. Role of trabecular microarchitecture and its heterogeneity parameters in the mechanical behavior of ex vivo human L3 vertebrae. J Bone Miner Res 2010; 25:2324-31. [PMID: 20564249 PMCID: PMC3179283 DOI: 10.1002/jbmr.164] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2009] [Revised: 04/16/2010] [Accepted: 06/09/2010] [Indexed: 01/23/2023]
Abstract
Low bone mineral density (BMD) is a strong risk factor for vertebral fracture risk in osteoporosis. However, many fractures occur in people with moderately decreased or normal BMD. Our aim was to assess the contributions of trabecular microarchitecture and its heterogeneity to the mechanical behavior of human lumbar vertebrae. Twenty-one human L(3) vertebrae were analyzed for BMD by dual-energy X-ray absorptiometry (DXA) and microarchitecture by high-resolution peripheral quantitative computed tomography (HR-pQCT) and then tested in axial compression. Microarchitecture heterogeneity was assessed using two vertically oriented virtual biopsies--one anterior (Ant) and one posterior (Post)--each divided into three zones (superior, middle, and inferior) and using the whole vertebral trabecular volume for the intraindividual distribution of trabecular separation (Tb.Sp*SD). Heterogeneity parameters were defined as (1) ratios of anterior to posterior microarchitectural parameters and (2) the coefficient of variation of microarchitectural parameters from the superior, middle, and inferior zones. BMD alone explained up to 44% of the variability in vertebral mechanical behavior, bone volume fraction (BV/TV) up to 53%, and trabecular architecture up to 66%. Importantly, bone mass (BMD or BV/TV) in combination with microarchitecture and its heterogeneity improved the prediction of vertebral mechanical behavior, together explaining up to 86% of the variability in vertebral failure load. In conclusion, our data indicate that regional variation of microarchitecture assessment expressed by heterogeneity parameters may enhance prediction of vertebral fracture risk.
Collapse
Affiliation(s)
- Julien Wegrzyn
- INSERM Research Unit 831, Université de Lyon, Lyon, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Link TM. The Founder's Lecture 2009: advances in imaging of osteoporosis and osteoarthritis. Skeletal Radiol 2010; 39:943-55. [PMID: 20563801 PMCID: PMC2920421 DOI: 10.1007/s00256-010-0987-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Revised: 06/03/2010] [Accepted: 06/04/2010] [Indexed: 02/02/2023]
Abstract
The objective of this review article is to provide an update on new developments in imaging of osteoporosis and osteoarthritis over the past three decades. A literature review is presented that summarizes the highlights in the development of bone mineral density measurements, bone structure imaging, and vertebral fracture assessment in osteoporosis as well as MR-based semiquantitative assessment of osteoarthritis and quantitative cartilage matrix imaging. This review focuses on techniques that have impacted patient management and therapeutic decision making or that potentially will affect patient care in the near future. Results of pertinent studies are presented and used for illustration. In summary, novel developments have significantly impacted imaging of osteoporosis and osteoarthritis over the past three decades.
Collapse
Affiliation(s)
- Thomas Marc Link
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA 94131, USA.
| |
Collapse
|
32
|
Krug R, Burghardt AJ, Majumdar S, Link TM. High-resolution imaging techniques for the assessment of osteoporosis. Radiol Clin North Am 2010; 48:601-21. [PMID: 20609895 PMCID: PMC2901255 DOI: 10.1016/j.rcl.2010.02.015] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The importance of assessing the bone's microarchitectural make-up in addition to its mineral density in the context of osteoporosis has been emphasized in several publications. The high spatial resolution required to resolve the bone's microstructure in a clinically feasible scan time is challenging. At present, the best suited modalities meeting these requirements in vivo are high-resolution peripheral quantitative imaging (HR-pQCT) and magnetic resonance imaging (MRI). Whereas HR-pQCT is limited to peripheral skeleton regions like the wrist and ankle, MRI can also image other sites like the proximal femur but usually with lower spatial resolution. In addition, multidetector computed tomography has been used for high-resolution imaging of trabecular bone structure; however, the radiation dose is a limiting factor. This article provides an overview of the different modalities, technical requirements, and recent developments in this emerging field. Details regarding imaging protocols as well as image postprocessing methods for bone structure quantification are discussed.
Collapse
Affiliation(s)
- Roland Krug
- MQIR, Department of Radiology and Biomedical Imaging, University of California-San Francisco, UCSF China Basin Landing, 185 Berry Street, San Francisco, CA 94107, USA.
| | | | | | | |
Collapse
|
33
|
|