1
|
Liu G, Xue J, Zhou X, Gui M, Xia R, Zhang Y, Cai Y, Li S, Shi S, Mao X, Chen Z. The paradigm shifts of periodontal regeneration strategy: From reparative manipulation to developmental engineering. Bioact Mater 2025; 49:418-436. [PMID: 40165829 PMCID: PMC11957753 DOI: 10.1016/j.bioactmat.2025.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 02/07/2025] [Accepted: 03/10/2025] [Indexed: 04/02/2025] Open
Abstract
Ideal periodontal regeneration requires the integration of alveolar bone, periodontal ligament, and cementum, along with Sharpey's fibers for occlusal force resistance. However, physiological regeneration remains rare due to its intricate structure, making clinical regeneration a challenge. Periodontal ligament stem cells (PDLSCs), first isolated in 2004, hold the key to multi-directional differentiation into cementoblasts, fibroblasts, and osteoblasts. While traditional therapies like guided tissue regeneration (GTR) aim to activate PDLSCs, clinical outcomes are inconsistent, suggesting the need for additional strategies to enhance PDLSCs' functions. Advancements in molecular biotechnology have introduced the use of recombinant growth factors for tissue regeneration. However, maintaining their efficacy requires high doses, posing cost and safety issues. Multi-layered scaffolds combined with cell sheet technology offer new insights, but face production, ethical, and survival challenges. Immune regulation plays a crucial role in PDLSC-mediated regeneration. The concept of "coagulo-immunomodulation" has emerged, emphasizing the coupling of blood coagulation and immune responses for periodontal regeneration. Despite its potential, the clinical translation of immune-based strategies remains elusive. The "developmental engineering" approach, which mimics developmental events using embryonic-stage cells and microenvironments, shows promise. Our research group has made initial strides, indicating its potential as a viable solution for periodontal complex regeneration. However, further clinical trials and considerations are needed for successful clinical application. This review aims to summarize the strategic transitions in the development of periodontal regenerative materials and to propose prospective avenues for future development.
Collapse
Affiliation(s)
- Guanqi Liu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
- Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou, 510055, China
| | - Junlong Xue
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
- Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou, 510055, China
| | - Xuan Zhou
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
- Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou, 510055, China
| | - Mixiao Gui
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
- Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou, 510055, China
| | - Ruidi Xia
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
- Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou, 510055, China
| | - Yanshu Zhang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
- Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou, 510055, China
| | - Yihua Cai
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
- Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou, 510055, China
| | - Shuhua Li
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
- Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou, 510055, China
| | - Songtao Shi
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
- South China Center of Craniofacial Stem Cell Research, Guangzhou, 510055, China
| | - Xueli Mao
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
- South China Center of Craniofacial Stem Cell Research, Guangzhou, 510055, China
| | - Zetao Chen
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
- Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou, 510055, China
| |
Collapse
|
2
|
Zheng X, Huang H, Zhou Z, Guo W, Yang G, Chen Z, Chen D, Chen Y, Yuan G. Axin1 regulates tooth root development by inhibiting AKT1-mTORC1 activation and Shh translation in Hertwig's epithelial root sheath. Development 2024; 151:dev202899. [PMID: 39344774 DOI: 10.1242/dev.202899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 09/24/2024] [Indexed: 10/01/2024]
Abstract
Hertwig's epithelial root sheath (HERS) interacts with dental apical mesenchyme and guides development of the tooth root, which is integral to the function of the whole tooth. However, the key genes in HERS essential for root development are understudied. Here, we show that Axin1, a scaffold protein that negatively regulates canonical Wnt signaling, is strongly expressed in the HERS. Axin1 ablation in the HERS of mice leads to defective root development, but in a manner independent of canonical Wnt signaling. Further studies reveal that Axin1 in the HERS negatively regulates the AKT1-mTORC1 pathway through binding to AKT1, leading to inhibition of ribosomal biogenesis and mRNA translation. Sonic hedgehog (Shh) protein, a morphogen essential for root development, is over-synthesized by upregulated mTORC1 activity upon Axin1 inactivation. Importantly, either haploinsufficiency of the mTORC1 subunit Rptor or pharmacological inhibition of Shh signaling can rescue the root defects in Axin1 mutant mice. Collectively, our data suggest that, independently of canonical Wnt signaling, Axin1 controls ribosomal biogenesis and selective mRNA translation programs via AKT1-mTORC1 signaling during tooth root development.
Collapse
Affiliation(s)
- Xiaoyu Zheng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430079, China
| | - Hongcan Huang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430079, China
| | - Zhipeng Zhou
- National Key Laboratory of Agricultural Microbiology, College of Life Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Weihua Guo
- Yunnan Key Laboratory of Stomatology, Kunming Medical University, Kunming, Yunnan 610041, China
- Department of Pediatric Dentistry, The Affiliated Stomatology Hospital of Kunming Medical University, Kunming, Yunnan 610041, China
| | - Guobin Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Zhi Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Di Chen
- Research Center for Computer-aided Drug Discovery, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
- Faculty of Pharmaceutical Sciences, Shenzhen Institutes of Advanced Technology, Shenzhen, Guangdong 518055, China
| | - YiPing Chen
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA
| | - Guohua Yuan
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430079, China
| |
Collapse
|
3
|
Shi Y, Yu Y, Li J, Sun S, Han L, Wang S, Guo K, Yang J, Qiu J, Wei W. Spatiotemporal cell landscape of human embryonic tooth development. Cell Prolif 2024; 57:e13653. [PMID: 38867378 PMCID: PMC11503248 DOI: 10.1111/cpr.13653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 03/27/2024] [Accepted: 04/28/2024] [Indexed: 06/14/2024] Open
Abstract
Understanding the cellular composition and trajectory of human tooth development is valuable for dentistry and stem cell engineering research. Previous single-cell studies have focused on mature human teeth and developing mouse teeth, but the cell landscape of human embryonic dental development is still unknown. In this study, tooth germ tissues were collected from aborted foetus (17-24 weeks) for single-cell RNA sequence and spatial transcriptome analysis. The cells were classified into seven subclusters of epithelium, and seven clusters of mesenchyme, as well as other cell types such as Schwann cell precursor and pericyte. For epithelium, the stratum intermedium branch and the ameloblast branch diverged from the same set of outer enamel-inner enamel-ALCAM+ epithelial cell lineage, but their spatial distribution of two branches was not clearly distinct. This trajectory received spatially adjacent regulation signals from mesenchyme and pericyte, including JAG1 and APP. The differentiation of pulp cell and pre-odontoblast showed four waves of temporally distinct gene expression, which involved regulation networks of LHX9, DLX5 and SP7, and these genes were regulated by upstream ligands such as the BMP family. This provides a reference landscape for the research on early human tooth development, covering different spatial structures and developmental periods.
Collapse
Affiliation(s)
- Yueqi Shi
- Department of Stomatology, Tongren HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yejia Yu
- State Key Laboratory of Oral Disease, West China Hospital of StomatologySichuan UniversityChengduChina
| | - Jutang Li
- Hongqiao International Institute of MedicineTongren Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Shoufu Sun
- Department of Stomatology, Tongren HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Li Han
- Department of Obstetrics and Gynecology, Tongren HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Shaoyi Wang
- Department of Oral Surgery, Shanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Ke Guo
- Department of Stomatology, Tongren HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Jingang Yang
- Department of Stomatology, Tongren HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Jin Qiu
- Department of Obstetrics and Gynecology, Tongren HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Wenjia Wei
- Department of Stomatology, Tongren HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
4
|
Cui Y, Li C, Wang H, Li L, Xie J, Zhou X, Zhang H, Sun J. Hemicentin-1 is an essential extracellular matrix component during tooth root formation by promoting mesenchymal cells differentiation. Front Cell Dev Biol 2024; 12:1435241. [PMID: 39050894 PMCID: PMC11266140 DOI: 10.3389/fcell.2024.1435241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 06/18/2024] [Indexed: 07/27/2024] Open
Abstract
Introduction: Root dentin formation is an important process in tooth development. We tried to identify potential genes that regulate root dentin formation which could be potentially used for the regeneration and repair of defective or damaged dental roots. Methods: Tissues harvested from the labial and lingual sides of mouse incisors were used for microarray analysis. Gene ontology (GO) analysis of differentially expressed genes indicated the critical role of extracellular matrix in the discrepancy of dentin formation between root and crown, for which hemicentin-1 (Hmcn1) was selected as the target gene. Single-cell RNA sequencing analysis the expression pattern of Hmcn1 at different developmental stages in mouse molars. The spatiotemporal expression of HMCN1 in mouse incisors and molars was detected by immunohistochemical staining. The functions of HMCN1 in human dental pulp cells, including proliferation, differentiation and migration, were examined in vitro by CCK8 assay, BrdU assay, wound-healing assay, ALP staining and alizarin red staining, respectively. Results: It was showed that HMCN1 expression was more pronounced in papilla-pulp on the root than crown side in mouse incisors and molars. In vitro experiments presented inhibited dentinogenesis and migration after HMCN1-knockdown in human dental pulp cells, while there was no significant difference in proliferation between the HMCN1-knockdown group and control group. Discussion: These results indicated that HMCN1 plays an important role in dentinogenesis and migration of pulp cells, contributing to root dentin formation.
Collapse
Affiliation(s)
- Yujia Cui
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chuwen Li
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology and National Clinical Research Center for Oral Diseases and Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hanyang Wang
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lei Li
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jing Xie
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hai Zhang
- School of Dentistry, University of Washington, Seattle, WA, United States
| | - Jianxun Sun
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
5
|
Jin C, Adachi N, Yoshimoto Y, Sasabuchi A, Kawashima N, Ota MS, Iseki S. Fibroblast growth factor signalling regulates the development of tooth root. J Anat 2024; 244:1067-1077. [PMID: 38258312 PMCID: PMC11095309 DOI: 10.1111/joa.14014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/03/2023] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
Fibroblast growth factor (FGF) signalling plays a crucial role in the morphogenesis of multiple tissues including teeth. While the role of the signal has been studied in tooth crown development, little is known about root development. Of several FGF ligands involved in hard tissue formation, we suggest that FGF18 regulates the development of murine tooth roots. We implanted FGF18-soaked heparin beads into the lower first molar tooth buds at postnatal day 6 (P6), followed by transplantation under the kidney capsule. After 3 weeks, FGF18 significantly facilitated root elongation and periodontal tissue formation compared to the control. In situ hybridisation showed that Fgf18 transcripts were initially localised in the dental pulp along Hertwig's epithelial root sheath at P6 and P10 and subsequently in the dental follicle cells at P14. Fgf receptors were expressed in various dental tissues during these stages. In vitro analysis using the dental pulp stem cells revealed that FGF18 inhibited cell proliferation and decreased expression levels of osteogenic markers, Runx2, Alpl and Sp7. Consistently, after 1 week of kidney capsule transplantation, FGF18 application did not induce the expression of Sp7 and Bsp, but upregulated Periostin in the apical region of dental mesenchyme in the grafted molar. These findings suggest that FGF18 facilitates molar root development by regulating the calcification of periodontal tissues.
Collapse
Affiliation(s)
- Chengxue Jin
- Department of Molecular Craniofacial Embryology and Oral Histology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
- Department of Oral, Plastic and Aesthetic Surgery, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| | - Noritaka Adachi
- Department of Molecular Craniofacial Embryology and Oral Histology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Yuki Yoshimoto
- Department of Molecular Craniofacial Embryology and Oral Histology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Aino Sasabuchi
- Department of Molecular Craniofacial Embryology and Oral Histology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Nobuyuki Kawashima
- Department of Pulp Biology and Endodontics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Masato S Ota
- Laboratory of Anatomy, Physiology and Food Biological Science, Department of Food and Nutrition, Faculty of Human Sciences and Design, Japan Women's University, Tokyo, Japan
| | - Sachiko Iseki
- Department of Molecular Craniofacial Embryology and Oral Histology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| |
Collapse
|
6
|
Sun K, Yu M, Wang J, Zhao H, Liu H, Feng H, Liu Y, Han D. A Wnt10a-Notch signaling axis controls Hertwig's epithelial root sheath cell behaviors during root furcation patterning. Int J Oral Sci 2024; 16:25. [PMID: 38480698 PMCID: PMC10937922 DOI: 10.1038/s41368-024-00288-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 02/12/2024] [Accepted: 02/17/2024] [Indexed: 03/17/2024] Open
Abstract
Human with bi-allelic WNT10A mutations and epithelial Wnt10a knockout mice present enlarged pulp chamber and apical displacement of the root furcation of multi-rooted teeth, known as taurodontism; thus, indicating the critical role of Wnt10a in tooth root morphogenesis. However, the endogenous mechanism by which epithelial Wnt10a regulates Hertwig's epithelial root sheath (HERS) cellular behaviors and contributes to root furcation patterning remains unclear. In this study, we found that HERS in the presumptive root furcating region failed to elongate at an appropriate horizontal level in K14-Cre;Wnt10afl/fl mice from post-natal day 0.5 (PN0.5) to PN4.5. EdU assays and immunofluorescent staining of cyclin D1 revealed significantly decreased proliferation activity of inner enamel epithelial (IEE) cells of HERS in K14-Cre;Wnt10afl/fl mice at PN2.5 and PN3.5. Immunofluorescent staining of E-Cadherin and acetyl-α-Tubulin demonstrated that the IEE cells of HERS tended to divide perpendicularly to the horizontal plane, which impaired the horizontal extension of HERS in the presumptive root furcating region of K14-Cre;Wnt10afl/fl mice. RNA-seq and immunofluorescence showed that the expressions of Jag1 and Notch2 were downregulated in IEE cells of HERS in K14-Cre;Wnt10afl/fl mice. Furthermore, after activation of Notch signaling in K14-Cre;Wnt10afl/fl molars by Notch2 adenovirus and kidney capsule grafts, the root furcation defect was partially rescued. Taken together, our study demonstrates that an epithelial Wnt10a-Notch signaling axis is crucial for modulating HERS cell proper proliferation and horizontal-oriented division during tooth root furcation morphogenesis.
Collapse
Affiliation(s)
- Kai Sun
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Miao Yu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Jiayu Wang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Hu Zhao
- Chinese Institute for Brain Research, Beijing, China
| | - Haochen Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Hailan Feng
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Yang Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China.
| | - Dong Han
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China.
| |
Collapse
|
7
|
Huang R, Tang L, Li R, Li Y, Zhan L, Huang X. Tooth pattern, development, and replacement in the yellow catfish, Pelteobagrus fulvidraco. J Morphol 2024; 285:e21657. [PMID: 38100745 DOI: 10.1002/jmor.21657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 12/17/2023]
Abstract
Studies of teleost teeth are important for understanding the evolution and mechanisms of tooth development, replacement, and regeneration. Here, we used gross specimens, microcomputed tomography, and histological analysis to characterize tooth structure, development, and resorption patterns in adult Pelteobagrus fulvidraco. The oral and pharyngeal teeth are villiform and conical. Multiple rows of dentition are densely distributed and the tooth germ is derived from the epithelium. P. fulvidraco exhibits a discontinuous and non-permanent dental lamina. Epithelial cells surround the teeth and are separated into distinct tooth units by mesenchymal tissue. Tooth development is completed in the form of independent tooth units. P. fulvidraco does not undergo simultaneous tooth replacement. Based on tooth development and resorption status, five forms of teeth are present in adult P. fulvidraco: developing tooth germs, accompanied by relatively immature tooth germs; mature and well-mineralized tooth accompanied by one tooth germ; teeth that have begun resorption, but not completely fractured; fractured teeth with only residual attachment to the underlying bone; and teeth that are completely resorbed and detached. Seven biological stages of a tooth in P. fulvidraco were also described.
Collapse
Affiliation(s)
- Rui Huang
- Department of Stomatology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Li Tang
- Department of Stomatology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Department of Orthodontics, The Affiliated Hospital of Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
| | - Ruiqi Li
- Department of Stomatology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yongfeng Li
- Department of Stomatology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Liping Zhan
- Department of Stomatology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xiaofeng Huang
- Department of Stomatology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
8
|
Hazrati P, Mirtaleb MH, Boroojeni HSH, Koma AAY, Nokhbatolfoghahaei H. Current Trends, Advances, and Challenges of Tissue Engineering-Based Approaches of Tooth Regeneration: A Review of the Literature. Curr Stem Cell Res Ther 2024; 19:473-496. [PMID: 35984017 DOI: 10.2174/1574888x17666220818103228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/17/2022] [Accepted: 06/01/2022] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Tooth loss is a significant health issue. Currently, this situation is often treated with the use of synthetic materials such as implants and prostheses. However, these treatment modalities do not fully meet patients' biological and mechanical needs and have limited longevity. Regenerative medicine focuses on the restoration of patients' natural tissues via tissue engineering techniques instead of rehabilitating with artificial appliances. Therefore, a tissue-engineered tooth regeneration strategy seems like a promising option to treat tooth loss. OBJECTIVE This review aims to demonstrate recent advances in tooth regeneration strategies and discoveries about underlying mechanisms and pathways of tooth formation. RESULTS AND DISCUSSION Whole tooth regeneration, tooth root formation, and dentin-pulp organoid generation have been achieved by using different seed cells and various materials for scaffold production. Bioactive agents are critical elements for the induction of cells into odontoblast or ameloblast lineage. Some substantial pathways enrolled in tooth development have been figured out, helping researchers design their experiments more effectively and aligned with the natural process of tooth formation. CONCLUSION According to current knowledge, tooth regeneration is possible in case of proper selection of stem cells, appropriate design and manufacturing of a biocompatible scaffold, and meticulous application of bioactive agents for odontogenic induction. Understanding innate odontogenesis pathways play a crucial role in accurately planning regenerative therapeutic interventions in order to reproduce teeth.
Collapse
Affiliation(s)
- Parham Hazrati
- School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Helia Sadat Haeri Boroojeni
- Oral and Maxillofacial Surgery Department, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Hanieh Nokhbatolfoghahaei
- Dental Research Center, Research Institute of Dental Sciences, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Rao P, Jing J, Fan Y, Zhou C. Spatiotemporal cellular dynamics and molecular regulation of tooth root ontogeny. Int J Oral Sci 2023; 15:50. [PMID: 38001110 PMCID: PMC10673972 DOI: 10.1038/s41368-023-00258-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/25/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
Tooth root development involves intricate spatiotemporal cellular dynamics and molecular regulation. The initiation of Hertwig's epithelial root sheath (HERS) induces odontoblast differentiation and the subsequent radicular dentin deposition. Precisely controlled signaling pathways modulate the behaviors of HERS and the fates of dental mesenchymal stem cells (DMSCs). Disruptions in these pathways lead to defects in root development, such as shortened roots and furcation abnormalities. Advances in dental stem cells, biomaterials, and bioprinting show immense promise for bioengineered tooth root regeneration. However, replicating the developmental intricacies of odontogenesis has not been resolved in clinical treatment and remains a major challenge in this field. Ongoing research focusing on the mechanisms of root development, advanced biomaterials, and manufacturing techniques will enable next-generation biological root regeneration that restores the physiological structure and function of the tooth root. This review summarizes recent discoveries in the underlying mechanisms governing root ontogeny and discusses some recent key findings in developing of new biologically based dental therapies.
Collapse
Affiliation(s)
- Pengcheng Rao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Junjun Jing
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yi Fan
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chenchen Zhou
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China.
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
10
|
Liu C, Guo H, Shi C, Sun H. BMP signaling in the development and regeneration of tooth roots: from mechanisms to applications. Front Cell Dev Biol 2023; 11:1272201. [PMID: 37779895 PMCID: PMC10540449 DOI: 10.3389/fcell.2023.1272201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 09/04/2023] [Indexed: 10/03/2023] Open
Abstract
Short root anomaly (SRA), along with caries, periodontitis, and trauma, can cause tooth loss, affecting the physical and mental health of patients. Dental implants have become widely utilized for tooth restoration; however, they exhibit certain limitations compared to natural tooth roots. Tissue engineering-mediated root regeneration offers a strategy to sustain a tooth with a physiologically more natural function by regenerating the bioengineered tooth root (bio-root) based on the bionic principle. While the process of tooth root development has been reported in previous studies, the specific molecular mechanisms remain unclear. The Bone Morphogenetic Proteins (BMPs) family is an essential factor regulating cellular activities and is involved in almost all tissue development. Recent studies have focused on exploring the mechanism of BMP signaling in tooth root development by using transgenic animal models and developing better tissue engineering strategies for bio-root regeneration. This article reviews the unique roles of BMP signaling in tooth root development and regeneration.
Collapse
Affiliation(s)
- Cangwei Liu
- Department of Oral Pathology, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, China
| | - Hao Guo
- Department of Oral Pathology, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, China
| | - Ce Shi
- Department of Oral Pathology, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, China
| | - Hongchen Sun
- Department of Oral Pathology, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, China
| |
Collapse
|
11
|
Wang J, McVicar A, Chen Y, Deng HW, Zhao Z, Chen W, Li YP. Atp6i deficient mouse model uncovers transforming growth factor-β1 /Smad2/3 as a key signaling pathway regulating odontoblast differentiation and tooth root formation. Int J Oral Sci 2023; 15:35. [PMID: 37599332 PMCID: PMC10440342 DOI: 10.1038/s41368-023-00235-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 06/01/2023] [Accepted: 07/03/2023] [Indexed: 08/22/2023] Open
Abstract
The biomolecular mechanisms that regulate tooth root development and odontoblast differentiation are poorly understood. We found that Atp6i deficient mice (Atp6i-/-) arrested tooth root formation, indicated by truncated Hertwig's epithelial root sheath (HERS) progression. Furthermore, Atp6i deficiency significantly reduced the proliferation and differentiation of radicular odontogenic cells responsible for root formation. Atp6i-/- mice had largely decreased expression of odontoblast differentiation marker gene expression profiles (Col1a1, Nfic, Dspp, and Osx) in the alveolar bone. Atp6i-/- mice sample RNA-seq analysis results showed decreased expression levels of odontoblast markers. Additionally, there was a significant reduction in Smad2/3 activation, inhibiting transforming growth factor-β (TGF-β) signaling in Atp6i-/- odontoblasts. Through treating pulp precursor cells with Atp6i-/- or wild-type OC bone resorption-conditioned medium, we found the latter medium to promote odontoblast differentiation, as shown by increased odontoblast differentiation marker genes expression (Nfic, Dspp, Osx, and Runx2). This increased expression was significantly blocked by anti-TGF-β1 antibody neutralization, whereas odontoblast differentiation and Smad2/3 activation were significantly attenuated by Atp6i-/- OC conditioned medium. Importantly, ectopic TGF-β1 partially rescued root development and root dentin deposition of Atp6i-/- mice tooth germs were transplanted under mouse kidney capsules. Collectively, our novel data shows that the prevention of TGF-β1 release from the alveolar bone matrix due to OC dysfunction may lead to osteopetrosis-associated root formation via impaired radicular odontoblast differentiation. As such, this study uncovers TGF-β1 /Smad2/3 as a key signaling pathway regulating odontoblast differentiation and tooth root formation and may contribute to future therapeutic approaches to tooth root regeneration.
Collapse
Affiliation(s)
- Jue Wang
- Department of Pathology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Abigail McVicar
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, USA
| | - Yilin Chen
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, USA
| | - Hong-Wen Deng
- Tulane Center of Biomedical Informatics and Genomics, Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wei Chen
- Department of Pathology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, USA.
| | - Yi-Ping Li
- Department of Pathology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, USA.
| |
Collapse
|
12
|
Bi F, Tang H, Zhang Z, Lyu Y, Huo F, Chen G, Guo W. Hertwig's epithelial root sheath cells show potential for periodontal complex regeneration. J Periodontol 2023; 94:263-276. [PMID: 35912965 DOI: 10.1002/jper.22-0072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 07/15/2022] [Accepted: 07/15/2022] [Indexed: 02/05/2023]
Abstract
BACKGROUND Although researchers have been exploring therapeutic strategies of treating serious periodontal tissue loss, including the application of stem cells, tissue regeneration of the periodontal complex involving cementum, periodontium, and alveolar bone has hardly been achieved. Aiming at tackling the problem of severely damaged periodontal complex, it is worth trying to make advantages of Hertwig's epithelial root sheath (HERS) cells to tissue regeneration mimicking the physiological developmental process with their ability of cementum, bone, and periodontium formation. METHODS HERS cells and dental follicle cells (DFCs) were acquired from Sprague Dawley rats' molar germs and identified by immunofluorescence. Alizarin red assay, ALP staining, AKP test, real-time quantitative polymerase chain reaction (RT-qPCR) and Western blot were conducted to confirm the osteogenic potential, epithelial-mesenchymal transition (EMT) character of harvested HERS cells and epithelial-mesenchymal interaction (EMI) with DFCs. An animal model of periodontal defect was constructed to testify the tissue regeneration ability in vivo. Micro-CT and histological examinations were interpreted to unveil the tissue repair outcomes. RESULTS HERS cells expressed strong epithelial cell markers CK14 and E-cadherin. The in vitro experiments overall showed the concretely enhanced osteogenic differentiation ability in either HERS group or HERS+DFC group. Meanwhile, the in vivo conduction of rat mandibular periodontal repair experiment showed regenerative effectiveness of periodontal complex structure in both HERS and HERS+DFC group in situ, testified by Micro-CT and histological analysis. CONCLUSIONS HERS cells show potential for periodontal tissue regeneration which suggests the future possibilities of being considered as one of the cell choices for severely damaged periodontal tissue repair.
Collapse
Affiliation(s)
- Fei Bi
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Huilin Tang
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhijun Zhang
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yun Lyu
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Fangjun Huo
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Guoqing Chen
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Weihua Guo
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
13
|
Oka K. Fibrillin protein, a candidate for creating a suitable scaffold in PDL regeneration while avoiding ankylosis. Genesis 2022; 60:e23486. [PMID: 35678273 DOI: 10.1002/dvg.23486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/26/2022] [Accepted: 05/14/2022] [Indexed: 11/11/2022]
Abstract
The tooth is stabilized by fiber-rich tissue called the periodontal ligament (PDL). The narrow space of the PDL does not calcify in the physiological state even thought it exists between two calcified tissues, namely, the cementum of the root and alveolar bone. Two situations that require PDL regeneration are periodontitis and dental trauma. Periodontitis induces the loss of PDL and alveolar bone due to inflammation related to infection. Conversely, in PDLs damaged by dental trauma, accelerating bone formation as an overreaction of the healing process is induced, thereby inducing dentoalveolar ankylosis at the tooth root surface. PDL regeneration following dental trauma must therefore be considered separately from periodontitis. Therefore, PDL regeneration in dental trauma must be considered separately from periodontitis. This review focuses on the components involved in avoiding dentoalveolar ankylosis, including oxytalan fibers, aggregated microfibrils, epithelial cell rests of Malassez (ERM), and TGF-β signaling. During root development, oxytalan fibers produced by PDL cells work in collaboration with the epithelial components in the PDL (e.g., Hertwig's root sheath [HERS] and ERM). We herein describe the functions of oxytalan fibers, ERM, and TGF-β signals which are involved in the avoidance of bone formation.
Collapse
Affiliation(s)
- Kyoko Oka
- Section of Pediatric Dentistry, Department of Oral Growth and Development, Oral Medicine Research Center, Fukuoka Dental College, Fukuoka, Japan
| |
Collapse
|
14
|
Gao S, Ge LH, Zhao YM, Li P, Li YY, Zhao W. Hsa-miRNA-143-3p regulates the odontogenic differentiation of human stem cells from the apical papilla by targeting NFIC. Int Endod J 2022; 55:263-274. [PMID: 34807471 DOI: 10.1111/iej.13666] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 01/01/2023]
Abstract
AIM To evaluate the effects of hsa-miRNA-143-3p on the cytodifferentiation of human stem cells from the apical papilla (hSCAPs) and the post-transcriptional regulation of Nuclear factor I-C (NFIC). METHODOLOGY miRNA expression profiles in human immature permanent teeth and during hSCAP differentiation were examined. hSCAPs were treated with miR-143-3p overexpression or silencing viruses, and the proliferation and odontogenic and osteogenic differentiation of these stem cells, and the involvement of the NFIC pathway, were investigated. Luciferase reporter and NFIC mutant plasmids were used to confirm NFIC mRNA as a direct target of miR-143-3p. NFIC expression analysis in the miR-143-3p overexpressing hSCAPs was used to investigate whether miR-143-3p functioned by targeting NFIC. Student's t-test and chi-square tests were used for statistical analysis. RESULTS miR-143-3p expression was screened by microarray profiling and was found to be significantly reduced during hSCAP differentiation (p < .05). Overexpression of miR-143-3p inhibited the mineralization of hSCAPs significantly (p < .05) and downregulated the levels of odontogenic differentiation markers (NFIC [p < .05], DSP [p < .01] and KLF4 [p < .01]), whereas silencing of miR-143-3p had the opposite effect. The luciferase reporter gene detection and bioinformatic approaches identified NFIC mRNA as a potential target of miR-143-3p. NFIC overexpression reversed the inhibitory effect of miR-143-3p on the odontogenic differentiation of hSCAPs. CONCLUSIONS miR-143-3p maintained the stemness of hSCAPs and modulated their differentiation negatively by directly targeting NFIC. Thus, inhibition of this miRNA represents a potential strategy to promote the regeneration of damaged tooth roots.
Collapse
Affiliation(s)
- Shuo Gao
- Department of Pediatric Dentistry, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Li-Hong Ge
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology, Peking University Health Science Center, Peking University, Beijing, China
| | - Yu-Ming Zhao
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology, Peking University Health Science Center, Peking University, Beijing, China
| | - Pei Li
- Department of Pediatric Dentistry, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Yao-Yin Li
- Department of Pediatric Dentistry, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Wei Zhao
- Department of Pediatric Dentistry, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
15
|
Lee YS, Park YH, Seo YM, Lee HK, Park JC. Tubular dentin formation by TGF-β/BMP signaling in dental epithelial cells. Oral Dis 2022; 29:1644-1656. [PMID: 35199415 DOI: 10.1111/odi.14170] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/02/2022] [Accepted: 02/17/2022] [Indexed: 11/28/2022]
Abstract
OBJECTIVES This study aimed to identify formation of tubular dentin induced by Transforming growth factor-β (TGF-β) and bone morphogenic protein (BMP) signaling pathway in dental epithelial cells. METHODS We collected conditioned medium (CM) of rTGF-β1/rBMP-2 treated HAT-7 and treated to MDPC-23 cells. The expression levels of odontoblast differentiation markers, KLF4, DMP1, and DSP were evaluated by real-time PCR and western blot analysis. To evaluate whether CM of rTGF-β1/rBMP-2 induces tubular dentin formation, we made a beagle dog tooth defect model. RESULTS Here, we show that Cpne7 is regulated by Smad4-dependent TGF-β1/BMP2 signaling pathway in dental epithelial cells. CM of rTGF-β1/rBMP-2 treated HAT-7, or rCPNE7 raises the expression levels of KLF4, DMP1, and DSP in MDPC-23 cells. When rTGF-β1 or rBMP-2 is directly treated to MDPC-23 cells, however, expression levels of Cpne7-regulated genes remain unchanged. In a beagle dog defect model, application of rTGF-β1/BMP2 treated CM resulted in tubular tertiary dentin mixed with osteodentin at cavity-prepared sites, while rTGF-β1 group exhibited homogenous osteodentin. CONCLUSIONS Taken together, Smad4-dependent TGF-β1/BMP2 signaling regulates Cpne7 in dental epithelial cells, and CPNE7 protein secreted from pre-ameloblasts mediates odontoblast differentiation via epithelial-mesenchymal interaction.
Collapse
Affiliation(s)
- Yoon Seon Lee
- Laboratory for the Study of Regenerative Dental Medicine, Department of Oral Histology-Developmental Biology, School of Dentistry and Dental Research Institute, Seoul National University, 1 Gwanakro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Yeoung-Hyun Park
- Laboratory for the Study of Regenerative Dental Medicine, Department of Oral Histology-Developmental Biology, School of Dentistry and Dental Research Institute, Seoul National University, 1 Gwanakro, Gwanak-gu, Seoul, 08826, Republic of Korea.,Regenerative Dental Medicine R and D Center, Hysensbio Co., Ltd, Seoul, South Korea
| | - You-Mi Seo
- Laboratory for the Study of Regenerative Dental Medicine, Department of Oral Histology-Developmental Biology, School of Dentistry and Dental Research Institute, Seoul National University, 1 Gwanakro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Hye-Kyung Lee
- Laboratory for the Study of Regenerative Dental Medicine, Department of Oral Histology-Developmental Biology, School of Dentistry and Dental Research Institute, Seoul National University, 1 Gwanakro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Joo-Cheol Park
- Laboratory for the Study of Regenerative Dental Medicine, Department of Oral Histology-Developmental Biology, School of Dentistry and Dental Research Institute, Seoul National University, 1 Gwanakro, Gwanak-gu, Seoul, 08826, Republic of Korea
| |
Collapse
|
16
|
Lavicky J, Kolouskova M, Prochazka D, Rakultsev V, Gonzalez-Lopez M, Steklikova K, Bartos M, Vijaykumar A, Kaiser J, Pořízka P, Hovorakova M, Mina M, Krivanek J. The Development of Dentin Microstructure Is Controlled by the Type of Adjacent Epithelium. J Bone Miner Res 2022; 37:323-339. [PMID: 34783080 PMCID: PMC9300090 DOI: 10.1002/jbmr.4471] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 10/12/2021] [Accepted: 11/08/2021] [Indexed: 11/11/2022]
Abstract
Considerable amount of research has been focused on dentin mineralization, odontoblast differentiation, and their application in dental tissue engineering. However, very little is known about the differential role of functionally and spatially distinct types of dental epithelium during odontoblast development. Here we show morphological and functional differences in dentin located in the crown and roots of mouse molar and analogous parts of continuously growing incisors. Using a reporter (DSPP-cerulean/DMP1-cherry) mouse strain and mice with ectopic enamel (Spry2+/- ;Spry4-/- ), we show that the different microstructure of dentin is initiated in the very beginning of dentin matrix production and is maintained throughout the whole duration of dentin growth. This phenomenon is regulated by the different inductive role of the adjacent epithelium. Thus, based on the type of interacting epithelium, we introduce more generalized terms for two distinct types of dentins: cementum versus enamel-facing dentin. In the odontoblasts, which produce enamel-facing dentin, we identified uniquely expressed genes (Dkk1, Wisp1, and Sall1) that were either absent or downregulated in odontoblasts, which form cementum-facing dentin. This suggests the potential role of Wnt signalling on the dentin structure patterning. Finally, we show the distribution of calcium and magnesium composition in the two developmentally different types of dentins by utilizing spatial element composition analysis (LIBS). Therefore, variations in dentin inner structure and element composition are the outcome of different developmental history initiated from the very beginning of tooth development. Taken together, our results elucidate the different effects of dental epithelium, during crown and root formation on adjacent odontoblasts and the possible role of Wnt signalling which together results in formation of dentin of different quality. © 2021 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Josef Lavicky
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Magdalena Kolouskova
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - David Prochazka
- Advanced Instrumentation and Methods for Materials Characterization, CEITEC Brno University of Technology, Brno, Czech Republic
| | - Vladislav Rakultsev
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Marcos Gonzalez-Lopez
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Klara Steklikova
- Institute of Histology and Embryology, First Faculty of Medicine, Charles University, Prague, Czech Republic.,Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Martin Bartos
- Institute of Dental Medicine, First Faculty of Medicine, Charles University, Prague, Czech Republic.,Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Anushree Vijaykumar
- Department of Craniofacial Sciences School of Dental Medicine, University of Connecticut, Farmington, CT, USA
| | - Jozef Kaiser
- Advanced Instrumentation and Methods for Materials Characterization, CEITEC Brno University of Technology, Brno, Czech Republic
| | - Pavel Pořízka
- Advanced Instrumentation and Methods for Materials Characterization, CEITEC Brno University of Technology, Brno, Czech Republic
| | - Maria Hovorakova
- Institute of Histology and Embryology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Mina Mina
- Department of Craniofacial Sciences School of Dental Medicine, University of Connecticut, Farmington, CT, USA
| | - Jan Krivanek
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| |
Collapse
|
17
|
Kikuchi N, Kitamura K, Kasahara N, Ogawa Y, Ishikawa N, Yamamoto M, Yamamoto H. Three-Dimensional Observation of the Furcation Area during Multi-Rooted Tooth Formation in Rat. J HARD TISSUE BIOL 2022. [DOI: 10.2485/jhtb.31.163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Nobue Kikuchi
- Department of Histology and Developmental Biology, Tokyo Dental College
| | - Kei Kitamura
- Department of Histology and Developmental Biology, Tokyo Dental College
| | - Norio Kasahara
- Department of Histology and Developmental Biology, Tokyo Dental College
| | - Yudai Ogawa
- Department of Histology and Developmental Biology, Tokyo Dental College
| | - Noboru Ishikawa
- Department of Forensic Odontology and Anthropology, Tokyo Dental College
| | | | - Hitoshi Yamamoto
- Department of Histology and Developmental Biology, Tokyo Dental College
| |
Collapse
|
18
|
Wang J, Ran S, Liu B, Gu S. Monitoring of canonical BMP and Wnt activities during postnatal stages of mouse first molar root formation. J Appl Oral Sci 2021; 29:e20210281. [PMID: 34910074 PMCID: PMC8687650 DOI: 10.1590/1678-7757-2021-0281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 10/26/2021] [Indexed: 11/21/2022] Open
Abstract
Objective This study aimed to explore the precise temporospatial distributions of bone morphogenetic protein (BMP) and Wnt signaling pathways during postnatal development of mammalian tooth roots after the termination of crown morphogenesis. Methodology A total of two transgenic mouse lines, BRE-LacZ mice and BAT-gal mice, were undertaken. The mice were sacrificed on every postnatal (PN) day from PN 3d up to PN 21d. Then, the first lower molars were extracted, and the dissected mandibles were stained with 5-bromo-4-chloro-3-indolyl-β-d-galactopyranoside (X-gal) and fixed. Serial sections at 10 µm were prepared after decalcification, dehydration, and embedding in paraffin. Results We observed BMP/Smads and Wnt/β-catenin signaling activities in the dental sac, dental pulp, and apical papilla with a certain degree of variation. The position of activation of the BMP/Smad signaling pathway was located more coronally in the early stage, which then gradually expanded as root elongation proceeded and was associated with blood vessels in the pulp and developing complex apical tissues in the later stage. However, Wnt/β-catenin signaling was highly concentrated in the mesenchyme below the cusps in the early stage, gradually expanded to regions around the root in the transition/root stage, and then disappeared entirely in the later stage. Conclusions These results further confirmed the participation of both BMP and Wnt canonical signaling pathways in tooth root development, as well as formed the basis for future studies on how precisely integrated signaling pathways regulate root morphogenesis and regeneration.
Collapse
Affiliation(s)
- Jia Wang
- Shanghai Jiao Tong University, School of Medicine, Ninth People's Hospital, Department of Endodontics and Operative Dentistry, Shanghai, China.,Tulane University, Department of Cell and Molecular Biology, New Orleans, LA, USA
| | - Shujun Ran
- Shanghai Jiao Tong University, School of Medicine, Ninth People's Hospital, Department of Endodontics and Operative Dentistry, Shanghai, China
| | - Bin Liu
- Shanghai Jiao Tong University, School of Medicine, Ninth People's Hospital, Department of Endodontics and Operative Dentistry, Shanghai, China
| | - Shensheng Gu
- Shanghai Jiao Tong University, School of Medicine, Ninth People's Hospital, Department of Endodontics and Operative Dentistry, Shanghai, China
| |
Collapse
|
19
|
Hermans F, Hemeryck L, Lambrichts I, Bronckaers A, Vankelecom H. Intertwined Signaling Pathways Governing Tooth Development: A Give-and-Take Between Canonical Wnt and Shh. Front Cell Dev Biol 2021; 9:758203. [PMID: 34778267 PMCID: PMC8586510 DOI: 10.3389/fcell.2021.758203] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/11/2021] [Indexed: 11/13/2022] Open
Abstract
Teeth play essential roles in life. Their development relies on reciprocal interactions between the ectoderm-derived dental epithelium and the underlying neural crest-originated mesenchyme. This odontogenic process serves as a prototype model for the development of ectodermal appendages. In the mouse, developing teeth go through distinct morphological phases that are tightly controlled by epithelial signaling centers. Crucial molecular regulators of odontogenesis include the evolutionarily conserved Wnt, BMP, FGF and sonic hedgehog (Shh) pathways. These signaling modules do not act on their own, but are closely intertwined during tooth development, thereby outlining the path to be taken by specific cell populations including the resident dental stem cells. Recently, pivotal Wnt-Shh interaction and feedback loops have been uncovered during odontogenesis, showing conservation in other developing ectodermal appendages. This review provides an integrated overview of the interplay between canonical Wnt and Shh throughout mouse tooth formation stages, extending from the initiation of dental placode to the fully formed adult tooth.
Collapse
Affiliation(s)
- Florian Hermans
- Laboratory of Tissue Plasticity in Health and Disease, Cluster of Stem Cell and Developmental Biology, Department of Development and Regeneration, Leuven Stem Cell Institute, KU Leuven (University of Leuven), Leuven, Belgium.,Biomedical Research Institute (BIOMED), Department of Cardio and Organ Systems, UHasselt-Hasselt University, Diepenbeek, Belgium
| | - Lara Hemeryck
- Laboratory of Tissue Plasticity in Health and Disease, Cluster of Stem Cell and Developmental Biology, Department of Development and Regeneration, Leuven Stem Cell Institute, KU Leuven (University of Leuven), Leuven, Belgium
| | - Ivo Lambrichts
- Biomedical Research Institute (BIOMED), Department of Cardio and Organ Systems, UHasselt-Hasselt University, Diepenbeek, Belgium
| | - Annelies Bronckaers
- Biomedical Research Institute (BIOMED), Department of Cardio and Organ Systems, UHasselt-Hasselt University, Diepenbeek, Belgium
| | - Hugo Vankelecom
- Laboratory of Tissue Plasticity in Health and Disease, Cluster of Stem Cell and Developmental Biology, Department of Development and Regeneration, Leuven Stem Cell Institute, KU Leuven (University of Leuven), Leuven, Belgium
| |
Collapse
|
20
|
Xu C, Xie X, Zhao L, Wu Y, Wang J. The critical role of nuclear factor I-C in tooth development. Oral Dis 2021; 28:2093-2099. [PMID: 34637578 DOI: 10.1111/odi.14046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/29/2021] [Accepted: 10/07/2021] [Indexed: 02/05/2023]
Abstract
OBJECTIVES Nuclear factor I-C (NFIC) plays a critical role in regulating epithelial-mesenchymal crosstalk during tooth development. However, it remains largely unknown about how NFIC functions in dentin and enamel formation. In the present review, we aim to summarize the most recent discoveries in the field and gain a better understanding of the roles NFIC performs during tooth formation. SUBJECTS AND METHODS Nfic-/- mice exhibit human dentin dysplasia type I (DDI)-like phenotypes signified by enlarged pulp chambers, the presence of short-root anomaly, and failure of odontoblast differentiation. Although loss of NFIC has little effect on molar crown morphology, researchers have detected aberrant microstructures of enamel in the incisors. Recently, accumulating evidence has further uncovered the novel function of NFIC in the process of enamel and dentin formation. RESULTS During epithelial-mesenchyme crosstalk, the expression of NFIC is under the control of SHH-PTCH-SMO-GLI1 pathway. NFIC is closely involved in odontoblast lineage cells proliferation and differentiation, and the maintenance of NFIC protein level in cytoplasm is negatively regulated by TGF-β signaling pathway. In addition, NFIC has mild effect on ameloblast differentiation, enamel mineralization and cementum formation. CONCLUSIONS NFIC plays an important role in tooth development and is required for the formation of dentin, enamel as well as cementum.
Collapse
Affiliation(s)
- Chunmei Xu
- State Key Laboratory of Oral Diseases, Department of Periodontics, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xudong Xie
- State Key Laboratory of Oral Diseases, Department of Periodontics, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lei Zhao
- State Key Laboratory of Oral Diseases, Department of Periodontics, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yafei Wu
- State Key Laboratory of Oral Diseases, Department of Periodontics, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jun Wang
- State Key Laboratory of Oral Diseases, Department of Periodontics, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
21
|
Aryal YP, Kim TY, Lee ES, An CH, Kim JY, Yamamoto H, Lee S, Lee Y, Sohn WJ, Neupane S, Kim JY. Signaling Modulation by miRNA-221-3p During Tooth Morphogenesis in Mice. Front Cell Dev Biol 2021; 9:697243. [PMID: 34513833 PMCID: PMC8424101 DOI: 10.3389/fcell.2021.697243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 08/03/2021] [Indexed: 11/13/2022] Open
Abstract
miRNAs are conserved short non-coding RNAs that play a role in the modulation of various biological pathways during tissue and organ morphogenesis. In this study, the function of miRNA-221-3p in tooth development, through its loss or gain in function was evaluated. A variety of techniques were utilized to evaluate detailed functional roles of miRNA-221-3p during odontogenesis, including in vitro tooth cultivation, renal capsule transplantation, in situ hybridization, real-time PCR, and immunohistochemistry. Two-day in vitro tooth cultivation at E13 identified altered cellular events, including cellular proliferation, apoptosis, adhesion, and cytoskeletal arrangement, with the loss and gain of miRNA-221-3p. qPCR analysis revealed alterations in gene expression of tooth-related signaling molecules, including β-catenin, Bmp2, Bmp4, Fgf4, Ptch1, and Shh, when inhibited with miRNA-221-3p and mimic. Also, the inhibition of miRNA-221-3p demonstrated increased mesenchymal localizations of pSMAD1/5/8, alongside decreased expression patterns of Shh and Fgf4 within inner enamel epithelium (IEE) in E13 + 2 days in vitro cultivated teeth. Moreover, 1-week renal transplantation of in vitro cultivated teeth had smaller tooth size with reduced enamel and dentin matrices, along with increased cellular proliferation and Shh expression along the Hertwig epithelial root sheath (HERS), within the inhibitor group. Similarly, in 3-week renal calcified teeth, the overexpression of miRNA-221-3p did not affect tooth phenotype, while the loss of function resulted in long and slender teeth with short mesiodistal length. This study provides evidence that a suitable level of miRNA-221-3p is required for the modulation of major signaling pathways, including Wnt, Bmp, and Shh, during tooth morphogenesis.
Collapse
Affiliation(s)
- Yam Prasad Aryal
- Department of Biochemistry, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - Tae-Young Kim
- Department of Biochemistry, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - Eui-Seon Lee
- Department of Biochemistry, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - Chang-Hyeon An
- Department of Oral and Maxillofacial Radiology, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - Ji-Youn Kim
- Department of Dental Hygiene, College of Health Science, Gachon University, Incheon, South Korea
| | - Hitoshi Yamamoto
- Department of Histology and Developmental Biology, Tokyo Dental College, Tokyo, Japan
| | - Sanggyu Lee
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, South Korea
| | - Youngkyun Lee
- Department of Biochemistry, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - Wern-Joo Sohn
- Pre-Major of Cosmetics and Pharmaceutics, Daegu Haany University, Gyeongsan-si, South Korea
| | - Sanjiv Neupane
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, United States
| | - Jae-Young Kim
- Department of Biochemistry, School of Dentistry, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
22
|
Mu H, Liu X, Geng S, Su D, Chang H, Li L, Jin H, Wang X, Li Y, Zhang B, Xie X. Epithelial Bone Morphogenic Protein 2 and 4 Are Indispensable for Tooth Development. Front Physiol 2021; 12:660644. [PMID: 34483952 PMCID: PMC8415269 DOI: 10.3389/fphys.2021.660644] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 06/16/2021] [Indexed: 11/23/2022] Open
Abstract
The Bmp2 and Bmp4 expressed in root mesenchyme were essential for the patterning and cellular differentiation of tooth root. The role of the epithelium-derived Bmps in tooth root development, however, had not been reported. In this study, we found that the double abrogation of Bmp2 and Bmp4 from mouse epithelium caused short root anomaly (SRA). The K14-cre;Bmp2f/f;Bmp4f/f mice exhibited a persistent Hertwig’s Epithelial Root Sheath (HERS) with the reduced cell death, and the down-regulated BMP-Smad4 and Erk signaling pathways. Moreover, the Shh expression in the HERS, the Shh-Gli1 signaling, and Nfic expression in the root mesenchyme of the K14-cre;Bmp2f/f;Bmp4f/f mice were also decreased, indicating a disrupted epithelium- mesenchyme interaction between HERS and root mesenchyme. Such disruption suppressed the Osx and Dspp expression in the root mesenchyme, indicating an impairment on the differentiation and maturation of root odontoblasts. The impaired differentiation and maturation of root odontoblasts could be rescued partially by transgenic Dspp. Therefore, although required in a low dosage and with a functional redundancy, the epithelial Bmp2 and Bmp4 were indispensable for the HERS degeneration, as well as the differentiation and maturation of root mesenchyme.
Collapse
Affiliation(s)
- Haibin Mu
- Department of Stomatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Institute of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xin Liu
- Department of Stomatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shuoshuo Geng
- Department of Stomatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Dian Su
- Department of Stomatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Heran Chang
- Department of Stomatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lili Li
- Department of Stomatology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Han Jin
- Institute of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiumei Wang
- Department of Stomatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ying Li
- Institute of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Bin Zhang
- Institute of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Xiaohua Xie
- Department of Stomatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Institute of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
23
|
Mizukoshi M, Kaku M, Thant L, Kitami K, Arai M, Saito I, Uoshima K. In vivo cell proliferation analysis and cell-tracing reveal the global cellular dynamics of periodontal ligament cells under mechanical-loading. Sci Rep 2021; 11:9813. [PMID: 33963224 PMCID: PMC8105403 DOI: 10.1038/s41598-021-89156-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 04/22/2021] [Indexed: 12/14/2022] Open
Abstract
Periodontal ligament (PDL) is a uniquely differentiated tissue that anchors the tooth to the alveolar bone socket and plays key roles in oral function. PDL cells can respond rapidly to mechanical stimuli, resulting in accelerated tissue remodeling. Cell proliferation is an initial event in tissue remodeling and participates in maintaining the cell supply; therefore, analyzing cell-proliferative activity might provide a comprehensive view of cellular dynamics at the tissue level. In this study, we investigated proliferating cells in mouse molar PDL during orthodontic tooth movement (OTM)-induced tissue remodeling. Our results demonstrated that the mechanical stimuli evoked a dynamic change in the proliferative-cell profile at the entire PDL. Additionally, cell-tracing analysis revealed that the proliferated cells underwent further division and subsequently contributed to tissue remodeling. Moreover, OTM-induced proliferating cells expressed various molecular markers that most likely arise from a wide range of cell types, indicating the lineage plasticity of PDL cells in vivo. Although further studies are required, these findings partially elucidated the global views of the cell trajectory in mouse molar PDL under mechanical-loading conditions, which is vital for understanding the cellular dynamics of the PDL and beneficial for dental treatment in humans.
Collapse
Affiliation(s)
- Masaru Mizukoshi
- Division of Orthodontics, Faculty of Dentistry and Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Masaru Kaku
- Division of Bio-Prosthodontics, Faculty of Dentistry and Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan.
| | - Lay Thant
- Division of Orthodontics, Faculty of Dentistry and Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Kohei Kitami
- Division of Orthodontics, Faculty of Dentistry and Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Moe Arai
- Division of Orthodontics, Faculty of Dentistry and Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Isao Saito
- Division of Orthodontics, Faculty of Dentistry and Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Katsumi Uoshima
- Division of Bio-Prosthodontics, Faculty of Dentistry and Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| |
Collapse
|
24
|
Li R, Liu Y, Huang X. Effect of Sonic hedgehog on the proliferation in mouse tongue epithelial cells. Oral Dis 2021; 28:1137-1148. [PMID: 33751723 DOI: 10.1111/odi.13836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 02/19/2021] [Accepted: 02/25/2021] [Indexed: 12/18/2022]
Abstract
OBJECTIVE To investigate Sonic hedgehog (Shh) effects on proliferation and apoptosis of tongue epithelial cells in embryonic and ageing mice. MATERIALS AND METHODS Embryonic day 13.5 (E13.5), E14.5, E16.5 and postnatal day 0.5 (PN0.5) K14-Cre;Shhfl/fl mice, and E14.5, E16.5, PN0.5, PN90.5 and postnatal 1.5 years (PN1.5Y) wild-type (Wt) mice were employed. Scanning electron microscopy, haematoxylin-eosin and immunohistochemistry were performed. Gel beads containing exogenous Shh protein were embedded in the tongue of PN90.5 and PN1.5Y Wt mice. Three days later, 5-bromodeoxyuridine (BrdU), proliferating cell nuclear antigen (PCNA) immunohistochemical and TUNEL staining were performed. RESULTS The number of fungiform papillae was decreased with age. The numbers of BrdU- and PCNA-positive cells were the highest at PN0.5 and the lowest at PN1.5Y. Compared with Wt mice, K14-Cre;Shhfl/fl mice had decreased PCNA-positive cells in the epithelium, a smaller tongue volume, and fewer papillae at PN0.5. At E14.5, the number of BrdU-positive cells was decreased in K14-Cre;Shh fl/fl mice. At PN1.5Y, the number of apoptotic cells in tongue tissue exposed to Shh protein was less than that in the BSA group and the numbers of BrdU- and PCNA-positive proliferating cells were increased. CONCLUSION Shh maintains cell proliferation and reduces apoptosis during tongue development and ageing.
Collapse
Affiliation(s)
- Ruiqi Li
- Department of Stomatology, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yong Liu
- Department of Stomatology, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xiaofeng Huang
- Department of Stomatology, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
25
|
Jiang S, Sheng R, Qi X, Wang J, Guo Y, Yuan Q. USP34 regulates tooth root morphogenesis by stabilizing NFIC. Int J Oral Sci 2021; 13:7. [PMID: 33686052 PMCID: PMC7940473 DOI: 10.1038/s41368-021-00114-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/20/2021] [Accepted: 01/22/2021] [Indexed: 02/06/2023] Open
Abstract
Tooth root morphogenesis involves two biological processes, root elongation and dentinogenesis, which are guaranteed by downgrowth of Hertwig's epithelial root sheath (HERS) and normal odontoblast differentiation. Ubiquitin-dependent protein degradation has been reported to precisely regulate various physiological processes, while its role in tooth development is still elusive. Here we show ubiquitin-specific protease 34 (USP34) plays a pivotal role in root formation. Deletion of Usp34 in dental mesenchymal cells leads to short root anomaly, characterized by truncated roots and thin root dentin. The USP34-deficient dental pulp cells (DPCs) exhibit decreased odontogenic differentiation with downregulation of nuclear factor I/C (NFIC). Overexpression of NFIC partially restores the impaired odontogenic potential of DPCs. These findings indicate that USP34-dependent deubiquitination is critical for root morphogenesis by stabilizing NFIC.
Collapse
Affiliation(s)
- Shuang Jiang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Rui Sheng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xingying Qi
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jun Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Periodontology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuchen Guo
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China.
- Department of Oral Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| | - Quan Yuan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China.
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
26
|
Ohgami N, Iizuka A, Hirai H, Yajima I, Iida M, Shimada A, Tsuzuki T, Jijiwa M, Asai N, Takahashi M, Kato M. Loss-of-function mutation of c-Ret causes cerebellar hypoplasia in mice with Hirschsprung disease and Down's syndrome. J Biol Chem 2021; 296:100389. [PMID: 33561442 PMCID: PMC7950328 DOI: 10.1016/j.jbc.2021.100389] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 01/27/2021] [Accepted: 02/04/2021] [Indexed: 12/11/2022] Open
Abstract
The c-RET proto-oncogene encodes a receptor-tyrosine kinase. Loss-of-function mutations of RET have been shown to be associated with Hirschsprung disease and Down's syndrome (HSCR-DS) in humans. DS is known to involve cerebellar hypoplasia, which is characterized by reduced cerebellar size. Despite the fact that c-Ret has been shown to be associated with HSCR-DS in humans and to be expressed in Purkinje cells (PCs) in experimental animals, there is limited information about the role of activity of c-Ret/c-RET kinase in cerebellar hypoplasia. We found that a loss-of-function mutation of c-Ret Y1062 in PCs causes cerebellar hypoplasia in c-Ret mutant mice. Wild-type mice had increased phosphorylation of c-Ret in PCs during postnatal development, while c-Ret mutant mice had postnatal hypoplasia of the cerebellum with immature neurite outgrowth in PCs and granule cells (GCs). c-Ret mutant mice also showed decreased numbers of glial fibers and mitogenic sonic hedgehog (Shh)-positive vesicles in the external germinal layer of PCs. c-Ret-mediated cerebellar hypoplasia was rescued by subcutaneous injection of a smoothened agonist (SAG) as well as by reduced expression of Patched1, a negative regulator for Shh. Our results suggest that the loss-of-function mutation of c-Ret Y1062 results in the development of cerebellar hypoplasia via impairment of the Shh-mediated development of GCs and glial fibers in mice with HSCR-DS.
Collapse
Affiliation(s)
- Nobutaka Ohgami
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan; Unit of Environmental Health Sciences, Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, Kasugai, Aichi, Japan
| | - Akira Iizuka
- Department of Neurophysiology and Neural Repair, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Hirokazu Hirai
- Department of Neurophysiology and Neural Repair, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Ichiro Yajima
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Machiko Iida
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Atsuyoshi Shimada
- Pathology Research Team, Faculty of Health Sciences, Kyorin University, Mitaka, Tokyo, Japan
| | - Toyonori Tsuzuki
- Department of Surgical Pathology, Aichi Medical University Hospital, Nagakute, Aichi, Japan
| | - Mayumi Jijiwa
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Naoya Asai
- Department of Pathology, Fujita Health University, Toyoake, Aichi, Japan
| | - Masahide Takahashi
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan; International Center for Cell and Gene Therapy, Fujita Health University, Toyoake, Aichi, Japan
| | - Masashi Kato
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan; Unit of Environmental Health Sciences, Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, Kasugai, Aichi, Japan.
| |
Collapse
|
27
|
Sheng R, Wang Y, Wu Y, Wang J, Zhang S, Li Q, Zhang D, Qi X, Xiao Q, Jiang S, Yuan Q. METTL3-Mediated m 6 A mRNA Methylation Modulates Tooth Root Formation by Affecting NFIC Translation. J Bone Miner Res 2021; 36:412-423. [PMID: 32936965 DOI: 10.1002/jbmr.4180] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 08/28/2020] [Accepted: 09/03/2020] [Indexed: 02/05/2023]
Abstract
N6-methyladenosine (m6 A), as a eukaryotic mRNA modification catalyzed by methyltransferase METTL3, is involved in various processes of development or diseases via regulating RNA metabolism. However, the effect of METTL3-mediated m6 A modification in tooth development has remained elusive. Here we show that METTL3 is prevalently expressed in odontoblasts, dental pulp cells, dental follicle cells, and epithelial cells in Hertwig's epithelial root sheath during tooth root formation. Depletion of METTL3 in human dental pulp cells (hDPCs) impairs proliferation, migration, and odontogenic differentiation. Furthermore, conditional knockout of Mettl3 in Osterix-expressing cells leads to short molar roots and thinner root dentin featured by decreased secretion of pre-dentin matrix and formation of the odontoblast process. Mechanistically, loss of METTL3 cripples the translational efficiency of the key root-forming regulator nuclear factor I-C (NFIC). The odontogenic capacity of METTL3-silenced hDPCs is partially rescued via overexpressing NFIC. Our findings suggest that m6 A methyltransferase METTL3 is crucial for tooth root development, uncovering a novel epigenetic mechanism in tooth root formation. © 2020 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Rui Sheng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuan Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yunshu Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jun Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shiwen Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qiwen Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Danting Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xingying Qi
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qingyue Xiao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shuang Jiang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Quan Yuan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
28
|
Ma Y, Jing J, Feng J, Yuan Y, Wen Q, Han X, He J, Chen S, Ho TV, Chai Y. Ror2-mediated non-canonical Wnt signaling regulates Cdc42 and cell proliferation during tooth root development. Development 2021; 148:dev.196360. [PMID: 33323370 PMCID: PMC7847279 DOI: 10.1242/dev.196360] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 12/07/2020] [Indexed: 12/15/2022]
Abstract
The control of size and shape is an important part of regulatory process during organogenesis. Tooth formation is a highly complex process that fine-tunes the size and shape of the tooth, which are crucial for its physiological functions. Each tooth consists of a crown and one or more roots. Despite comprehensive knowledge of the mechanism that regulates early tooth crown development, we have limited understanding of the mechanism regulating root patterning and size during development. Here, we show that Ror2-mediated non-canonical Wnt signaling in the dental mesenchyme plays a crucial role in cell proliferation, and thereby regulates root development size in mouse molars. Furthermore, Cdc42 acts as a potential downstream mediator of Ror2 signaling in root formation. Importantly, activation of Cdc42 can restore cell proliferation and partially rescue the root development size defects in Ror2 mutant mice. Collectively, our findings provide novel insights into the function of Ror2-mediated non-canonical Wnt signaling in regulating tooth morphogenesis, and suggest potential avenues for dental tissue engineering. Summary: The function of Ror2-mediated non-canonical Wnt signaling and its effect on Cdc42 activation is crucial in regulating progenitor cell proliferation, odontoblast differentiation and Hertwig's epithelial root sheath formation during tooth root morphogenesis.
Collapse
Affiliation(s)
- Yuanyuan Ma
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA.,Guangdong Provincial Key Laboratory of Stomatology, Department of Prosthodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, 510055, PR China
| | - Junjun Jing
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Jifan Feng
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Yuan Yuan
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Quan Wen
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Xia Han
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Jinzhi He
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Shuo Chen
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Thach-Vu Ho
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Yang Chai
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
29
|
Jose M, Rajagopal V, Thankam FG. Oral tissue regeneration: Current status and future perspectives. REGENERATED ORGANS 2021:169-187. [DOI: 10.1016/b978-0-12-821085-7.00009-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
30
|
Yang S, Choi H, Kim TH, Jeong JK, Liu Y, Harada H, Cho ES. Cell dynamics in Hertwig's epithelial root sheath are regulated by β-catenin activity during tooth root development. J Cell Physiol 2020; 236:5387-5398. [PMID: 33377198 PMCID: PMC8048837 DOI: 10.1002/jcp.30243] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 11/29/2020] [Accepted: 12/12/2020] [Indexed: 11/21/2022]
Abstract
β‐catenin, a key mediator of Wnt signaling, plays multiple roles in tooth development. However, the role of β‐catenin in Hertwig's epithelial root sheath (HERS) during root formation remains unclear. In this study, we generated inducible tissue‐specific β‐catenin conditional knockout mice (Ctnnb1i∆shh) to investigate how β‐catenin in HERS affects tooth root development. The inactivation of β‐catenin in HERS led to interrupted root elongation due to premature disruption of HERS. This phenotype was accompanied by reduced cell‐cell adhesion and decreased expression of junctional proteins, as well as increased epithelial‐to‐mesenchymal transition of HERS cells upon β‐catenin depletion. Accordingly, stabilization of β‐catenin in HERS (Catnbi∆shh) led to the formation of unfragmented HERS and resulted in the failure of HERS dissociation, with increased expression of junctional proteins. Our results suggest that fine control of β‐catenin is important for HERS to guide root formation through regulating its structural integrity.
Collapse
Affiliation(s)
- Siqin Yang
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences, Jeonbuk National University School of Dentistry, Jeonju, Republic of Korea
| | - Hwajung Choi
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences, Jeonbuk National University School of Dentistry, Jeonju, Republic of Korea
| | - Tak-Heun Kim
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences, Jeonbuk National University School of Dentistry, Jeonju, Republic of Korea
| | - Ju-Kyung Jeong
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences, Jeonbuk National University School of Dentistry, Jeonju, Republic of Korea
| | - Yudong Liu
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences, Jeonbuk National University School of Dentistry, Jeonju, Republic of Korea
| | - Hidemitsu Harada
- Division of Developmental Biology and Regenerative Medicine, Department of Anatomy, Iwate Medical University, Shiwa-gun, Japan
| | - Eui-Sic Cho
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences, Jeonbuk National University School of Dentistry, Jeonju, Republic of Korea
| |
Collapse
|
31
|
Developmental Roles of FUSE Binding Protein 1 ( Fubp1) in Tooth Morphogenesis. Int J Mol Sci 2020; 21:ijms21218079. [PMID: 33138041 PMCID: PMC7663687 DOI: 10.3390/ijms21218079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/16/2020] [Accepted: 10/27/2020] [Indexed: 12/27/2022] Open
Abstract
FUSE binding protein 1 (Fubp1), a regulator of the c-Myc transcription factor and a DNA/RNA-binding protein, plays important roles in the regulation of gene transcription and cellular physiology. In this study, to reveal the precise developmental function of Fubp1, we examined the detailed expression pattern and developmental function of Fubp1 during tooth morphogenesis by RT-qPCR, in situ hybridization, and knock-down study using in vitro organ cultivation methods. In embryogenesis, Fubp1 is obviously expressed in the enamel organ and condensed mesenchyme, known to be important for proper tooth formation. Knocking down Fubp1 at E14 for two days, showed the altered expression patterns of tooth development related signalling molecules, including Bmps and Fgf4. In addition, transient knock-down of Fubp1 at E14 revealed changes in the localization patterns of c-Myc and cell proliferation in epithelium and mesenchyme, related with altered tooth morphogenesis. These results also showed the decreased amelogenin and dentin sialophosphoprotein expressions and disrupted enamel rod and interrod formation in one- and three-week renal transplanted teeth respectively. Thus, our results suggested that Fubp1 plays a modulating role during dentinogenesis and amelogenesis by regulating the expression pattern of signalling molecules to achieve the proper structural formation of hard tissue matrices and crown morphogenesis in mice molar development.
Collapse
|
32
|
EEF1D Promotes Glioma Proliferation, Migration, and Invasion through EMT and PI3K/Akt Pathway. BIOMED RESEARCH INTERNATIONAL 2020; 2020:7804706. [PMID: 33029523 PMCID: PMC7533006 DOI: 10.1155/2020/7804706] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 08/12/2020] [Accepted: 08/21/2020] [Indexed: 12/24/2022]
Abstract
Eukaryotic translation elongation factor 1δ (EEF1D), a subunit of the elongation factor 1 complex of proteins, mediates the elongation process of protein synthesis. Besides this canonical role, EEF1D was found overexpressed in many tumors, like hepatocarcinomas and medulloblastomas. In the present study, we demonstrated for the first time that EEF1D may interact with other putative proteins to regulate cell proliferation, migration, and invasion through PI3K/Akt and EMT pathways in glioma. Furthermore, knockdown of EEF1D could reduce cell proliferation and impaired epithelial-mesenchymal transition (EMT) phenotypes, including cell invasion. Taken together, these results indicate that EEF1D and its partner proteins might play a critical role in glioma and serve as a potential therapeutic target of glioma.
Collapse
|
33
|
Lima KS, Salles AES, de Araújo Costa G, Yokoyama MF, de Paula Ramos S, Paixão-Côrtes VR, de Lima RLLF, Salles MJS. Methylphenidate effects on mice odontogenesis and connections with human odontogenesis. Odontology 2020; 109:336-348. [PMID: 32869117 DOI: 10.1007/s10266-020-00548-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 08/17/2020] [Indexed: 11/29/2022]
Abstract
The purpose of this study is to evaluate the effects of Methylphenidate exposure on mice odontogenesis and connect them by bioinformatics with human odontogenesis. Thirty-two pregnant Swiss mice were divided into treated group and control group, which received, respectively, 5 mg/kg of Methylphenidate and saline solution from the 5th to the 17th day of pregnancy. The mouse embryos tooth germs were analyzed through optical microscopy, and the data collected were analyzed statistically by Fisher's exact test. The presence and similarity of Methylphenidate-associated genes (Pharmgkb database) in both organisms and their interaction with dental development genes (AmiGO2 database) were verified on STRING database. Rates of tooth germ malformations were higher in treated than in control group (Control: 18; Treated: 27; p = 0.035). Mouse embryo malformations were connected with 238 interactions between 69 dental development genes with 35 Methylphenidate genes. Fourteen interactions for four Methylphenidate genes with four dental development genes, with human experimental data, were connected with mouse phenotype data. By homology, the interactions and conservation of proteins/genes may indicate similar outcomes for both organisms. The exposure to Methylphenidate during pregnancy affected odontogenesis in mouse embryos and may affect human odontogenesis. The study of malformations in mice, with a bioinformatics approach, could contribute to understanding of the Methylphenidate effect on embryo development. These results may provide novel hypotheses for further testing and reinforce the FDA protocol: as Methylphenidate is included in category C, its use during pregnancy should be considered if the benefits outweigh the risks.
Collapse
Affiliation(s)
- Karol Sartori Lima
- Department of General Biology, State University of Londrina (UEL), Km 380, Celso Garcia Cid Road, Londrina, 86057-970, Brazil
| | - Antônio Eduardo Sparça Salles
- Department of General Biology, State University of Londrina (UEL), Km 380, Celso Garcia Cid Road, Londrina, 86057-970, Brazil
| | - Gabriel de Araújo Costa
- Department of General Biology, State University of Londrina (UEL), Km 380, Celso Garcia Cid Road, Londrina, 86057-970, Brazil
| | - Márjori Frítola Yokoyama
- Department of General Biology, State University of Londrina (UEL), Km 380, Celso Garcia Cid Road, Londrina, 86057-970, Brazil.
| | - Solange de Paula Ramos
- Department of Histology, State University of Londrina (UEL), Km 380, Celso Garcia Cid Road, Londrina, 86057-970, Brazil
| | - Vanessa Rodrigues Paixão-Côrtes
- PPGBioEvo, Institute of Biology, Federal University of Bahia (UFBA), 668, Barão de Jeremoabo Street, Salvador, 40170-115, Brazil
| | | | - Maria José Sparça Salles
- Department of General Biology, State University of Londrina (UEL), Km 380, Celso Garcia Cid Road, Londrina, 86057-970, Brazil
| |
Collapse
|
34
|
Son C, Choi MS, Park JC. Different Responsiveness of Alveolar Bone and Long Bone to Epithelial-Mesenchymal Interaction-Related Factor. JBMR Plus 2020; 4:e10382. [PMID: 32803111 PMCID: PMC7422712 DOI: 10.1002/jbm4.10382] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 06/02/2020] [Indexed: 12/29/2022] Open
Abstract
Alveolar bone is both morphologically and functionally different from other bones of the axial or peripheral skeleton. Because of its sensitive nature to external stimuli including mechanical stress, bone loss stimuli, and medication-related osteonecrosis of the jaw, alveolar bone rendering is seen as an important factor in various dental surgical processes. Although multiple studies have validated the response of long bone to various factors, how alveolar bone responds to functional stimuli still needs further clarification. To examine the characteristics of bone in vitro, we isolated cells from alveolar, femur, and tibia bone tissue. Although primary cultured mouse alveolar bone-derived cells (mABDCs) and mouse long bone-derived cells (mLBDCs) exhibited similar osteoblastic characteristics, morphology, and proliferation rates, both showed distinct expression of neural crest (NC) and epithelial-mesenchymal interaction (EMI)-related genes. Furthermore, they showed significantly different mineralization rates. RNA sequencing data demonstrated distinct transcriptome profiles of alveolar bone and long bone. Osteogenic, NC-, and EMI-related genes showed distinct expression between mABDCs and mLBDCs. When the gene expression patterns during osteogenic differentiation were analyzed, excluding several osteogenic genes, NC- and EMI-related genes showed different expression patterns. Among EMI-related proteins, BMP4 elevated the expression levels of osteogenic genes, Msx2, Dlx5, and Bmp2 the most, more noticeably in mABDCs than in mLBDCs during osteogenic differentiation. In in vivo models, the BMP4-treated mABDC group showed massive bone formation and maturation as opposed to its counterpart. Bone sialoprotein expression was also validated in calcified tissues. Overall, our data suggest that alveolar bone and long bone have different responsiveness to EMI by distinct gene regulation. In particular, BMP4 has critical bone formation effects on alveolar bone, but not on long bone. © 2020 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Chul Son
- Department of Oral Histology and Developmental Biology, School of Dentistry Seoul National University Seoul South Korea
| | - Moon Sil Choi
- Department of Dental Hygiene Songwon University Gwangju South Korea
| | - Joo-Cheol Park
- Department of Oral Histology and Developmental Biology, School of Dentistry Seoul National University Seoul South Korea
| |
Collapse
|
35
|
Zhang S, Yang Y, Jia S, Chen H, Duan Y, Li X, Wang S, Wang T, Lyu Y, Chen G, Tian W. Exosome-like vesicles derived from Hertwig's epithelial root sheath cells promote the regeneration of dentin-pulp tissue. Am J Cancer Res 2020; 10:5914-5931. [PMID: 32483427 PMCID: PMC7254987 DOI: 10.7150/thno.43156] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 04/03/2020] [Indexed: 02/05/2023] Open
Abstract
Background: The formation of dentin-pulp involves complex epithelial-mesenchymal interactions between Hertwig's epithelial root sheath cells (HERS) and dental papilla cells (DPCs). Earlier studies have identified some of the regulatory molecules participating in the crosstalk between HERS and DPCs and the formation of dentin-pulp. In the present study we focused on the role of HERS-secreted exosomes in DPCs and the formation of dentin-pulp. Specifically, we hypothesized that exosome-like vesicles (ELVs) might mediate the function of HERS and trigger lineage-specific differentiation of dental mesenchymal cells. To test our hypothesis, we evaluated the potential of ELVs derived from a HERS cell line (ELVs-H1) in inducing in vitro and in vivo differentiation of DPCs. Methods: ELVs-H1 were characterized using transmission electron microscopy and dynamic light scattering. The proliferation, migration, and odontoblast differentiation of DPCs after treatment with ELVs-H1, was detected by CCK8, transwell, ALP, and mineralization assays, respectively. Real time PCR and western blotting were used to detect gene and protein expression. For in vivo studies, DPC cells were mixed with collagen gel combined with or without ELVs and transplanted into the renal capsule of rats or subcutaneously into nude mice. HE staining and immunostaining were used to verify the regeneration of dentin-pulp and expression of odontoblast differentiation markers. Results: ELVs-H1 promoted the migration and proliferation of DPCs and also induced odontogenic differentiation and activation of Wnt/β-catenin signaling. ELVs-H1 also contributed to tube formation and neural differentiation in vitro. In addition, ELVs-H1 attached to the collagen gel, and were slowly released and endocytosed by DPCs, enhancing cell survival. ELVs-H1 together with DPCs triggered regeneration of dental pulp-dentin like tissue comprised of hard (reparative dentin-like tissue) and soft (blood vessels and neurons) tissue, in an in vivo tooth root slice model. Conclusion: Our data highlighted the potential of ELVs-H1 as biomimetic tools in providing a microenvironment for specific differentiation of dental mesenchymal stem cells. From a developmental perspective, these vesicles might be considered as novel mediators facilitating the epithelial-mesenchymal crosstalk. Their instructive potency might be exploited for the regeneration of dental pulp-dentin tissues.
Collapse
|
36
|
Zhang S, Li X, Wang S, Yang Y, Guo W, Chen G, Tian W. Immortalized Hertwig's epithelial root sheath cell line works as model for epithelial-mesenchymal interaction during tooth root formation. J Cell Physiol 2020; 235:2698-2709. [PMID: 31512758 DOI: 10.1002/jcp.29174] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 08/26/2019] [Indexed: 02/05/2023]
Abstract
Hertwig's epithelial root sheath (HERS) is critical for epithelial-mesenchymal interaction (EMI) during tooth root formation. However, the exact roles of HERS in odontogenic differentiation by EMI have not been well characterized, because primary HERS cells are difficult to obtain. Immortalized cell lines constitute crucial scientific tools, while there are few HERS cell lines available. Our previous study has successfully established immortalized HERS cell lines. Here, we confirmed the phenotype of our HERS-H1 by verifying its characteristics and functions in odontogenic differentiation through EMI. The HERS-H1-conditioned medium (CM-H1) effectively enhanced odontogenic differentiation of dental papilla cells (DPCs) in vitro. Furthermore, Smad4 and p-Smad1/5/8 were significantly activated in DPCs treated with CM-H1, and this activation was attenuated by noggin. In vivo, our implanted recombinants of HERS-H1 and DPCs exhibited mineralized tissue formation and expression of Smad4, p-Smad1/5/8, and odontogenic differentiation markers. Our results indicated that HERS-H1 promoted DPCs odontoblastic differentiation via bone morphogenetic protein/Smad signaling. HERS-H1 exhibits relevant key molecular characteristics and constitutes a new biological model for basic research on HERS and the dental EMI during root development and regeneration.
Collapse
Affiliation(s)
- Sicheng Zhang
- State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xuebing Li
- State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shikai Wang
- State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yan Yang
- State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Weihua Guo
- State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Pediatric, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Guoqing Chen
- State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Weidong Tian
- State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
37
|
Hosoya A, Shalehin N, Takebe H, Shimo T, Irie K. Sonic Hedgehog Signaling and Tooth Development. Int J Mol Sci 2020; 21:ijms21051587. [PMID: 32111038 PMCID: PMC7084732 DOI: 10.3390/ijms21051587] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 12/11/2022] Open
Abstract
Sonic hedgehog (Shh) is a secreted protein with important roles in mammalian embryogenesis. During tooth development, Shh is primarily expressed in the dental epithelium, from initiation to the root formation stages. A number of studies have analyzed the function of Shh signaling at different stages of tooth development and have revealed that Shh signaling regulates the formation of various tooth components, including enamel, dentin, cementum, and other soft tissues. In addition, dental mesenchymal cells positive for Gli1, a downstream transcription factor of Shh signaling, have been found to have stem cell properties, including multipotency and the ability to self-renew. Indeed, Gli1-positive cells in mature teeth appear to contribute to the regeneration of dental pulp and periodontal tissues. In this review, we provide an overview of recent advances related to the role of Shh signaling in tooth development, as well as the contribution of this pathway to tooth homeostasis and regeneration.
Collapse
Affiliation(s)
- Akihiro Hosoya
- Division of Histology, Department of Oral Growth and Development, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido 061-0293, Japan; (N.S.); (H.T.); (K.I.)
- Correspondence: ; Tel.: +81-133-23-1938; Fax: +81-133-23-1236
| | - Nazmus Shalehin
- Division of Histology, Department of Oral Growth and Development, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido 061-0293, Japan; (N.S.); (H.T.); (K.I.)
| | - Hiroaki Takebe
- Division of Histology, Department of Oral Growth and Development, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido 061-0293, Japan; (N.S.); (H.T.); (K.I.)
| | - Tsuyoshi Shimo
- Division of Reconstructive Surgery for Oral and Maxillofacial Region, Department of Human Biology and Pathophysiology, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido 061-0293, Japan;
| | - Kazuharu Irie
- Division of Histology, Department of Oral Growth and Development, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido 061-0293, Japan; (N.S.); (H.T.); (K.I.)
| |
Collapse
|
38
|
Yu M, Jiang Z, Wang Y, Xi Y, Yang G. Molecular mechanisms for short root anomaly. Oral Dis 2020; 27:142-150. [PMID: 31883171 DOI: 10.1111/odi.13266] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/11/2019] [Accepted: 12/19/2019] [Indexed: 12/20/2022]
Abstract
Short root anomaly (SRA) is a dental disorder that presents an abnormal root morphology with short and blunt dental roots. In this situation, many dental treatments face a difficult challenge, especially orthodontic and prosthodontic treatments. Therefore, an understanding of how SRA develops is urgently needed. Here we describe that the abnormal expression of nuclear factor I C-type (Nfic), osterix (Osx), hedgehog (Hh), bone morphogenetic proteins (BMPs), transforming growth factor-β (TGF-β), Smad, Wnt, β-catenin, and dickkopf-related protein 1 (DKK1) leads to SRA. These factors interact with each other and constitute complicated signaling network in tooth formation. Specifically, BMP signaling inhibits the activity of Wnt/β-catenin directly or by inducing Osx via Runx2-dependent and Runx2-independent pathways. And Osx is a main inhibitor of Wnt/β-catenin signaling. In return, Wnt/β-catenin signaling has an antagonistic action of BMP pathway and a stimulation of Runx2. We highlight the importance of Wnt/β-catenin signaling in the pathological mechanisms. Either suppression or overactivation of this signaling influences the normal odontogenesis. Finally, we list rescue experiments on animal models, which have been reported to restore the interrupted cell differentiation and impaired tooth formation. We hope to find potential treatments for SRA based on these evidences in the future.
Collapse
Affiliation(s)
- Mengjia Yu
- The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Oral Biomedical Research of Zhejiang Province, Zhejiang University School of Stomatology, Hangzhou, China
| | - Zhiwei Jiang
- The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Oral Biomedical Research of Zhejiang Province, Zhejiang University School of Stomatology, Hangzhou, China
| | - Yang Wang
- The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Oral Biomedical Research of Zhejiang Province, Zhejiang University School of Stomatology, Hangzhou, China
| | - Yue Xi
- The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Oral Biomedical Research of Zhejiang Province, Zhejiang University School of Stomatology, Hangzhou, China
| | - Guoli Yang
- The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Oral Biomedical Research of Zhejiang Province, Zhejiang University School of Stomatology, Hangzhou, China
| |
Collapse
|
39
|
Poorebrahim M, Sadeghi S, Ghanbarian M, Kalhor H, Mehrtash A, Teimoori-Toolabi L. Identification of candidate genes and miRNAs for sensitizing resistant colorectal cancer cells to oxaliplatin and irinotecan. Cancer Chemother Pharmacol 2020; 85:153-171. [PMID: 31781855 DOI: 10.1007/s00280-019-03975-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 10/05/2019] [Indexed: 12/16/2022]
Abstract
Drug resistance to irinotecan and oxaliplatin, two widely used chemotherapeutic, has become a common problem in cancerous patients. Despite numerous valuable studies, distinct molecular mechanisms involved in the acquisition of resistance to these anti-cancer drugs have remained a challenge. In this study, we studied the possible resistance mechanisms to irinotecan and oxaliplatin in three CRC cell lines (HCT116, HT29, and LoVo) via integration of microarray data with gene regulatory networks. After determination of hub genes, corresponding miRNAs were predicted using several databases and used in construction and subsequent analysis of miRNA-gene networks. Following to preparation of chemo-resistance CRC cells, a standard real-time PCR was conducted for validation of in silico findings. Topological and functional enrichment analyses of the resulted networks introduced several previously reported drug-resistance genes as well as novel biomarkers as hub genes which seem to be crucial in resistance of colon cancer cells to irinotecan and oxaliplatin. Furthermore, results of the functional annotation revealed the essential role of different signaling pathways like metabolic pathways in drug resistance of CRC cell lines to these drugs. A part of in silico findings was also validated in vitro using oxaliplatin-resistant cell lines. While FOXC1 and NFIC were upregulated in cell lines which were resistant to oxaliplatin, silencing FOXC1 decreased the resistance of SW480 cell line to oxaliplatin. In conclusion, our comparative in silico and in vitro study introduces several novel genes and miRNAs as the resistance-mediators which can be used for sensitizing resistant CRC cells to oxaliplatin and irinotecan.
Collapse
Affiliation(s)
- Mansour Poorebrahim
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Solmaz Sadeghi
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Marzieh Ghanbarian
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Hourieh Kalhor
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Amirhosein Mehrtash
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Ladan Teimoori-Toolabi
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
40
|
Kajioka D, Suzuki K, Nakada S, Matsushita S, Miyagawa S, Takeo T, Nakagata N, Yamada G. Bmp4 is an essential growth factor for the initiation of genital tubercle (GT) outgrowth. Congenit Anom (Kyoto) 2020; 60:15-21. [PMID: 30714224 DOI: 10.1111/cga.12326] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/22/2019] [Accepted: 01/28/2019] [Indexed: 12/31/2022]
Abstract
The external genitalia are appendage organs outgrowing from the posterior body trunk. Murine genital tubercle (GT), anlage of external genitalia, initiates its outgrowth from embryonic day (E) 10.5 as a bud structure. Several growth factors such as fibroblast growth factor (FGF), Wnt and Sonic hedgehog (Shh) are essential for the GT outgrowth. However, the mechanisms of initiation of GT outgrowth are poorly understood. We previously identified bone morphogenetic protein (Bmp) signaling as a negative regulator for GT outgrowth. We show here novel aspects of Bmp4 functions for GT outgrowth. We identified the Bmp4 was already expressed in cloaca region at E9.5, before GT outgrowth. To analyze the function of Bmp4 at early stage for the initiation of GT outgrowth, we utilized the Hoxa3-Cre driver and Bmp4 flox/flox mouse lines. Hoxa3 Cre/+ ; Bmp4 flox/flox mutant mice showed the hypoplasia of GT with reduced expression of outgrowth promoting genes such as Wnt5a, Hoxd13 and p63, whereas Shh expression was not affected. Formation of distal urethral epithelium (DUE) marked by the Fgf8 expression is essential for controlling mesenchymal genes expression in GT and subsequent its outgrowth. Furthermore, Fgf8 expression was dramatically reduced in such mutant mice indicating the defective DUE formation. Hence, current results indicate that Bmp4 is an essential growth factor for the initiation of GT outgrowth independent of Shh signaling. Thus, Bmp4 positively regulates for the formation of DUE. The current study provides new insights into the function of Bmp signaling at early stage for the initiation of GT outgrowth.
Collapse
Affiliation(s)
- Daiki Kajioka
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Japan
| | - Kentaro Suzuki
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Japan
| | - Shoko Nakada
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Japan
| | - Shoko Matsushita
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Japan
| | - Shinichi Miyagawa
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Japan
| | - Toru Takeo
- Division of Reproductive Engineering, Center for Animal Resources and Development, Kumamoto University, Kumamoto, Japan
| | - Naomi Nakagata
- Division of Reproductive Engineering, Center for Animal Resources and Development, Kumamoto University, Kumamoto, Japan
| | - Gen Yamada
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Japan
| |
Collapse
|
41
|
Jing J, Feng J, Li J, Han X, He J, Ho TV, Du J, Zhou X, Urata M, Chai Y. Antagonistic interaction between Ezh2 and Arid1a coordinates root patterning and development via Cdkn2a in mouse molars. eLife 2019; 8:46426. [PMID: 31259687 PMCID: PMC6602580 DOI: 10.7554/elife.46426] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 06/05/2019] [Indexed: 02/05/2023] Open
Abstract
Patterning is a critical step during organogenesis and is closely associated with the physiological function of organs. Tooth root shapes are finely tuned to provide precise occlusal support to facilitate the function of each tooth type. However, the mechanism regulating tooth root patterning and development is largely unknown. In this study, we provide the first in vivo evidence demonstrating that Ezh2 in the dental mesenchyme determines patterning and furcation formation during dental root development in mouse molars. Mechanistically, an antagonistic interaction between epigenetic regulators Ezh2 and Arid1a controls Cdkn2a expression in the dental mesenchyme to regulate dental root patterning and development. These findings indicate the importance of balanced epigenetic regulation in determining the tooth root pattern and the integration of roots with the jaw bones to achieve physiological function. Collectively, our study provides important clues about the regulation of organogenesis and has general implications for tooth regeneration in the future.
Collapse
Affiliation(s)
- Junjun Jing
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, United States.,State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jifan Feng
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, United States
| | - Jingyuan Li
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, United States
| | - Xia Han
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, United States
| | - Jinzhi He
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, United States.,State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Thach-Vu Ho
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, United States
| | - Jiahui Du
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, United States
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Mark Urata
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, United States
| | - Yang Chai
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, United States
| |
Collapse
|
42
|
Li X, Zhang S, Zhang Z, Guo W, Chen G, Tian W. Development of immortalized Hertwig's epithelial root sheath cell lines for cementum and dentin regeneration. Stem Cell Res Ther 2019; 10:3. [PMID: 30606270 PMCID: PMC6319004 DOI: 10.1186/s13287-018-1106-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 11/09/2018] [Accepted: 12/10/2018] [Indexed: 02/05/2023] Open
Abstract
Background Hertwig’s epithelial root sheath (HERS) is important in guiding tooth root formation by differentiating into cementoblasts through epithelial–mesenchymal transition (EMT) and inducing odontoblastic differentiation of dental papilla through epithelial–mesenchymal interaction (EMI) during the tooth root development. Thus, HERS cells are critical for cementum and dentin formation and might be a potential cell source to achieve tooth root regeneration. However, limited availability and lifespan of primary HERS cells may represent an obstacle for biological investigation and therapeutic use of tooth tissue engineering. Therefore, we constructed, characterized, and tested the functionality of immortalized cell lines in order to produce a more readily available alternative to HERS cells. Methods Primary HERS cells were immortalized via infection with lentivirus vector containing the gene encoding simian virus 40 Large T Antigen (SV40LT). Immortalized HERS cell subclones were isolated using a limiting dilution method, and subclones named HERS-H1 and HERS-C2 cells were isolated. The characteristics of HERS-H1 and HERS-C2 cells, including cell proliferation, ability of epithelial–mesenchymal transformation and epithelial–mesenchymal interaction, were determined by CCK-8 assay, immunofluorescence staining, and real-time PCR. The cell differentiation into cementoblast-like cells or periodontal fibroblast-like cells was confirmed in vivo. And the inductive influence of the cell lines on dental papilla cells (DPCs) was also confirmed in vivo. Results HERS-H1 and HERS-C2 cells share some common features with primary HERS cells such as epithelial-like morphology, positive expression of CK14, E-Cadherin, and Vimentin, and undergoing EMT in response to TGF-beta. HERS-C2 cells showed the EMT characteristics and could differentiate into cementum-forming cells in vitro and generate cementum-like tissue in vivo. HERS-H1 could induce the differentiation of DPCs into odontoblasts in vitro and generation of dentin-like tissue in vivo. Conclusions We successfully isolated and characterized novel cell lines representing two key features of HERS cells during the tooth root development and which were useful substitutes for primary HERS cells, thereby providing a biologically relevant, unlimited cell source for studies on cell biology, developmental biology, and tooth root regeneration. Electronic supplementary material The online version of this article (10.1186/s13287-018-1106-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xuebing Li
- State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Sicheng Zhang
- State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zirui Zhang
- State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,West China School of Public Health, Sichuan University, Chengdu, China
| | - Weihua Guo
- State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Pediatric, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Guoqing Chen
- State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, China. .,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China. .,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| | - Weidong Tian
- State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, China. .,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China. .,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China. .,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
43
|
Liu CW, Zhou YJ, Yan GX, Shi C, Zhang X, Hu Y, Hao XQ, Zhao H, Sun HC. [The role of bone morphogenetic protein signaling pathway in tooth root development]. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2018; 36:559-563. [PMID: 30465352 DOI: 10.7518/hxkq.2018.05.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The bone morphogenetic protein (BMP) family is an important factor in the regulation of cell ular life activities and in the development of almost all tissues. BMP-mediated signaling plays an important role in tooth root development, which is a part of tooth development. Epithelial and mesenchymal interactions are involved in tooth root development, but the BMP signaling pathway has a different effect on tooth root development in epithelial and mesenchymal. This review summarizes the advances of BMP signaling in tooth root development.
Collapse
Affiliation(s)
- Cang-Wei Liu
- Dept. of Oral Pathology, School and Hospital of Stomatology, Jilin University, Key Laboratory of Tooth Development and Bone Remodeling of Jilin Province, Changchun 130021, China
| | - Yi-Jun Zhou
- Dept. of Oral Pathology, School and Hospital of Stomatology, Jilin University, Key Laboratory of Tooth Development and Bone Remodeling of Jilin Province, Changchun 130021, China
| | - Guang-Xing Yan
- Dept. of Oral Pathology, School and Hospital of Stomatology, Jilin University, Key Laboratory of Tooth Development and Bone Remodeling of Jilin Province, Changchun 130021, China
| | - Ce Shi
- Dept. of Oral Pathology, School and Hospital of Stomatology, Jilin University, Key Laboratory of Tooth Development and Bone Remodeling of Jilin Province, Changchun 130021, China
| | - Xue Zhang
- Dept. of Oral Pathology, School and Hospital of Stomatology, Jilin University, Key Laboratory of Tooth Development and Bone Remodeling of Jilin Province, Changchun 130021, China
| | - Yue Hu
- Dept. of Oral Pathology, School and Hospital of Stomatology, Jilin University, Key Laboratory of Tooth Development and Bone Remodeling of Jilin Province, Changchun 130021, China
| | - Xin-Qing Hao
- Dept. of Oral Pathology, School and Hospital of Stomatology, Jilin University, Key Laboratory of Tooth Development and Bone Remodeling of Jilin Province, Changchun 130021, China
| | - Huan Zhao
- Dept. of Oral Pathology, School and Hospital of Stomatology, Jilin University, Key Laboratory of Tooth Development and Bone Remodeling of Jilin Province, Changchun 130021, China
| | - Hong-Chen Sun
- Dept. of Oral Pathology, School and Hospital of Stomatology, Jilin University, Key Laboratory of Tooth Development and Bone Remodeling of Jilin Province, Changchun 130021, China
| |
Collapse
|
44
|
Takahashi A, Ono N, Ono W. The fate of Osterix-expressing mesenchymal cells in dental root formation and maintenance. Orthod Craniofac Res 2018. [PMID: 28643909 DOI: 10.1111/ocr.12167] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVES Osterix (Osx)-expressing mesenchymal cells are progenitors for tooth root forming cells. The aim of this study was to reveal the fates of Osx-expressing cells during and after root formation using a lineage tracing experiment. MATERIAL AND METHODS To reveal the fates of Osx-expressing dental mesenchymal progenitors, we took advantage of tamoxifen-inducible Cre reporter system. Osx-creER; R26R-tdTomato mice received tamoxifen (0.1 mg/body) at postnatal day 3 (P3). In this system, Osx-expressing at P3 (Osx-P3) cells undergo recombination, and they and their descendants continue to express Tomato red fluorescence protein permanently. Mandibles were dissected at serial time points ranging from P4 to P116 to investigate how Osx-P3 cells participated in root formation. Tomato+ cells on frozen sections were imaged under fluorescence microscopy. RESULTS Osx-P3 cells and their descendants differentiated into all kinds of cells that contributed to the root and periodontal tissues, such as odontoblasts, cementoblasts, alveolar bone osteoblasts and periodontal ligament (PDL) cells during root formation. Even after root formation was completed, they persisted in dental pulp and PDL to provide progenitor cells for odontoblasts and cementoblasts. CONCLUSION Osx-expressing cells play important roles in the entire processes of tooth root formation; their progeny continue to contribute to maintenance of tooth root even after root formation is complete.
Collapse
Affiliation(s)
- A Takahashi
- Department of Orthodontics and Pediatric Dentistry, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - N Ono
- Department of Orthodontics and Pediatric Dentistry, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - W Ono
- Department of Orthodontics and Pediatric Dentistry, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| |
Collapse
|
45
|
Guo Y, Guo W, Chen J, Tian Y, Chen G, Tian W, Bai D. Comparative study on differentiation of cervical-loop cells and Hertwig's epithelial root sheath cells under the induction of dental follicle cells in rat. Sci Rep 2018; 8:6546. [PMID: 29695816 PMCID: PMC5916884 DOI: 10.1038/s41598-018-24973-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 04/12/2018] [Indexed: 02/05/2023] Open
Abstract
Cervical loop cells (CLC) and Hertwig's epithelial root sheath (HERS) cells are believed to play critical roles in distinct developmental patterns between rodent incisors and molars, respectively. However, the differences in differentiation between CLC and HERS cells, and their response to inductions from dental follicle cells, remain largely unknown. In present study, CLC and HERS cells, as well as incisor dental follicle (IF) cells and molar dental follicle (MF) cells were isolated from post-natal 7-day rats. IF and MF cell derived conditioned medium (CM) was obtained for induction of CLC and HERS cells. In vitro experiments, we found that, under the induction of dental follicle cell derived CM, CLC cells maintained the epithelial polygonal-shapes and formed massive minerals, while part of HERS cells underwent shape transformation and generated granular minerals. CLC cells expressed higher enamel-forming and mineralization related genes, while HERS cells showed opposite expression patterns of BMP2, BMP4, AMBN and AMGN. In vivo, CLC cells generated enamel-like tissues while HERS cells formed cementum-periodontal ligament-like structures. Taken together, CLC and HERS cells present distinct differentiation patterns under the inductions from dental follicle cells.
Collapse
Affiliation(s)
- Yongwen Guo
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P.R. China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P.R. China.,Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P.R. China
| | - Weihua Guo
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P.R. China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P.R. China.,Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China
| | - Jie Chen
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P.R. China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P.R. China.,Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P.R. China
| | - Ye Tian
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P.R. China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P.R. China.,Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P.R. China
| | - Guoqing Chen
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P.R. China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P.R. China
| | - Weidong Tian
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P.R. China. .,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P.R. China. .,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P.R. China.
| | - Ding Bai
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P.R. China. .,Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P.R. China.
| |
Collapse
|
46
|
Yang Y, Li Z, Chen G, Li J, Li H, Yu M, Zhang W, Guo W, Tian W. GSK3β regulates ameloblast differentiation via Wnt and TGF-β pathways. J Cell Physiol 2018; 233:5322-5333. [PMID: 29215720 DOI: 10.1002/jcp.26344] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 11/27/2017] [Indexed: 02/05/2023]
Abstract
Wnt and TGF-β signaling pathways participate in regulating a variety of cell fates during organogenesis, including tooth development. Despite well-documented, the specific mechanisms, especially how these two pathways act coordinately in regulating enamel development, remain unknown. In this study, we identified Glycogen Synthase Kinase 3 beta (GSK3β), a negative regulator of Wnt signal pathway, participated in ameloblast differentiation via Wnt and TGF-β pathways during enamel development. In vitro rat mandible culture treated with specific GSK3β inhibitor SB415286 displayed enamel defects, accompanied by disrupted ameloblasts polarization, while odontoblasts and dentin appeared to be unaffected. Moreover, after GSK3β knockdown by lentivirus-mediated RNA silencing, HAT-7 cells displayed abnormal cell polarity and cell adhesion, and failed to synthesize appreciable amounts of ameloblast-specific proteins. More importantly, inactivation of GSK3β caused upregulated Wnt and downregulated TGF-β pathway, while reactivation of TGF-β signaling or suppression of Wnt signaling partially rescued the differentiation defects of ameloblasts caused by the GSK3β knock-down. Taken together, these results suggested that GSK3β was essential for ameloblasts differentiation, which might be indirectly mediated through Wnt and TGF-β signaling pathways.
Collapse
Affiliation(s)
- Yaling Yang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Lanzhou Hospital of Stomatology, Lanzhou, Gansu Province, China
| | - Ziyue Li
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Guoqing Chen
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jie Li
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hui Li
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Mei Yu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Weiping Zhang
- Lanzhou Hospital of Stomatology, Lanzhou, Gansu Province, China
| | - Weihua Guo
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Pedodontics, West China School of Stomatology, Sichuan University, Chengdu, Sichuan Province, China
| | - Weidong Tian
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
47
|
Abstract
Tooth is made of an enamel-covered crown and a cementum-covered root. Studies on crown dentin formation have been a major focus in tooth development for several decades. Interestingly, the population prevalence for genetic short root anomaly (SRA) with no apparent defects in crown is close to 1.3%. Furthermore, people with SRA itself are predisposed to root resorption during orthodontic treatment. The discovery of the unique role of Nfic (nuclear factor I C; a transcriptional factor) in controlling root but not crown dentin formation points to a new concept: tooth crown and root have different control mechanisms. Further genetic mechanism studies have identified more key molecules (including Osterix, β-catenin, and sonic hedgehog) that play a critical role in root formation. Extensive studies have also revealed the critical role of Hertwig's epithelial root sheath in tooth root formation. In addition, Wnt10a has recently been found to be linked to multirooted tooth furcation formation. These exciting findings not only fill the critical gaps in our understanding about tooth root formation but will aid future research regarding the identifying factors controlling tooth root size and the generation of a whole "bio-tooth" for therapeutic purposes. This review starts with human SRA and mainly focuses on recent progress on the roles of NFIC-dependent and NFIC-independent signaling pathways in tooth root formation. Finally, this review includes a list of the various Cre transgenic mouse lines used to achieve tooth root formation-related gene deletion or overexpression, as well as strengths and limitations of each line.
Collapse
Affiliation(s)
- J Wang
- 1 Biomedical Sciences, Texas A&M College of Dentistry, Dallas, TX, USA
- 2 State Key Laboratory of Oral Diseases, Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - J Q Feng
- 1 Biomedical Sciences, Texas A&M College of Dentistry, Dallas, TX, USA
| |
Collapse
|
48
|
Abstract
The tooth root is an integral, functionally important part of our dentition. The formation of a functional root depends on epithelial-mesenchymal interactions and integration of the root with the jaw bone, blood supply and nerve innervations. The root development process therefore offers an attractive model for investigating organogenesis. Understanding how roots develop and how they can be bioengineered is also of great interest in the field of regenerative medicine. Here, we discuss recent advances in understanding the cellular and molecular mechanisms underlying tooth root formation. We review the function of cellular structure and components such as Hertwig's epithelial root sheath, cranial neural crest cells and stem cells residing in developing and adult teeth. We also highlight how complex signaling networks together with multiple transcription factors mediate tissue-tissue interactions that guide root development. Finally, we discuss the possible role of stem cells in establishing the crown-to-root transition, and provide an overview of root malformations and diseases in humans.
Collapse
Affiliation(s)
- Jingyuan Li
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, 2250 Alcazar Street, Los Angeles, CA 90033, USA.,Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing 100050, People's Republic of China
| | - Carolina Parada
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, 2250 Alcazar Street, Los Angeles, CA 90033, USA
| | - Yang Chai
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, 2250 Alcazar Street, Los Angeles, CA 90033, USA
| |
Collapse
|
49
|
Fons Romero JM, Star H, Lav R, Watkins S, Harrison M, Hovorakova M, Headon D, Tucker AS. The Impact of the Eda Pathway on Tooth Root Development. J Dent Res 2017; 96:1290-1297. [PMID: 28813629 DOI: 10.1177/0022034517725692] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The Eda pathway ( Eda, Edar, Edaradd) plays an important role in tooth development, determining tooth number, crown shape, and enamel formation. Here we show that the Eda pathway also plays a key role in root development. Edar (the receptor) is expressed in Hertwig's epithelial root sheath (HERS) during root development, with mutant mice showing a high incidence of taurodontism: large pulp chambers lacking or showing delayed bifurcation or trifurcation of the roots. The mouse upper second molars in the Eda pathway mutants show the highest incidence of taurodontism, this enhanced susceptibility being matched in human patients with mutations in EDA-A1. These taurodont teeth form due to defects in the direction of extension of the HERS from the crown, associated with a more extensive area of proliferation of the neighboring root mesenchyme. In those teeth where the angle at which the HERS extends from the crown is very wide and therefore more vertical, the mutant HERSs fail to reach toward the center of the tooth in the normal furcation region, and taurodont teeth are created. The phenotype is variable, however, with milder changes in angle and proliferation leading to normal or delayed furcation. This is the first analysis of the role of Eda in the root, showing a direct role for this pathway during postnatal mouse development, and it suggests that changes in proliferation and angle of HERS may underlie taurodontism in a range of syndromes.
Collapse
Affiliation(s)
- J M Fons Romero
- 1 Department of Craniofacial Development and Stem Cell Biology, King's College London, London, UK
| | - H Star
- 1 Department of Craniofacial Development and Stem Cell Biology, King's College London, London, UK
| | - R Lav
- 1 Department of Craniofacial Development and Stem Cell Biology, King's College London, London, UK
| | - S Watkins
- 2 Hypodontia Clinic, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - M Harrison
- 2 Hypodontia Clinic, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - M Hovorakova
- 3 Department of Developmental Biology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - D Headon
- 4 The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - A S Tucker
- 1 Department of Craniofacial Development and Stem Cell Biology, King's College London, London, UK.,3 Department of Developmental Biology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| |
Collapse
|
50
|
Krivanek J, Adameyko I, Fried K. Heterogeneity and Developmental Connections between Cell Types Inhabiting Teeth. Front Physiol 2017. [PMID: 28638345 PMCID: PMC5461273 DOI: 10.3389/fphys.2017.00376] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Every tissue is composed of multiple cell types that are developmentally, evolutionary and functionally integrated into the unit we call an organ. Teeth, our organs for biting and mastication, are complex and made of many different cell types connected or disconnected in terms of their ontogeny. In general, epithelial and mesenchymal compartments represent the major framework of tooth formation. Thus, they give rise to the two most important matrix–producing populations: ameloblasts generating enamel and odontoblasts producing dentin. However, the real picture is far from this quite simplified view. Diverse pulp cells, the immune system, the vascular system, the innervation and cells organizing the dental follicle all interact, and jointly participate in transforming lifeless matrix into a functional organ that can sense and protect itself. Here we outline the heterogeneity of cell types that inhabit the tooth, and also provide a life history of the major populations. The mouse model system has been indispensable not only for the studies of cell lineages and heterogeneity, but also for the investigation of dental stem cells and tooth patterning during development. Finally, we briefly discuss the evolutionary aspects of cell type diversity and dental tissue integration.
Collapse
Affiliation(s)
- Jan Krivanek
- Department of Molecular Neurosciences, Center for Brain Research, Medical University ViennaVienna, Austria
| | - Igor Adameyko
- Department of Molecular Neurosciences, Center for Brain Research, Medical University ViennaVienna, Austria.,Department of Physiology and Pharmacology, Karolinska InstitutetStockholm, Sweden
| | - Kaj Fried
- Department of Neuroscience, Karolinska InstitutetStockholm, Sweden
| |
Collapse
|