1
|
Kim HJ, Lee DK, Choi JY. Functional Role of Phospholipase D in Bone Metabolism. J Bone Metab 2023; 30:117-125. [PMID: 37449345 PMCID: PMC10346002 DOI: 10.11005/jbm.2023.30.2.117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/14/2023] [Accepted: 05/27/2023] [Indexed: 07/18/2023] Open
Abstract
Phospholipase D (PLD) proteins are major enzymes that regulate various cellular functions, such as cell growth, cell migration, membrane trafficking, and cytoskeletal dynamics. As they are responsible for such important biological functions, PLD proteins have been considered promising therapeutic targets for various diseases, including cancer and vascular and neurological diseases. Intriguingly, emerging evidence indicates that PLD1 and PLD2, 2 major mammalian PLD isoenzymes, are the key regulators of bone remodeling; this suggests that these isozymes could be used as potential therapeutic targets for bone diseases, such as osteoporosis and rheumatoid arthritis. PLD1 or PLD2 deficiency in mice can lead to decreased bone mass and dysregulated bone homeostasis. Although both mutant mice exhibit similar skeletal phenotypes, PLD1 and PLD2 play distinct and nonredundant roles in bone cell function. This review summarizes the physiological roles of PLD1 and PLD2 in bone metabolism, focusing on recent findings of the biological functions and action mechanisms of PLD1 and PLD2 in bone cells.
Collapse
|
2
|
Zhang W, Yan H, Deng Y, Lou J, Zhang P, Cui Q, Sun H, Tang H, Sun Y, Yang J, Li D, Sun Y. Expression profile and bioinformatics analysis of circular RNA in intestinal mucosal injury and repair after severe burns. Cell Biol Int 2020; 44:2570-2587. [PMID: 32910511 DOI: 10.1002/cbin.11464] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 08/25/2020] [Accepted: 09/07/2020] [Indexed: 01/22/2023]
Abstract
Circular RNA (circRNA) is a novel noncoding RNA that is mostly found in humans and animals. Although the flux of circRNA research has increased in recent years, its precise function is still unclear. Some studies demonstrate that circRNAs can function as microRNA (miRNA) sponges involved in the regulation of competitive endogenous RNAs networks and play a crucial role in many biological processes. Other studies show that circRNAs play multiple biological roles in gastrointestinal diseases. However, the expression characteristics and function of circRNA in intestinal mucosal injury and repair after severe burn have not been reported. This study aims to screen differentially expressed circRNAs in intestinal mucosal injury and repair after severe burns and understand their underlying mechanisms. To test our hypothesis that circRNA may play a role in promoting repair in intestinal mucosa injury after severe burns, we collected the intestinal tissues of three severely burned mice and three pseudo-scalded mice and evaluated the expression of circRNAs via microarray analysis. Quantitative real-time polymerase chain reaction was also used to validate the circRNA microarray data by selecting six based on different multiples, original values, and p values. The host genes of all differentially expressed circRNAs and the downstream target genes of six selected DEcircRNAs were identified by Gene Ontology and the Kyoto Encyclopedia of Genes and Genomes pathway analysis. Meanwhile, we also created a circRNA-miRNA-mRNA network to predict the role and function of circRNAs in intestinal mucosal injury and repair after severe burns.
Collapse
Affiliation(s)
- Wenwen Zhang
- Department of Burn Surgery, The Affiliated Huaihai Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.,Department of Burn Surgery, The 71st Group Army Hospital of PLA, Xuzhou, Jiangsu, China
| | - Hao Yan
- Department of Burn Surgery, The Affiliated Huaihai Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.,Department of Burn Surgery, The 71st Group Army Hospital of PLA, Xuzhou, Jiangsu, China
| | - Yuequ Deng
- Department of Burn Surgery, The Affiliated Huaihai Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.,Department of Burn Surgery, The 71st Group Army Hospital of PLA, Xuzhou, Jiangsu, China
| | - Jiaqi Lou
- Department of Burn Surgery, The Affiliated Huaihai Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.,Department of Burn Surgery, The 71st Group Army Hospital of PLA, Xuzhou, Jiangsu, China
| | - Pan Zhang
- Department of Burn Surgery, The Affiliated Huaihai Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.,Department of Burn Surgery, The 71st Group Army Hospital of PLA, Xuzhou, Jiangsu, China
| | - Qingwei Cui
- Department of Burn Surgery, The Affiliated Huaihai Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.,Department of Burn Surgery, The 71st Group Army Hospital of PLA, Xuzhou, Jiangsu, China
| | - Han Sun
- Department of Burn Surgery, The Affiliated Huaihai Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.,Department of Burn Surgery, The 71st Group Army Hospital of PLA, Xuzhou, Jiangsu, China
| | - Hao Tang
- Department of Burn Surgery, The Affiliated Huaihai Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.,Department of Burn Surgery, The 71st Group Army Hospital of PLA, Xuzhou, Jiangsu, China
| | - Yuan Sun
- Department of Burn Surgery, The Affiliated Huaihai Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.,Department of Burn Surgery, The 71st Group Army Hospital of PLA, Xuzhou, Jiangsu, China
| | - Juan Yang
- Department of Burn Surgery, The Affiliated Huaihai Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.,Department of Burn Surgery, The 71st Group Army Hospital of PLA, Xuzhou, Jiangsu, China
| | - Dan Li
- Department of Burn Surgery, The Affiliated Huaihai Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.,Department of Burn Surgery, The 71st Group Army Hospital of PLA, Xuzhou, Jiangsu, China
| | - Yong Sun
- Department of Burn Surgery, The Affiliated Huaihai Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.,Department of Burn Surgery, The 71st Group Army Hospital of PLA, Xuzhou, Jiangsu, China
| |
Collapse
|
3
|
Abdallah D, Skafi N, Hamade E, Borel M, Reibel S, Vitale N, El Jamal A, Bougault C, Laroche N, Vico L, Badran B, Hussein N, Magne D, Buchet R, Brizuela L, Mebarek S. Effects of phospholipase D during cultured osteoblast mineralization and bone formation. J Cell Biochem 2018; 120:5923-5935. [DOI: 10.1002/jcb.27881] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 09/20/2018] [Indexed: 11/09/2022]
Affiliation(s)
- Dina Abdallah
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5246, ICBMS Lyon France
- Lebanese University, Faculty of Sciences, Campus Rafic Hariri‐Hadath‐Beirut‐Liban Genomic and Health Laboratory/PRASE‐EDST Beirut Lebanon
| | - Najwa Skafi
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5246, ICBMS Lyon France
- Lebanese University, Faculty of Sciences, Campus Rafic Hariri‐Hadath‐Beirut‐Liban Genomic and Health Laboratory/PRASE‐EDST Beirut Lebanon
| | - Eva Hamade
- Lebanese University, Faculty of Sciences, Campus Rafic Hariri‐Hadath‐Beirut‐Liban Genomic and Health Laboratory/PRASE‐EDST Beirut Lebanon
| | - Mathieu Borel
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5246, ICBMS Lyon France
| | | | - Nicolas Vitale
- Centre National de la Recherche Scientifique (CNRS) UPR‐3212 and Université de Strasbourg Strasbourg France
| | - Alaeddine El Jamal
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5246, ICBMS Lyon France
| | - Carole Bougault
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5246, ICBMS Lyon France
| | - Norbert Laroche
- Univ Lyon, Université Jean Monnet, Faculté de Médecine, Campus Santé Innovation, INSERM UMR 1059, Sainbiose, LBTO Saint‐Etienne France
| | - Laurence Vico
- Univ Lyon, Université Jean Monnet, Faculté de Médecine, Campus Santé Innovation, INSERM UMR 1059, Sainbiose, LBTO Saint‐Etienne France
| | - Bassam Badran
- Lebanese University, Faculty of Sciences, Campus Rafic Hariri‐Hadath‐Beirut‐Liban Genomic and Health Laboratory/PRASE‐EDST Beirut Lebanon
| | - Nader Hussein
- Lebanese University, Faculty of Sciences, Campus Rafic Hariri‐Hadath‐Beirut‐Liban Genomic and Health Laboratory/PRASE‐EDST Beirut Lebanon
| | - David Magne
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5246, ICBMS Lyon France
| | - Rene Buchet
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5246, ICBMS Lyon France
| | - Leyre Brizuela
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5246, ICBMS Lyon France
| | - Saida Mebarek
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5246, ICBMS Lyon France
| |
Collapse
|
4
|
Phospholipases of mineralization competent cells and matrix vesicles: roles in physiological and pathological mineralizations. Int J Mol Sci 2013; 14:5036-129. [PMID: 23455471 PMCID: PMC3634480 DOI: 10.3390/ijms14035036] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 01/24/2013] [Accepted: 01/25/2013] [Indexed: 02/08/2023] Open
Abstract
The present review aims to systematically and critically analyze the current knowledge on phospholipases and their role in physiological and pathological mineralization undertaken by mineralization competent cells. Cellular lipid metabolism plays an important role in biological mineralization. The physiological mechanisms of mineralization are likely to take place in tissues other than in bones and teeth under specific pathological conditions. For instance, vascular calcification in arteries of patients with renal failure, diabetes mellitus or atherosclerosis recapitulates the mechanisms of bone formation. Osteoporosis—a bone resorbing disease—and rheumatoid arthritis originating from the inflammation in the synovium are also affected by cellular lipid metabolism. The focus is on the lipid metabolism due to the effects of dietary lipids on bone health. These and other phenomena indicate that phospholipases may participate in bone remodelling as evidenced by their expression in smooth muscle cells, in bone forming osteoblasts, chondrocytes and in bone resorbing osteoclasts. Among various enzymes involved, phospholipases A1 or A2, phospholipase C, phospholipase D, autotaxin and sphingomyelinase are engaged in membrane lipid remodelling during early stages of mineralization and cell maturation in mineralization-competent cells. Numerous experimental evidences suggested that phospholipases exert their action at various stages of mineralization by affecting intracellular signaling and cell differentiation. The lipid metabolites—such as arachidonic acid, lysophospholipids, and sphingosine-1-phosphate are involved in cell signaling and inflammation reactions. Phospholipases are also important members of the cellular machinery engaged in matrix vesicle (MV) biogenesis and exocytosis. They may favour mineral formation inside MVs, may catalyse MV membrane breakdown necessary for the release of mineral deposits into extracellular matrix (ECM), or participate in hydrolysis of ECM. The biological functions of phospholipases are discussed from the perspective of animal and cellular knockout models, as well as disease implications, development of potent inhibitors and therapeutic interventions.
Collapse
|
6
|
Weitzmann MN, Roggia C, Toraldo G, Weitzmann L, Pacifici R. Increased production of IL-7 uncouples bone formation from bone resorption during estrogen deficiency. J Clin Invest 2003. [PMID: 12464669 DOI: 10.1172/jci0215687] [Citation(s) in RCA: 146] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Postmenopausal bone loss stems from the inability of osteoblastic activity to match the increase in osteoclastic bone resorption induced by estrogen deficiency. However, the mechanism that uncouples osteoblast from osteoclast activities remains unexplained. We show that ovariectomy enhances the production of the osteoclastogenic cytokine IL-7, and that its neutralization in vivo prevents ovariectomy-induced bone loss. Surprisingly, serum osteocalcin levels, a biochemical marker of bone formation, suggested that the bone-sparing effects of IL-7 neutralization were due not only to inhibition of bone resorption, but also to stimulation of bone formation. Consistent with these data, addition of IL-7 to neonatal calvarial organ cultures blocked new bone formation, and injection of IL-7 into mice in vivo inhibited bone formation as measured by calcein incorporation into long bones. The antianabolic effects of IL-7 were consistent with an observed downregulation of the osteoblast-specific transcription factor core-binding factor alpha1/Runx2. Thus, because it targets both the osteoclast and the osteoblast pathways, IL-7 is central to the altered bone turnover characteristic of estrogen deficiency.
Collapse
Affiliation(s)
- M Neale Weitzmann
- Division of Bone and Mineral Diseases, Washington University School of Medicine and Barnes Jewish Hospital, St. Louis, Missouri, USA.
| | | | | | | | | |
Collapse
|
7
|
Weitzmann MN, Roggia C, Toraldo G, Weitzmann L, Pacifici R. Increased production of IL-7 uncouples bone formation from bone resorption during estrogen deficiency. J Clin Invest 2002; 110:1643-50. [PMID: 12464669 PMCID: PMC151629 DOI: 10.1172/jci15687] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Postmenopausal bone loss stems from the inability of osteoblastic activity to match the increase in osteoclastic bone resorption induced by estrogen deficiency. However, the mechanism that uncouples osteoblast from osteoclast activities remains unexplained. We show that ovariectomy enhances the production of the osteoclastogenic cytokine IL-7, and that its neutralization in vivo prevents ovariectomy-induced bone loss. Surprisingly, serum osteocalcin levels, a biochemical marker of bone formation, suggested that the bone-sparing effects of IL-7 neutralization were due not only to inhibition of bone resorption, but also to stimulation of bone formation. Consistent with these data, addition of IL-7 to neonatal calvarial organ cultures blocked new bone formation, and injection of IL-7 into mice in vivo inhibited bone formation as measured by calcein incorporation into long bones. The antianabolic effects of IL-7 were consistent with an observed downregulation of the osteoblast-specific transcription factor core-binding factor alpha1/Runx2. Thus, because it targets both the osteoclast and the osteoblast pathways, IL-7 is central to the altered bone turnover characteristic of estrogen deficiency.
Collapse
Affiliation(s)
- M Neale Weitzmann
- Division of Bone and Mineral Diseases, Washington University School of Medicine and Barnes Jewish Hospital, St. Louis, Missouri, USA.
| | | | | | | | | |
Collapse
|
8
|
Carpio LC, Dziak R. Phosphatidic acid effects on cytosolic calcium and proliferation in osteoblastic cells. Prostaglandins Leukot Essent Fatty Acids 1998; 59:101-9. [PMID: 9774173 DOI: 10.1016/s0952-3278(98)90088-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Our previous studies show that epidermal growth factor (EGF) stimulates phospholipase D (PLD)-induced phosphatidic acid (PA) formation in rat calvarial osteoblastic cells. This study investigated the effects of PA on cytosolic calcium ([Ca2+]i) and proliferation, and the possible involvement of the PLD pathway in EGF effects on [Ca2+]i and proliferation in rat calvarial osteoblastic cells. PA markedly increased [Ca2+]i. This response was unaffected by thapsigargin, which depletes [Ca2+]i pools, blocked by verapamil, a calcium channel blocker, and enhanced by propanolol, an inhibitor of PA-phosphohydrolase. PA also reduced the EGF dependent-[Ca2+]i increase by 60%, while a PLD inhibitor blocked these effects. Furthermore, PA significantly increased cell proliferation (P < 0.05) which was inhibited by verapamil and enhanced by H-7 (PKC inhibitor). The PLD inhibitor significantly (P < 0.05) reduced the EGF-induced increase in proliferation. In summary, PA stimulates rat calvarial osteoblastic cell proliferation and mobilization of [Ca2+]i using extracellular pools, and EGF's mitogenic effect on these cells requires activation of PLD.
Collapse
Affiliation(s)
- L C Carpio
- Department of Oral Biology, School of Dental Medicine, State University of New York at Buffalo, 14214, USA
| | | |
Collapse
|