1
|
Figueiredo G, Correia SFH, Falcão BP, Sencadas V, Fu L, André PS, Ferreira RAS. Multi-Surface Adhesion Luminescent Solar Concentrators for Supply-Less IoT. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400540. [PMID: 39010670 PMCID: PMC11425244 DOI: 10.1002/advs.202400540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 06/24/2024] [Indexed: 07/17/2024]
Abstract
The growing prevalence of Internet of Things (IoT) devices hinges on resolving the challenge of powering sensors and transmitters. Addressing this, supply-less IoT devices are gaining traction by integrating energy harvesters. This study introduces a temperature sensor devoid of external power sources, achieved through a novel luminescent solar concentrator (LSC) device based on a stretchable, adhesive elastomer. Leveraging a lanthanide-doped styrene-ethylene-butylene-styrene matrix, the LSC yielded 0.09% device efficiency. The resultant temperature sensor exhibits a thermal sensitivity of 2.1%°C-1 and a 0.06 °C temperature uncertainty, autonomously transmitting real-time data to a server for user visualization via smartphones. Additionally, the integration of LED-based lighting enables functionality in low-light conditions, ensuring 24 h cycle operation and the possibility of having four distinct thermometric parameters without changing the device configuration, stating remarkable robustness and reliability of the system.
Collapse
Affiliation(s)
- Gonçalo Figueiredo
- Department of Physics and CICECO – Aveiro Institute of MaterialsUniversity of AveiroAveiro3810‐193Portugal
- Department of Electrical and Computer Engineering and Instituto de TelecomunicaçõesInstituto Superior TécnicoUniversity of LisbonLisbon1049‐001Portugal
| | - Sandra F. H. Correia
- Instituto de Telecomunicações and University of AveiroCampus Universitário de SantiagoAveiro3810‐193Portugal
| | - Bruno P. Falcão
- Department of Physics and CICECO – Aveiro Institute of MaterialsUniversity of AveiroAveiro3810‐193Portugal
| | - Vitor Sencadas
- Department of Materials and Ceramic Engineering and CICECO – Aveiro Institute of MaterialsUniversity of AveiroAveiro3810‐193Portugal
| | - Lianshe Fu
- Department of Physics and CICECO – Aveiro Institute of MaterialsUniversity of AveiroAveiro3810‐193Portugal
| | - Paulo S. André
- Department of Electrical and Computer Engineering and Instituto de TelecomunicaçõesInstituto Superior TécnicoUniversity of LisbonLisbon1049‐001Portugal
| | - Rute A. S. Ferreira
- Department of Physics and CICECO – Aveiro Institute of MaterialsUniversity of AveiroAveiro3810‐193Portugal
| |
Collapse
|
2
|
Ferreira RAS, Correia SFH, Georgieva P, Fu L, Antunes M, André PS. A comprehensive dataset of photonic features on spectral converters for energy harvesting. Sci Data 2024; 11:50. [PMID: 38191564 PMCID: PMC10774306 DOI: 10.1038/s41597-023-02827-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 12/06/2023] [Indexed: 01/10/2024] Open
Abstract
Building integrated photovoltaics is a promising strategy for solar technology, in which luminescent solar concentrators (LSCs) stand out. Challenges include the development of materials for sunlight harvesting and conversion, which is an iterative optimization process with several steps: synthesis, processing, and structural and optical characterizations before considering the energy generation figures of merit that requires a prototype fabrication. Thus, simulation models provide a valuable, cost-effective, and time-efficient alternative to experimental implementations, enabling researchers to gain valuable insights for informed decisions. We conducted a literature review on LSCs over the past 47 years from the Web of ScienceTM Core Collection, including published research conducted by our research group, to gather the optical features and identify the material classes that contribute to the performance. The dataset can be further expanded systematically offering a valuable resource for decision-making tools for device design without extensive experimental measurements.
Collapse
Affiliation(s)
- Rute A S Ferreira
- Department of Physics and CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Sandra F H Correia
- Instituto de Telecomunicações, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Petia Georgieva
- Instituto de Telecomunicações, University of Aveiro, 3810-193, Aveiro, Portugal
- Departament of Electronics, Telecommunications and Informatics, Institute of Electronics and Informatics Engineering of Aveiro (IEETA), University of Aveiro, 3810-193, Aveiro, Portugal
| | - Lianshe Fu
- Department of Physics and CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Mário Antunes
- Instituto de Telecomunicações, University of Aveiro, 3810-193, Aveiro, Portugal
- Departament of Electronics, Telecommunications and Informatics, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Paulo S André
- Department of Electrical and Computer Engineering and Instituto de Telecomunicações, Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisbon, Portugal.
| |
Collapse
|
3
|
Zhang B, Lyu G, Kelly EA, Evans RC. Förster Resonance Energy Transfer in Luminescent Solar Concentrators. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201160. [PMID: 35678107 PMCID: PMC9376834 DOI: 10.1002/advs.202201160] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/27/2022] [Indexed: 05/20/2023]
Abstract
Luminescent solar concentrators (LSCs) are an emerging technology to collect and channel light from a large absorption area into a smaller one. They are a complementary technology for traditional solar photovoltaics (PV), particularly suitable for application in urban or indoor environments where their custom colors and form factors, and performance under diffuse light conditions may be advantageous. Förster resonance energy transfer (FRET) has emerged as a valuable approach to overcome some of the intrinsic limitations of conventional single lumophore LSCs, such as reabsorption or reduced quantum efficiency. This review outlines the potential of FRET to boost LSC performance, using highlights from the literature to illustrate the key criteria that must be considered when designing an FRET-LSC, including both the photophysical requirements of the FRET lumophores and their interaction with the host material. Based on these criteria, a list of design guidelines intended to aid researchers when they approach the design of a new FRET-LSC system is presented. By highlighting the unanswered questions in this field, the authors aim to demonstrate the potential of FRET-LSCs for both conventional solar-harvesting and emerging LSC-inspired technologies and hope to encourage participation from a diverse researcher base to address this exciting challenge.
Collapse
Affiliation(s)
- Bolong Zhang
- Department of Materials Science and MetallurgyUniversity of Cambridge27 Charles Babbage RoadCambridgeCB3 0FSUK
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of MaterialsChinese Academy of SciencesFuzhouFujian350002China
| | - Guanpeng Lyu
- Department of Materials Science and MetallurgyUniversity of Cambridge27 Charles Babbage RoadCambridgeCB3 0FSUK
| | - Elaine A. Kelly
- Department of Materials Science and MetallurgyUniversity of Cambridge27 Charles Babbage RoadCambridgeCB3 0FSUK
| | - Rachel C. Evans
- Department of Materials Science and MetallurgyUniversity of Cambridge27 Charles Babbage RoadCambridgeCB3 0FSUK
| |
Collapse
|
4
|
Shen L, Lou R, Yin X. Asymmetrical interface design for unidirectional light extraction from spectrum conversion films. OPTICS EXPRESS 2022; 30:4642-4654. [PMID: 35209696 DOI: 10.1364/oe.449835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/10/2022] [Indexed: 06/14/2023]
Abstract
In this study, we propose a micro-sized photonic structure that extracts 89% of the intrinsic trapped photons from the spectrum conversion film into free space using the Monte-Carlo ray-tracing method. Furthermore, the spectrum of the spectral-shifting film can be accurately simulated based on a mean free path concept, providing the estimation of its overall performance including the external quantum efficiency and the self-absorption efficiency. The simulations show that the spectrum conversion film with micro-structures shows a two-fold increase in the total external quantum efficiency and a four-fold increase in the external quantum efficiency in the forward viewing direction compared to the planar spectrum conversion films without micro-structures.
Collapse
|
5
|
Jones CMS, Gakamsky A, Marques-Hueso J. The upconversion quantum yield (UCQY): a review to standardize the measurement methodology, improve comparability, and define efficiency standards. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2021; 22:810-848. [PMID: 34992499 PMCID: PMC8725918 DOI: 10.1080/14686996.2021.1967698] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 07/28/2021] [Indexed: 06/14/2023]
Abstract
Advancing the upconversion materials field relies on accurate and contrastable photoluminescence efficiency measurements, which are characterised by the absolute upconversion quantum yield (UCQY). However, the methodology for such measurements cannot be extrapolated directly from traditional photoluminescence quantum yield techniques, primarily due to issues that arise from the non-linear behaviour of the UC process. Subsequently, no UCQY standards exist, and significant variations in their reported magnitude can occur between laboratories. In this work, our aim is to provide a path for determining and reporting the most reliable UCQYs possible, by addressing all the effects and uncertainties that influence its value. Here the UCQY standard, at a given excitation power density, is defined under a range of stated experimental conditions, environmental conditions, material properties, and influential effects that have been estimated or corrected for. A broad range of UCQYs reported for various UC materials are scrutinized and categorized based on our assertion of the provided information associated with each value. This is crucial for improved comparability with other types of photoluminescent materials, and in addition, the next generation of UC materials can be built on top of these reliable standards.
Collapse
Affiliation(s)
- Callum M. S. Jones
- Institute of Sensors, Signals and Systems, Heriot-Watt University, Edinburgh, UK
| | | | - Jose Marques-Hueso
- Institute of Sensors, Signals and Systems, Heriot-Watt University, Edinburgh, UK
| |
Collapse
|
6
|
Masson TM, Zondag SDA, Kuijpers KPL, Cambié D, Debije MG, Noël T. Development of an Off-Grid Solar-Powered Autonomous Chemical Mini-Plant for Producing Fine Chemicals. CHEMSUSCHEM 2021; 14:5417-5423. [PMID: 34644441 PMCID: PMC9298775 DOI: 10.1002/cssc.202102011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/12/2021] [Indexed: 06/13/2023]
Abstract
Photochemistry using inexhaustible solar energy is an eco-friendly way to produce fine chemicals outside the typical laboratory or chemical plant environment. However, variations in solar irradiation conditions and the need for an external energy source to power electronic components limits the accessibility of this approach. In this work, a chemical solar-driven "mini-plant" centred around a scaled-up luminescent solar concentrator photomicroreactor (LSC-PM) was built. To account for the variations in solar irradiance at ground level and passing clouds, a responsive control system was designed that rapidly adapts the flow rate of the reagents to the light received by the reaction channels. Supplying the plant with solar panels, integrated into the module by placing it behind the LSC to utilize the transmitted fraction of the solar irradiation, allowed this setup to be self-sufficient and fully operational off-grid. Such a system can shine in isolated environments and in a distributed manufacturing world, allowing to decentralize the production of fine chemicals.
Collapse
Affiliation(s)
- Tom M. Masson
- Flow Chemistry Groupvan't Hoff Institute for Molecular Sciences (HIMS)Universiteit van Amsterdam (UvA)Science Park 9041098 XHAmsterdamThe Netherlands
- Department of Chemical Engineering and ChemistrySustainable Process Engineering, Micro Flow Chemistry & Synthetic MethodologyEindhoven University of TechnologyHet Kranenveld, Bldg 14 – Helix5600 MBEindhovenThe Netherlands
| | - Stefan D. A. Zondag
- Flow Chemistry Groupvan't Hoff Institute for Molecular Sciences (HIMS)Universiteit van Amsterdam (UvA)Science Park 9041098 XHAmsterdamThe Netherlands
| | - Koen P. L. Kuijpers
- Department of Chemical Engineering and ChemistrySustainable Process Engineering, Micro Flow Chemistry & Synthetic MethodologyEindhoven University of TechnologyHet Kranenveld, Bldg 14 – Helix5600 MBEindhovenThe Netherlands
- Current address: Technology & EngineeringJanssen R&DTurnhoutseweg 302340BeerseBelgium
| | - Dario Cambié
- Department of Chemical Engineering and ChemistrySustainable Process Engineering, Micro Flow Chemistry & Synthetic MethodologyEindhoven University of TechnologyHet Kranenveld, Bldg 14 – Helix5600 MBEindhovenThe Netherlands
- Current address: Department of Biomolecular SystemsMax Planck Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
| | - Michael G. Debije
- Department of Chemical Engineering and ChemistryStimuli-responsive Functional Materials & DevicesEindhoven University of TechnologyGroene Loper 3, Bldg 14 – Helix5600 MBEindhovenThe Netherlands
| | - Timothy Noël
- Flow Chemistry Groupvan't Hoff Institute for Molecular Sciences (HIMS)Universiteit van Amsterdam (UvA)Science Park 9041098 XHAmsterdamThe Netherlands
- Department of Chemical Engineering and ChemistrySustainable Process Engineering, Micro Flow Chemistry & Synthetic MethodologyEindhoven University of TechnologyHet Kranenveld, Bldg 14 – Helix5600 MBEindhovenThe Netherlands
| |
Collapse
|
7
|
Jones CMS, Biner D, Misopoulos S, Krämer KW, Marques-Hueso J. Optimized photoluminescence quantum yield in upconversion composites considering the scattering, inner-filter effects, thickness, self-absorption, and temperature. Sci Rep 2021; 11:13910. [PMID: 34230548 PMCID: PMC8260772 DOI: 10.1038/s41598-021-93400-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/24/2021] [Indexed: 11/09/2022] Open
Abstract
Optimizing upconversion (UC) composites is challenging as numerous effects influence their unique emission mechanism. Low scattering mediums increase the number of dopants excited, however, high scattering mediums increase the UC efficiency due to its non-linear power dependency. Scattering also leads to greater thermal effects and emission saturation at lower excitation power density (PD). In this work, a photoluminescence quantum yield (PLQY) increase of 270% was observed when hexagonal NaYF4:(18%)Yb3+,(2%)Er3+ phosphor is in air compared to a refractive index-matched medium. Furthermore, the primary inner-filter effect causes a 94% PLQY decrease when the excitation focal point is moved from the front of the phosphor to 8.4 mm deep. Increasing this effect limits the maximum excitation PD, reduces thermal effects, and leads to emission saturation at higher excitation PDs. Additionally, self-absorption decreases the PLQY as the phosphor's thickness increases from 1 to 9 mm. Finally, in comparison to a cuboid cuvette, a 27% PLQY increase occurs when characterizing the phosphor in a cylindrical cuvette due to a lensing effect of the curved glass, as supported by simulations. Overall, addressing the effects presented in this work is necessary to both maximize UC composite performance as well as report their PLQY more reliably.
Collapse
Affiliation(s)
- Callum M S Jones
- Institute of Sensors, Signals and Systems, Heriot-Watt University, Edinburgh, EH14 4AS, UK
| | - Daniel Biner
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012, Bern, Switzerland
| | - Stavros Misopoulos
- Institute of Sensors, Signals and Systems, Heriot-Watt University, Edinburgh, EH14 4AS, UK
- Edinburgh Instruments Ltd., Kirkton Campus, Livingston, UK
| | - Karl W Krämer
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012, Bern, Switzerland
| | - Jose Marques-Hueso
- Institute of Sensors, Signals and Systems, Heriot-Watt University, Edinburgh, EH14 4AS, UK.
| |
Collapse
|
8
|
Kim A, Hosseinmardi A, Annamalai PK, Kumar P, Patel R. Review on Colloidal Quantum Dots Luminescent Solar Concentrators. ChemistrySelect 2021. [DOI: 10.1002/slct.202100674] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Andrew Kim
- Department of Chemical Engineering, The Cooper Union for the Advancement of Science and Art New York City, NY 10003 USA
| | - Alireza Hosseinmardi
- Australian Institute for Bioengineering and Nanotechnology (AIBN) The University of Queensland St Lucia QLD 4072 Australia
| | - Pratheep K. Annamalai
- Australian Institute for Bioengineering and Nanotechnology (AIBN) The University of Queensland St Lucia QLD 4072 Australia
| | - Pawan Kumar
- Institut National de la Recherche Scientifique, Centre Énergie Materiaux Télecommunications (INRS-EMT) Varennes QC Canada
- Department of Chemistry and Biochemistry University of Oklahoma 101 Stephenson Parkway Norman OK 73019 USA
| | - Rajkumar Patel
- Energy & Environmental Science and Engineering (EESE) Integrated Science and Engineering Division (ISED) Underwood International College Yonsei University 85 Songdogwahak-ro, Yeonsugu Incheon 21938 South Korea
| |
Collapse
|
9
|
Sosna-Głębska A, Szczecińska N, Sibiński M, Wiosna-Sałyga G, Januszewicz B. Perovskite versus ZnCuInS/ZnS Luminescent Nanoparticles in Wavelength-Shifting Layers for Sensor Applications. SENSORS 2021; 21:s21093165. [PMID: 34063323 PMCID: PMC8124472 DOI: 10.3390/s21093165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/21/2021] [Accepted: 04/28/2021] [Indexed: 11/17/2022]
Abstract
In this work, the application of quantum dots is evaluated in order to sensitize the commercially popular Si detectors in the UV range. The wavelength-shifting properties of two types of all-inorganic halide perovskite quantum dots as well as ZnCuInS/ZnS quantum dots are determined in order to assess their potential in the effective enhancement of the sensors’ detection range. In a further part of the study, the wavelength-shifting layers are formed by embedding the quantum dots in two kinds of polymers: PMMA or Cyclic Olefin Polymer. The performance of the layers is evaluated by transmission and PLE measurement. Incorporating the nanoparticles seemingly increases the transmittance in the UV range by several percent. The observed phenomenon is proportional to the quantum dots to polymer concentration, which indicates the successful conversion action of the luminescent agents.
Collapse
Affiliation(s)
- Aleksandra Sosna-Głębska
- Department of Semiconductor and Optoelectronic Devices, Lodz University of Technology, 211/215 Wólczanska St., 90-924 Lodz, Poland; (N.S.); (M.S.)
- Correspondence:
| | - Natalia Szczecińska
- Department of Semiconductor and Optoelectronic Devices, Lodz University of Technology, 211/215 Wólczanska St., 90-924 Lodz, Poland; (N.S.); (M.S.)
| | - Maciej Sibiński
- Department of Semiconductor and Optoelectronic Devices, Lodz University of Technology, 211/215 Wólczanska St., 90-924 Lodz, Poland; (N.S.); (M.S.)
| | - Gabriela Wiosna-Sałyga
- Department of Molecular Physics, Faculty of Chemistry, Lodz University of Technology, 116 Żeromskiego St., 90-924 Lodz, Poland;
| | - Bartłomiej Januszewicz
- Institute of Materials Science and Engineering, Lodz University of Technology, 1/15 Stefanowskiego St., 90-924 Lodz, Poland;
| |
Collapse
|
10
|
Albrecht A, Pfennig D, Nowak J, Grunwald M, Walla PJ. On the efficiency limits of artificial and ultrafast light‐funnels. NANO SELECT 2020. [DOI: 10.1002/nano.202000057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Andreas Albrecht
- Technische Universität Braunschweig Institut für Physikal. u. Theor. Chemie Braunschweig Germany
| | - Dominik Pfennig
- Technische Universität Braunschweig Institut für Physikal. u. Theor. Chemie Braunschweig Germany
| | - Julia Nowak
- Technische Universität Braunschweig Institut für Physikal. u. Theor. Chemie Braunschweig Germany
| | - Matthias Grunwald
- AG Biomolekulare Spektroskopie und Einzelmoleküldetektion Max‐Planck‐Institut für Biophysikalische Chemie Göttingen Germany
| | - Peter Jomo Walla
- Technische Universität Braunschweig Institut für Physikal. u. Theor. Chemie Braunschweig Germany
- AG Biomolekulare Spektroskopie und Einzelmoleküldetektion Max‐Planck‐Institut für Biophysikalische Chemie Göttingen Germany
| |
Collapse
|
11
|
Gao S, Balan B, Yoosaf K, Monti F, Bandini E, Barbieri A, Armaroli N. Highly Efficient Luminescent Solar Concentrators Based on Benzoheterodiazole Dyes with Large Stokes Shifts. Chemistry 2020; 26:11013-11023. [PMID: 32301186 DOI: 10.1002/chem.202001210] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/14/2020] [Indexed: 12/19/2022]
Abstract
Five extended π-conjugated systems with electron donor (D) and acceptor (A) moieties have been synthesized. Their basic D-A-D structural motif is a benzothiadiazole unit symmetrically equipped with two thiophene rings (S2T). Its variants include 1) the same molecular framework in which sulfur is replaced by selenium (Se2T), also with four thiophene units (Se4T) and 2) a D'-D-A-D system having a N-carbazole donor moiety at one end (CS2T) and a D'-D-A-D-A' array with a further acceptor carbonyl unit at the other extremity (CS2TCHO). The goal is taking advantage of the intense luminescence and large Stokes shifts of the five molecules for use in luminescent solar concentrators (LSCs). All of them exhibit intense absorption spectra in the UV/Vis region down to 630 nm, which are fully rationalized by DFT. Emission properties have been studied in CH2 Cl2 (298 and 77 K) as well as in PMMA and PDMS matrices, measuring photoluminescence quantum yields (up to 98 %) and other key optical parameters. The dye-PMMA systems show performances comparable to the present state-of-the-art, in terms of optical and external quantum efficiencies (OQE=47.6 % and EQE=31.3 %, respectively) and flux gain (F=10.3), with geometric gain close to 90. LSC devices have been fabricated and tested in which the five emitters are embedded in PDMS and their wave-guided VIS luminescence feeds crystalline silicon solar cells.
Collapse
Affiliation(s)
- Sheng Gao
- Istituto per la Sintesi Organica e la Fotoreattività (ISOF), Consiglio Nazionale delle Ricerche (CNR), Via Gobetti 101, 40129, Bologna, Italy
| | - Bamisha Balan
- Photosciences and Photonics Section, Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram, 695019, Kerala, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-NIIST Campus, Thiruvananthapuram, 695019, Kerala, India
| | - Karuvath Yoosaf
- Photosciences and Photonics Section, Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram, 695019, Kerala, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-NIIST Campus, Thiruvananthapuram, 695019, Kerala, India
| | - Filippo Monti
- Istituto per la Sintesi Organica e la Fotoreattività (ISOF), Consiglio Nazionale delle Ricerche (CNR), Via Gobetti 101, 40129, Bologna, Italy
| | - Elisa Bandini
- Istituto per la Sintesi Organica e la Fotoreattività (ISOF), Consiglio Nazionale delle Ricerche (CNR), Via Gobetti 101, 40129, Bologna, Italy
| | - Andrea Barbieri
- Istituto per la Sintesi Organica e la Fotoreattività (ISOF), Consiglio Nazionale delle Ricerche (CNR), Via Gobetti 101, 40129, Bologna, Italy
| | - Nicola Armaroli
- Istituto per la Sintesi Organica e la Fotoreattività (ISOF), Consiglio Nazionale delle Ricerche (CNR), Via Gobetti 101, 40129, Bologna, Italy
| |
Collapse
|
12
|
Gallinelli T, Barbet A, Druon F, Balembois F, Georges P, Billeton T, Chenais S, Forget S. Enhancing brightness of Lambertian light sources with luminescent concentrators: the light extraction issue. OPTICS EXPRESS 2019; 27:11830-11843. [PMID: 31053023 DOI: 10.1364/oe.27.011830] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 02/26/2019] [Indexed: 06/09/2023]
Abstract
Luminescent concentrators (LC) enable breaking the limit of geometrical concentration imposed by the brightness theorem. They enable increasing the brightness of Lambertian light sources such as (organic) light-emitting diodes. However, for illumination applications, light emitted in the high-index material needs to be outcoupled to free space, raising important light extraction issues. Supported by an intuitive graphical representation, we propose a simple design for light extraction: a wedged output side facet, breaking the symmetry of the traditional rectangular slab design. Angular emission patterns as well as ray-tracing simulations are reported on Ce:YAG single crystal concentrators cut with different wedge angles, and are compared with devices having flat or roughened exit facets. The wedge output provides a simple and versatile way to simultaneously enhance the extracted power (up to a factor of 2) and the light directivity (radiant intensity increased by up to 2.2.).
Collapse
|
13
|
Li Y, Zhang X, Zhang Y, Dong R, Luscombe CK. Review on the Role of Polymers in Luminescent Solar Concentrators. ACTA ACUST UNITED AC 2018. [DOI: 10.1002/pola.29192] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Yilin Li
- Department of Materials Science and Engineering University of Washington Seattle Washington 98195
- Molecular Engineering Materials Center University of Washington Seattle Washington 98195
| | - Xueqiao Zhang
- Department of Materials Science and Engineering University of Washington Seattle Washington 98195
| | - Yongcao Zhang
- Department of Materials Science and Engineering University of Washington Seattle Washington 98195
| | - Richard Dong
- Interlake Senior High School Bellevue Washington 98008
| | - Christine K. Luscombe
- Department of Materials Science and Engineering University of Washington Seattle Washington 98195
- Molecular Engineering Materials Center University of Washington Seattle Washington 98195
- Department of Chemistry University of Washington Seattle Washington 98195
- Molecular Engineering & Sciences Institute University of Washington Seattle Washington 98195
| |
Collapse
|
14
|
Merkx EPJ, Ten Kate OM, van der Kolk E. Rapid optimization of large-scale luminescent solar concentrators: evaluation for adoption in the built environment. OPTICS EXPRESS 2017; 25:A547-A563. [PMID: 28788837 DOI: 10.1364/oe.25.00a547] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 03/13/2017] [Indexed: 06/07/2023]
Abstract
The phenomenon of self-absorption is by far the largest influential factor in the efficiency of luminescent solar concentrators (LSCs), but also the most challenging one to capture computationally. In this work we present a model using a multiple-generation light transport (MGLT) approach to quantify light transport through single-layer luminescent solar concentrators of arbitrary shape and size. We demonstrate that MGLT offers a significant speed increase over Monte Carlo (raytracing) when optimizing the luminophore concentration in large LSCs and more insight into light transport processes. Our results show that optimizing luminophore concentration in a lab-scale device does not yield an optimal optical efficiency after scaling up to realistically sized windows. Each differently sized LSC therefore has to be optimized individually to obtain maximal efficiency. We show that, for strongly self-absorbing LSCs with a high quantum yield, parasitic self-absorption can turn into a positive effect at very high absorption coefficients. This is due to a combination of increased light trapping and stronger absorption of the incoming sunlight. We conclude that, except for scattering losses, MGLT can compute all aspects in light transport through an LSC accurately and can be used as a design tool for building-integrated photovoltaic elements. This design tool is therefore used to calculate many building-integrated LSC power conversion efficiencies.
Collapse
|
15
|
Sathian J, Breeze JD, Richards B, Alford NM, Oxborrow M. Solid-state source of intense yellow light based on a Ce:YAG luminescent concentrator. OPTICS EXPRESS 2017; 25:13714-13727. [PMID: 28788914 DOI: 10.1364/oe.25.013714] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 04/22/2017] [Indexed: 06/07/2023]
Abstract
A luminescent concentrator functioning as a bright source of yellow light is reported. It comprises a waveguide made of cerium-doped YAG crystal, in the form of a long-thin rectangular strip, surrounded by flowing air and optically pumped from both sides with blue light from arrays of high-efficiency InGaN LEDs. Phosphor-converted yellow light, generated within the strip, is guided to a glass taper that is butt-coupled to one of the strip's end faces. Up to 20 W of optical power, centered on 575 nm with a linewidth of 76 nm, can be continuously radiated into air from the taper's 1.67 mm × 1.67 mm square output aperture. The intensity of the outputted light is significantly greater than what any yellow (AlGaInP) LED can directly produce (either singly or arrayed), with only a modest increase in linewidth. Furthermore, the wall-plug efficiency of the source exceeds that of any yellow laser. The concept allows for further substantial increases in intensity, total output power and wall-plug efficiency through scaling-up and engineering refinements.
Collapse
|
16
|
Banal JL, Zhang B, Jones DJ, Ghiggino KP, Wong WWH. Emissive Molecular Aggregates and Energy Migration in Luminescent Solar Concentrators. Acc Chem Res 2017; 50:49-57. [PMID: 27992172 DOI: 10.1021/acs.accounts.6b00432] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Luminescent solar concentrators (LSCs) are light harvesting devices that are ideally suited to light collection in the urban environment where direct sunlight is often not available. LSCs consist of highly luminescent compounds embedded or coated on a transparent substrate that absorb diffuse or direct solar radiation over a large area. The resulting luminescence is trapped in the waveguide by total internal reflection to the thin edges of the substrate where the concentrated light can be used to improve the performance of photovoltaic devices. The concept of LSCs has been around for several decades, and yet the efficiencies of current devices are still below expectations for commercial viability. There are two primary challenges when designing new chromophores for LSC applications. Reabsorption of dye emission by chromophores within the waveguide is a significant loss mechanism attenuating the light output of LSCs. Concentration quenching, particularly in organic dye systems, restricts the quantity of chromophores that can be incorporated in the waveguide thus limiting the light absorbed by the LSC. Frequently, a compromise between increased light harvesting of the incident light and decreasing emission quantum yield is required for most organic chromophore-based systems due to concentration quenching. The low Stokes shift of common organic dyes used in current LSCs also imposes another optimization problem. Increasing light absorption of LSCs based on organic dyes to achieve efficient light harvesting also enhances reabsorption. Ideally, a design strategy to simultaneously optimize light harvesting, concentration quenching, and reabsorption of LSC chromophores is clearly needed to address the significant losses in LSCs. Over the past few years, research in our group has targeted novel dye structures that address these primary challenges. There is a common perception that dye aggregates are to be avoided in LSCs. It became apparent in our studies that aggregates of chromophores exhibiting aggregation-induced emission (AIE) behavior are attractive candidates for LSC applications. Strategic application of AIE chromophores has led to the development of the first organic-based transparent solar concentrator that harvests UV light as well as the demonstration of reabsorption reduction by taking advantage of energy migration processes between chromophores. Further developments led us to the application of perylene diimides using an energy migration/energy transfer approach. To prevent concentration quenching, a molecularly insulated perylene diimide with bulky substituents attached to the imide positions was designed and synthesized. By combining the insulated perylene diimide with a commercial perylene dye as an energy donor-acceptor emitter pair, detrimental luminescence reabsorption was reduced while achieving a high chromophore concentration for efficient light absorption. This Account reviews and reinspects some of our recent work and the improvements in the field of LSCs.
Collapse
Affiliation(s)
- James L. Banal
- School of Chemistry, Bio21
Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Bolong Zhang
- School of Chemistry, Bio21
Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - David J. Jones
- School of Chemistry, Bio21
Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Kenneth P. Ghiggino
- School of Chemistry, Bio21
Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Wallace W. H. Wong
- School of Chemistry, Bio21
Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
17
|
Chowdhury FI, Dick C, Meng L, Mahpeykar SM, Ahvazi B, Wang X. Cellulose nanocrystals as host matrix and waveguide materials for recyclable luminescent solar concentrators. RSC Adv 2017. [DOI: 10.1039/c7ra04344a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We report the use of an ecofriendly and recyclable CNC material as the host matrix for luminescent solar concentrator applications.
Collapse
Affiliation(s)
| | - Carson Dick
- Department of Electrical and Computer Engineering
- University of Alberta
- Edmonton
- Canada
| | - Lingju Meng
- Department of Electrical and Computer Engineering
- University of Alberta
- Edmonton
- Canada
| | - Seyed Milad Mahpeykar
- Department of Electrical and Computer Engineering
- University of Alberta
- Edmonton
- Canada
| | - Behzad Ahvazi
- Biomass Processing & Conversion-BioResources
- Alberta Innovates Technology Future
- Edmonton
- Canada
| | - Xihua Wang
- Department of Electrical and Computer Engineering
- University of Alberta
- Edmonton
- Canada
| |
Collapse
|
18
|
Cambié D, Zhao F, Hessel V, Debije MG, Noël T. A Leaf-Inspired Luminescent Solar Concentrator for Energy-Efficient Continuous-Flow Photochemistry. Angew Chem Int Ed Engl 2016; 56:1050-1054. [DOI: 10.1002/anie.201611101] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Indexed: 01/06/2023]
Affiliation(s)
- Dario Cambié
- Department of Chemical Engineering and Chemistry, Micro Flow Chemistry & Process Technology; Eindhoven University of Technology; Den Dolech 2 5612 AZ Eindhoven The Netherlands
| | - Fang Zhao
- Department of Chemical Engineering and Chemistry, Micro Flow Chemistry & Process Technology; Eindhoven University of Technology; Den Dolech 2 5612 AZ Eindhoven The Netherlands
| | - Volker Hessel
- Department of Chemical Engineering and Chemistry, Micro Flow Chemistry & Process Technology; Eindhoven University of Technology; Den Dolech 2 5612 AZ Eindhoven The Netherlands
| | - Michael G. Debije
- Department of Chemical Engineering and Chemistry, Functional Organic Materials & Devices; Eindhoven University of Technology; Den Dolech 2 5612 AZ Eindhoven The Netherlands
| | - Timothy Noël
- Department of Chemical Engineering and Chemistry, Micro Flow Chemistry & Process Technology; Eindhoven University of Technology; Den Dolech 2 5612 AZ Eindhoven The Netherlands
| |
Collapse
|
19
|
Cambié D, Zhao F, Hessel V, Debije MG, Noël T. A Leaf-Inspired Luminescent Solar Concentrator for Energy-Efficient Continuous-Flow Photochemistry. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201611101] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Dario Cambié
- Department of Chemical Engineering and Chemistry, Micro Flow Chemistry & Process Technology; Eindhoven University of Technology; Den Dolech 2 5612 AZ Eindhoven The Netherlands
| | - Fang Zhao
- Department of Chemical Engineering and Chemistry, Micro Flow Chemistry & Process Technology; Eindhoven University of Technology; Den Dolech 2 5612 AZ Eindhoven The Netherlands
| | - Volker Hessel
- Department of Chemical Engineering and Chemistry, Micro Flow Chemistry & Process Technology; Eindhoven University of Technology; Den Dolech 2 5612 AZ Eindhoven The Netherlands
| | - Michael G. Debije
- Department of Chemical Engineering and Chemistry, Functional Organic Materials & Devices; Eindhoven University of Technology; Den Dolech 2 5612 AZ Eindhoven The Netherlands
| | - Timothy Noël
- Department of Chemical Engineering and Chemistry, Micro Flow Chemistry & Process Technology; Eindhoven University of Technology; Den Dolech 2 5612 AZ Eindhoven The Netherlands
| |
Collapse
|
20
|
Gutierrez GD, Coropceanu I, Bawendi MG, Swager TM. A Low Reabsorbing Luminescent Solar Concentrator Employing π-Conjugated Polymers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:497-501. [PMID: 26596854 DOI: 10.1002/adma.201504358] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Revised: 10/02/2015] [Indexed: 06/05/2023]
Abstract
A highly efficient thin-film luminescent solar concentrator (LSC) utilizing two π-conjugated polymers as antennae for small amounts of the valued perylene bisimide Lumogen F Red 305 is presented. The LSC exhibits high photoluminescence quantum yield, low reabsorption, and relatively low refractive indices for waveguide matching. A Monte Carlo simulation predicts the LSC to possess exceptionally high optical efficiencies on large scales.
Collapse
Affiliation(s)
- Gregory D Gutierrez
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Igor Coropceanu
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Moungi G Bawendi
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Timothy M Swager
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
21
|
Boccolini A, Favilla E, Tonelli M, Richards BS, Thomson RR. Highly efficient upconversion in Er³⁺ doped BaY₂F₈ single crystals: dependence of quantum yield on excitation wavelength and thickness. OPTICS EXPRESS 2015; 23:A903-A915. [PMID: 26367690 DOI: 10.1364/oe.23.00a903] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
This manuscript presents a study of the upconversion (UC) in barium yttrium fluoride (BaY2F8) single crystal doped with trivalent erbium ions (Er3+) under excitation of the 4I(13/2) level at three different wavelengths: 1493 nm, 1524 nm and 1556 nm. The resulting UC emission at around 980 nm has been investigated and it has been found that a thickness optimization is required to reach high quantum yield values, otherwise limited by self-absorption losses. The highest external photoluminescence quantum yield (ePLQY) measured in this study was 12.1±1.2 % for a BaY2F8:30at%Er3+ sample of thickness 1.75±0.01 mm, while the highest internal photoluminescence quantum yield (iPLQY) of 14.6±1.5 % was measured in a BaY2F8:20at%Er3+ sample with a thickness of 0.49±0.01 mm. Both values were obtained under excitation at 1493 nm and an irradiance of 7.0±0.7 Wcm(-2). The reported iPLQY and ePLQY values are among the highest achieved for monochromatic excitation. Finally, the losses due to self-absorption were estimated in order to evaluate the maximum iPLQY achievable by the upconverter material. The estimated iPLQY limit values were ∼19%, ∼25% and ∼30%, for 10%, 20% and 30% Er3+ doping level, respectively.
Collapse
|
22
|
Banal JL, Ghiggino KP, Wong WWH. Efficient light harvesting of a luminescent solar concentrator using excitation energy transfer from an aggregation-induced emitter. Phys Chem Chem Phys 2014; 16:25358-63. [PMID: 25338164 DOI: 10.1039/c4cp03807j] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The compromise between light absorption and reabsorption losses limits the potential light conversion efficiency of luminescent solar concentrators (LSCs). Current approaches do not fully address both issues. By using the excitation energy transfer (EET) strategy with a donor chromophore that exhibits aggregation-induced emission (AIE) behaviour, it is shown that both transmission and reabsorption losses can be minimized in a LSC device achieving high light collection and concentration efficiencies. The light harvesting performance of the LSC developed has been characterized using fluorescence quantum yield measurements and Monte Carlo ray tracing simulations. Comparative incident photon conversion efficiency and short-circuit current data based on the LSC coupled to a silicon solar cell provide additional evidence for improved performance.
Collapse
Affiliation(s)
- James L Banal
- Bio21 Institute, School of Chemistry, The University of Melbourne, Parkville 3010, Australia.
| | | | | |
Collapse
|
23
|
Granchak VM, Sakhno TV, Kuchmy SY. Light-Emitting Materials – Active Components of Luminescent Solar Concentrators. THEOR EXP CHEM+ 2014. [DOI: 10.1007/s11237-014-9342-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
24
|
Erickson CS, Bradshaw LR, McDowall S, Gilbertson JD, Gamelin DR, Patrick DL. Zero-reabsorption doped-nanocrystal luminescent solar concentrators. ACS NANO 2014; 8:3461-7. [PMID: 24621014 DOI: 10.1021/nn406360w] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Optical concentration can lower the cost of solar energy conversion by reducing photovoltaic cell area and increasing photovoltaic efficiency. Luminescent solar concentrators offer an attractive approach to combined spectral and spatial concentration of both specular and diffuse light without tracking, but they have been plagued by luminophore self-absorption losses when employed on practical size scales. Here, we introduce doped semiconductor nanocrystals as a new class of phosphors for use in luminescent solar concentrators. In proof-of-concept experiments, visibly transparent, ultraviolet-selective luminescent solar concentrators have been prepared using colloidal Mn(2+)-doped ZnSe nanocrystals that show no luminescence reabsorption. Optical quantum efficiencies of 37% are measured, yielding a maximum projected energy concentration of ∼6× and flux gain for a-Si photovoltaics of 15.6 in the large-area limit, for the first time bounded not by luminophore self-absorption but by the transparency of the waveguide itself. Future directions in the use of colloidal doped nanocrystals as robust, processable spectrum-shifting phosphors for luminescent solar concentration on the large scales required for practical application of this technology are discussed.
Collapse
Affiliation(s)
- Christian S Erickson
- Department of Chemistry, Western Washington University , 516 High Street, Bellingham, Washington 98225, United States
| | | | | | | | | | | |
Collapse
|
25
|
Banal JL, White JM, Ghiggino KP, Wong WWH. Concentrating aggregation-induced fluorescence in planar waveguides: a proof-of-principle. Sci Rep 2014; 4:4635. [PMID: 24844675 PMCID: PMC4027885 DOI: 10.1038/srep04635] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 03/24/2014] [Indexed: 01/20/2023] Open
Abstract
The photophysical properties of fluorescent dyes are key determinants in the performance of luminescent solar concentrators (LSCs). First-generation dyes--coumarin, perylenes, and rhodamines--used in LSCs suffer from both concentration quenching in the solid-state and small Stokes shifts which limit the current LSC efficiencies to below theoretical limits. Here we show that fluorophores that exhibit aggregation-induced emission (AIE) are promising materials for LSC applications. Experiments and Monte Carlo simulations show that the optical quantum efficiencies of LSCs with AIE fluorophores are at least comparable to those of LSCs with first-generation dyes as the active materials even without the use of any optical accessories to enhance the trapping efficiency of the LSCs. Our results demonstrate that AIE fluorophores can potentially solve some key limiting properties of first-generation LSC dyes.
Collapse
Affiliation(s)
- James L. Banal
- Bio21 Institute, School of Chemistry, The University of Melbourne, Parkville 3010 , Australia
| | - Jonathan M. White
- Bio21 Institute, School of Chemistry, The University of Melbourne, Parkville 3010 , Australia
| | - Kenneth P. Ghiggino
- Bio21 Institute, School of Chemistry, The University of Melbourne, Parkville 3010 , Australia
| | - Wallace W. H. Wong
- Bio21 Institute, School of Chemistry, The University of Melbourne, Parkville 3010 , Australia
| |
Collapse
|
26
|
|
27
|
Verbunt PPC, Sánchez-Somolinos C, Broer DJ, Debije MG. Anisotropic light emissions in luminescent solar concentrators-isotropic systems. OPTICS EXPRESS 2013; 21 Suppl 3:A485-A493. [PMID: 24104437 DOI: 10.1364/oe.21.00a485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
In this paper we develop a model to describe the emission profile from randomly oriented dichroic dye molecules in a luminescent solar concentrator (LSC) waveguide as a function of incoming light direction. The resulting emission is non-isotropic, in contradiction to what is used in almost all previous simulations on the performance of LSCs, and helps explain the large surface losses measured in these devices. To achieve more precise LSC performance simulations we suggest that the dichroic nature of the dyes must be included in the future modeling efforts.
Collapse
|
28
|
Congiu M, Alamiry M, Moudam O, Ciorba S, Richardson PR, Maron L, Jones AC, Richards BS, Robertson N. Preparation and photophysical studies of [Ln(hfac)3DPEPO], Ln = Eu, Tb, Yb, Nd, Gd; interpretation of total photoluminescence quantum yields. Dalton Trans 2013; 42:13537-45. [DOI: 10.1039/c3dt51380g] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
29
|
Mohsenpour SF, Richards B, Willoughby N. Spectral conversion of light for enhanced microalgae growth rates and photosynthetic pigment production. BIORESOURCE TECHNOLOGY 2012; 125:75-81. [PMID: 23023239 DOI: 10.1016/j.biortech.2012.08.072] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 08/16/2012] [Accepted: 08/19/2012] [Indexed: 06/01/2023]
Abstract
The effect of light conditions on the growth of green algae Chlorella vulgaris and cyanobacteria Gloeothece membranacea was investigated by filtering different wavelengths of visible light and comparing against a model daylight source as a control. Luminescent acrylic sheets containing violet, green, orange or red dyes illuminated by a solar simulator produced the desired wavelengths of light for this study. From the experimental results the highest specific growth rate for C. vulgaris was achieved using the orange range whereas violet light promoted the growth of G. membranacea. Red light exhibited the least efficiency in conversion of light energy into biomass in both strains of microalgae. Photosynthetic pigment formation was examined and maximum chlorophyll-a production in C. vulgaris was obtained by red light illumination. Green light yielded the best chlorophyll-a production in G. membranacea. The proposed illumination strategy offers improved microalgae growth without resorting to artificial light sources, reducing energy use and costs of cultivation.
Collapse
Affiliation(s)
- Seyedeh Fatemeh Mohsenpour
- Institute for Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK.
| | | | | |
Collapse
|
30
|
de Boer DKG, Broer DJ, Debije MG, Keur W, Meijerink A, Ronda CR, Verbunt PPC. Progress in phosphors and filters for luminescent solar concentrators. OPTICS EXPRESS 2012; 20:A395-A405. [PMID: 22712093 DOI: 10.1364/oe.20.00a395] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Luminescent solar concentrators would allow for high concentration if losses by reabsorption and escape could be minimized. We introduce a phosphor with close-to-optimal luminescent properties and hardly any reabsorption. A problem for use in a luminescent concentrator is the large scattering of this material; we discuss possible solutions for this. Furthermore, the use of broad-band cholesteric filters to prevent escape of luminescent radiation from this phosphor is investigated both experimentally and using simulations. Simulations are also used to predict the ultimate performance of luminescent concentrators.
Collapse
Affiliation(s)
- Dick K G de Boer
- Philips Research, High Tech Campus 4, 5656 AE Eindhoven, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
31
|
Semichaevsky AV, Johnson HT, Yoon J, Nuzzo RG, Li L, Rogers J. Theory for optimal design of waveguiding light concentrators in photovoltaic microcell arrays. APPLIED OPTICS 2011; 50:2799-2808. [PMID: 21673786 DOI: 10.1364/ao.50.002799] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Efficiency of ultrathin flexible solar photovoltaic silicon microcell arrays can be significantly improved using nonimaging solar concentrators. A fluorophore is introduced to match the solar spectrum and the low-reflectivity wavelength range of Si, reduce the escape losses, and allow the nontracking operation. In this paper we optimize our solar concentrators using a luminescent/nonluminescent photon transport model. Key modeling results are compared quantitatively to experiments and are in good agreement with the latter. Our solar concentrator performance is not limited by the dye self-absorption. Bending deformations of the flexible solar collectors do not result in their indirect gain degradation compared to flat solar concentrators with the same projected area.
Collapse
Affiliation(s)
- Andrey V Semichaevsky
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, 1206 West Green Street, Urbana, Illinois 61801, USA.
| | | | | | | | | | | |
Collapse
|