1
|
Lu Y, Jabbari P, Mukhamedshin A, Zvyagin AV. Fluorescence lifetime imaging in drug delivery research. Adv Drug Deliv Rev 2025; 218:115521. [PMID: 39848547 DOI: 10.1016/j.addr.2025.115521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 01/10/2025] [Accepted: 01/19/2025] [Indexed: 01/25/2025]
Abstract
Once an exotic add-on to fluorescence microscopy for life science research, fluorescence lifetime imaging (FLIm) has become a powerful and increasingly utilised technique owing to its self-calibration nature, which affords superior quantification over conventional steady-state fluorescence imaging. This review focuses on the state-of-the-art implementation of FLIm related to the formulation, release, dosage, and mechanism of action of drugs aimed for innovative diagnostics and therapy. Quantitative measurements using FLIm have appeared instrumental for encapsulated drug delivery design, pharmacokinetics and pharmacodynamics, pathological investigations, early disease diagnosis, and evaluation of therapeutic efficacy. Attention is paid to the latest advances in lifetime-engineered nanomaterials and practical instrumentation, which begin to show preclinical and clinical translation potential beyond in vitro samples of cells and tissues. Finally, major challenges that need to be overcome in order to facilitate future perspectives are discussed.
Collapse
Affiliation(s)
- Yiqing Lu
- School of Engineering, Faculty of Science and Engineering, Macquarie University, Sydney, NSW 2109, Australia.
| | - Parinaz Jabbari
- School of Engineering, Faculty of Science and Engineering, Macquarie University, Sydney, NSW 2109, Australia
| | - Anton Mukhamedshin
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, USA; Research Center for Translational Medicine, Sirius University of Science and Technology, 354340, Sochi, Russia; National Research Ogarev Mordovia State University, Saransk, Mordovia Republic 430005, Russia
| | - Andrei V Zvyagin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997, Moscow, Russia; School of Mathematical and Physical Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW 2109, Australia; Research Center for Translational Medicine, Sirius University of Science and Technology, 354340, Sochi, Russia; National Research Ogarev Mordovia State University, Saransk, Mordovia Republic 430005, Russia
| |
Collapse
|
2
|
Abstract
Over the last half century, the autofluorescence of the metabolic cofactors NADH (reduced nicotinamide adenine dinucleotide) and FAD (flavin adenine dinucleotide) has been quantified in a variety of cell types and disease states. With the spread of nonlinear optical microscopy techniques in biomedical research, NADH and FAD imaging has offered an attractive solution to noninvasively monitor cell and tissue status and elucidate dynamic changes in cell or tissue metabolism. Various tools and methods to measure the temporal, spectral, and spatial properties of NADH and FAD autofluorescence have been developed. Specifically, an optical redox ratio of cofactor fluorescence intensities and NADH fluorescence lifetime parameters have been used in numerous applications, but significant work remains to mature this technology for understanding dynamic changes in metabolism. This article describes the current understanding of our optical sensitivity to different metabolic pathways and highlights current challenges in the field. Recent progress in addressing these challenges and acquiring more quantitative information in faster and more metabolically relevant formats is also discussed.
Collapse
Affiliation(s)
- Irene Georgakoudi
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, USA;
- Genetics, Molecular and Cellular Biology Program, Graduate School of Biomedical Sciences, Tufts University, Boston, Massachusetts, USA
| | - Kyle P Quinn
- Department of Biomedical Engineering and the Arkansas Integrative Metabolic Research Center, University of Arkansas, Fayetteville, Arkansas, USA
| |
Collapse
|
3
|
Araki M, Park SJ, Dauerman HL, Uemura S, Kim JS, Di Mario C, Johnson TW, Guagliumi G, Kastrati A, Joner M, Holm NR, Alfonso F, Wijns W, Adriaenssens T, Nef H, Rioufol G, Amabile N, Souteyrand G, Meneveau N, Gerbaud E, Opolski MP, Gonzalo N, Tearney GJ, Bouma B, Aguirre AD, Mintz GS, Stone GW, Bourantas CV, Räber L, Gili S, Mizuno K, Kimura S, Shinke T, Hong MK, Jang Y, Cho JM, Yan BP, Porto I, Niccoli G, Montone RA, Thondapu V, Papafaklis MI, Michalis LK, Reynolds H, Saw J, Libby P, Weisz G, Iannaccone M, Gori T, Toutouzas K, Yonetsu T, Minami Y, Takano M, Raffel OC, Kurihara O, Soeda T, Sugiyama T, Kim HO, Lee T, Higuma T, Nakajima A, Yamamoto E, Bryniarski KL, Di Vito L, Vergallo R, Fracassi F, Russo M, Seegers LM, McNulty I, Park S, Feldman M, Escaned J, Prati F, Arbustini E, Pinto FJ, Waksman R, Garcia-Garcia HM, Maehara A, Ali Z, Finn AV, Virmani R, Kini AS, Daemen J, Kume T, Hibi K, Tanaka A, Akasaka T, Kubo T, Yasuda S, Croce K, Granada JF, Lerman A, Prasad A, Regar E, Saito Y, Sankardas MA, Subban V, Weissman NJ, Chen Y, Yu B, et alAraki M, Park SJ, Dauerman HL, Uemura S, Kim JS, Di Mario C, Johnson TW, Guagliumi G, Kastrati A, Joner M, Holm NR, Alfonso F, Wijns W, Adriaenssens T, Nef H, Rioufol G, Amabile N, Souteyrand G, Meneveau N, Gerbaud E, Opolski MP, Gonzalo N, Tearney GJ, Bouma B, Aguirre AD, Mintz GS, Stone GW, Bourantas CV, Räber L, Gili S, Mizuno K, Kimura S, Shinke T, Hong MK, Jang Y, Cho JM, Yan BP, Porto I, Niccoli G, Montone RA, Thondapu V, Papafaklis MI, Michalis LK, Reynolds H, Saw J, Libby P, Weisz G, Iannaccone M, Gori T, Toutouzas K, Yonetsu T, Minami Y, Takano M, Raffel OC, Kurihara O, Soeda T, Sugiyama T, Kim HO, Lee T, Higuma T, Nakajima A, Yamamoto E, Bryniarski KL, Di Vito L, Vergallo R, Fracassi F, Russo M, Seegers LM, McNulty I, Park S, Feldman M, Escaned J, Prati F, Arbustini E, Pinto FJ, Waksman R, Garcia-Garcia HM, Maehara A, Ali Z, Finn AV, Virmani R, Kini AS, Daemen J, Kume T, Hibi K, Tanaka A, Akasaka T, Kubo T, Yasuda S, Croce K, Granada JF, Lerman A, Prasad A, Regar E, Saito Y, Sankardas MA, Subban V, Weissman NJ, Chen Y, Yu B, Nicholls SJ, Barlis P, West NEJ, Arbab-Zadeh A, Ye JC, Dijkstra J, Lee H, Narula J, Crea F, Nakamura S, Kakuta T, Fujimoto J, Fuster V, Jang IK. Optical coherence tomography in coronary atherosclerosis assessment and intervention. Nat Rev Cardiol 2022; 19:684-703. [PMID: 35449407 PMCID: PMC9982688 DOI: 10.1038/s41569-022-00687-9] [Show More Authors] [Citation(s) in RCA: 195] [Impact Index Per Article: 65.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/03/2022] [Indexed: 02/07/2023]
Abstract
Since optical coherence tomography (OCT) was first performed in humans two decades ago, this imaging modality has been widely adopted in research on coronary atherosclerosis and adopted clinically for the optimization of percutaneous coronary intervention. In the past 10 years, substantial advances have been made in the understanding of in vivo vascular biology using OCT. Identification by OCT of culprit plaque pathology could potentially lead to a major shift in the management of patients with acute coronary syndromes. Detection by OCT of healed coronary plaque has been important in our understanding of the mechanisms involved in plaque destabilization and healing with the rapid progression of atherosclerosis. Accurate detection by OCT of sequelae from percutaneous coronary interventions that might be missed by angiography could improve clinical outcomes. In addition, OCT has become an essential diagnostic modality for myocardial infarction with non-obstructive coronary arteries. Insight into neoatherosclerosis from OCT could improve our understanding of the mechanisms of very late stent thrombosis. The appropriate use of OCT depends on accurate interpretation and understanding of the clinical significance of OCT findings. In this Review, we summarize the state of the art in cardiac OCT and facilitate the uniform use of this modality in coronary atherosclerosis. Contributions have been made by clinicians and investigators worldwide with extensive experience in OCT, with the aim that this document will serve as a standard reference for future research and clinical application.
Collapse
Affiliation(s)
| | | | | | | | - Jung-Sun Kim
- Yonsei University College of Medicine, Seoul, South Korea
| | | | - Thomas W Johnson
- University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, UK
| | | | - Adnan Kastrati
- Technische Universität München and Munich Heart Alliance, Munich, Germany
| | | | | | | | - William Wijns
- National University of Ireland Galway and Saolta University Healthcare Group, Galway, Ireland
| | | | | | - Gilles Rioufol
- Hospices Civils de Lyon and Claude Bernard University, Lyon, France
| | | | | | | | | | | | - Nieves Gonzalo
- Hospital Clinico San Carlos, IdISSC, Universidad Complutense, Madrid, Spain
| | | | - Brett Bouma
- Massachusetts General Hospital, Boston, MA, USA
| | | | - Gary S Mintz
- Cardiovascular Research Foundation, New York, NY, USA
| | - Gregg W Stone
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Christos V Bourantas
- Barts Health NHS Trust, University College London and Queen Mary University London, London, UK
| | - Lorenz Räber
- Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | | | | | | | | | - Myeong-Ki Hong
- Yonsei University College of Medicine, Seoul, South Korea
| | - Yangsoo Jang
- Yonsei University College of Medicine, Seoul, South Korea
| | | | - Bryan P Yan
- Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Italo Porto
- University of Genoa, Genoa, Italy, San Martino Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy
| | | | - Rocco A Montone
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | | | | | | | - Harmony Reynolds
- New York University Grossman School of Medicine, New York, NY, USA
| | - Jacqueline Saw
- Vancouver General Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Peter Libby
- Brigham and Women's Hospital, Boston, MA, USA
| | - Giora Weisz
- New York Presbyterian Hospital, Columbia University Medical Center and Cardiovascular Research Foundation, New York, NY, USA
| | | | - Tommaso Gori
- Universitäts medizin Mainz and DZHK Rhein-Main, Mainz, Germany
| | | | | | | | | | | | - Osamu Kurihara
- Nippon Medical School Chiba Hokusoh Hospital, Chiba, Japan
| | | | | | | | - Tetsumin Lee
- Japanese Red Cross Musashino Hospital, Tokyo, Japan
| | - Takumi Higuma
- Kawasaki Municipal Tama Hospital, St. Marianna University School of Medicine, Kanagawa, Japan
| | | | - Erika Yamamoto
- Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Krzysztof L Bryniarski
- Jagiellonian University Medical College, Institute of Cardiology, Department of Interventional Cardiology, John Paul II Hospital, Krakow, Poland
| | | | | | | | - Michele Russo
- Catholic University of the Sacred Heart, Rome, Italy
| | | | | | - Sangjoon Park
- Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Marc Feldman
- University of Texas Health, San Antonio, TX, USA
| | | | - Francesco Prati
- UniCamillus - Saint Camillus International University of Health Sciences, Rome, Italy
| | - Eloisa Arbustini
- IRCCS Foundation University Hospital Policlinico San Matteo, Pavia, Italy
| | - Fausto J Pinto
- Santa Maria University Hospital, CHULN Center of Cardiology of the University of Lisbon, Lisbon School of Medicine, Lisbon Academic Medical Center, Lisbon, Portugal
| | - Ron Waksman
- MedStar Washington Hospital Center, Washington, DC, USA
| | | | - Akiko Maehara
- Cardiovascular Research Foundation, New York, NY, USA
| | - Ziad Ali
- Cardiovascular Research Foundation, New York, NY, USA
| | | | | | | | - Joost Daemen
- Erasmus University Medical Centre, Rotterdam, Netherlands
| | | | - Kiyoshi Hibi
- Yokohama City University Medical Center, Kanagawa, Japan
| | | | | | | | - Satoshi Yasuda
- Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kevin Croce
- Brigham and Women's Hospital, Boston, MA, USA
| | | | | | | | | | | | | | | | | | - Yundai Chen
- Sixth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Bo Yu
- The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | | | - Peter Barlis
- University of Melbourne, Melbourne, Victoria, Australia
| | | | | | - Jong Chul Ye
- Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | | | - Hang Lee
- Massachusetts General Hospital, Boston, MA, USA
| | - Jagat Narula
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Filippo Crea
- Catholic University of the Sacred Heart, Rome, Italy
| | | | | | - James Fujimoto
- Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Ik-Kyung Jang
- Massachusetts General Hospital, Boston, MA, USA.
- Kyung Hee University, Seoul, South Korea.
| |
Collapse
|
4
|
Coole JB, Brenes D, Possati-Resende JC, Antoniazzi M, Fonseca BDO, Maker Y, Kortum A, Vohra IS, Schwarz RA, Carns J, Borba Souza KC, Vidigal Santana IV, Kreitchmann R, Salcedo MP, Ramanujam N, Schmeler KM, Richards-Kortum R. Development of a multimodal mobile colposcope for real-time cervical cancer detection. BIOMEDICAL OPTICS EXPRESS 2022; 13:5116-5130. [PMID: 36425643 PMCID: PMC9664871 DOI: 10.1364/boe.463253] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/19/2022] [Accepted: 08/23/2022] [Indexed: 06/16/2023]
Abstract
Cervical cancer remains a leading cause of cancer death among women in low-and middle-income countries. Globally, cervical cancer prevention programs are hampered by a lack of resources, infrastructure, and personnel. We describe a multimodal mobile colposcope (MMC) designed to diagnose precancerous cervical lesions at the point-of-care without the need for biopsy. The MMC integrates two complementary imaging systems: 1) a commercially available colposcope and 2) a high speed, high-resolution, fiber-optic microendoscope (HRME). Combining these two image modalities allows, for the first time, the ability to locate suspicious cervical lesions using widefield imaging and then to obtain co-registered high-resolution images across an entire lesion. The MMC overcomes limitations of high-resolution imaging alone; widefield imaging can be used to guide the placement of the high-resolution imaging probe at clinically suspicious regions and co-registered, mosaicked high-resolution images effectively increase the field of view of high-resolution imaging. Representative data collected from patients referred for colposcopy at Barretos Cancer Hospital in Brazil, including 22,800 high resolution images and 9,900 colposcope images, illustrate the ability of the MMC to identify abnormal cervical regions, image suspicious areas with subcellular resolution, and distinguish between high-grade and low-grade dysplasia.
Collapse
Affiliation(s)
- Jackson B. Coole
- Rice University, Department of Bioengineering, Houston, TX 77005, USA
| | - David Brenes
- Rice University, Department of Bioengineering, Houston, TX 77005, USA
| | | | - Márcio Antoniazzi
- Barretos Cancer Hospital, Department of Prevention, Barretos, Brazil
| | | | - Yajur Maker
- Rice University, Department of Bioengineering, Houston, TX 77005, USA
| | - Alex Kortum
- Rice University, Department of Bioengineering, Houston, TX 77005, USA
| | - Imran S. Vohra
- Rice University, Department of Bioengineering, Houston, TX 77005, USA
| | | | - Jennifer Carns
- Rice University, Department of Bioengineering, Houston, TX 77005, USA
| | | | | | - Regis Kreitchmann
- Federal University of Health Sciences of Porto Alegre (UFCSPA)/Santa Casa Hospital of Porto Alegre, Department of Obstetrics and Gynecology, Porto Alegre, Brazil
| | - Mila P. Salcedo
- Federal University of Health Sciences of Porto Alegre (UFCSPA)/Santa Casa Hospital of Porto Alegre, Department of Obstetrics and Gynecology, Porto Alegre, Brazil
- The University of Texas MD Anderson Cancer Center, Department of Gynecologic Oncology and Reproductive Medicine, Houston, TX 77005, USA
| | - Nirmala Ramanujam
- Duke University, Department of Biomedical Engineering, Durham, NC 27708, USA
| | - Kathleen M. Schmeler
- The University of Texas MD Anderson Cancer Center, Department of Gynecologic Oncology and Reproductive Medicine, Houston, TX 77005, USA
| | | |
Collapse
|
5
|
Iyer RR, Sorrells JE, Yang L, Chaney EJ, Spillman DR, Tibble BE, Renteria CA, Tu H, Žurauskas M, Marjanovic M, Boppart SA. Label-free metabolic and structural profiling of dynamic biological samples using multimodal optical microscopy with sensorless adaptive optics. Sci Rep 2022; 12:3438. [PMID: 35236862 PMCID: PMC8891278 DOI: 10.1038/s41598-022-06926-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 02/01/2022] [Indexed: 01/21/2023] Open
Abstract
Label-free optical microscopy has matured as a noninvasive tool for biological imaging; yet, it is criticized for its lack of specificity, slow acquisition and processing times, and weak and noisy optical signals that lead to inaccuracies in quantification. We introduce FOCALS (Fast Optical Coherence, Autofluorescence Lifetime imaging, and Second harmonic generation) microscopy capable of generating NAD(P)H fluorescence lifetime, second harmonic generation (SHG), and polarization-sensitive optical coherence microscopy (OCM) images simultaneously. Multimodal imaging generates quantitative metabolic and morphological profiles of biological samples in vitro, ex vivo, and in vivo. Fast analog detection of fluorescence lifetime and real-time processing on a graphical processing unit enables longitudinal imaging of biological dynamics. We detail the effect of optical aberrations on the accuracy of FLIM beyond the context of undistorting image features. To compensate for the sample-induced aberrations, we implemented a closed-loop single-shot sensorless adaptive optics solution, which uses computational adaptive optics of OCM for wavefront estimation within 2 s and improves the quality of quantitative fluorescence imaging in thick tissues. Multimodal imaging with complementary contrasts improves the specificity and enables multidimensional quantification of the optical signatures in vitro, ex vivo, and in vivo, fast acquisition and real-time processing improve imaging speed by 4-40 × while maintaining enough signal for quantitative nonlinear microscopy, and adaptive optics improves the overall versatility, which enable FOCALS microscopy to overcome the limits of traditional label-free imaging techniques.
Collapse
Affiliation(s)
- Rishyashring R. Iyer
- grid.35403.310000 0004 1936 9991Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, USA ,grid.35403.310000 0004 1936 9991Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, USA
| | - Janet E. Sorrells
- grid.35403.310000 0004 1936 9991Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, USA ,grid.35403.310000 0004 1936 9991Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, USA
| | - Lingxiao Yang
- grid.35403.310000 0004 1936 9991Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, USA ,grid.35403.310000 0004 1936 9991Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, USA
| | - Eric J. Chaney
- grid.35403.310000 0004 1936 9991Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, USA
| | - Darold R. Spillman
- grid.35403.310000 0004 1936 9991Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, USA
| | - Brian E. Tibble
- grid.35403.310000 0004 1936 9991Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, USA ,grid.35403.310000 0004 1936 9991The School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, USA
| | - Carlos A. Renteria
- grid.35403.310000 0004 1936 9991Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, USA ,grid.35403.310000 0004 1936 9991Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, USA
| | - Haohua Tu
- grid.35403.310000 0004 1936 9991Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, USA ,grid.35403.310000 0004 1936 9991Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, USA
| | - Mantas Žurauskas
- grid.35403.310000 0004 1936 9991Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, USA
| | - Marina Marjanovic
- grid.35403.310000 0004 1936 9991Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, USA ,grid.35403.310000 0004 1936 9991Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, USA ,grid.35403.310000 0004 1936 9991Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, USA
| | - Stephen A. Boppart
- grid.35403.310000 0004 1936 9991Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, USA ,grid.35403.310000 0004 1936 9991Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, USA ,grid.35403.310000 0004 1936 9991Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, USA ,grid.35403.310000 0004 1936 9991Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, USA ,grid.35403.310000 0004 1936 9991Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, USA
| |
Collapse
|
6
|
Khajavi B, Sun R, Chawla HS, Henry HL, Singh M, Schill AW, Dickinson ME, Mayerich D, Larin KV. Multimodal high-resolution embryonic imaging with light sheet fluorescence microscopy and optical coherence tomography. OPTICS LETTERS 2021; 46:4180-4183. [PMID: 34469969 PMCID: PMC8903154 DOI: 10.1364/ol.430202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/16/2021] [Indexed: 06/13/2023]
Abstract
A high-resolution imaging system combining optical coherence tomography (OCT) and light sheet fluorescence microscopy (LSFM) was developed. LSFM confined the excitation to only the focal plane, removing the out of plane fluorescence. This enabled imaging a murine embryo with higher speed and specificity than traditional fluorescence microscopy. OCT gives information about the structure of the embryo from the same plane illuminated by LSFM. The co-planar OCT and LSFM instrument was capable of performing co-registered functional and structural imaging of mouse embryos simultaneously.
Collapse
Affiliation(s)
- Behzad Khajavi
- Department of Biomedical Engineering, University of Houston, Houston, Texas 77204, USA
| | - Ruijiao Sun
- Department of Electrical and Computer Engineering, University of Houston, Houston, Texas 77204, USA
| | | | - H. Le Henry
- Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77584, USA
| | - Manmohan Singh
- Department of Biomedical Engineering, University of Houston, Houston, Texas 77204, USA
| | - Alexander W. Schill
- Department of Biomedical Engineering, University of Houston, Houston, Texas 77204, USA
| | - Mary E. Dickinson
- Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77584, USA
| | - David Mayerich
- Department of Electrical and Computer Engineering, University of Houston, Houston, Texas 77204, USA
| | - Kirill V. Larin
- Department of Biomedical Engineering, University of Houston, Houston, Texas 77204, USA
- Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77584, USA
| |
Collapse
|
7
|
Alfonso-Garcia A, Bec J, Weyers B, Marsden M, Zhou X, Li C, Marcu L. Mesoscopic fluorescence lifetime imaging: Fundamental principles, clinical applications and future directions. JOURNAL OF BIOPHOTONICS 2021; 14:e202000472. [PMID: 33710785 PMCID: PMC8579869 DOI: 10.1002/jbio.202000472] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 03/03/2021] [Accepted: 03/05/2021] [Indexed: 05/16/2023]
Abstract
Fluorescence lifetime imaging (FLIm) is an optical spectroscopic imaging technique capable of real-time assessments of tissue properties in clinical settings. Label-free FLIm is sensitive to changes in tissue structure and biochemistry resulting from pathological conditions, thus providing optical contrast to identify and monitor the progression of disease. Technical and methodological advances over the last two decades have enabled the development of FLIm instrumentation for real-time, in situ, mesoscopic imaging compatible with standard clinical workflows. Herein, we review the fundamental working principles of mesoscopic FLIm, discuss the technical characteristics of current clinical FLIm instrumentation, highlight the most commonly used analytical methods to interpret fluorescence lifetime data and discuss the recent applications of FLIm in surgical oncology and cardiovascular diagnostics. Finally, we conclude with an outlook on the future directions of clinical FLIm.
Collapse
Affiliation(s)
- Alba Alfonso-Garcia
- Department of Biomedical Engineering, University of California, Davis, Davis, California
| | - Julien Bec
- Department of Biomedical Engineering, University of California, Davis, Davis, California
| | - Brent Weyers
- Department of Biomedical Engineering, University of California, Davis, Davis, California
| | - Mark Marsden
- Department of Biomedical Engineering, University of California, Davis, Davis, California
| | - Xiangnan Zhou
- Department of Biomedical Engineering, University of California, Davis, Davis, California
| | - Cai Li
- Department of Biomedical Engineering, University of California, Davis, Davis, California
| | - Laura Marcu
- Department of Biomedical Engineering, University of California, Davis, Davis, California
- Department Neurological Surgery, University of California, Davis, California
| |
Collapse
|
8
|
Pal R, Villarreal P, Yu X, Qiu S, Vargas G. Multimodal widefield fluorescence imaging with nonlinear optical microscopy workflow for noninvasive oral epithelial neoplasia detection: a preclinical study. JOURNAL OF BIOMEDICAL OPTICS 2020; 25:JBO-200213R. [PMID: 33200597 PMCID: PMC7667429 DOI: 10.1117/1.jbo.25.11.116008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/02/2020] [Indexed: 05/06/2023]
Abstract
SIGNIFICANCE Early detection of epithelial cancers and precancers/neoplasia in the presence of benign lesions is challenging due to the lack of robust in vivo imaging and biopsy guidance techniques. Label-free nonlinear optical microscopy (NLOM) has shown promise for optical biopsy through the detection of cellular and extracellular signatures of neoplasia. Although in vivo microscopy techniques continue to be developed, the surface area imaged in microscopy is limited by the field of view. FDA-approved widefield fluorescence (WF) imaging systems that capture autofluorescence signatures of neoplasia provide molecular information at large fields of view, which may complement the cytologic and architectural information provided by NLOM. AIM A multimodal imaging approach with high-sensitivity WF and high-resolution NLOM was investigated to identify and distinguish image-based features of neoplasia from normal and benign lesions. APPROACH In vivo label-free WF imaging and NLOM was performed in preclinical hamster models of oral neoplasia and inflammation. Analyses of WF imaging, NLOM imaging, and dual modality (WF combined with NLOM) were performed. RESULTS WF imaging showed increased red-to-green autofluorescence ratio in neoplasia compared to inflammation and normal oral mucosa (p < 0.01). In vivo assessment of the mucosal tissue with NLOM revealed subsurface cytologic (nuclear pleomorphism) and architectural (remodeling of extracellular matrix) atypia in histologically confirmed neoplastic tissue, which were not observed in inflammation or normal mucosa. Univariate and multivariate statistical analysis of macroscopic and microscopic image-based features indicated improved performance (94% sensitivity and 97% specificity) of a multiscale approach over WF alone, even in the presence of benign lesions (inflammation), a common confounding factor in diagnostics. CONCLUSIONS A multimodal imaging approach integrating strengths from WF and NLOM may be beneficial in identifying oral neoplasia. Our study could guide future studies on human oral neoplasia to further evaluate merits and limitations of multimodal workflows and inform the development of multiscale clinical imaging systems.
Collapse
Affiliation(s)
- Rahul Pal
- Massachusetts General Hospital and Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, Massachusetts, United States
| | - Paula Villarreal
- The University of Texas Medical Branch, Biomedical Engineering and Imaging Sciences Group, Galveston, Texas, United States
- The University of Texas Medical Branch, Department of Neuroscience, Cell Biology, and Anatomy, Galveston, Texas, United States
| | - Xiaoying Yu
- The University of Texas Medical Branch, Department of Preventive Medicine and Population Health, Galveston, Texas, United States
| | - Suimin Qiu
- The University of Texas Medical Branch, Department of Pathology, Galveston, Texas, United States
| | - Gracie Vargas
- The University of Texas Medical Branch, Biomedical Engineering and Imaging Sciences Group, Galveston, Texas, United States
- The University of Texas Medical Branch, Department of Neuroscience, Cell Biology, and Anatomy, Galveston, Texas, United States
| |
Collapse
|
9
|
Schweitzer D, Haueisen J, Brauer JL, Hammer M, Klemm M. Comparison of algorithms to suppress artifacts from the natural lens in fluorescence lifetime imaging ophthalmoscopy (FLIO). BIOMEDICAL OPTICS EXPRESS 2020; 11:5586-5602. [PMID: 33149973 PMCID: PMC7587265 DOI: 10.1364/boe.400059] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/08/2020] [Accepted: 08/08/2020] [Indexed: 06/11/2023]
Abstract
Fluorescence lifetime imaging ophthalmoscopy (FLIO) has developed as a new diagnostic tool in ophthalmology. FLIO measurements are taken from 30° retinal fields in two spectral channels (short spectral channel (SSC): 498-560 nm, long spectral channel (LSC): 560-720 nm). Because of the layered structure of the eye, the detected signal is an interaction of the fluorescence decay of the anterior part and of the fundus. By comparing FLIO measurements before and after cataract surgery, the impact of the natural lens was proven, despite the application of a confocal laser scanning (cSLO) technique. The goal of this work was to determine the best algorithmic solution to isolate the sole fundus fluorescence lifetime from the measured signal, suppressing artifacts from the natural lens. Three principles based on a tri-exponential model were investigated: a tailfit, a layer-based approach with a temporally shifted component, and the inclusion of a separately measured fluorescence decay of the natural lens. The mean fluorescence lifetime τm,12 is calculated using only the shortest and the intermediate exponential component. τm,all is calculated using all three exponential components. The results of tri-exponential tailfit after cataract surgery were considered as a reference, because the implanted artificial lens can be assumed as non-fluorescent. In SSC, the best accordance of τm,all of the reference was determined with τm,12 of the tailfit before surgery. If high-quality natural lens measurements are available, the correspondence of τm,12 is best with τm,all of the reference. In LSC, there is a good accordance for all models between τm,12 before and after surgery. To study the pure fundus fluorescence decay in eyes with natural lenses, we advise to utilize fluorescence lifetime τm,12 of a triple-exponential tailfit, as it corresponds well with the mean fluorescence lifetime τm,all of eyes with fluorescence-less artificial intraocular lenses.
Collapse
Affiliation(s)
- D. Schweitzer
- Department of Ophthalmology, University Hospital Jena, Am Klinikum 1, 07747 Jena, Germany
| | - J. Haueisen
- Institute of Biomedical Engineering and Informatics, POB 100565, 98694 Ilmenau, Germany
| | - J. L. Brauer
- Department of Ophthalmology, University Hospital Jena, Am Klinikum 1, 07747 Jena, Germany
| | - M. Hammer
- Department of Ophthalmology, University Hospital Jena, Am Klinikum 1, 07747 Jena, Germany
| | - M. Klemm
- Institute of Biomedical Engineering and Informatics, POB 100565, 98694 Ilmenau, Germany
| |
Collapse
|
10
|
Nie Z, Yeh SCA, LePalud M, Badr F, Tse F, Armstrong D, Liu LWC, Deen MJ, Fang Q. Optical Biopsy of the Upper GI Tract Using Fluorescence Lifetime and Spectra. Front Physiol 2020; 11:339. [PMID: 32477151 PMCID: PMC7237753 DOI: 10.3389/fphys.2020.00339] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 03/24/2020] [Indexed: 12/11/2022] Open
Abstract
Screening and surveillance for gastrointestinal (GI) cancers by endoscope guided biopsy is invasive, time consuming, and has the potential for sampling error. Tissue endogenous fluorescence spectra contain biochemical and physiological information, which may enable real-time, objective diagnosis. We first briefly reviewed optical biopsy modalities for GI cancer diagnosis with a focus on fluorescence-based techniques. In an ex vivo pilot clinical study, we measured fluorescence spectra and lifetime on fresh biopsy specimens obtained during routine upper GI screening procedures. Our results demonstrated the feasibility of rapid acquisition of time-resolved fluorescence (TRF) spectra from fresh GI mucosal specimens. We also identified spectroscopic signatures that can differentiate between normal mucosal samples obtained from the esophagus, stomach, and duodenum.
Collapse
Affiliation(s)
- Zhaojun Nie
- School of Biomedical Engineering, Faculty of Engineering, McMaster University, Hamilton, ON, Canada
| | - Shu-Chi Allison Yeh
- Advanced Microscopy Program, Center for Systems Biology and Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Michelle LePalud
- School of Biomedical Engineering, Faculty of Engineering, McMaster University, Hamilton, ON, Canada
| | - Fares Badr
- School of Biomedical Engineering, Faculty of Engineering, McMaster University, Hamilton, ON, Canada
| | - Frances Tse
- Division of Gastroenterology and Farncombe Family Digestive Health Research Institute, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - David Armstrong
- Division of Gastroenterology and Farncombe Family Digestive Health Research Institute, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Louis W. C. Liu
- Division of Gastrointestinal Diseases, Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - M. Jamal Deen
- School of Biomedical Engineering, Faculty of Engineering, McMaster University, Hamilton, ON, Canada
- Department of Electrical and Computer Engineering, Faculty of Engineering, McMaster University, Hamilton, ON, Canada
| | - Qiyin Fang
- School of Biomedical Engineering, Faculty of Engineering, McMaster University, Hamilton, ON, Canada
- Department of Engineering Physics, Faculty of Engineering, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
11
|
Datta R, Heaster TM, Sharick JT, Gillette AA, Skala MC. Fluorescence lifetime imaging microscopy: fundamentals and advances in instrumentation, analysis, and applications. JOURNAL OF BIOMEDICAL OPTICS 2020; 25:1-43. [PMID: 32406215 PMCID: PMC7219965 DOI: 10.1117/1.jbo.25.7.071203] [Citation(s) in RCA: 399] [Impact Index Per Article: 79.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 04/24/2020] [Indexed: 05/18/2023]
Abstract
SIGNIFICANCE Fluorescence lifetime imaging microscopy (FLIM) is a powerful technique to distinguish the unique molecular environment of fluorophores. FLIM measures the time a fluorophore remains in an excited state before emitting a photon, and detects molecular variations of fluorophores that are not apparent with spectral techniques alone. FLIM is sensitive to multiple biomedical processes including disease progression and drug efficacy. AIM We provide an overview of FLIM principles, instrumentation, and analysis while highlighting the latest developments and biological applications. APPROACH This review covers FLIM principles and theory, including advantages over intensity-based fluorescence measurements. Fundamentals of FLIM instrumentation in time- and frequency-domains are summarized, along with recent developments. Image segmentation and analysis strategies that quantify spatial and molecular features of cellular heterogeneity are reviewed. Finally, representative applications are provided including high-resolution FLIM of cell- and organelle-level molecular changes, use of exogenous and endogenous fluorophores, and imaging protein-protein interactions with Förster resonance energy transfer (FRET). Advantages and limitations of FLIM are also discussed. CONCLUSIONS FLIM is advantageous for probing molecular environments of fluorophores to inform on fluorophore behavior that cannot be elucidated with intensity measurements alone. Development of FLIM technologies, analysis, and applications will further advance biological research and clinical assessments.
Collapse
Affiliation(s)
- Rupsa Datta
- Morgridge Institute for Research, Madison, Wisconsin, United States
| | - Tiffany M. Heaster
- Morgridge Institute for Research, Madison, Wisconsin, United States
- University of Wisconsin, Department of Biomedical Engineering, Madison, Wisconsin, United States
| | - Joe T. Sharick
- Morgridge Institute for Research, Madison, Wisconsin, United States
| | - Amani A. Gillette
- Morgridge Institute for Research, Madison, Wisconsin, United States
- University of Wisconsin, Department of Biomedical Engineering, Madison, Wisconsin, United States
| | - Melissa C. Skala
- Morgridge Institute for Research, Madison, Wisconsin, United States
- University of Wisconsin, Department of Biomedical Engineering, Madison, Wisconsin, United States
| |
Collapse
|
12
|
Dadkhah A, Jiao S. Integrating photoacoustic microscopy, optical coherence tomography, OCT angiography, and fluorescence microscopy for multimodal imaging. Exp Biol Med (Maywood) 2020; 245:342-347. [PMID: 31914810 DOI: 10.1177/1535370219897584] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
We have developed a multimodal imaging system, which integrated optical resolution photoacoustic microscopy, optical coherence tomography, optical coherence tomography angiography, and confocal fluorescence microscopy in one platform. The system is able to image complementary features of a biological sample by combining different contrast mechanisms. We achieved fast imaging and large field of view by combining optical scanning with mechanical scanning, similar to our previous publication. We have demonstrated the capability of the multimodal imaging system by imaging a mouse ear in vivo. Impact statement Photoacoustic microscopy-based multimodal imaging technology can provide high-resolution complementary information for biological tissues in vivo. It will potentially bring significant impact on the research and diagnosis of diseases by providing combined structural and functional information.
Collapse
Affiliation(s)
- Arash Dadkhah
- Department of Biomedical Engineering, Florida International University, Miami, FL 33174, USA
| | - Shuliang Jiao
- Department of Biomedical Engineering, Florida International University, Miami, FL 33174, USA
| |
Collapse
|
13
|
Yoon C, Qi Y, Mestre H, Canavesi C, Marola OJ, Cogliati A, Nedergaard M, Libby RT, Rolland JP. Gabor domain optical coherence microscopy combined with laser scanning confocal fluorescence microscopy. BIOMEDICAL OPTICS EXPRESS 2019; 10:6242-6257. [PMID: 31853397 PMCID: PMC6913392 DOI: 10.1364/boe.10.006242] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/26/2019] [Accepted: 11/05/2019] [Indexed: 06/10/2023]
Abstract
We report on the development of fluorescence Gabor domain optical coherence microscopy (Fluo GD-OCM), a combination of GD-OCM with laser scanning confocal fluorescence microscopy (LSCFM) for synchronous micro-structural and fluorescence imaging. The dynamic focusing capability of GD-OCM provided the adaptive illumination environment for both modalities without any mechanical movement. Using Fluo GD-OCM, we imaged ex vivo DsRed-expressing cells in the brain of a transgenic mouse, as well as Cy3-labeled ganglion cells and Cy3-labeled astrocytes from a mouse retina. The self-registration of images taken by the two different imaging modalities showed the potential for a correlative study of subjects and double identification of the target.
Collapse
Affiliation(s)
- Changsik Yoon
- The Institute of Optics, University of Rochester, Wilmot Building, Rochester, New York 14627, USA
| | - Yue Qi
- Department of Biomedical Engineering, University of Rochester, Robert B. Goergen Hall, Rochester, New York 14627, USA
| | - Humberto Mestre
- Center for Translational Neuromedicine, Department of Neurosurgery, University of Rochester Medical Center, Rochester, New York 14642, USA
| | - Cristina Canavesi
- LighTopTech Corp., 150 Lucius Gordon Dr., Ste 201, West Henrietta, New York 14586, USA
| | - Olivia J. Marola
- Flaum Eye Institute, Department of Ophthalmology, University of Rochester Medical Center, Rochester, New York 14642, USA
| | - Andrea Cogliati
- LighTopTech Corp., 150 Lucius Gordon Dr., Ste 201, West Henrietta, New York 14586, USA
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, Department of Neurosurgery, University of Rochester Medical Center, Rochester, New York 14642, USA
| | - Richard T. Libby
- Flaum Eye Institute, Department of Ophthalmology, University of Rochester Medical Center, Rochester, New York 14642, USA
| | - Jannick P. Rolland
- The Institute of Optics, University of Rochester, Wilmot Building, Rochester, New York 14627, USA
- Department of Biomedical Engineering, University of Rochester, Robert B. Goergen Hall, Rochester, New York 14627, USA
- LighTopTech Corp., 150 Lucius Gordon Dr., Ste 201, West Henrietta, New York 14586, USA
| |
Collapse
|
14
|
Lichtenegger A, Gesperger J, Kiesel B, Muck M, Eugui P, Harper DJ, Salas M, Augustin M, Merkle CW, Hitzenberger CK, Widhalm G, Woehrer A, Baumann B. Revealing brain pathologies with multimodal visible light optical coherence microscopy and fluorescence imaging. JOURNAL OF BIOMEDICAL OPTICS 2019; 24:1-11. [PMID: 31240898 PMCID: PMC6977170 DOI: 10.1117/1.jbo.24.6.066010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 06/07/2019] [Indexed: 05/28/2023]
Abstract
We present a multimodal visible light optical coherence microscopy (OCM) and fluorescence imaging (FI) setup. Specification and phantom measurements were performed to characterize the system. Two applications in neuroimaging were investigated. First, curcumin-stained brain slices of a mouse model of Alzheimer's disease were examined. Amyloid-beta plaques were identified based on the fluorescence of curcumin, and coregistered morphological images of the brain tissue were provided by the OCM channel. Second, human brain tumor biopsies retrieved intraoperatively were imaged prior to conventional neuropathologic work-up. OCM revealed the three-dimensional structure of the brain parenchyma, and FI added the tumor tissue-specific contrast. Attenuation coefficients computed from the OCM data and the florescence intensity values were analyzed and showed a statistically significant difference for 5-aminolevulinic acid (5-ALA)-positive and -negative brain tissues. OCM findings correlated well with malignant hot spots within brain tumor biopsies upon histopathology. The combination of OCM and FI seems to be a promising optical imaging modality providing complementary contrast for applications in the field of neuroimaging.
Collapse
Affiliation(s)
- Antonia Lichtenegger
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
| | - Johanna Gesperger
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
- General Hospital and Medical University of Vienna, Institute of Neurology, Vienna, Austria
| | - Barbara Kiesel
- General Hospital and Medical University of Vienna, Univ. Klinik Neurochirurgie, Vienna, Austria
| | - Martina Muck
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
- General Hospital and Medical University of Vienna, Institute of Neurology, Vienna, Austria
| | - Pablo Eugui
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
| | - Danielle J. Harper
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
| | - Matthias Salas
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
| | - Marco Augustin
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
| | - Conrad W. Merkle
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
| | - Christoph K. Hitzenberger
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
| | - Georg Widhalm
- General Hospital and Medical University of Vienna, Univ. Klinik Neurochirurgie, Vienna, Austria
| | - Adelheid Woehrer
- General Hospital and Medical University of Vienna, Institute of Neurology, Vienna, Austria
| | - Bernhard Baumann
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
| |
Collapse
|
15
|
Automated detection of superficial macrophages in atherosclerotic plaques using autofluorescence lifetime imaging. Atherosclerosis 2019; 285:120-127. [PMID: 31051415 DOI: 10.1016/j.atherosclerosis.2019.04.223] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 04/08/2019] [Accepted: 04/16/2019] [Indexed: 01/08/2023]
Abstract
BACKGROUND AND AIMS Macrophages play an important role in the development and destabilization of advanced atherosclerotic plaques. Hence, the clinical imaging of macrophage content in advanced plaques could potentially aid in identifying patients most at risk of future clinical events. The lifetime of the autofluorescence emission from atherosclerotic plaques has been correlated with lipids and macrophage accumulation in ex vivo human coronary arteries, suggesting the potential of intravascular endogenous fluorescence or autofluorescence lifetime imaging (FLIM) for macrophage imaging. The aim of this study was to quantify the accuracy of the coronary intima autofluorescence lifetime to detect superficial macrophage accumulation in atherosclerotic plaques. METHODS Endogenous FLIM imaging was performed on 80 fresh postmortem coronary segments from 23 subjects. The plaque autofluorescence lifetime at an emission spectral band of 494 ± 20.5 nm was used as a discriminatory feature to detect superficial macrophage accumulation in atherosclerotic plaques. Detection of superficial macrophage accumulation in the imaged coronary segments based on immunohistochemistry (CD68 staining) evaluation was taken as the gold standard. Receiver Operating Characteristic (ROC) curve analysis was applied to select an autofluorescence lifetime threshold value to detect superficial macrophages accumulation. RESULTS A threshold of 6 ns in the plaque autofluorescence lifetime at the emission spectral band of 494 ± 20.5 nm was applied to detect plaque superficial macrophages accumulation, resulting in ∼91.5% accuracy. CONCLUSIONS This study demonstrates the capability of endogenous FLIM imaging to accurately identify superficial macrophages accumulation in human atherosclerotic plaques, a key biomarker of atherosclerotic plaque vulnerability.
Collapse
|
16
|
Dadkhah A, Zhou J, Yeasmin N, Jiao S. Integrated multimodal photoacoustic microscopy with OCT- guided dynamic focusing. BIOMEDICAL OPTICS EXPRESS 2019; 10:137-150. [PMID: 30775089 PMCID: PMC6363202 DOI: 10.1364/boe.10.000137] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 11/27/2018] [Accepted: 11/27/2018] [Indexed: 05/10/2023]
Abstract
Combining different contrast mechanisms to achieve simultaneous multimodal imaging is always desirable but is challenging due to the various optical and hardware requirements for different imaging systems. We developed a multimodal microscopic optical imaging system with the capability of providing comprehensive structural, functional and molecular information of living tissues. This imaging system integrated photoacoustic microscopy (PAM), optical coherence tomography (OCT), optical Doppler tomography (ODT) and confocal fluorescence microscopy in one platform. By taking advantage of the depth resolving capability of OCT, we developed a novel OCT-guided surface contour scanning methodology for dynamic focusing adjustment. We have conducted phantom, in vivo, and ex vivo tests to demonstrate the capability of the multimodal imaging system for providing comprehensive microscopic information of biological tissues. Integrating all the aforementioned imaging modalities with OCT-guided dynamic focusing for simultaneous multimodal imaging has promising potential for preclinical research and clinical practice in the future.
Collapse
Affiliation(s)
- Arash Dadkhah
- Department of Biomedical Engineering, Florida International University, Miami, FL 33174, USA
| | - Jun Zhou
- School of Physics and Information Engineering, Jianghan University, Wuhan, Hubei 430056, China
| | - Nusrat Yeasmin
- Department of Biomedical Engineering, Florida International University, Miami, FL 33174, USA
| | - Shuliang Jiao
- Department of Biomedical Engineering, Florida International University, Miami, FL 33174, USA
| |
Collapse
|
17
|
Comprehensive intravascular imaging of atherosclerotic plaque in vivo using optical coherence tomography and fluorescence lifetime imaging. Sci Rep 2018; 8:14561. [PMID: 30267024 PMCID: PMC6162321 DOI: 10.1038/s41598-018-32951-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 09/18/2018] [Indexed: 02/08/2023] Open
Abstract
Comprehensive imaging of both the structural and biochemical characteristics of atherosclerotic plaque is essential for the diagnosis and study of coronary artery disease because both a plaque's morphology and its biochemical composition affect the level of risk it poses. Optical coherence tomography (OCT) and fluorescence lifetime imaging (FLIm) are promising optical imaging methods for characterizing coronary artery plaques morphologically and biochemically, respectively. In this study, we present a hybrid intravascular imaging device, including a custom-built OCT/FLIm system, a hybrid optical rotary joint, and an imaging catheter, to visualize the structure and biochemical composition of the plaque in an atherosclerotic rabbit artery in vivo. Especially, the autofluorescence lifetime of the endogenous tissue molecules can be used to characterize the biochemical composition; thus no exogenous contrast agent is required. Also, the physical properties of the imaging catheter and the imaging procedures are similar to those already used clinically, facilitating rapid translation into clinical use. This new intravascular imaging catheter can open up new opportunities for clinicians and researchers to investigate and diagnose coronary artery disease by simultaneously providing tissue microstructure and biochemical composition data in vivo without the use of exogenous contrast agent.
Collapse
|
18
|
Nam HS, Kang WJ, Lee MW, Song JW, Kim JW, Oh WY, Yoo H. Multispectral analog-mean-delay fluorescence lifetime imaging combined with optical coherence tomography. BIOMEDICAL OPTICS EXPRESS 2018; 9:1930-1947. [PMID: 29675330 PMCID: PMC5905935 DOI: 10.1364/boe.9.001930] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 03/15/2018] [Accepted: 03/18/2018] [Indexed: 05/19/2023]
Abstract
The pathophysiological progression of chronic diseases, including atherosclerosis and cancer, is closely related to compositional changes in biological tissues containing endogenous fluorophores such as collagen, elastin, and NADH, which exhibit strong autofluorescence under ultraviolet excitation. Fluorescence lifetime imaging (FLIm) provides robust detection of the compositional changes by measuring fluorescence lifetime, which is an inherent property of a fluorophore. In this paper, we present a dual-modality system combining a multispectral analog-mean-delay (AMD) FLIm and a high-speed swept-source optical coherence tomography (OCT) to simultaneously visualize the cross-sectional morphology and biochemical compositional information of a biological tissue. Experiments using standard fluorescent solutions showed that the fluorescence lifetime could be measured with a precision of less than 40 psec using the multispectral AMD-FLIm without averaging. In addition, we performed ex vivo imaging on rabbit iliac normal-looking and atherosclerotic specimens to demonstrate the feasibility of the combined FLIm-OCT system for atherosclerosis imaging. We expect that the combined FLIm-OCT will be a promising next-generation imaging technique for diagnosing atherosclerosis and cancer due to the advantages of the proposed label-free high-precision multispectral lifetime measurement.
Collapse
Affiliation(s)
- Hyeong Soo Nam
- Department of Biomedical Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04673, South Korea
- Equally contributed to this study
| | - Woo Jae Kang
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, 291 Gwahang-no, Yuseong-gu, Daejeon 34141, South Korea
- Equally contributed to this study
| | - Min Woo Lee
- Department of Biomedical Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04673, South Korea
| | - Joon Woo Song
- Cardiovascular Center, Korea University Guro Hospital, 148 Gurodong-ro, Guro-gu, Seoul 08308, South Korea
| | - Jin Won Kim
- Cardiovascular Center, Korea University Guro Hospital, 148 Gurodong-ro, Guro-gu, Seoul 08308, South Korea
| | - Wang-Yuhl Oh
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, 291 Gwahang-no, Yuseong-gu, Daejeon 34141, South Korea
| | - Hongki Yoo
- Department of Biomedical Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04673, South Korea
| |
Collapse
|
19
|
Le Marois A, Suhling K. Quantitative Live Cell FLIM Imaging in Three Dimensions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1035:31-48. [PMID: 29080129 DOI: 10.1007/978-3-319-67358-5_3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
In this chapter, the concept of fluorescence lifetime and its utility in quantitative live cell imaging will be introduced, along with methods to record and analyze FLIM data. Relevant applications in 3D tissue and live cell imaging, including multiplexed FLIM detection, will also be detailed.
Collapse
Affiliation(s)
- Alix Le Marois
- Department of Physics, King's College London, Strand, London, WC2R 2LS, UK
| | - Klaus Suhling
- Department of Physics, King's College London, Strand, London, WC2R 2LS, UK.
| |
Collapse
|
20
|
Phipps JE, Hoyt T, Vela D, Wang T, Michalek JE, Buja LM, Jang IK, Milner TE, Feldman MD. Diagnosis of Thin-Capped Fibroatheromas in Intravascular Optical Coherence Tomography Images: Effects of Light Scattering. Circ Cardiovasc Interv 2017; 9:CIRCINTERVENTIONS.115.003163. [PMID: 27406987 DOI: 10.1161/circinterventions.115.003163] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 05/16/2016] [Indexed: 12/12/2022]
Abstract
BACKGROUND Intravascular optical coherence tomography (IVOCT) images are recorded by detecting light backscattered within coronary arteries. We hypothesize that non-thin-capped fibroatheroma (TCFA) causes may scatter light to create the false appearance of IVOCT TCFA. METHODS AND RESULTS Ten human cadaver hearts were imaged with IVOCT (n=14 coronary arteries). IVOCT and histological TCFA images were coregistered and compared. Of 21 IVOCT TCFAs (fibrous cap <65 μm, lipid arc >1 quadrant), only 8 were true histological TCFA. Foam cell infiltration was responsible for 70% of false IVOCT TCFA and caused both thick-capped fibroatheromas to appear as TCFA, and the appearance of TCFAs when no lipid core was present. Other false IVOCT TCFA causes included smooth muscle cell-rich fibrous tissue (12%) and loose connective tissue (9%). If the lipid arc >1 quadrant (obtuse) criterion was disregarded, 45 IVOCT TCFAs were identified, and sensitivity of IVOCT TCFA detection increased from 63% to 87%, and specificity remained high at 92%. CONCLUSIONS We demonstrate that IVOCT can exhibit 87% (95% CI, 75%-93%) sensitivity and 92% specificity (95% CI, 86%-96%) to detect all lipid arcs (both obtuse and acute, <1 quadrant) TCFA, and we also propose new mechanisms involving light scattering that explain why other plaque components can masquerade as TCFA and cause low positive predictive value of IVOCT for TCFA detection (47% for obtuse lipid arcs). Disregarding the lipid arc >1 quadrant requirement enhances the ability of IVOCT to detect TCFA.
Collapse
Affiliation(s)
- Jennifer E Phipps
- From the Department of Medicine (J.E.P., T.H., M.D.F.) and Epidemiology and Biostatistics (J.E.M.), University of Texas Health Science Center San Antonio; Department of Cardiovascular Pathology, Texas Heart Institute, Houston (D.V., L.M.B.); Department of Biomedical Engineering, University of Texas at Austin (T.W., T.E.M.); Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston (I.-K.J.); and Department of Veterans Affairs, South Texas Veterans Health Care System, San Antonio (M.D.F.)
| | - Taylor Hoyt
- From the Department of Medicine (J.E.P., T.H., M.D.F.) and Epidemiology and Biostatistics (J.E.M.), University of Texas Health Science Center San Antonio; Department of Cardiovascular Pathology, Texas Heart Institute, Houston (D.V., L.M.B.); Department of Biomedical Engineering, University of Texas at Austin (T.W., T.E.M.); Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston (I.-K.J.); and Department of Veterans Affairs, South Texas Veterans Health Care System, San Antonio (M.D.F.)
| | - Deborah Vela
- From the Department of Medicine (J.E.P., T.H., M.D.F.) and Epidemiology and Biostatistics (J.E.M.), University of Texas Health Science Center San Antonio; Department of Cardiovascular Pathology, Texas Heart Institute, Houston (D.V., L.M.B.); Department of Biomedical Engineering, University of Texas at Austin (T.W., T.E.M.); Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston (I.-K.J.); and Department of Veterans Affairs, South Texas Veterans Health Care System, San Antonio (M.D.F.)
| | - Tianyi Wang
- From the Department of Medicine (J.E.P., T.H., M.D.F.) and Epidemiology and Biostatistics (J.E.M.), University of Texas Health Science Center San Antonio; Department of Cardiovascular Pathology, Texas Heart Institute, Houston (D.V., L.M.B.); Department of Biomedical Engineering, University of Texas at Austin (T.W., T.E.M.); Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston (I.-K.J.); and Department of Veterans Affairs, South Texas Veterans Health Care System, San Antonio (M.D.F.)
| | - Joel E Michalek
- From the Department of Medicine (J.E.P., T.H., M.D.F.) and Epidemiology and Biostatistics (J.E.M.), University of Texas Health Science Center San Antonio; Department of Cardiovascular Pathology, Texas Heart Institute, Houston (D.V., L.M.B.); Department of Biomedical Engineering, University of Texas at Austin (T.W., T.E.M.); Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston (I.-K.J.); and Department of Veterans Affairs, South Texas Veterans Health Care System, San Antonio (M.D.F.)
| | - L Maximilian Buja
- From the Department of Medicine (J.E.P., T.H., M.D.F.) and Epidemiology and Biostatistics (J.E.M.), University of Texas Health Science Center San Antonio; Department of Cardiovascular Pathology, Texas Heart Institute, Houston (D.V., L.M.B.); Department of Biomedical Engineering, University of Texas at Austin (T.W., T.E.M.); Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston (I.-K.J.); and Department of Veterans Affairs, South Texas Veterans Health Care System, San Antonio (M.D.F.)
| | - Ik-Kyung Jang
- From the Department of Medicine (J.E.P., T.H., M.D.F.) and Epidemiology and Biostatistics (J.E.M.), University of Texas Health Science Center San Antonio; Department of Cardiovascular Pathology, Texas Heart Institute, Houston (D.V., L.M.B.); Department of Biomedical Engineering, University of Texas at Austin (T.W., T.E.M.); Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston (I.-K.J.); and Department of Veterans Affairs, South Texas Veterans Health Care System, San Antonio (M.D.F.)
| | - Thomas E Milner
- From the Department of Medicine (J.E.P., T.H., M.D.F.) and Epidemiology and Biostatistics (J.E.M.), University of Texas Health Science Center San Antonio; Department of Cardiovascular Pathology, Texas Heart Institute, Houston (D.V., L.M.B.); Department of Biomedical Engineering, University of Texas at Austin (T.W., T.E.M.); Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston (I.-K.J.); and Department of Veterans Affairs, South Texas Veterans Health Care System, San Antonio (M.D.F.)
| | - Marc D Feldman
- From the Department of Medicine (J.E.P., T.H., M.D.F.) and Epidemiology and Biostatistics (J.E.M.), University of Texas Health Science Center San Antonio; Department of Cardiovascular Pathology, Texas Heart Institute, Houston (D.V., L.M.B.); Department of Biomedical Engineering, University of Texas at Austin (T.W., T.E.M.); Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston (I.-K.J.); and Department of Veterans Affairs, South Texas Veterans Health Care System, San Antonio (M.D.F.).
| |
Collapse
|
21
|
Saito Nogueira M, Cosci A, Teixeira Rosa RG, Salvio AG, Pratavieira S, Kurachi C. Portable fluorescence lifetime spectroscopy system for in-situ interrogation of biological tissues. JOURNAL OF BIOMEDICAL OPTICS 2017; 22:1-10. [PMID: 29052374 DOI: 10.1117/1.jbo.22.12.121608] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 09/22/2017] [Indexed: 06/07/2023]
Abstract
Fluorescence spectroscopy and lifetime techniques are potential methods for optical diagnosis and characterization of biological tissues with an in-situ, fast, and noninvasive interrogation. Several diseases may be diagnosed due to differences in the fluorescence spectra of targeted fluorophores, when, these spectra are similar, considering steady-state fluorescence, others may be detected by monitoring their fluorescence lifetime. Despite this complementarity, most of the current fluorescence lifetime systems are not robust and portable, and not being feasible for clinical applications. We describe the assembly of a fluorescence lifetime spectroscopy system in a suitcase, its characterization, and validation with clinical measurements of skin lesions. The assembled system is all encased and robust, maintaining its mechanical, electrical, and optical stability during transportation, and is feasible for clinical measurements. The instrument response function measured was about 300 ps, and the system is properly calibrated. At the clinical study, the system showed to be reliable, and the achieved spectroscopy results support its potential use as an auxiliary tool for skin diagnostics.
Collapse
Affiliation(s)
| | - Alessandro Cosci
- University of São Paulo, São Carlos Institute of Physics, São Carlos, São Paulo, Brazil
| | | | | | - Sebastião Pratavieira
- University of São Paulo, São Carlos Institute of Physics, São Carlos, São Paulo, Brazil
| | - Cristina Kurachi
- University of São Paulo, São Carlos Institute of Physics, São Carlos, São Paulo, Brazil
| |
Collapse
|
22
|
SHERLOCK BENJAMINE, PHIPPS JENNIFERE, BEC JULIEN, MARCU LAURA. Simultaneous, label-free, multispectral fluorescence lifetime imaging and optical coherence tomography using a double-clad fiber. OPTICS LETTERS 2017; 42:3753-3756. [PMID: 28957119 PMCID: PMC8951707 DOI: 10.1364/ol.42.003753] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 08/30/2017] [Indexed: 05/09/2023]
Abstract
We present a novel fiber-based imaging platform that allows simultaneous fluorescence lifetime imaging (FLIm) and optical coherence tomography (OCT) using a double-clad fiber. This platform acquires co-registered images showing structural and compositional contrast in unlabeled biological samples by scanning the fiber tip across the sample surface. In this Letter, we report a characterization of each modality and show examples of co-registered FLIm and OCT images acquired from a lemon segment and a section of human coronary artery. The close comparison between the combined FLIm and OCT images and a co-registered histology section provides a qualitative validation of the technique and highlights its potential for minimally invasive, multimodal imaging of tissue structure and composition.
Collapse
Affiliation(s)
- BENJAMIN E. SHERLOCK
- Genome and Biomedical Sciences Facility, 451 Health Sciences Drive, Davis, California 95616, USA
| | - JENNIFER E. PHIPPS
- Genome and Biomedical Sciences Facility, 451 Health Sciences Drive, Davis, California 95616, USA
| | - JULIEN BEC
- Genome and Biomedical Sciences Facility, 451 Health Sciences Drive, Davis, California 95616, USA
| | - LAURA MARCU
- Genome and Biomedical Sciences Facility, 451 Health Sciences Drive, Davis, California 95616, USA
| |
Collapse
|
23
|
Oblique scanning laser microscopy for simultaneously volumetric structural and molecular imaging using only one raster scan. Sci Rep 2017; 7:8591. [PMID: 28819250 PMCID: PMC5561209 DOI: 10.1038/s41598-017-08822-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 07/21/2017] [Indexed: 01/09/2023] Open
Abstract
Multi-modal three dimensional (3D) optical imaging combining both structural sensitivity and molecular specificity is highly desirable in biomedical research. In this paper, we present a method termed oblique scanning laser microscopy (OSLM) to combine optical coherence tomography (OCT), for simultaneously volumetric structural and molecular imaging with cellular resolution in all three dimensions. Conventional 3D laser scanning fluorescence microscopy requires repeated optical sectioning to create z-stacks in depth. Here, the use of an obliquely scanning laser eliminates the z-stacking process, then allows highly efficient 3D OCT and fluorescence imaging by using only one raster scan. The current setup provides ~3.6 × 4.2 × 6.5 μm resolution in fluorescence imaging, ~7 × 7 × 3.5 μm in OCT in three dimensions, and the current speed of imaging is up to 100 frames per second (fps) over a volume about 0.8 × 1 × 0.5 mm3. We demonstrate several mechanisms for molecular imaging, including intrinsically expressed GFP fluorescence, autofluorescence from Flavin proteins, and exogenous antibody-conjugated dyes. We also demonstrate potential applications in imaging human intestinal organoids (HIOs), colon mucosa, and retina.
Collapse
|
24
|
Malik BH, Lee J, Cheng S, Cuenca R, Jabbour JM, Cheng YSL, Wright JM, Ahmed B, Maitland KC, Jo JA. Objective Detection of Oral Carcinoma with Multispectral Fluorescence Lifetime Imaging In Vivo. Photochem Photobiol 2016; 92:694-701. [PMID: 27499123 DOI: 10.1111/php.12627] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 06/15/2016] [Indexed: 11/30/2022]
Abstract
Successful early detection and demarcation of oral carcinoma can greatly impact the associated morbidity and mortality rates. Current methods for detection of oral cancer include comprehensive visual examination of the oral cavity, typically followed by tissue biopsy. A noninvasive means to guide the clinician in making a more objective and informed decision toward tissue biopsy can potentially improve the diagnostic yield of this process. To this end, we investigate the potential of fluorescence lifetime imaging (FLIM) for objective detection of oral carcinoma in the hamster cheek pouch model of oral carcinogenesis in vivo. We report that systematically selected FLIM features can differentiate between low-risk (normal, benign and low-grade dysplasia) and high-risk (high-grade dysplasia and cancer) oral lesions with sensitivity and specificity of 87.26% and 93.96%, respectively. We also show the ability of FLIM to generate "disease" maps of the tissue which can be used to evaluate relative risk of neoplasia. The results demonstrate the potential of multispectral FLIM with objective image analysis as a noninvasive tool to guide comprehensive oral examination.
Collapse
Affiliation(s)
- Bilal H Malik
- Department of Biomedical Engineering, Texas A&M University, College Station, TX. .,QT Ultrasound Labs, Novato, CA.
| | - Joohyung Lee
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX
| | - Shuna Cheng
- Department of Biomedical Engineering, Texas A&M University, College Station, TX
| | - Rodrigo Cuenca
- Department of Biomedical Engineering, Texas A&M University, College Station, TX
| | - Joey M Jabbour
- Department of Biomedical Engineering, Texas A&M University, College Station, TX
| | - Yi-Shing Lisa Cheng
- Department of Diagnostic Sciences, Texas A&M Health Science Center - Baylor College of Dentistry, Dallas, TX
| | - John M Wright
- Department of Diagnostic Sciences, Texas A&M Health Science Center - Baylor College of Dentistry, Dallas, TX
| | - Beena Ahmed
- Department of Electrical and Computer Engineering, Texas A&M University at Qatar, Doha, Qatar
| | - Kristen C Maitland
- Department of Biomedical Engineering, Texas A&M University, College Station, TX
| | - Javier A Jo
- Department of Biomedical Engineering, Texas A&M University, College Station, TX
| |
Collapse
|
25
|
Shrestha S, Serafino MJ, Rico-Jimenez J, Park J, Chen X, Zhaorigetu S, Walton BL, Jo JA, Applegate BE. Multimodal optical coherence tomography and fluorescence lifetime imaging with interleaved excitation sources for simultaneous endogenous and exogenous fluorescence. BIOMEDICAL OPTICS EXPRESS 2016; 7:3184-3197. [PMID: 27699091 PMCID: PMC5030003 DOI: 10.1364/boe.7.003184] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 07/26/2016] [Accepted: 07/27/2016] [Indexed: 05/24/2023]
Abstract
Multimodal imaging probes a variety of tissue properties in a single image acquisition by merging complimentary imaging technologies. Exploiting synergies amongst the data, algorithms can be developed that lead to better tissue characterization than could be accomplished by the constituent imaging modalities taken alone. The combination of optical coherence tomography (OCT) with fluorescence lifetime imaging microscopy (FLIM) provides access to detailed tissue morphology and local biochemistry. The optical system described here merges 1310 nm swept-source OCT with time-domain FLIM having excitation at 355 and 532 nm. The pulses from 355 and 532 nm lasers have been interleaved to enable simultaneous acquisition of endogenous and exogenous fluorescence signals, respectively. The multimodal imaging system was validated using tissue phantoms. Nonspecific tagging with Alexa Flour 532 in a Watanbe rabbit aorta and active tagging of the LOX-1 receptor in human coronary artery, demonstrate the capacity of the system for simultaneous acquisition of OCT, endogenous FLIM, and exogenous FLIM in tissues.
Collapse
Affiliation(s)
- Sebina Shrestha
- Department of Biomedical Engineering, Texas A&M University, 5045 Emerging Technology Building, College Station, TX, 77843, USA
| | - Michael J. Serafino
- Department of Biomedical Engineering, Texas A&M University, 5045 Emerging Technology Building, College Station, TX, 77843, USA
| | - Jesus Rico-Jimenez
- Department of Biomedical Engineering, Texas A&M University, 5045 Emerging Technology Building, College Station, TX, 77843, USA
| | - Jesung Park
- Department of Biomedical Engineering, Texas A&M University, 5045 Emerging Technology Building, College Station, TX, 77843, USA
| | - Xi Chen
- Department of Biomedical Engineering, Texas A&M University, 5045 Emerging Technology Building, College Station, TX, 77843, USA
| | - Siqin Zhaorigetu
- Cardiovascular Experimental Imaging and Therapeutics, Texas Heart Institute, 6519 Fannin St., Houston, TX, 77030, USA
| | - Brian L. Walton
- Cardiovascular Experimental Imaging and Therapeutics, Texas Heart Institute, 6519 Fannin St., Houston, TX, 77030, USA
| | - Javier A. Jo
- Department of Biomedical Engineering, Texas A&M University, 5045 Emerging Technology Building, College Station, TX, 77843, USA
| | - Brian E. Applegate
- Department of Biomedical Engineering, Texas A&M University, 5045 Emerging Technology Building, College Station, TX, 77843, USA
| |
Collapse
|
26
|
Pande P, Shrestha S, Park J, Gimenez-Conti I, Brandon J, Applegate BE, Jo JA. Automated analysis of multimodal fluorescence lifetime imaging and optical coherence tomography data for the diagnosis of oral cancer in the hamster cheek pouch model. BIOMEDICAL OPTICS EXPRESS 2016; 7:2000-15. [PMID: 27231638 PMCID: PMC4871098 DOI: 10.1364/boe.7.002000] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 04/18/2016] [Accepted: 04/19/2016] [Indexed: 05/15/2023]
Abstract
It is known that the progression of oral cancer is accompanied by changes in both tissue biochemistry and morphology. A multimodal imaging approach combining functional and structural imaging modalities could therefore provide a more comprehensive prognosis of oral cancer. This idea forms the central theme of the current study, wherein this premise is examined in the context of a multimodal imaging system that combines fluorescence lifetime imaging (FLIM) and optical coherence tomography (OCT). Towards this end, in the first part of the present study, the diagnostic advantage obtained by using both fluorescence intensity and lifetime information is assessed. In the second part of the study, the diagnostic potential of FLIM-derived biochemical features is compared with that of OCT-derived morphological features. For an objective assessment, several quantitative biochemical and morphological features from FLIM and OCT data, respectively, were obtained using signal and image processing techniques. These features were subsequently used in a statistical classification framework to quantify the diagnostic potential of different features. The classification accuracy for combined FLIM and OCT features was estimated to be 87.4%, which was statistically higher than accuracy based on only FLIM (83.2%) or OCT (81.0%) features. Moreover, the complimentary information provided by FLIM and OCT features, resulted in highest sensitivity and specificity for the combined FLIM and OCT features for discriminating benign (88.2% sens., 92.0% spec.), pre-cancerous (81.5% sens., 96.0% spec.), and cancerous (90.1% sens., 92.0% spec.) classes.
Collapse
Affiliation(s)
- Paritosh Pande
- Biomedical Engineering Department, Texas A&M University, College Station, Texas 77843,
USA
| | - Sebina Shrestha
- Biomedical Engineering Department, Texas A&M University, College Station, Texas 77843,
USA
| | - Jesung Park
- Biomedical Engineering Department, Texas A&M University, College Station, Texas 77843,
USA
| | - Irma Gimenez-Conti
- Department of Carcinogenesis, The University of Texas M.D. Anderson Cancer Center, Smithville, Texas 78957,
USA
| | - Jimi Brandon
- Department of Carcinogenesis, The University of Texas M.D. Anderson Cancer Center, Smithville, Texas 78957,
USA
| | - Brian E. Applegate
- Biomedical Engineering Department, Texas A&M University, College Station, Texas 77843,
USA
| | - Javier A. Jo
- Biomedical Engineering Department, Texas A&M University, College Station, Texas 77843,
USA
| |
Collapse
|
27
|
Kim W, Chen X, Jo JA, Applegate BE. Lensless, ultra-wideband fiber optic rotary joint for biomedical applications. OPTICS LETTERS 2016; 41:1973-6. [PMID: 27128052 PMCID: PMC6731063 DOI: 10.1364/ol.41.001973] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The demands of optical fiber-based biomedical applications can, in many cases, outstrip the capabilities of lens-based commercially available fiber optic rotary joints. In some circumstances, it is necessary to use very broad spectral bandwidths (near UV to short-wave IR) and specialized optical fibers, such as double-clad fiber, and have the capacity to accommodate high rotational velocities. The broad spectrum, stretching down into the UV, presents two problems: (1) adequate chromatic correction in the lenses across the entire bandwidth and (2) strong UV absorption by the fluids used to lubricate the rotary joint. To accommodate these types of applications, we have developed an ultra-wideband lensless fiber optic rotary joint based on the principle that when two optical fibers are coaligned and placed in contact (or very close), the optical losses at the junction are very low. The advances demonstrated here enable excellent performance (<0.2 dB insertion loss), even down into the UV and spanning a wavelength range of at least 355-1360 nm with single-mode, multimode, and double-clad fibers. We also demonstrate excellent performance, ∼0.38 dB insertion loss, at rotational velocities up to 8800 rpm (146 Hz). To the best of our knowledge, this is the first demonstration of this type of rotary joint capable of such a wide bandwidth and high rotational velocities.
Collapse
Affiliation(s)
- Wihan Kim
- Department of Biomedical Engineering, Texas A&M University, 101 Bizzell St., College Station, TX 77843
| | - Xi Chen
- Department of Biomedical Engineering, Texas A&M University, 101 Bizzell St., College Station, TX 77843
| | - Javier A. Jo
- Department of Biomedical Engineering, Texas A&M University, 101 Bizzell St., College Station, TX 77843
| | - Brian E. Applegate
- Department of Biomedical Engineering, Texas A&M University, 101 Bizzell St., College Station, TX 77843
- Corresponding author:
| |
Collapse
|
28
|
Machikhin AS, Pozhar VE, Viskovatykh AV, Burmak LI. Acousto-optical tunable filter for combined wideband, spectral, and optical coherence microscopy. APPLIED OPTICS 2015; 54:7508-7513. [PMID: 26368870 DOI: 10.1364/ao.54.007508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A multimodal technique for inspection of microscopic objects by means of wideband optical microscopy, spectral microscopy, and optical coherence microscopy is described, implemented, and tested. The key feature is the spectral selection of light in the output arm of an interferometer with use of the specialized imaging acousto-optical tunable filter. In this filter, two interfering optical beams are diffracted via the same ultrasound wave without destruction of interference image structure. The basic requirements for the acousto-optical tunable filter are defined, and mathematical formulas for calculation of its parameters are derived. Theoretical estimation of the achievable accuracy of the 3D image reconstruction is presented and experimental proofs are given. It is demonstrated that spectral imaging can also be accompanied by measurement of the quantitative reflectance spectra. Examples of inspection of optically transparent and nontransparent samples demonstrate the applicability of the technique.
Collapse
|
29
|
Pawlowski ME, Shrestha S, Park J, Applegate BE, Oghalai JS, Tkaczyk TS. Miniature, minimally invasive, tunable endoscope for investigation of the middle ear. BIOMEDICAL OPTICS EXPRESS 2015; 6:2246-57. [PMID: 26114043 PMCID: PMC4473758 DOI: 10.1364/boe.6.002246] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 05/21/2015] [Accepted: 05/22/2015] [Indexed: 05/03/2023]
Abstract
We demonstrate a miniature, tunable, minimally invasive endoscope for diagnosis of the auditory system. The probe is designed to sharply image anatomical details of the middle ear without the need for physically adjusting the position of the distal end of the endoscope. This is achieved through the addition of an electrowetted, tunable, electronically-controlled lens to the optical train. Morphological imaging is enabled by scanning light emanating from an optical coherence tomography system. System performance was demonstrated by imaging part of the ossicular chain and wall of the middle ear cavity of a normal mouse. During the experiment, we electronically moved the plane of best focus from the incudo-stapedial joint to the stapedial artery. Repositioning the object plane allowed us to image anatomical details of the middle ear beyond the depth of field of a static optical system. We also demonstrated for the first time to our best knowledge, that an optical system with an electrowetted, tunable lens may be successfully employed to measure sound-induced vibrations within the auditory system by measuring the vibratory amplitude of the tympanic membrane in a normal mouse in response to pure tone stimuli.
Collapse
Affiliation(s)
- Michal E. Pawlowski
- William Marsh Rice University, Department of Bioengineering, 6100 Main St, Houston, TX 77030, USA
| | - Sebina Shrestha
- Texas A&M University, Department of Biomedical Engineering, 5045 Emerging Technology Building, College Station, TX 77843, USA
| | - Jesung Park
- Texas A&M University, Department of Biomedical Engineering, 5045 Emerging Technology Building, College Station, TX 77843, USA
| | - Brian E. Applegate
- Texas A&M University, Department of Biomedical Engineering, 5045 Emerging Technology Building, College Station, TX 77843, USA
| | - John S. Oghalai
- Stanford University, Department of Otolaryngology-Head and Neck Surgery, 801 Welch Road, Stanford, CA 94305, USA
| | - Tomasz S. Tkaczyk
- William Marsh Rice University, Department of Bioengineering, 6100 Main St, Houston, TX 77030, USA
| |
Collapse
|
30
|
Jo JA, Park J, Pande P, Shrestha S, Serafino MJ, Rico Jimenez JDJ, Clubb F, Walton B, Buja LM, Phipps JE, Feldman MD, Adame J, Applegate BE. Simultaneous morphological and biochemical endogenous optical imaging of atherosclerosis. Eur Heart J Cardiovasc Imaging 2015; 16:910-8. [PMID: 25722204 DOI: 10.1093/ehjci/jev018] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 01/26/2015] [Indexed: 11/14/2022] Open
Abstract
AIMS The aim of this study was to validate novel imaging technology for simultaneous morphological and biochemical endogenous optical imaging of coronary atherosclerotic plaque. METHODS AND RESULTS Optical coherence tomography (OCT) generates high-resolution 3D images of plaque morphology and endogenous fluorescence lifetime imaging microscopy (FLIM) characterizes biochemical composition. Both imaging modalities rely on plaque's intrinsic optical characteristics, making contrast agents unnecessary. A multimodal OCT/FLIM system was utilized to generate luminal biochemical maps superimposed on high-resolution (7 µm axial and 13 µm lateral) structural volumetric images. Forty-seven fresh postmortem human coronary segments were imaged: pathological intimal thickening (PIT, n = 26), fibroatheroma (FA, n = 12), thin-cap FA (TCFA, n = 2), and fibrocalcific plaque (CA, n = 7), determined by histopathology. Multimodal images were evaluated, and each plaque identified as PIT, FA, TCFA, or CA based on expert OCT readers, and as having high-lipid (HL), high-collagen (HC), or low-collagen/low-lipid (LCL) luminal composition based on linear discriminant analysis of FLIM. Of 47 plaques, 89.4% (42/47) of the plaques were correctly identified based on OCT/FLIM evaluation using tissue histopathology and immunohistochemistry as the gold standard. Four of the misclassifications corresponded to confusing PIT with HL luminal composition for FA with HL cap. The other corresponded to confusing FA with a HC cap for FA with an LCL cap. CONCLUSION We have demonstrated the feasibility of accurate simultaneous OCT/FLIM morphological and biochemical characterization of coronary plaques at spatial resolutions and acquisition speeds compatible with catheter-based intravascular imaging. The success of this pilot study sets up future development of a multimodal intravascular imaging system that will enable studies that could help improve our understanding of plaque pathogenesis.
Collapse
Affiliation(s)
- Javier A Jo
- Department of Biomedical Engineering, Texas A&M University, 5062 Emerging Technologies Building, 3120 TAMU, College Station, TX 77843-3120, USA
| | - Jesung Park
- Department of Biomedical Engineering, Texas A&M University, 5062 Emerging Technologies Building, 3120 TAMU, College Station, TX 77843-3120, USA
| | - Paritosh Pande
- Department of Biomedical Engineering, Texas A&M University, 5062 Emerging Technologies Building, 3120 TAMU, College Station, TX 77843-3120, USA
| | - Sebina Shrestha
- Department of Biomedical Engineering, Texas A&M University, 5062 Emerging Technologies Building, 3120 TAMU, College Station, TX 77843-3120, USA
| | - Michael J Serafino
- Department of Biomedical Engineering, Texas A&M University, 5062 Emerging Technologies Building, 3120 TAMU, College Station, TX 77843-3120, USA
| | - J de Jesus Rico Jimenez
- Department of Biomedical Engineering, Texas A&M University, 5062 Emerging Technologies Building, 3120 TAMU, College Station, TX 77843-3120, USA
| | - Fred Clubb
- Department of Biomedical Engineering, Texas A&M University, 5062 Emerging Technologies Building, 3120 TAMU, College Station, TX 77843-3120, USA Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, USA
| | - Brian Walton
- Department of Cardiology, Texas Heart Institute at St. Luke's Episcopal Hospital, Houston, TX, USA
| | - L Maximilian Buja
- Department of Cardiovascular Pathology Research, Texas Heart Institute at St. Luke's Episcopal Hospital, Houston, TX, USA
| | - Jennifer E Phipps
- University of Texas Health Science Center San Antonio, San Antonio, TX, USA
| | - Marc D Feldman
- University of Texas Health Science Center San Antonio, San Antonio, TX, USA
| | - Jessie Adame
- Autopsy and Pathology Services, Houston, TX, USA
| | - Brian E Applegate
- Department of Biomedical Engineering, Texas A&M University, 5062 Emerging Technologies Building, 3120 TAMU, College Station, TX 77843-3120, USA
| |
Collapse
|
31
|
Jiang M, Liu T, Liu X, Jiao S. Simultaneous optical coherence tomography and lipofuscin autofluorescence imaging of the retina with a single broadband light source at 480nm. BIOMEDICAL OPTICS EXPRESS 2014; 5:4242-8. [PMID: 25574436 PMCID: PMC4285602 DOI: 10.1364/boe.5.004242] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 10/20/2014] [Accepted: 10/21/2014] [Indexed: 05/03/2023]
Abstract
We accomplished spectral domain optical coherence tomography and auto-fluorescence microscopy for imaging the retina with a single broadband light source centered at 480 nm. This technique is able to provide simultaneous structural imaging and lipofuscin molecular contrast of the retina. Since the two imaging modalities are provided by the same group of photons, their images are intrinsically registered. To test the capabilities of the technique we periodically imaged the retinas of the same rats for four weeks. The images successfully demonstrated lipofuscin accumulation in the retinal pigment epithelium with aging. The experimental results showed that the dual-modal imaging system can be a potentially powerful tool in the study of age-related degenerative retinal diseases.
Collapse
Affiliation(s)
- Minshan Jiang
- Engineering Research Center of Optical Instruments and Systems, Ministry of Education, Shanghai Key Lab of Modern Optical Systems, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093,
China
- Department of Biomedical Engineering, Florida International University, 10555 W Flagler Street, Miami, Florida, 33174,
USA
| | - Tan Liu
- Department of Biomedical Engineering, Florida International University, 10555 W Flagler Street, Miami, Florida, 33174,
USA
| | - Xiaojing Liu
- Department of Biomedical Engineering, Florida International University, 10555 W Flagler Street, Miami, Florida, 33174,
USA
| | - Shuliang Jiao
- Department of Biomedical Engineering, Florida International University, 10555 W Flagler Street, Miami, Florida, 33174,
USA
| |
Collapse
|
32
|
|
33
|
Pahlevaninezhad H, Lee AMD, Shaipanich T, Raizada R, Cahill L, Hohert G, Yang VXD, Lam S, MacAulay C, Lane P. A high-efficiency fiber-based imaging system for co-registered autofluorescence and optical coherence tomography. BIOMEDICAL OPTICS EXPRESS 2014; 5:2978-87. [PMID: 25401011 PMCID: PMC4230860 DOI: 10.1364/boe.5.002978] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 07/31/2014] [Accepted: 08/01/2014] [Indexed: 05/06/2023]
Abstract
We present a power-efficient fiber-based imaging system capable of co-registered autofluorescence imaging and optical coherence tomography (AF/OCT). The system employs a custom fiber optic rotary joint (FORJ) with an embedded dichroic mirror to efficiently combine the OCT and AF pathways. This three-port wavelength multiplexing FORJ setup has a throughput of more than 83% for collected AF emission, significantly more efficient compared to previously reported fiber-based methods. A custom 900 µm diameter catheter ‒ consisting of a rotating lens assembly, double-clad fiber (DCF), and torque cable in a stationary plastic tube ‒ was fabricated to allow AF/OCT imaging of small airways in vivo. We demonstrate the performance of this system ex vivo in resected porcine airway specimens and in vivo in human on fingers, in the oral cavity, and in peripheral airways.
Collapse
Affiliation(s)
- Hamid Pahlevaninezhad
- Integrative Oncology Department―Imaging Unit, BC Cancer Research Center, 675 West 10th Avenue, Vancouver, Canada
| | - Anthony M. D. Lee
- Integrative Oncology Department―Imaging Unit, BC Cancer Research Center, 675 West 10th Avenue, Vancouver, Canada
| | - Tawimas Shaipanich
- Integrative Oncology Department―Imaging Unit, BC Cancer Research Center, 675 West 10th Avenue, Vancouver, Canada
| | - Rashika Raizada
- Integrative Oncology Department―Imaging Unit, BC Cancer Research Center, 675 West 10th Avenue, Vancouver, Canada
| | - Lucas Cahill
- Integrative Oncology Department―Imaging Unit, BC Cancer Research Center, 675 West 10th Avenue, Vancouver, Canada
| | - Geoffrey Hohert
- Integrative Oncology Department―Imaging Unit, BC Cancer Research Center, 675 West 10th Avenue, Vancouver, Canada
| | - Victor X. D. Yang
- Biophotonics and Bioengineering Laboratory, Electrical and Computer Engineering, Ryerson University, Toronto, ON, Canada
| | - Stephen Lam
- Integrative Oncology Department―Imaging Unit, BC Cancer Research Center, 675 West 10th Avenue, Vancouver, Canada
| | - Calum MacAulay
- Integrative Oncology Department―Imaging Unit, BC Cancer Research Center, 675 West 10th Avenue, Vancouver, Canada
| | - Pierre Lane
- Integrative Oncology Department―Imaging Unit, BC Cancer Research Center, 675 West 10th Avenue, Vancouver, Canada
| |
Collapse
|
34
|
Mattison SP, Kim W, Park J, Applegate BE. Molecular Imaging in Optical Coherence Tomography. CURRENT MOLECULAR IMAGING 2014; 3:88-105. [PMID: 25821718 PMCID: PMC4373611 DOI: 10.2174/2211555203666141117233442] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Optical coherence tomography (OCT) is a medical imaging technique that provides tomographic images at micron scales in three dimensions and high speeds. The addition of molecular contrast to the available morphological image holds great promise for extending OCT's impact in clinical practice and beyond. Fundamental limitations prevent OCT from directly taking advantage of powerful molecular processes such as fluorescence emission and incoherent Raman scattering. A wide range of approaches is being researched to provide molecular contrast to OCT. Here we review those approaches with particular attention to those that derive their molecular contrast directly from modulation of the OCT signal. We also provide a brief overview of the multimodal approaches to gaining molecular contrast coincident with OCT.
Collapse
Affiliation(s)
| | | | - Jesung Park
- Department of Biomedical Engineering, Texas A&M University, 3120 TAMU, College Station, TX 77843
| | - Brian E. Applegate
- Department of Biomedical Engineering, Texas A&M University, 3120 TAMU, College Station, TX 77843
| |
Collapse
|
35
|
Pahlevaninezhad H, Lee AMD, Lam S, MacAulay C, Lane PM. Coregistered autofluorescence-optical coherence tomography imaging of human lung sections. JOURNAL OF BIOMEDICAL OPTICS 2014; 19:36022. [PMID: 24687614 DOI: 10.1117/1.jbo.19.3.036022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 03/03/2014] [Indexed: 05/20/2023]
Abstract
Autofluorescence (AF) imaging can provide valuable information about the structural and metabolic state of tissue that can be useful for elucidating physiological and pathological processes. Optical coherence tomography (OCT) provides high resolution detailed information about tissue morphology. We present coregistered AF-OCT imaging of human lung sections. Adjacent hematoxylin and eosin stained histological sections are used to identify tissue structures observed in the OCT images. Segmentation of these structures in the OCT images allowed determination of relative AF intensities of human lung components. Since the AF imaging was performed on tissue sections perpendicular to the airway axis, the results show the AF signal originating from the airway wall components free from the effects of scattering and absorption by overlying layers as is the case during endoscopic imaging. Cartilage and dense connective tissue (DCT) are found to be the dominant fluorescing components with the average cartilage AF intensity about four times greater than that of DCT. The epithelium, lamina propria, and loose connective tissue near basement membrane generate an order of magnitude smaller AF signal than the cartilage fluorescence.
Collapse
|
36
|
Fard AM, Vacas-Jacques P, Hamidi E, Wang H, Carruth RW, Gardecki JA, Tearney GJ. Optical coherence tomography--near infrared spectroscopy system and catheter for intravascular imaging. OPTICS EXPRESS 2013; 21:30849-58. [PMID: 24514658 PMCID: PMC3926541 DOI: 10.1364/oe.21.030849] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 10/27/2013] [Accepted: 11/07/2013] [Indexed: 05/19/2023]
Abstract
Owing to its superior resolution, intravascular optical coherence tomography (IVOCT) is a promising tool for imaging the microstructure of coronary artery walls. However, IVOCT does not identify chemicals and molecules in the tissue, which is required for a more complete understanding and accurate diagnosis of coronary disease. Here we present a dual-modality imaging system and catheter that uniquely combines IVOCT with diffuse near-infrared spectroscopy (NIRS) in a single dual-modality imaging device for simultaneous acquisition of microstructural and compositional information. As a proof-of-concept demonstration, the device has been used to visualize co-incident microstructural and spectroscopic information obtained from a diseased cadaver human coronary artery.
Collapse
Affiliation(s)
- Ali M. Fard
- Wellman Center for Photomedicine, Harvard Medical School and Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114,
USA
| | - Paulino Vacas-Jacques
- Wellman Center for Photomedicine, Harvard Medical School and Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114,
USA
| | - Ehsan Hamidi
- Wellman Center for Photomedicine, Harvard Medical School and Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114,
USA
| | - Hao Wang
- Wellman Center for Photomedicine, Harvard Medical School and Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114,
USA
- Department of Biomedical Engineering, Boston University, Boston, MA 02215,
USA
| | - Robert W. Carruth
- Wellman Center for Photomedicine, Harvard Medical School and Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114,
USA
| | - Joseph A. Gardecki
- Wellman Center for Photomedicine, Harvard Medical School and Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114,
USA
| | - Guillermo J. Tearney
- Wellman Center for Photomedicine, Harvard Medical School and Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114,
USA
- Harvard-MIT Division of Health Sciences and Technology, 77 Massachusetts Avenue, Cambridge, MA 02139,
USA
- Department of Pathology, Harvard Medical School and Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114,
USA
| |
Collapse
|
37
|
Dental optical coherence tomography. SENSORS 2013; 13:8928-49. [PMID: 23857261 PMCID: PMC3758630 DOI: 10.3390/s130708928] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 06/20/2013] [Accepted: 06/20/2013] [Indexed: 02/07/2023]
Abstract
This review paper describes the applications of dental optical coherence tomography (OCT) in oral tissue images, caries, periodontal disease and oral cancer. The background of OCT, including basic theory, system setup, light sources, spatial resolution and system limitations, is provided. The comparisons between OCT and other clinical oral diagnostic methods are also discussed.
Collapse
|
38
|
Jung Y, Nichols AJ, Klein OJ, Roussakis E, Evans CL. Label-Free, Longitudinal Visualization of PDT Response In Vitro with Optical Coherence Tomography. Isr J Chem 2012; 52:728-744. [PMID: 23316088 PMCID: PMC3538822 DOI: 10.1002/ijch.201200009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A major challenge in creating and optimizing therapeutics in the fight against cancer is visualizing and understanding the microscale spatiotemporal treatment response dynamics that occur in patients. This is especially true for photodynamic therapy (PDT), where therapeutic optimization relies on understanding the interplay between factors such as photosensitizer localization and uptake, in addition to light dose and delivery rate. In vitro 3D culture systems that recapitulate many of the biological features of human disease are powerful platforms for carrying out detailed studies on PDT response and resistance. Current techniques for visualizing these models, however, often lack accuracy due to the perturbative nature of the sample preparation, with light attenuation complicating the study of intact models. Optical coherence tomography (OCT) is an ideal method for the long-term, non-perturbative study of in vitro models and their response to PDT. Monitoring the response of 3D models to PDT by time-lapse OCT methods promises to provide new perspectives and open the way to cancer treatment methodologies that can be translated towards the clinic.
Collapse
Affiliation(s)
- Yookyung Jung
- Wellman Center for Photomedicine, Harvard Medical School, Massachusetts General Hospital, Boston, Massachusetts (USA)
| | - Alexander J. Nichols
- Wellman Center for Photomedicine, Harvard Medical School, Massachusetts General Hospital, Boston, Massachusetts (USA)
- Harvard University, Program in Biophysics, Cambridge, Massachusetts (USA)
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, Massachusetts (USA)
| | - Oliver J. Klein
- Wellman Center for Photomedicine, Harvard Medical School, Massachusetts General Hospital, Boston, Massachusetts (USA)
| | - Emmanuel Roussakis
- Wellman Center for Photomedicine, Harvard Medical School, Massachusetts General Hospital, Boston, Massachusetts (USA)
| | - Conor L. Evans
- Wellman Center for Photomedicine, Harvard Medical School, Massachusetts General Hospital, Boston, Massachusetts (USA)
- Harvard University, Program in Biophysics, Cambridge, Massachusetts (USA)
| |
Collapse
|
39
|
Phipps JE, Sun Y, Fishbein MC, Marcu L. A fluorescence lifetime imaging classification method to investigate the collagen to lipid ratio in fibrous caps of atherosclerotic plaque. Lasers Surg Med 2012; 44:564-71. [PMID: 22886522 DOI: 10.1002/lsm.22059] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2012] [Indexed: 11/12/2022]
Abstract
BACKGROUND AND OBJECTIVE This study describes a novel fluorescence lifetime imaging (FLIM) classification method to determine the ratio of collagen to lipid content in the fibrous cap of atherosclerotic plaques. Additionally, an analytical process to assess risk of plaque rupture based on this ratio is proposed. Collagen to lipid ratio has been shown to be an important parameter to evaluate structural integrity of the fibrous cap. FLIM and other time-resolved fluorescence techniques have recently been applied to the study of atherosclerosis based on the ability to assess biochemical composition. STUDY DESIGN/MATERIALS AND METHODS Autofluorescence of specimens retrieved during carotid endarterectomy procedures was measured through three optical filters, F377: 377/50 nm, F460: 460/66 nm, and F510: 510/84 nm (center wavelength/bandwidth). A Laguerre deconvolution technique was used for the evaluation of fluorescence decay dynamics. The resulting decay parameters (average fluorescence lifetime and 4 Laguerre coefficients at each of the recorded bandwidths) were used for sample characterization. Linear discriminant analysis (LDA) was used to classify each image into collagen or lipid-rich regions based on these parameters. Ultimately, a risk-level was assigned based on the ratio of collagen to lipid on the surface of the fibrous cap. RESULTS FLIM images were acquired in 18 carotid plaque specimens at 43 locations. Classification of collagen and lipid-rich regions within the fibrous cap was performed with sensitivity and specificity of 80% and 82%, respectively. CONCLUSIONS Results from this study show that an LDA method of classifying regions of FLIM images of carotid plaque into collagen and lipid-rich regions is capable of being automated and used to rate the risk of plaque rupture based on autofluorescence decay dynamics and without the need for fluorescence intensity or contrast agents.
Collapse
Affiliation(s)
- Jennifer E Phipps
- Department of Biomedical Engineering, University of California Davis, Davis, California 95616, USA
| | | | | | | |
Collapse
|
40
|
Dai C, Liu X, Jiao S. Simultaneous optical coherence tomography and autofluorescence microscopy with a single light source. JOURNAL OF BIOMEDICAL OPTICS 2012; 17:080502-1. [PMID: 23224153 PMCID: PMC3442158 DOI: 10.1117/1.jbo.17.8.080502] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 06/27/2012] [Accepted: 06/28/2012] [Indexed: 05/20/2023]
Abstract
We have accomplished simultaneous spectral domain optical coherence tomography (SD-OCT) and autofluorescence (AF) microscopy with a broadband light source centered at 415 nm. The light source was provided by frequency-doubling of an ultra-fast broadband Ti:Sapphire laser. With a bandwidth of 8 nm, the visible SD-OCT achieved a depth resolution of ~12 μm. Since the two imaging modalities are provided by the same group of photons, their images are intrinsically registered. The dual-modal system is capable of providing OCT imaging and molecular contrasts simultaneously. The imaging system was tested on imaging biological samples ex vivo and in vivo.
Collapse
Affiliation(s)
- Cuixia Dai
- Shanghai Institute of Technology, College of Science, 100 Haiquan Road, Shanghai 201418, China
| | - Xiaojing Liu
- University of Southern California, Department of Ophthalmology Keck School of Medicine, Los Angeles, California 90033
| | - Shuliang Jiao
- University of Southern California, Department of Ophthalmology Keck School of Medicine, Los Angeles, California 90033
- Address all correspondence to: Shuliang Jiao, University of Southern California, Department of Ophthalmology, Keck School of Medicine, 1450 San Pablo St., Room DVRC 307E Los Angeles, California 90033; E-mail: .
| |
Collapse
|
41
|
Zhao Y, Graf BW, Chaney EJ, Mahmassani Z, Antoniadou E, DeVolder R, Kong H, Boppart MD, Boppart SA. Integrated multimodal optical microscopy for structural and functional imaging of engineered and natural skin. JOURNAL OF BIOPHOTONICS 2012; 5:437-48. [PMID: 22371330 PMCID: PMC4486208 DOI: 10.1002/jbio.201200003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Revised: 02/07/2012] [Accepted: 02/07/2012] [Indexed: 05/21/2023]
Abstract
An integrated multimodal optical microscope is demonstrated for high-resolution, structural and functional imaging of engineered and natural skin. This microscope incorporates multiple imaging modalities including optical coherence (OCM), multi-photon (MPM), and fluorescence lifetime imaging microscopy (FLIM), enabling simultaneous visualization of multiple contrast sources and mechanisms from cells and tissues. Spatially co-registered OCM/MPM/FLIM images of multi-layered skin tissues are obtained, which are formed based on complementary information provided by different modalities, i.e., scattering information from OCM, molecular information from MPM, and functional cellular metabolism states from FLIM. Cellular structures in both the dermis and epidermis, especially different morphological and physiological states of keratinocytes from different epidermal layers, are revealed by mutually-validating images. In vivo imaging of human skin is also investigated, which demonstrates the potential of multimodal microscopy for in vivo investigation during engineered skin engraftment. This integrated imaging technique and microscope show the potential for investigating cellular dynamics in developing engineered skin and following in vivo grafting, which will help refine the control and culturing conditions necessary to obtain more robust and physiologically-relevant engineered skin substitutes.
Collapse
Affiliation(s)
- Youbo Zhao
- Biophotonics Imaging Laboratory, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Benedikt W. Graf
- Biophotonics Imaging Laboratory, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Eric J. Chaney
- Biophotonics Imaging Laboratory, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Ziad Mahmassani
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Eleni Antoniadou
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Ross DeVolder
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Hyunjoon Kong
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Marni D. Boppart
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Stephen A. Boppart
- Biophotonics Imaging Laboratory, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Internal Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Corresponding author: , Phone: +1 217 244 7479, Fax: +1 217 333 5833
| |
Collapse
|
42
|
Iftimia N, Iyer AK, Hammer DX, Lue N, Mujat M, Pitman M, Ferguson RD, Amiji M. Fluorescence-guided optical coherence tomography imaging for colon cancer screening: a preliminary mouse study. BIOMEDICAL OPTICS EXPRESS 2012; 3:178-91. [PMID: 22254178 PMCID: PMC3255336 DOI: 10.1364/boe.3.000178] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Revised: 12/07/2011] [Accepted: 12/18/2011] [Indexed: 05/20/2023]
Abstract
A new concept for cancer screening has been preliminarily investigated. A cancer targeting agent loaded with a near-infrared (NIR) dye was topically applied on the tissue to highlight cancer-suspect locations and guide optical coherence tomography (OCT) imaging, which was used to further investigate tissue morphology at the micron scale. A pilot study on ApcMin mice has been performed to preliminarily test this new cancer screening approach. As a cancer-targeting agent, poly(epsilon-caprolactone) microparticles (PCLMPs), labeled with a NIR dye and functionalized with an RGD (argenine-glycine-aspartic acid) peptide, were used. This agent recognizes the α(ν)β(3) integrin receptor (ABIR), which is over-expressed by epithelial cancer cells. The contrast agent was administered topically in vivo in mouse colon. After incubation, the animals were sacrificed and fluorescence-guided high resolution optical coherence tomography (OCT) imaging was used to visualize colon morphology. The preliminary results show preferential staining of the abnormal tissue, as indicated by both microscopy and laser-induced fluorescence imaging, and OCT's capability to differentiate between normal mucosal areas, early dysplasia, and adenocarcinoma. Although very preliminary, the results of this study suggest that fluorescence-guided OCT imaging might be a suitable approach for cancer screening. If successful, this approach could be used by clinicians to more reliably diagnose early stage cancers in vivo.
Collapse
Affiliation(s)
- Nicusor Iftimia
- Physical Sciences, Inc., Andover, Massachusetts 01810-1077, USA.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Park J, Pande P, Shrestha S, Clubb F, Applegate BE, Jo JA. Biochemical characterization of atherosclerotic plaques by endogenous multispectral fluorescence lifetime imaging microscopy. Atherosclerosis 2011; 220:394-401. [PMID: 22138141 DOI: 10.1016/j.atherosclerosis.2011.10.034] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Revised: 09/30/2011] [Accepted: 10/25/2011] [Indexed: 10/15/2022]
Abstract
OBJECTIVE To investigate the potential of endogenous multispectral fluorescence lifetime imaging microscopy (FLIM) for biochemical characterization of human coronary atherosclerotic plaques. METHODS Endogenous multispectral FLIM imaging was performed on the lumen of 58 segments of postmortem human coronary artery. The fluorescence was separated into three emission bands targeting the three main arterial endogenous fluorophores (390±20 nm for collagen, 452±22.5 nm for elastin, and 550±20 for lipids). The fluorescence normalized intensity and average lifetime from each emission band was used to classify each pixel of an image as either "High-Collagen", "High-Lipids" or "Low-Collagen/Lipids" via multiclass Fisher's linear discriminant analysis. RESULTS Classification of plaques as either "High-Collagen", "High-Lipids" or "Low-Collagen/Lipids" based on the endogenous multispectral FLIM was achieved with a sensitivity/specificity of 96/98%, 89/99%, and 99/99%, respectively, where histopathology served as the gold standard. CONCLUSION The endogenous multispectral FLIM approach we have taken, which can readily be adapted for in vivo intravascular catheter based imaging, is capable of reliably identifying plaques with high content of either collagen or lipids.
Collapse
Affiliation(s)
- Jesung Park
- Department of Biomedical Engineering, Texas A&M University, 5045 emerging Technology Building, College Station, TX 77843, United States
| | | | | | | | | | | |
Collapse
|
44
|
Suter MJ, Nadkarni SK, Weisz G, Tanaka A, Jaffer FA, Bouma BE, Tearney GJ. Intravascular optical imaging technology for investigating the coronary artery. JACC Cardiovasc Imaging 2011; 4:1022-39. [PMID: 21920342 PMCID: PMC3583353 DOI: 10.1016/j.jcmg.2011.03.020] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Revised: 03/04/2011] [Accepted: 03/14/2011] [Indexed: 12/14/2022]
Abstract
There is an ever-increasing demand for new imaging methods that can provide additional information about the coronary wall to better characterize and stratify high-risk plaques, and to guide interventional and pharmacologic management of patients with coronary artery disease. While there are a number of imaging modalities that facilitate the assessment of coronary artery pathology, this review paper focuses on intravascular optical imaging modalities that provide information on the microstructural, compositional, biochemical, biomechanical, and molecular features of coronary lesions and stents. The optical imaging modalities discussed include angioscopy, optical coherence tomography, polarization sensitive-optical coherence tomography, laser speckle imaging, near-infrared spectroscopy, time-resolved laser induced fluorescence spectroscopy, Raman spectroscopy, and near-infrared fluorescence molecular imaging. Given the wealth of information that these techniques can provide, optical imaging modalities are poised to play an increasingly significant role in the evaluation of the coronary artery in the future.
Collapse
Affiliation(s)
- Melissa J. Suter
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
- Pulmonary and Critical Care Unit, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Seemantini K. Nadkarni
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
- Pulmonary and Critical Care Unit, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Giora Weisz
- Center for Interventional Vascular Therapy, New York-Presbyterian Hospital, Columbia University, and Cardiovascular Research Foundation, New York, New York
| | - Atsushi Tanaka
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
- Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Farouc A. Jaffer
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
- Cardiovascular Research Center, Cardiology Division, and Center for Molecular Imaging Research, Massachusetts General Hospital, Harvard Medical School, Boston Massachusetts
| | - Brett E. Bouma
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
- Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, Massachusetts
| | - Guillermo J. Tearney
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, Massachusetts
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
45
|
Gao SS, Xia A, Yuan T, Raphael PD, Shelton RL, Applegate BE, Oghalai JS. Quantitative imaging of cochlear soft tissues in wild-type and hearing-impaired transgenic mice by spectral domain optical coherence tomography. OPTICS EXPRESS 2011; 19:15415-28. [PMID: 21934905 PMCID: PMC3482885 DOI: 10.1364/oe.19.015415] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Human hearing loss often occurs as a result of damage or malformations to the functional soft tissues within the cochlea, but these changes are not appreciable with current medical imaging modalities. We sought to determine whether optical coherence tomography (OCT) could assess the soft tissue structures relevant to hearing using mouse models. We imaged excised cochleae with an altered tectorial membrane and during normal development. The soft tissue structures and expected anatomical variations were visible using OCT, and quantitative measurements confirmed the ability to detect critical changes relevant to hearing.
Collapse
Affiliation(s)
- Simon S. Gao
- Department of Otolaryngology-Head and Neck Surgery, Stanford University, 801 Welch Road, Stanford, CA 94305,
USA
- Department of Bioengineering, Rice University, 6100 Main Street, Houston, TX 77005,
USA
| | - Anping Xia
- Department of Otolaryngology-Head and Neck Surgery, Stanford University, 801 Welch Road, Stanford, CA 94305,
USA
| | - Tao Yuan
- Department of Otolaryngology-Head and Neck Surgery, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030,
USA
| | - Patrick D. Raphael
- Department of Otolaryngology-Head and Neck Surgery, Stanford University, 801 Welch Road, Stanford, CA 94305,
USA
| | - Ryan L. Shelton
- Department of Biomedical Engineering, Texas A&M University, 337 Zachry Engineering Center, 3120 TAMU, College Station, TX 77843
USA
| | - Brian E. Applegate
- Department of Biomedical Engineering, Texas A&M University, 337 Zachry Engineering Center, 3120 TAMU, College Station, TX 77843
USA
| | - John S. Oghalai
- Department of Otolaryngology-Head and Neck Surgery, Stanford University, 801 Welch Road, Stanford, CA 94305,
USA
- Department of Bioengineering, Rice University, 6100 Main Street, Houston, TX 77005,
USA
| |
Collapse
|
46
|
Jo JA, Applegate BE, Park J, Shrestha S, Pande P, Gimenez-Conti IB, Brandon JL. In vivo simultaneous morphological and biochemical optical imaging of oral epithelial cancer. IEEE Trans Biomed Eng 2010; 57:2596-9. [PMID: 20656649 DOI: 10.1109/tbme.2010.2060485] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Early detection of cancer is key to reducing morbidity and mortality. Morphological and chemical biomarkers presage the transition from normal to cancerous tissue. We have developed a noninvasive imaging system incorporating optical coherence tomography (OCT) and fluorescence lifetime imaging microscopy (FLIM) into a single optical system for the first time, in order to acquire both sets of biomarkers. OCT can provide morphological images of tissue with high resolution, while FLIM can provide biochemical tissue maps. Coregistered OCT volumes and FLIM images have been acquired simultaneously in an in vivo hamster cheek pouch model of oral cancer. The OCT images indicate morphological biomarkers for cancer including thickening of the epithelial layer and loss of the layered structure. The FLIM images indicate chemical biomarkers including increased nicotinamide adenine dinucleotide and reduced collagen emission. While both sets of biomarkers can differentiate normal and cancerous tissue, we believe their combination will enable the discrimination of benign lesions possessing some of the indicated biomarkers, e.g., scarring or inflammation.
Collapse
Affiliation(s)
- Javier A Jo
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77840, USA.
| | | | | | | | | | | | | |
Collapse
|
47
|
Shrestha S, Park J, Pande P, Applegate BE, Jo JA. Multimodal optical imaging for simultaneous in-vivo morphological and biochemical characterization of oral epithelial cancer. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2010; 2010:1970-1973. [PMID: 21096785 DOI: 10.1109/iembs.2010.5627569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Early detection of cancer is key to reducing morbidity and mortality. Morphological and chemical biomarkers presage the transition from normal to cancerous tissue. We have developed a noninvasive imaging system incorporating optical coherence tomography and fluorescence lifetime imaging to acquire both sets of biomarkers. Here we report early favorable results from an animal study designed to measure the capacity of this approach for early diagnosis of oral cancer.
Collapse
Affiliation(s)
- Sebina Shrestha
- Department of Biomedical Engineering at Texas A&M University, College Station, TX, USA
| | | | | | | | | |
Collapse
|