1
|
Bowman AJ, Kasevich MA. Resonant Electro-Optic Imaging for Microscopy at Nanosecond Resolution. ACS NANO 2021; 15:16043-16054. [PMID: 34546704 DOI: 10.1021/acsnano.1c04470] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We demonstrate an electro-optic wide-field method to enable fluorescence lifetime microscopy (FLIM) with high throughput and single-molecule sensitivity. Resonantly driven Pockels cells are used to efficiently gate images at 39 MHz, allowing fluorescence lifetime to be captured on standard camera sensors. Lifetime imaging of single molecules is enabled in wide field with exposure times of less than 100 ms. This capability allows combination of wide-field FLIM with single-molecule super-resolution localization microscopy. Fast single-molecule dynamics such as FRET and molecular binding events are captured from wide-field images without prior spatial knowledge. A lifetime sensitivity of 1.9 times the photon shot-noise limit is achieved, and high throughput is shown by acquiring wide-field FLIM images with millisecond exposure and >108 photons per frame. Resonant electro-optic FLIM allows lifetime contrast in any wide-field microscopy method.
Collapse
Affiliation(s)
- Adam J Bowman
- Physics Department, Stanford University, 382 Via Pueblo Mall, Stanford, California 94305, United States
| | - Mark A Kasevich
- Physics Department, Stanford University, 382 Via Pueblo Mall, Stanford, California 94305, United States
| |
Collapse
|
2
|
Zickus V, Wu ML, Morimoto K, Kapitany V, Fatima A, Turpin A, Insall R, Whitelaw J, Machesky L, Bruschini C, Faccio D, Charbon E. Fluorescence lifetime imaging with a megapixel SPAD camera and neural network lifetime estimation. Sci Rep 2020; 10:20986. [PMID: 33268900 PMCID: PMC7710711 DOI: 10.1038/s41598-020-77737-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 11/06/2020] [Indexed: 01/07/2023] Open
Abstract
Fluorescence lifetime imaging microscopy (FLIM) is a key technology that provides direct insight into cell metabolism, cell dynamics and protein activity. However, determining the lifetimes of different fluorescent proteins requires the detection of a relatively large number of photons, hence slowing down total acquisition times. Moreover, there are many cases, for example in studies of cell collectives, where wide-field imaging is desired. We report scan-less wide-field FLIM based on a 0.5 MP resolution, time-gated Single Photon Avalanche Diode (SPAD) camera, with acquisition rates up to 1 Hz. Fluorescence lifetime estimation is performed via a pre-trained artificial neural network with 1000-fold improvement in processing times compared to standard least squares fitting techniques. We utilised our system to image HT1080-human fibrosarcoma cell line as well as Convallaria. The results show promise for real-time FLIM and a viable route towards multi-megapixel fluorescence lifetime images, with a proof-of-principle mosaic image shown with 3.6 MP.
Collapse
Affiliation(s)
- Vytautas Zickus
- School of Physics and Astronomy, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Ming-Lo Wu
- Advanced Quantum Architecture Laboratory, Ecole Polytechnique Fédérale de Lausanne, 2002, Neuchâtel, Switzerland
| | - Kazuhiro Morimoto
- Advanced Quantum Architecture Laboratory, Ecole Polytechnique Fédérale de Lausanne, 2002, Neuchâtel, Switzerland
| | - Valentin Kapitany
- School of Physics and Astronomy, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Areeba Fatima
- School of Physics and Astronomy, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Alex Turpin
- School of Computing Science, University of Glasgow, Glasgow, G12 8LT, UK
| | - Robert Insall
- University of Glasgow Institute of Cancer Sciences, Glasgow, UK.,Cancer Research UK, Beatson Institute, Glasgow, UK
| | - Jamie Whitelaw
- University of Glasgow Institute of Cancer Sciences, Glasgow, UK.,Cancer Research UK, Beatson Institute, Glasgow, UK
| | - Laura Machesky
- University of Glasgow Institute of Cancer Sciences, Glasgow, UK.,Cancer Research UK, Beatson Institute, Glasgow, UK
| | - Claudio Bruschini
- Advanced Quantum Architecture Laboratory, Ecole Polytechnique Fédérale de Lausanne, 2002, Neuchâtel, Switzerland
| | - Daniele Faccio
- School of Physics and Astronomy, University of Glasgow, Glasgow, G12 8QQ, UK.
| | - Edoardo Charbon
- Advanced Quantum Architecture Laboratory, Ecole Polytechnique Fédérale de Lausanne, 2002, Neuchâtel, Switzerland.
| |
Collapse
|
3
|
Suhling K, Hirvonen LM, Becker W, Smietana S, Netz H, Milnes J, Conneely T, Marois AL, Jagutzki O, Festy F, Petrášek Z, Beeby A. Wide-field time-correlated single photon counting-based fluorescence lifetime imaging microscopy. NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH. SECTION A, ACCELERATORS, SPECTROMETERS, DETECTORS AND ASSOCIATED EQUIPMENT 2019; 942:162365. [PMID: 31645797 PMCID: PMC6716551 DOI: 10.1016/j.nima.2019.162365] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 07/09/2019] [Accepted: 07/10/2019] [Indexed: 05/23/2023]
Abstract
Wide-field time-correlated single photon counting detection techniques, where the position and the arrival time of the photons are recorded simultaneously using a camera, have made some advances recently. The technology and instrumentation used for this approach is employed in areas such as nuclear science, mass spectroscopy and positron emission tomography, but here, we discuss some of the wide-field TCSPC methods, for applications in fluorescence microscopy. We describe work by us and others as presented in the Ulitima fast imaging and tracking conference at the Argonne National Laboratory in September 2018, from phosphorescence lifetime imaging (PLIM) microscopy on the microsecond time scale to fluorescence lifetime imaging (FLIM) on the nanosecond time scale, and highlight some applications of these techniques.
Collapse
Affiliation(s)
- Klaus Suhling
- Department of Physics, King’s College London, Strand, London WC2R 2LS, UK
- Corresponding author.
| | - Liisa M. Hirvonen
- Department of Physics, King’s College London, Strand, London WC2R 2LS, UK
| | - Wolfgang Becker
- Becker & Hickl GmbH, Nunsdorfer Ring 7-9, 12277 Berlin, Germany
| | - Stefan Smietana
- Becker & Hickl GmbH, Nunsdorfer Ring 7-9, 12277 Berlin, Germany
| | - Holger Netz
- Becker & Hickl GmbH, Nunsdorfer Ring 7-9, 12277 Berlin, Germany
| | - James Milnes
- Photek Ltd, 26 Castleham Rd, St Leonards on Sea TN38 9NS, UK
| | - Thomas Conneely
- Photek Ltd, 26 Castleham Rd, St Leonards on Sea TN38 9NS, UK
| | - Alix Le Marois
- Department of Physics, King’s College London, Strand, London WC2R 2LS, UK
| | - Ottmar Jagutzki
- Institut für Kernphysik, Max-von-Laue-Str. 1, 60438 Frankfurt, Germany
| | - Fred Festy
- Biomaterials, Biomimetics and Biophotonics Research Group, Kings College London Dental Institute at Guys Hospital, Kings Health Partners, Guys Dental Hospital, London Bridge, London SE1 9RT, UK
| | - Zdeněk Petrášek
- Institut für Biotechnologie und Bioprozesstechnik, Technische Universität Graz, Petersgasse, 10-12/I, 8010 Graz, Austria
| | - Andrew Beeby
- Department of Chemistry, University of Durham, Durham DH13LE, UK
| |
Collapse
|
4
|
Bruschini C, Homulle H, Antolovic IM, Burri S, Charbon E. Single-photon avalanche diode imagers in biophotonics: review and outlook. LIGHT, SCIENCE & APPLICATIONS 2019; 8:87. [PMID: 31645931 PMCID: PMC6804596 DOI: 10.1038/s41377-019-0191-5] [Citation(s) in RCA: 146] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 07/30/2019] [Accepted: 08/07/2019] [Indexed: 05/08/2023]
Abstract
Single-photon avalanche diode (SPAD) arrays are solid-state detectors that offer imaging capabilities at the level of individual photons, with unparalleled photon counting and time-resolved performance. This fascinating technology has progressed at a very fast pace in the past 15 years, since its inception in standard CMOS technology in 2003. A host of architectures have been investigated, ranging from simpler implementations, based solely on off-chip data processing, to progressively "smarter" sensors including on-chip, or even pixel level, time-stamping and processing capabilities. As the technology has matured, a range of biophotonics applications have been explored, including (endoscopic) FLIM, (multibeam multiphoton) FLIM-FRET, SPIM-FCS, super-resolution microscopy, time-resolved Raman spectroscopy, NIROT and PET. We will review some representative sensors and their corresponding applications, including the most relevant challenges faced by chip designers and end-users. Finally, we will provide an outlook on the future of this fascinating technology.
Collapse
|
5
|
Dieguez A, Canals J, Franch N, Dieguez J, Alonso O, Vila A. A Compact Analog Histogramming SPAD-Based CMOS Chip for Time-Resolved Fluorescence. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2019; 13:343-351. [PMID: 30640628 DOI: 10.1109/tbcas.2019.2892825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Time-resolved fluorescence measurement is extraordinarily powerful in the analysis of substances due to its effectiveness in eliminating measurement artifacts. Some fluorescence measurements are still conducted on CMOS chips with the decay times determined after reading the data off the chip and fitting the fluorescence decay histogram. We present a novel approach in which an analog CMOS chip divides the fluorescence decay time into slices and classifies the photons according to their arrival times at a CMOS SPAD sensor. The chip was fabricated in a 1P6M 0.18 μm HV-CMOS process. The slice timings can be tailored from 168 ps to 4.9 ns, covering most fluorescence decay times. 9 timing windows are generated per pixel that count up to 13 b each, with a resolution of 0.16 mV/photon, for a maximum output voltage of 1.3 V, in an area of 150 μm × 50 μm. Here, we report on the first practical application of this circuit, which integrates an array of 5 pixels in a single chip and has an excitation light and a microfluidic chip of up to 3 channels. This system could determine the decay time of quantum dots in 20 nl of solution. Thus, this paper could help in the development of a point-of-care device based on time-resolved fluorescence.
Collapse
|
6
|
Ulep TH, Yoon JY. Challenges in paper-based fluorogenic optical sensing with smartphones. NANO CONVERGENCE 2018; 5:14. [PMID: 29755926 PMCID: PMC5937860 DOI: 10.1186/s40580-018-0146-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 04/27/2018] [Indexed: 05/23/2023]
Abstract
Application of optically superior, tunable fluorescent nanotechnologies have long been demonstrated throughout many chemical and biological sensing applications. Combined with microfluidics technologies, i.e. on lab-on-a-chip platforms, such fluorescent nanotechnologies have often enabled extreme sensitivity, sometimes down to single molecule level. Within recent years there has been a peak interest in translating fluorescent nanotechnology onto paper-based platforms for chemical and biological sensing, as a simple, low-cost, disposable alternative to conventional silicone-based microfluidic substrates. On the other hand, smartphone integration as an optical detection system as well as user interface and data processing component has been widely attempted, serving as a gateway to on-board quantitative processing, enhanced mobility, and interconnectivity with informational networks. Smartphone sensing can be integrated to these paper-based fluorogenic assays towards demonstrating extreme sensitivity as well as ease-of-use and low-cost. However, with these emerging technologies there are always technical limitations that must be addressed; for example, paper's autofluorescence that perturbs fluorogenic sensing; smartphone flash's limitations in fluorescent excitation; smartphone camera's limitations in detecting narrow-band fluorescent emission, etc. In this review, physical optical setups, digital enhancement algorithms, and various fluorescent measurement techniques are discussed and pinpointed as areas of opportunities to further improve paper-based fluorogenic optical sensing with smartphones.
Collapse
Affiliation(s)
- Tiffany-Heather Ulep
- Department of Biomedical Engineering, The University of Arizona, Tucson, AZ 85721 USA
| | - Jeong-Yeol Yoon
- Department of Biomedical Engineering, The University of Arizona, Tucson, AZ 85721 USA
| |
Collapse
|
7
|
Wang T, Devadhasan JP, Lee DY, Kim S. Real-time DNA Amplification and Detection System Based on a CMOS Image Sensor. ANAL SCI 2018; 32:653-8. [PMID: 27302586 DOI: 10.2116/analsci.32.653] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In the present study, we developed a polypropylene well-integrated complementary metal oxide semiconductor (CMOS) platform to perform the loop mediated isothermal amplification (LAMP) technique for real-time DNA amplification and detection simultaneously. An amplification-coupled detection system directly measures the photon number changes based on the generation of magnesium pyrophosphate and color changes. The photon number decreases during the amplification process. The CMOS image sensor observes the photons and converts into digital units with the aid of an analog-to-digital converter (ADC). In addition, UV-spectral studies, optical color intensity detection, pH analysis, and electrophoresis detection were carried out to prove the efficiency of the CMOS sensor based the LAMP system. Moreover, Clostridium perfringens was utilized as proof-of-concept detection for the new system. We anticipate that this CMOS image sensor-based LAMP method will enable the creation of cost-effective, label-free, optical, real-time and portable molecular diagnostic devices.
Collapse
|
8
|
Wei L, Yan W, Ho D. Recent Advances in Fluorescence Lifetime Analytical Microsystems: Contact Optics and CMOS Time-Resolved Electronics. SENSORS (BASEL, SWITZERLAND) 2017; 17:E2800. [PMID: 29207568 PMCID: PMC5751615 DOI: 10.3390/s17122800] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 11/30/2017] [Accepted: 12/01/2017] [Indexed: 01/01/2023]
Abstract
Fluorescence spectroscopy has become a prominent research tool with wide applications in medical diagnostics and bio-imaging. However, the realization of combined high-performance, portable, and low-cost spectroscopic sensors still remains a challenge, which has limited the technique to the laboratories. A fluorescence lifetime measurement seeks to obtain the characteristic lifetime from the fluorescence decay profile. Time-correlated single photon counting (TCSPC) and time-gated techniques are two key variations of time-resolved measurements. However, commercial time-resolved analysis systems typically contain complex optics and discrete electronic components, which lead to bulkiness and a high cost. These two limitations can be significantly mitigated using contact sensing and complementary metal-oxide-semiconductor (CMOS) implementation. Contact sensing simplifies the optics, whereas CMOS technology enables on-chip, arrayed detection and signal processing, significantly reducing size and power consumption. This paper examines recent advances in contact sensing and CMOS time-resolved circuits for the realization of fully integrated fluorescence lifetime measurement microsystems. The high level of performance from recently reported prototypes suggests that the CMOS-based contact sensing microsystems are emerging as sound technologies for application-specific, low-cost, and portable time-resolved diagnostic devices.
Collapse
Affiliation(s)
- Liping Wei
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong 999077, China.
| | - Wenrong Yan
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong 999077, China.
| | - Derek Ho
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong 999077, China.
| |
Collapse
|
9
|
Becker W, Hirvonen LM, Milnes J, Conneely T, Jagutzki O, Netz H, Smietana S, Suhling K. A wide-field TCSPC FLIM system based on an MCP PMT with a delay-line anode. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2016; 87:093710. [PMID: 27782585 DOI: 10.1063/1.4962864] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We report on the implementation of a wide-field time-correlated single photon counting (TCSPC) method for fluorescence lifetime imaging (FLIM). It is based on a 40 mm diameter crossed delay line anode detector, where the readout is performed by three standard TCSPC boards. Excitation is performed by a picosecond diode laser with 50 MHz repetition rate. The photon arrival timing is obtained directly from the microchannel plates, with an instrumental response of ∼190 to 230 ps full width at half maximum depending on the position on the photocathode. The position of the photon event is obtained from the pulse propagation time along the two delay lines, one in x and one in y. One end of a delay line is fed into the "start" input of the corresponding TCSPC board, and the other end is delayed by 40 ns and fed into the "stop" input. The time between start and stop is directly converted into position, with a resolution of 200-250 μm. The data acquisition software builds up the distribution of the photons over their spatial coordinates, x and y, and their times after the excitation pulses, typically into 512 × 512 pixels and 1024 time channels per pixel. We apply the system to fluorescence lifetime imaging of cells labelled with Alexa 488 phalloidin in an epi-fluorescence microscope and discuss the application of our approach to other fluorescence microscopy methods.
Collapse
Affiliation(s)
- Wolfgang Becker
- Becker & Hickl GmbH, Nahmitzer Damm 30, 12277 Berlin, Germany
| | - Liisa M Hirvonen
- Department of Physics, King's College London, Strand, London WC2R 2LS, United Kingdom
| | - James Milnes
- Photek Ltd., 26 Castleham Rd., Saint Leonards-on-Sea TN38 9NS, United Kingdom
| | - Thomas Conneely
- Photek Ltd., 26 Castleham Rd., Saint Leonards-on-Sea TN38 9NS, United Kingdom
| | - Ottmar Jagutzki
- Institut für Kernphysik, Max-von-Laue-Str. 1, 60438 Frankfurt, Germany
| | - Holger Netz
- Becker & Hickl GmbH, Nahmitzer Damm 30, 12277 Berlin, Germany
| | - Stefan Smietana
- Becker & Hickl GmbH, Nahmitzer Damm 30, 12277 Berlin, Germany
| | - Klaus Suhling
- Department of Physics, King's College London, Strand, London WC2R 2LS, United Kingdom
| |
Collapse
|
10
|
Mavrogiannis N, Crivellari F, Gagnon ZR. Label-free biomolecular detection at electrically displaced liquid interfaces using interfacial electrokinetic transduction (IET). Biosens Bioelectron 2016; 77:790-8. [DOI: 10.1016/j.bios.2015.10.045] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 10/06/2015] [Accepted: 10/14/2015] [Indexed: 10/22/2022]
|
11
|
Hirvonen LM, Festy F, Suhling K. Wide-field time-correlated single-photon counting (TCSPC) lifetime microscopy with microsecond time resolution. OPTICS LETTERS 2014; 39:5602-5. [PMID: 25360938 DOI: 10.1364/ol.39.005602] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
A 1 MHz frame rate complementary metal-oxide semiconductor (CMOS) camera was used in combination with an image intensifier for wide-field time-correlated single-photon counting (TCSPC) imaging. The system combines an ultrafast frame rate with single-photon sensitivity and was employed on a fluorescence microscope to image decays of ruthenium compound Ru(dpp) with lifetimes from around 1 to 5 μs. A submicrowatt excitation power over the whole field of view is sufficient for this approach, and compatibility with live-cell imaging was demonstrated by imaging europium-containing beads with a lifetime of 570 μs in living HeLa cells. A standard two-photon excitation scanning fluorescence lifetime imaging (FLIM) system was used to independently verify the lifetime for the europium beads. This approach brings together advantageous features for time-resolved live-cell imaging such as low excitation intensity, single-photon sensitivity, ultrafast camera frame rates, and short acquisition times.
Collapse
|
12
|
Patsenker LD, Tatarets AL, Povrozin YA, Terpetschnig EA. Long-wavelength fluorescence lifetime labels. ACTA ACUST UNITED AC 2011. [DOI: 10.1007/s12566-011-0025-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
13
|
Li DDU, Arlt J, Tyndall D, Walker R, Richardson J, Stoppa D, Charbon E, Henderson RK. Video-rate fluorescence lifetime imaging camera with CMOS single-photon avalanche diode arrays and high-speed imaging algorithm. JOURNAL OF BIOMEDICAL OPTICS 2011; 16:096012. [PMID: 21950926 DOI: 10.1117/1.3625288] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
A high-speed and hardware-only algorithm using a center of mass method has been proposed for single-detector fluorescence lifetime sensing applications. This algorithm is now implemented on a field programmable gate array to provide fast lifetime estimates from a 32 × 32 low dark count 0.13 μm complementary metal-oxide-semiconductor single-photon avalanche diode (SPAD) plus time-to-digital converter array. A simple look-up table is included to enhance the lifetime resolvability range and photon economics, making it comparable to the commonly used least-square method and maximum-likelihood estimation based software. To demonstrate its performance, a widefield microscope was adapted to accommodate the SPAD array and image different test samples. Fluorescence lifetime imaging microscopy on fluorescent beads in Rhodamine 6G at a frame rate of 50 fps is also shown.
Collapse
Affiliation(s)
- David D-U Li
- University of Sussex, Biomedical Engineering Group, Department of Engineering and Design, School of Engineering and Informatics, Brighton BN1 9QT, United Kingdom.
| | | | | | | | | | | | | | | |
Collapse
|