1
|
Panniello M, Gillon CJ, Maffulli R, Celotto M, Richards BA, Panzeri S, Kohl MM. Stimulus information guides the emergence of behavior-related signals in primary somatosensory cortex during learning. Cell Rep 2024; 43:114244. [PMID: 38796851 PMCID: PMC11913744 DOI: 10.1016/j.celrep.2024.114244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 01/16/2024] [Accepted: 05/02/2024] [Indexed: 05/29/2024] Open
Abstract
Neurons in the primary cortex carry sensory- and behavior-related information, but it remains an open question how this information emerges and intersects together during learning. Current evidence points to two possible learning-related changes: sensory information increases in the primary cortex or sensory information remains stable, but its readout efficiency in association cortices increases. We investigated this question by imaging neuronal activity in mouse primary somatosensory cortex before, during, and after learning of an object localization task. We quantified sensory- and behavior-related information and estimated how much sensory information was used to instruct perceptual choices as learning progressed. We find that sensory information increases from the start of training, while choice information is mostly present in the later stages of learning. Additionally, the readout of sensory information becomes more efficient with learning as early as in the primary sensory cortex. Together, our results highlight the importance of primary cortical neurons in perceptual learning.
Collapse
Affiliation(s)
- Mariangela Panniello
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK; School of Psychology and Neuroscience, University of Glasgow, Glasgow G12 8QQ, UK; Optical Approaches to Brain Function Laboratory, Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Colleen J Gillon
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON M1C 1A4, Canada; Department of Cell & Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada; Mila, Montréal, QC H2S 3H1, Canada
| | - Roberto Maffulli
- Neural Computation Laboratory, Center for Human Technologies, Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Marco Celotto
- Neural Computation Laboratory, Center for Human Technologies, Istituto Italiano di Tecnologia, 16163 Genova, Italy; Institute of Neural Information Processing, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), 20251 Hamburg, Germany; Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| | - Blake A Richards
- Mila, Montréal, QC H2S 3H1, Canada; School of Computer Science, McGill University, Montréal, QC H3A 2A7, Canada; Department of Neurology & Neurosurgery, McGill University, Montréal, QC H3A 1A1, Canada; Learning in Machines and Brains Program, Canadian Institute for Advanced Research, Toronto, ON M5G 1M1, Canada; Montreal Neurological Institute, Montréal, QC H3A 2B4, Canada
| | - Stefano Panzeri
- Neural Computation Laboratory, Center for Human Technologies, Istituto Italiano di Tecnologia, 16163 Genova, Italy; Institute of Neural Information Processing, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), 20251 Hamburg, Germany
| | - Michael M Kohl
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK; School of Psychology and Neuroscience, University of Glasgow, Glasgow G12 8QQ, UK.
| |
Collapse
|
2
|
Janiak FK, Bartel P, Bale MR, Yoshimatsu T, Komulainen E, Zhou M, Staras K, Prieto-Godino LL, Euler T, Maravall M, Baden T. Non-telecentric two-photon microscopy for 3D random access mesoscale imaging. Nat Commun 2022; 13:544. [PMID: 35087041 PMCID: PMC8795402 DOI: 10.1038/s41467-022-28192-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 01/04/2022] [Indexed: 01/07/2023] Open
Abstract
Diffraction-limited two-photon microscopy permits minimally invasive optical monitoring of neuronal activity. However, most conventional two-photon microscopes impose significant constraints on the size of the imaging field-of-view and the specific shape of the effective excitation volume, thus limiting the scope of biological questions that can be addressed and the information obtainable. Here, employing a non-telecentric optical design, we present a low-cost, easily implemented and flexible solution to address these limitations, offering a several-fold expanded three-dimensional field of view. Moreover, rapid laser-focus control via an electrically tunable lens allows near-simultaneous imaging of remote regions separated in three dimensions and permits the bending of imaging planes to follow natural curvatures in biological structures. Crucially, our core design is readily implemented (and reversed) within a matter of hours, making it highly suitable as a base platform for further development. We demonstrate the application of our system for imaging neuronal activity in a variety of examples in zebrafish, mice and fruit flies.
Collapse
Affiliation(s)
- F K Janiak
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, UK.
| | - P Bartel
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, UK
| | - M R Bale
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, UK
| | - T Yoshimatsu
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, UK
| | - E Komulainen
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, UK
| | - M Zhou
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, UK
| | - K Staras
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, UK
| | | | - T Euler
- Institute of Ophthalmic Research, University of Tübingen, Tübingen, Germany
- Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
| | - M Maravall
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, UK
| | - T Baden
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, UK.
- Institute of Ophthalmic Research, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
3
|
Akam T, Lustig A, Rowland JM, Kapanaiah SKT, Esteve-Agraz J, Panniello M, Márquez C, Kohl MM, Kätzel D, Costa RM, Walton ME. Open-source, Python-based, hardware and software for controlling behavioural neuroscience experiments. eLife 2022; 11:e67846. [PMID: 35043782 PMCID: PMC8769647 DOI: 10.7554/elife.67846] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 01/03/2022] [Indexed: 01/05/2023] Open
Abstract
Laboratory behavioural tasks are an essential research tool. As questions asked of behaviour and brain activity become more sophisticated, the ability to specify and run richly structured tasks becomes more important. An increasing focus on reproducibility also necessitates accurate communication of task logic to other researchers. To these ends, we developed pyControl, a system of open-source hardware and software for controlling behavioural experiments comprising a simple yet flexible Python-based syntax for specifying tasks as extended state machines, hardware modules for building behavioural setups, and a graphical user interface designed for efficiently running high-throughput experiments on many setups in parallel, all with extensive online documentation. These tools make it quicker, easier, and cheaper to implement rich behavioural tasks at scale. As important, pyControl facilitates communication and reproducibility of behavioural experiments through a highly readable task definition syntax and self-documenting features. Here, we outline the system's design and rationale, present validation experiments characterising system performance, and demonstrate example applications in freely moving and head-fixed mouse behaviour.
Collapse
Affiliation(s)
- Thomas Akam
- Department of Experimental Psychology, University of OxfordOxfordUnited Kingdom
- Champalimaud Neuroscience Program, Champalimaud Centre for the UnknownLisbonPortugal
| | - Andy Lustig
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - James M Rowland
- Department of Physiology Anatomy & Genetics, University of OxfordOxfordUnited Kingdom
| | | | - Joan Esteve-Agraz
- Instituto de Neurociencias (Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas)Sant Joan d’AlacantSpain
| | - Mariangela Panniello
- Department of Physiology Anatomy & Genetics, University of OxfordOxfordUnited Kingdom
- Institute of Neuroscience and Psychology, University of GlasgowGlasgowUnited Kingdom
| | - Cristina Márquez
- Instituto de Neurociencias (Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas)Sant Joan d’AlacantSpain
| | - Michael M Kohl
- Department of Physiology Anatomy & Genetics, University of OxfordOxfordUnited Kingdom
- Institute of Neuroscience and Psychology, University of GlasgowGlasgowUnited Kingdom
| | - Dennis Kätzel
- Institute of Applied Physiology, Ulm UniversityUlmGermany
| | - Rui M Costa
- Champalimaud Neuroscience Program, Champalimaud Centre for the UnknownLisbonPortugal
- Department of Neuroscience and Neurology, Zuckerman Mind Brain Behavior Institute, Columbia UniversityNew YorkUnited States
| | - Mark E Walton
- Department of Experimental Psychology, University of OxfordOxfordUnited Kingdom
- Wellcome Centre for Integrative Neuroimaging, University of OxfordOxfordUnited Kingdom
| |
Collapse
|
4
|
Valera AM, Neufeldt FC, Kirkby PA, Mitchell JE, Silver RA. Precompensation of 3D field distortions in remote focus two-photon microscopy. BIOMEDICAL OPTICS EXPRESS 2021; 12:3717-3728. [PMID: 34221690 PMCID: PMC8221938 DOI: 10.1364/boe.425588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/07/2021] [Accepted: 05/14/2021] [Indexed: 06/13/2023]
Abstract
Remote focusing is widely used in 3D two-photon microscopy and 3D photostimulation because it enables fast axial scanning without moving the objective lens or specimen. However, due to the design constraints of microscope optics, remote focus units are often located in non-telecentric positions in the optical path, leading to significant depth-dependent 3D field distortions in the imaging volume. To address this limitation, we characterized 3D field distortions arising from non-telecentric remote focusing and present a method for distortion precompensation. We demonstrate its applicability for a 3D two-photon microscope that uses an acousto-optic lens (AOL) for remote focusing and scanning. We show that the distortion precompensation method improves the pointing precision of the AOL microscope to < 0.5 µm throughout the 400 × 400 × 400 µm imaging volume.
Collapse
Affiliation(s)
- Antoine M. Valera
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
- These authors contributed equally
| | - Fiona C. Neufeldt
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
- Department of Electronic and Electrical Engineering, University College London, Malet Place, London WC1E 7JE, UK
- These authors contributed equally
| | - Paul A. Kirkby
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| | - John E. Mitchell
- Department of Electronic and Electrical Engineering, University College London, Malet Place, London WC1E 7JE, UK
| | - R. Angus Silver
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|