1
|
Miller DA, Grannonico M, Liu M, Savier E, McHaney K, Erisir A, Netland PA, Cang J, Liu X, Zhang HF. Visible-Light Optical Coherence Tomography Fibergraphy of the Tree Shrew Retinal Ganglion Cell Axon Bundles. IEEE TRANSACTIONS ON MEDICAL IMAGING 2024; 43:2769-2777. [PMID: 38517719 PMCID: PMC11366081 DOI: 10.1109/tmi.2024.3380530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/24/2024]
Abstract
We seek to develop techniques for high-resolution imaging of the tree shrew retina for visualizing and parameterizing retinal ganglion cell (RGC) axon bundles in vivo. We applied visible-light optical coherence tomography fibergraphy (vis-OCTF) and temporal speckle averaging (TSA) to visualize individual RGC axon bundles in the tree shrew retina. For the first time, we quantified individual RGC bundle width, height, and cross-sectional area and applied vis-OCT angiography (vis-OCTA) to visualize the retinal microvasculature in tree shrews. Throughout the retina, as the distance from the optic nerve head (ONH) increased from 0.5 mm to 2.5 mm, bundle width increased by 30%, height decreased by 67%, and cross-sectional area decreased by 36%. We also showed that axon bundles become vertically elongated as they converge toward the ONH. Ex vivo confocal microscopy of retinal flat-mounts immunostained with Tuj1 confirmed our in vivo vis-OCTF findings.
Collapse
|
2
|
Das V, Zhang F, Bower AJ, Li J, Liu T, Aguilera N, Alvisio B, Liu Z, Hammer DX, Tam J. Revealing speckle obscured living human retinal cells with artificial intelligence assisted adaptive optics optical coherence tomography. COMMUNICATIONS MEDICINE 2024; 4:68. [PMID: 38600290 PMCID: PMC11006674 DOI: 10.1038/s43856-024-00483-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 03/13/2024] [Indexed: 04/12/2024] Open
Abstract
BACKGROUND In vivo imaging of the human retina using adaptive optics optical coherence tomography (AO-OCT) has transformed medical imaging by enabling visualization of 3D retinal structures at cellular-scale resolution, including the retinal pigment epithelial (RPE) cells, which are essential for maintaining visual function. However, because noise inherent to the imaging process (e.g., speckle) makes it difficult to visualize RPE cells from a single volume acquisition, a large number of 3D volumes are typically averaged to improve contrast, substantially increasing the acquisition duration and reducing the overall imaging throughput. METHODS Here, we introduce parallel discriminator generative adversarial network (P-GAN), an artificial intelligence (AI) method designed to recover speckle-obscured cellular features from a single AO-OCT volume, circumventing the need for acquiring a large number of volumes for averaging. The combination of two parallel discriminators in P-GAN provides additional feedback to the generator to more faithfully recover both local and global cellular structures. Imaging data from 8 eyes of 7 participants were used in this study. RESULTS We show that P-GAN not only improves RPE cell contrast by 3.5-fold, but also improves the end-to-end time required to visualize RPE cells by 99-fold, thereby enabling large-scale imaging of cells in the living human eye. RPE cell spacing measured across a large set of AI recovered images from 3 participants were in agreement with expected normative ranges. CONCLUSIONS The results demonstrate the potential of AI assisted imaging in overcoming a key limitation of RPE imaging and making it more accessible in a routine clinical setting.
Collapse
Affiliation(s)
- Vineeta Das
- National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Furu Zhang
- National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Andrew J Bower
- National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Joanne Li
- National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Tao Liu
- National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Nancy Aguilera
- National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Bruno Alvisio
- National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Zhuolin Liu
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Daniel X Hammer
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Johnny Tam
- National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
3
|
Puyo L, Pfäffle C, Spahr H, Franke J, Bublitz D, Hillmann D, Hüttmann G. Diffuse-illumination holographic optical coherence tomography. OPTICS EXPRESS 2023; 31:33500-33517. [PMID: 37859131 DOI: 10.1364/oe.498654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/11/2023] [Indexed: 10/21/2023]
Abstract
Holographic optical coherence tomography (OCT) is a powerful imaging technique, but its ability to reveal low-reflectivity features is limited. In this study, we performed holographic OCT by incoherently averaging volumes with changing diffuse illumination of numerical aperture (NA) equal to the detection NA. While the reduction of speckle from singly scattered light is only modest, we discovered that speckle from multiply scattered light can be arbitrarily reduced, resulting in substantial improvements in image quality. This technique also offers the advantage of suppressing noises arising from spatial coherence, and can be implemented with a partially spatially incoherent light source for further mitigation of multiple scattering. Finally, we show that although holographic reconstruction capabilities are increasingly lost with decreasing spatial coherence, they can be retained over an axial range sufficient to standard OCT applications.
Collapse
|
4
|
Miller DA, Grannonico M, Liu M, Savier E, McHaney K, Erisir A, Netland PA, Cang J, Liu X, Zhang HF. Visible-Light Optical Coherence Tomography Fibergraphy of the Tree Shrew Retinal Ganglion Cell Axon Bundles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.16.541062. [PMID: 37293064 PMCID: PMC10245691 DOI: 10.1101/2023.05.16.541062] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We seek to develop techniques for high-resolution imaging of the tree shrew retina for visualizing and parameterizing retinal ganglion cell (RGC) axon bundles in vivo. We applied visible-light optical coherence tomography fibergraphy (vis-OCTF) and temporal speckle averaging (TSA) to visualize individual RGC axon bundles in the tree shrew retina. For the first time, we quantified individual RGC bundle width, height, and cross-sectional area and applied vis-OCT angiography (vis-OCTA) to visualize the retinal microvasculature in tree shrews. Throughout the retina, as the distance from the optic nerve head (ONH) increased from 0.5 mm to 2.5 mm, bundle width increased by 30%, height decreased by 67%, and cross-sectional area decreased by 36%. We also showed that axon bundles become vertically elongated as they converge toward the ONH. Ex vivo confocal microscopy of retinal flat-mounts immunostained with Tuj1 confirmed our in vivo vis-OCTF findings.
Collapse
|
5
|
Zhang P, Wahl DJ, Mocci J, Miller EB, Bonora S, Sarunic MV, Zawadzki RJ. Adaptive optics scanning laser ophthalmoscopy and optical coherence tomography (AO-SLO-OCT) system for in vivo mouse retina imaging. BIOMEDICAL OPTICS EXPRESS 2023; 14:299-314. [PMID: 36698677 PMCID: PMC9841993 DOI: 10.1364/boe.473447] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/22/2022] [Accepted: 11/22/2022] [Indexed: 05/02/2023]
Abstract
Optical coherence tomography (OCT) and scanning laser ophthalmoscopy (SLO) are imaging technologies invented in the 1980s that have revolutionized the field of in vivo retinal diagnostics and are now commonly used in ophthalmology clinics as well as in vision science research. Adaptive optics (AO) technology enables high-fidelity correction of ocular aberrations, resulting in improved resolution and sensitivity for both SLO and OCT systems. The potential of gathering multi-modal cellular-resolution information in a single instrument is of great interest to the ophthalmic imaging community. Although similar instruments have been developed for imaging the human retina, developing such a system for mice will benefit basic science research and should help with further dissemination of AO technology. Here, we present our work integrating OCT into an existing mouse retinal AO-SLO system, resulting in a multi-modal AO-enhanced imaging system of the living mouse eye. The new system allows either independent or simultaneous data acquisition of AO-SLO and AO-OCT, depending on the requirements of specific scientific experiments. The system allows a data acquisition speed of 200 kHz A-scans/pixel rate for OCT and SLO, respectively. It offers ∼6 µm axial resolution for AO-OCT and a ∼1 µm lateral resolution for AO-SLO-OCT imaging.
Collapse
Affiliation(s)
- Pengfei Zhang
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian, China
- UC Davis EyePod Small Animals Ocular Imaging Laboratory, Department of Cell Biology and Human Anatomy, University of California Davis, Davis, CA 95616, USA
| | - Daniel J. Wahl
- Engineering Science, Simon Fraser University, Burnaby BC, V5A 1S6, Canada
| | - Jacopo Mocci
- Dynamic Optics srl, Piazza Zanellato 5, 35131, Padova, Italy
| | - Eric B. Miller
- Center for Neuroscience, University of California, Davis, CA 95616, USA
| | - Stefano Bonora
- CNR-Institute for Photonics and Nanotechnology, Via Trasea 7, 35131, Padova, Italy
| | - Marinko V. Sarunic
- Engineering Science, Simon Fraser University, Burnaby BC, V5A 1S6, Canada
- Medical Physics and Biomedical Engineering, University College London, United Kingdom
- Institute of Ophthalmology, University College London, United Kingdom
| | - Robert J. Zawadzki
- UC Davis EyePod Small Animals Ocular Imaging Laboratory, Department of Cell Biology and Human Anatomy, University of California Davis, Davis, CA 95616, USA
- UC Davis Eye Center, Dept. of Ophthalmology & Vision Science, University of California Davis, 4860 Y Street, Suite 2400, Sacramento, California 95817, USA
| |
Collapse
|
6
|
Chen H, Gao J. Non-Local Mean Denoising Algorithm Based on Fractional Compact Finite Difference Scheme Effectively Reduces Speckle Noise in Optical Coherence Tomography Images. MICROMACHINES 2022; 13:2039. [PMID: 36557339 PMCID: PMC9781262 DOI: 10.3390/mi13122039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/18/2022] [Accepted: 11/19/2022] [Indexed: 06/17/2023]
Abstract
Optical coherence tomography (OCT) is used in various fields such, as medical diagnosis and material inspection, as a non-invasive and high-resolution optical imaging modality. However, an OCT image is damaged by speckle noise during its generation, thus reducing the image quality. To address this problem, a non-local means (NLM) algorithm based on the fractional compact finite difference scheme (FCFDS) is proposed to remove the speckle noise in OCT images. FCFDS uses more local pixel information when compared to integer-order difference operators. The FCFDS operator is introduced into the NLM algorithm to construct a high-precision weight calculation so that the proposed algorithm can effectively reduce the speckle noise in the OCT images. Experiments on simulations and real OCT images show that the proposed method is comparable to other state-of-the-art despeckling methods and can substantially reduce noise and preserve image details such as edges and structures. Speckle noise removal can further promote the application of the proposed algorithm in medical diagnosis and industrial detection, as it has key research value.
Collapse
Affiliation(s)
- Huaiguang Chen
- School of Science, Shandong Jianzhu University, Jinan 250101, China
- Center for Engineering Computation and Software Development, Shandong Jianzhu University, Jinan 250101, China
| | - Jing Gao
- School of Science, Shandong Jianzhu University, Jinan 250101, China
| |
Collapse
|
7
|
Khan S, Neuhaus K, Thaware O, Ni S, Ju MJ, Redd T, Huang D, Jian Y. Corneal imaging with blue-light optical coherence microscopy. BIOMEDICAL OPTICS EXPRESS 2022; 13:5004-5014. [PMID: 36187260 PMCID: PMC9484440 DOI: 10.1364/boe.465707] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/17/2022] [Accepted: 08/17/2022] [Indexed: 06/16/2023]
Abstract
Corneal imaging is important for the diagnostic and therapeutic evaluation of many eye diseases. Optical coherence tomography (OCT) is extensively used in ocular imaging due to its non-invasive and high-resolution volumetric imaging characteristics. Optical coherence microscopy (OCM) is a technical variation of OCT that can image the cornea with cellular resolution. Here, we demonstrate a blue-light OCM as a low-cost and easily reproducible system to visualize corneal cellular structures such as epithelial cells, endothelial cells, keratocytes, and collagen bundles within stromal lamellae. Our blue-light OCM system achieved an axial resolution of 12 µm in tissue over a 1.2 mm imaging depth, and a lateral resolution of 1.6 µm over a field of view of 750 µm × 750 µm.
Collapse
Affiliation(s)
- Shanjida Khan
- Casey Eye Institute, Oregon Health & Science University, Portland, OR 97239, USA
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239, USA
| | - Kai Neuhaus
- Casey Eye Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Omkar Thaware
- Casey Eye Institute, Oregon Health & Science University, Portland, OR 97239, USA
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239, USA
| | - Shuibin Ni
- Casey Eye Institute, Oregon Health & Science University, Portland, OR 97239, USA
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239, USA
| | - Myeong Jin Ju
- Department of Ophthalmology and Visual
Sciences, University of British Columbia,
Vancouver, BC, Canada
- School of Biomedical Engineering,
University of British Columbia, Vancouver,
BC, Canada
| | - Travis Redd
- Casey Eye Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - David Huang
- Casey Eye Institute, Oregon Health & Science University, Portland, OR 97239, USA
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239, USA
| | - Yifan Jian
- Casey Eye Institute, Oregon Health & Science University, Portland, OR 97239, USA
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239, USA
| |
Collapse
|
8
|
Zhang P, Shibata B, Peinado G, Zawadzki RJ, FitzGerald P, Pugh EN. Measurement of Diurnal Variation in Rod Outer Segment Length In Vivo in Mice With the OCT Optoretinogram. Invest Ophthalmol Vis Sci 2020; 61:9. [PMID: 32176260 PMCID: PMC7401691 DOI: 10.1167/iovs.61.3.9] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 11/25/2019] [Indexed: 12/14/2022] Open
Abstract
Purpose To investigate diurnal variation in the length of mouse rod outer segments in vivo. Methods The lengths of rod inner and outer segments (RIS, ROS) of dark-adapted albino mice maintained on a 12-hour dark:12-hour light cycle with light onset 7 AM were measured at prescribed times (6:30 AM, 11 AM, 3:30 PM) during the diurnal cycle with optical coherence tomography (OCT), taking advantage of increased visibility, after a brief bleaching exposure, of the bands corresponding to RIS/ROS boundaries and ROS tips (ROST). Results Deconvolution of OCT depth profiles resolved two backscatter bands located 7.4 ± 0.1 and 10.8 ± 0.2 µm (mean ± SEM) proximal to Bruch's membrane (BrM). These bands were identified with histology as arising from the apical surface of RPE and ROST, respectively. The average length of dark-adapted ROS at 6:30 AM was 17.7 ± 0.8 µm. By 11 AM, the average ROS length had decreased by 10% to 15.9 ± 0.7 µm. After 11 AM, the ROS length increased steadily at an average rate of 0.12 µm/h, returning to baseline length by 23.5 hours in the cycle. Conclusions The diurnal variation in ROS length measured in these experiments is consistent with prior histological investigations showing that rodent rod discs are phagocytosed by the RPE maximally over several hours around the time of normal light onset. The rate of recovery of ROS to baseline length before normal light onset is consistent with the hypothesis that disc membrane synthesis is fairly constant over the diurnal cycle.
Collapse
Affiliation(s)
- Pengfei Zhang
- UC Davis Eye-Pod, Department of Cell Biology and Human Anatomy, University of California Davis, Davis, California, United States
| | - Bradley Shibata
- Department of Cell Biology and Human Anatomy, School of Medicine, University of California Davis, Davis, California, United States
| | - Gabriel Peinado
- Department of Cell Biology and Human Anatomy, School of Medicine, University of California Davis, Davis, California, United States
| | - Robert J. Zawadzki
- UC Davis Eye-Pod, Department of Cell Biology and Human Anatomy, University of California Davis, Davis, California, United States
- Vision Science and Advanced Retinal Imaging Laboratory (VSRI), Department of Ophthalmology & Vision Science, University of California Davis, Sacramento, California, United States
| | - Paul FitzGerald
- Department of Cell Biology and Human Anatomy, School of Medicine, University of California Davis, Davis, California, United States
| | - Edward N. Pugh
- UC Davis Eye-Pod, Department of Cell Biology and Human Anatomy, University of California Davis, Davis, California, United States
| |
Collapse
|
9
|
Zhao J, Winetraub Y, Yuan E, Chan WH, Aasi SZ, Sarin KY, Zohar O, de la Zerda A. Angular compounding for speckle reduction in optical coherence tomography using geometric image registration algorithm and digital focusing. Sci Rep 2020; 10:1893. [PMID: 32024946 PMCID: PMC7002526 DOI: 10.1038/s41598-020-58454-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 01/15/2020] [Indexed: 11/09/2022] Open
Abstract
Optical coherence tomography (OCT) suffers from speckle noise due to the high spatial coherence of the utilized light source, leading to significant reductions in image quality and diagnostic capabilities. In the past, angular compounding techniques have been applied to suppress speckle noise. However, existing image registration methods usually guarantee pure angular compounding only within a relatively small field of view in the focal region, but produce spatial averaging in the other regions, resulting in resolution loss and image blur. This work develops an image registration model to correctly localize the real-space location of every pixel in an OCT image, for all depths. The registered images captured at different angles are fused into a speckle-reduced composite image. Digital focusing, based on the convolution of the complex OCT images and the conjugate of the point spread function (PSF), is studied to further enhance lateral resolution and contrast. As demonstrated by experiments, angular compounding with our improved image registration techniques and digital focusing, can effectively suppress speckle noise, enhance resolution and contrast, and reveal fine structures in ex-vivo imaged tissue.
Collapse
Affiliation(s)
- Jingjing Zhao
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California, 94305, USA
| | - Yonatan Winetraub
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California, 94305, USA
- Biophysics Program at Stanford, Stanford, California, 94305, USA
- Molecular Imaging Program at Stanford, Stanford, California, 94305, USA
- The Bio-X Program, Stanford, California, 94305, USA
| | - Edwin Yuan
- Department of Applied Physics, Stanford University, Stanford, California, 94305, USA
| | - Warren H Chan
- Department of Dermatology, Stanford University School of Medicine, Stanford, California, 94305, USA
| | - Sumaira Z Aasi
- Department of Dermatology, Stanford University School of Medicine, Stanford, California, 94305, USA
| | - Kavita Y Sarin
- Department of Dermatology, Stanford University School of Medicine, Stanford, California, 94305, USA
| | - Orr Zohar
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California, 94305, USA
| | - Adam de la Zerda
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California, 94305, USA.
- Biophysics Program at Stanford, Stanford, California, 94305, USA.
- Molecular Imaging Program at Stanford, Stanford, California, 94305, USA.
- The Bio-X Program, Stanford, California, 94305, USA.
- The Chan Zuckerberg Biohub, San Francisco, California, 94158, USA.
| |
Collapse
|
10
|
Auksorius E, Borycki D, Wojtkowski M. Crosstalk-free volumetric in vivo imaging of a human retina with Fourier-domain full-field optical coherence tomography. BIOMEDICAL OPTICS EXPRESS 2019; 10:6390-6407. [PMID: 31853406 PMCID: PMC6913414 DOI: 10.1364/boe.10.006390] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/09/2019] [Accepted: 11/12/2019] [Indexed: 05/05/2023]
Abstract
Fourier-domain full-field optical coherence tomography (FD-FF-OCT) is currently the fastest volumetric imaging technique that is able to generate a single 3-D volume of retina in less than 9 ms, corresponding to a voxel rate of 7.8 GHz. FD-FF-OCT is based on a fast camera, a rapidly tunable laser source, and Fourier-domain signal detection. However, crosstalk appearing due to multiply scattered light corrupts images with the speckle pattern, and therefore, lowers image quality. Here, for the first time, we report on a system that can acquire essentially crosstalk-free volumes of the retina by using a fast deformable membrane. It enables the visualization of choroids and a clear delineation of the retinal layers that is not possible with conventional FD-FF-OCT.
Collapse
|
11
|
Zhang P, Miller EB, Manna SK, Meleppat RK, Pugh EN, Zawadzki RJ. Temporal speckle-averaging of optical coherence tomography volumes for in-vivo cellular resolution neuronal and vascular retinal imaging. NEUROPHOTONICS 2019; 6:041105. [PMID: 31528657 PMCID: PMC6732665 DOI: 10.1117/1.nph.6.4.041105] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 07/31/2019] [Indexed: 05/08/2023]
Abstract
It has been recently demonstrated that structures corresponding to the cell bodies of highly transparent cells in the retinal ganglion cell layer could be visualized noninvasively in the living human eye by optical coherence tomography (OCT) via temporal averaging. Inspired by this development, we explored the application of volumetric temporal averaging in mice, which are important models for studying human retinal diseases and therapeutic interventions. A general framework of temporal speckle-averaging (TSA) of OCT and optical coherence tomography angiography (OCTA) is presented and applied to mouse retinal volumetric data. Based on the image analysis, the eyes of mice under anesthesia exhibit only minor motions, corresponding to lateral displacements of a few micrometers and rotations of a fraction of 1 deg. Moreover, due to reduced eye movements under anesthesia, there is a negligible amount of motion artifacts within the volumes that need to be corrected to achieve volume coregistration. In addition, the relatively good optical quality of the mouse ocular media allows for cellular-resolution imaging without adaptive optics (AO), greatly simplifying the experimental system, making the proposed framework feasible for large studies. The TSA OCT and TSA OCTA results provide rich information about new structures previously not visualized in living mice with non-AO-OCT. The mechanism of TSA relies on improving signal-to-noise ratio as well as efficient suppression of speckle contrast due to temporal decorrelation of the speckle patterns, enabling full utilization of the high volumetric resolution offered by OCT and OCTA.
Collapse
Affiliation(s)
- Pengfei Zhang
- University of California Davis, Department of Cell Biology and Human Anatomy, UC Davis Eye-Pod Small Animal Ocular Imaging Laboratory, Davis, California, United States
| | - Eric B. Miller
- University of California Davis, Center for Neuroscience, Davis, California, United States
| | - Suman K. Manna
- University of California Davis, Department of Cell Biology and Human Anatomy, UC Davis Eye-Pod Small Animal Ocular Imaging Laboratory, Davis, California, United States
| | - Ratheesh K. Meleppat
- University of California Davis, Department of Cell Biology and Human Anatomy, UC Davis Eye-Pod Small Animal Ocular Imaging Laboratory, Davis, California, United States
| | - Edward N. Pugh
- University of California Davis, Department of Cell Biology and Human Anatomy, UC Davis Eye-Pod Small Animal Ocular Imaging Laboratory, Davis, California, United States
- University of California Davis, Department of Ophthalmology and Vision Science, Vision Science and Advanced Retinal Imaging Laboratory, Sacramento, California, United States
| | - Robert J. Zawadzki
- University of California Davis, Department of Cell Biology and Human Anatomy, UC Davis Eye-Pod Small Animal Ocular Imaging Laboratory, Davis, California, United States
- University of California Davis, Department of Ophthalmology and Vision Science, Vision Science and Advanced Retinal Imaging Laboratory, Sacramento, California, United States
- University of California Davis, UC Davis Eye Center, Department of Ophthalmology and Vision Science, Sacramento, California, United States
- Address all correspondence to Robert J. Zawadzki, E-mail:
| |
Collapse
|
12
|
Shi W, Chen C, Jivraj J, Dobashi Y, Gao W, Yang VX. 2D MEMS-based high-speed beam-shifting technique for speckle noise reduction and flow rate measurement in optical coherence tomography. OPTICS EXPRESS 2019; 27:12551-12564. [PMID: 31052795 DOI: 10.1364/oe.27.012551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 04/01/2019] [Indexed: 06/09/2023]
Abstract
In this manuscript, a two-dimensional (2D) micro-electro-mechanical system (MEMS)-based, high-speed beam-shifting spectral domain optical coherence tomography (MHB-SDOCT) is proposed for speckle noise reduction and absolute flow rate measurement. By combining a zigzag scanning protocol, the frame rates of 45.2 Hz for speckle reduction and 25.6 Hz for flow rate measurement are achieved for in-vivo tissue imaging. Phantom experimental results have shown that by setting the incident beam angle to ϕ = 4.76° (between optical axis of objective lens and beam axis) and rotating the beam about the optical axis in 17 discrete angular positions, 91% of speckle noise in the structural images can be reduced. Furthermore, a precision of 0.0032 µl/s is achieved for flow rate measurement with the same beam angle, using three discrete angular positions around the optical axis. In-vivo experiments on human skin and chicken embryo were also implemented to further verify the performance of speckle noise reduction and flow rate measurement of MHB-SDOCT.
Collapse
|
13
|
Teikari P, Najjar RP, Schmetterer L, Milea D. Embedded deep learning in ophthalmology: making ophthalmic imaging smarter. Ther Adv Ophthalmol 2019; 11:2515841419827172. [PMID: 30911733 PMCID: PMC6425531 DOI: 10.1177/2515841419827172] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 12/20/2018] [Indexed: 01/22/2023] Open
Abstract
Deep learning has recently gained high interest in ophthalmology due to its ability to detect clinically significant features for diagnosis and prognosis. Despite these significant advances, little is known about the ability of various deep learning systems to be embedded within ophthalmic imaging devices, allowing automated image acquisition. In this work, we will review the existing and future directions for 'active acquisition'-embedded deep learning, leading to as high-quality images with little intervention by the human operator. In clinical practice, the improved image quality should translate into more robust deep learning-based clinical diagnostics. Embedded deep learning will be enabled by the constantly improving hardware performance with low cost. We will briefly review possible computation methods in larger clinical systems. Briefly, they can be included in a three-layer framework composed of edge, fog, and cloud layers, the former being performed at a device level. Improved egde-layer performance via 'active acquisition' serves as an automatic data curation operator translating to better quality data in electronic health records, as well as on the cloud layer, for improved deep learning-based clinical data mining.
Collapse
Affiliation(s)
- Petteri Teikari
- Visual Neurosciences Group, Singapore Eye Research Institute, Singapore
- Advanced Ocular Imaging, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Raymond P. Najjar
- Visual Neurosciences Group, Singapore Eye Research Institute, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Medical School, National University of Singapore, Singapore
| | - Leopold Schmetterer
- Visual Neurosciences Group, Singapore Eye Research Institute, Singapore
- Advanced Ocular Imaging, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
- Christian Doppler Laboratory for Ocular and Dermal Effects of Thiomers, Medical University of Vienna, Vienna, Austria
| | - Dan Milea
- Visual Neurosciences Group, Singapore Eye Research Institute, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Medical School, National University of Singapore, Singapore
- Neuro-Ophthalmology Department, Singapore National Eye Centre, Singapore
| |
Collapse
|