1
|
Barrit S, Al Barajraji M, El Hadwe S, Niset A, Foreman B, Park S, Lazaridis C, Shutter L, Appavu B, Kirschen MP, Montellano FA, Rass V, Torcida N, Pinggera D, Gilmore E, Ben-Hamouda N, Massager N, Bernard F, Robba C, Taccone FS. Intracranial multimodal monitoring in neurocritical care (Neurocore-iMMM): an open, decentralized consensus. Crit Care 2024; 28:427. [PMID: 39707556 DOI: 10.1186/s13054-024-05211-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 12/07/2024] [Indexed: 12/23/2024] Open
Abstract
BACKGROUND Intracranial multimodal monitoring (iMMM) is increasingly used in neurocritical care, but a lack of standardization hinders its evidence-based development. Here, we devised core outcome sets (COS) and reporting guidelines to harmonize iMMM practices and research. METHODS An open, decentralized, three-round Delphi consensus study involved experts between December 2023 and June 2024. Items-spanning three domains: (i) patient characteristics, (ii) practices, and (iii) outcomes-with ≥ 75% agreement were classified as strong agreement, while those with 50-75% were reconsidered in subsequent rounds, requiring ≥ 66% for moderate agreement. RESULTS An international, multidisciplinary panel comprised 58 neurocritical physicians and researchers with low attrition (12%). They were predominantly from Western regions (96%), actively involved in iMMM (82%), at least weekly (72.4%), with more than 10 years of specific experience (57%). Of the 127 items assessed for inclusion in COS and reporting guidelines, 45 (35.4%) reached strong and 8 (6.3%) moderate agreement. Main strong agreement items were: (i) demographics: age (98%) and sex/gender (90%); comorbidities: coagulation/platelet disorders (95%); initial scoring: Glasgow Coma Scale (97%) and pathology-specific scores (90%); active treatments: antithrombotics (95%) (ii) clinical practice: iMMM implantation indications (98%) and iMMM-guided interventions (91%); surgical practice: targeting strategies (97%) and concomitant external ventricular drainage (97%); technical details: recording modalities (98%); (iii) monitoring parameters: duration (97%) and triggered interventions (95%); standardized outcome reporting (93%); surgical complications (e.g., postoperative intracranial hemorrhages, CNS infections, and probe misplacement, all > 90%) and adverse events (accidental dislodgement, probe breakage, and technical malfunctions, all > 90%). CONCLUSION This consensus establishes foundational COS and reporting guidelines for iMMM in neurocritical care. These harmonization tools can enhance research quality, comparability, and reproducibility, facilitating evidence-based practices for this emerging technology. However, challenges remain in developing purpose-specific guidelines and adapting them to diverse clinical and research settings.
Collapse
Affiliation(s)
- Sami Barrit
- Department of Neurosurgery, CHU Tivoli, Université Libre de Bruxelles, Brussels, Belgium.
| | - Mejdeddine Al Barajraji
- Department of Neurosurgery, University Hospital of Lausanne and Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.
| | - Salim El Hadwe
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Alexandre Niset
- Pediatric Intensive Care Unit, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Brandon Foreman
- Department of Neurology and Rehabilitation, University of Cincinnati, Cincinnati, OH, USA
| | - Soojin Park
- Department of Neurology, New York Presbyterian/Columbia University Irving Medical Center, New York, NY, USA
| | - Christos Lazaridis
- Section of Neurocritical Care, Departments of Neurology and Neurosurgery, The University of Chicago, Chicago, IL, USA
| | - Lori Shutter
- Departments of Critical Care Medicine, Neurology, and Neurosurgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Brian Appavu
- Department of Neurology, Phoenix Children's, Phoenix, AZ, USA
| | - Matthew P Kirschen
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | | | - Verena Rass
- Neurological Intensive Care Unit, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Nathan Torcida
- Department of Neurology, Hôpital Universitaire de Bruxelles, HUB, Brussels, Belgium
| | - Daniel Pinggera
- Department of Neurosurgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Emily Gilmore
- Department of Neurology, Yale University, New Haven, CT, USA
| | - Nawfel Ben-Hamouda
- Department of Adult Intensive Care Medicine, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Nicolas Massager
- Department of Neurological Surgery, CHU Tivoli, La Louvière, Belgium
| | - Francis Bernard
- Section of Critical Care, Department of Medicine, University of Montreal, Montreal, QC, Canada
| | | | - Fabio Silvio Taccone
- Department of Intensive Care, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
2
|
Khan IR, Dar IA, Johnson TW, Loose E, Xu YY, Santiago E, Donohue KL, Marinescu MA, Gosev I, Schifitto G, Maddox RK, Busch DR, Choe R, Selioutski O. Correlations Between Quantitative EEG Parameters and Cortical Blood Flow in Patients Undergoing Extracorporeal Membrane Oxygenation With and Without Encephalopathy. J Clin Neurophysiol 2024; 41:597-605. [PMID: 37934074 DOI: 10.1097/wnp.0000000000001035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023] Open
Abstract
PURPOSE The neurologic examination of patients undergoing extracorporeal membrane oxygenation (ECMO) is crucial for evaluating irreversible encephalopathy but is often obscured by sedation or neuromuscular blockade. Noninvasive neuromonitoring modalities including diffuse correlation spectroscopy and EEG measure cerebral perfusion and neuronal function, respectively. We hypothesized that encephalopathic ECMO patients with greater degree of irreversible cerebral injury demonstrate less correlation between electrographic activity and cerebral perfusion than those whose encephalopathy is attributable to medications. METHODS We performed a prospective observational study of adults undergoing ECMO who underwent simultaneous continuous EEG and diffuse correlation spectroscopy monitoring. (Alpha + beta)/delta ratio and alpha/delta Rartio derived from quantitative EEG analysis were correlated with frontal cortical blood flow index. Patients who awakened and followed commands during sedation pauses were included in group 1, whereas patients who could not follow commands for most neuromonitoring were placed in group 2. (Alpha + beta)/delta ratio-blood flow index and ADR-BFI correlations were compared between the groups. RESULTS Ten patients (five in each group) underwent 39 concomitant continuous EEG and diffuse correlation spectroscopy monitoring sessions. Four patients (80%) in each group received some form of analgosedation during neuromonitoring. (Alpha + beta)/delta ratio-blood flow index correlation was significantly lower in group 2 than group 1 (left: 0.05 vs. 0.52, P = 0.03; right: -0.12 vs. 0.39, P = 0.04). Group 2 ADR-BFI correlation was lower only over the right hemisphere (-0.06 vs. 0.47, P = 0.04). CONCLUSIONS Correlation between (alpha + beta)/delta ratio and blood flow index were decreased in encephalopathic ECMO patients compared with awake ones, regardless of the analgosedation use. The combined use of EEG and diffuse correlation spectroscopy may have utility in monitoring cerebral function in ECMO patients.
Collapse
Affiliation(s)
| | - Irfaan A Dar
- Biomedical Engineering, University of Rochester Medical Center, Rochester, New York, U.S.A
| | | | - Emily Loose
- School of Arts and Sciences, University of Rochester, Rochester, New York, U.S.A
| | - Yama Y Xu
- School of Arts and Sciences, University of Rochester, Rochester, New York, U.S.A
| | - Esmeralda Santiago
- School of Arts and Sciences, University of Rochester, Rochester, New York, U.S.A
| | - Kelly L Donohue
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, U.S.A
| | - Mark A Marinescu
- Department of Medicine, University of Rochester Medical Center, Rochester, New York, U.S.A
| | - Igor Gosev
- Division of Cardiac Surgery, Department of Surgery, University of Rochester Medical Center, Rochester, New York, U.S.A
| | | | - Ross K Maddox
- Biomedical Engineering, University of Rochester Medical Center, Rochester, New York, U.S.A
- Department of Neuroscience, University of Rochester Medical Center, Rochester, New York, U.S.A
| | - David R Busch
- Department of Anesthesiology and Pain Management, University of Texas Southwestern Medical Center, Dallas, Texas, U.S.A
| | - Regine Choe
- Biomedical Engineering, University of Rochester Medical Center, Rochester, New York, U.S.A
- Department of Electrical and Computer Engineering, University of Rochester, Rochester, New York, U.S.A.; and
| | - Olga Selioutski
- Departments of Neurology and
- Department of Neurology, University of Mississippi, Jackson, Mississippi, U.S.A
| |
Collapse
|
3
|
Dar IA, Khan IR, Johnson TW, Helmy SM, Cardona JI, Escobar S, Selioutski O, Marinescu MA, Zhang CT, Proctor AR, AbdAllah N, Busch DR, Maddox RK, Choe R. Wavelet and time-based cerebral autoregulation analysis using diffuse correlation spectroscopy on adults undergoing extracorporeal membrane oxygenation therapy. PLoS One 2024; 19:e0299752. [PMID: 39471182 PMCID: PMC11521301 DOI: 10.1371/journal.pone.0299752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 09/23/2024] [Indexed: 11/01/2024] Open
Abstract
INTRODUCTION Adult patients who have suffered acute cardiac or pulmonary failure are increasingly being treated using extracorporeal membrane oxygenation (ECMO), a cardiopulmonary bypass technique. While ECMO has improved the long-term outcomes of these patients, neurological injuries can occur from underlying illness or ECMO itself. Cerebral autoregulation (CA) allows the brain to maintain steady perfusion during changes in systemic blood pressure. Dysfunctional CA is a marker of acute brain injury and can worsen neurologic damage. Monitoring CA using invasive modalities can be risky in ECMO patients due to the necessity of anticoagulation therapy. Diffuse correlation spectroscopy (DCS) measures cerebral blood flow continuously, noninvasively, at the bedside, and can monitor CA. In this study, we compare DCS-based markers of CA in veno-arterial ECMO patients with and without acute brain injury. METHODS Adults undergoing ECMO were prospectively enrolled at a single tertiary hospital and underwent DCS and arterial blood pressure monitoring during ECMO. Neurologic injuries were identified using brain computerized tomography (CT) scans obtained in all patients. CA was calculated over a twenty-minute window via wavelet coherence analysis (WCA) over 0.05 Hz to 0.1 Hz and a Pearson correlation (DCSx) between cerebral blood flow measured by DCS and mean arterial pressure. RESULTS Eleven ECMO patients who received CT neuroimaging were recruited. 5 (45%) patients were found to have neurologic injury. CA indices WCOH, the area under the curve of the WCA, were significantly higher for patients with neurological injuries compared to those without neurological injuries (right hemisphere p = 0.041, left hemisphere p = 0.041). %DCSx, percentage of time DCSx was above a threshold 0.4, were not significantly higher (right hemisphere p = 0.268, left hemisphere p = 0.073). CONCLUSION DCS can be used to detect differences in CA for ECMO patients with neurological injuries compared to uninjured patients using WCA.
Collapse
Affiliation(s)
- Irfaan A. Dar
- Department of Biomedical Engineering, University of Rochester, Rochester, New York, United States of America
| | - Imad R. Khan
- Department of Neurology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Thomas W. Johnson
- Department of Neurology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Samantha Marie Helmy
- School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Jeronimo I. Cardona
- School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Samantha Escobar
- Clinical and Translational Sciences Program, University of Rochester, Rochester, New York, United States of America
| | - Olga Selioutski
- Department of Neurology, University of Rochester Medical Center, Rochester, New York, United States of America
- Department of Neurology, University of Mississippi, Jackson, Mississippi, United States of America
| | - Mark A. Marinescu
- Department of Medicine, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Chloe T. Zhang
- Department of Biomedical Engineering, University of Rochester, Rochester, New York, United States of America
| | - Ashley R. Proctor
- Department of Neurology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Noura AbdAllah
- Department of Biology, University of Rochester, Rochester, New York, United States of America
| | - David R. Busch
- Departments of Anesthesiology and Pain Management, Neurology and Biomedical Engineering, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Ross K. Maddox
- Department of Biomedical Engineering, University of Rochester, Rochester, New York, United States of America
- Department of Neuroscience, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Regine Choe
- Department of Biomedical Engineering, University of Rochester, Rochester, New York, United States of America
- Department of Electrical and Computer Engineering, University of Rochester, Rochester, New York, United States of America
| |
Collapse
|
4
|
Matlis GC, Zhang Q, Benson EJ, Weeks MK, Andersen K, Jahnavi J, Lafontant A, Breimann J, Hallowell T, Lin Y, Licht DJ, Yodh AG, Kilbaugh TJ, Forti RM, White BR, Baker WB, Xiao R, Ko TS. Chassis-based fiber-coupled optical probe design for reproducible quantitative diffuse optical spectroscopy measurements. PLoS One 2024; 19:e0305254. [PMID: 39052686 PMCID: PMC11271963 DOI: 10.1371/journal.pone.0305254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 05/27/2024] [Indexed: 07/27/2024] Open
Abstract
Advanced optical neuromonitoring of cerebral hemodynamics with hybrid diffuse optical spectroscopy (DOS) and diffuse correlation spectroscopy (DCS) methods holds promise for non-invasive characterization of brain health in critically ill patients. However, the methods' fiber-coupled patient interfaces (probes) are challenging to apply in emergent clinical scenarios that require rapid and reproducible attachment to the head. To address this challenge, we developed a novel chassis-based optical probe design for DOS/DCS measurements and validated its measurement accuracy and reproducibility against conventional, manually held measurements of cerebral hemodynamics in pediatric swine (n = 20). The chassis-based probe design comprises a detachable fiber housing which snaps into a 3D-printed, circumferential chassis piece that is secured to the skin. To validate its reproducibility, eight measurement repetitions of cerebral tissue blood flow index (BFI), oxygen saturation (StO2), and oxy-, deoxy- and total hemoglobin concentration were acquired at the same demarcated measurement location for each pig. The probe was detached after each measurement. Of the eight measurements, four were acquired by placing the probe into a secured chassis, and four were visually aligned and manually held. We compared the absolute value and intra-subject coefficient of variation (CV) of chassis versus manual measurements. No significant differences were observed in either absolute value or CV between chassis and manual measurements (p > 0.05). However, the CV for BFI (mean ± SD: manual, 19.5% ± 9.6; chassis, 19.0% ± 10.8) was significantly higher than StO2 (manual, 5.8% ± 6.7; chassis, 6.6% ± 7.1) regardless of measurement methodology (p<0.001). The chassis-based DOS/DCS probe design facilitated rapid probe attachment/re-attachment and demonstrated comparable accuracy and reproducibility to conventional, manual alignment. In the future, this design may be adapted for clinical applications to allow for non-invasive monitoring of cerebral health during pediatric critical care.
Collapse
Affiliation(s)
- Giselle C. Matlis
- Division of Neurology, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA, United States of America
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania, United States of America
| | - Qihuang Zhang
- Department of Biostatistics and Epidemiology, University of Pennsylvania, Philadelphia, PA, United States of America
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, QC, Canada
| | - Emilie J. Benson
- Division of Neurology, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA, United States of America
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, United States of America
| | - M. Katie Weeks
- Department of Anesthesiology and Critical Care Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, United States of America
| | - Kristen Andersen
- Division of Neurology, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA, United States of America
| | - Jharna Jahnavi
- Division of Neurology, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA, United States of America
| | - Alec Lafontant
- Division of Neurology, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA, United States of America
| | - Jake Breimann
- Division of Neurology, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA, United States of America
| | - Thomas Hallowell
- Department of Anesthesiology and Critical Care Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, United States of America
| | - Yuxi Lin
- Department of Anesthesiology and Critical Care Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, United States of America
| | - Daniel J. Licht
- Division of Neurology, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA, United States of America
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States of America
- Division of Neurology, Department of Pediatrics, Children’s National, Washington, District of Columbia, United States of America
- Division of Neurology, George Washington University, Washington, District of Columbia, United States of America
| | - Arjun G. Yodh
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Todd J. Kilbaugh
- Department of Anesthesiology and Critical Care Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, United States of America
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States of America
| | - Rodrigo M. Forti
- Division of Neurology, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA, United States of America
| | - Brian R. White
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States of America
- Division of Pediatric Cardiology, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States of America
| | - Wesley B. Baker
- Division of Neurology, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA, United States of America
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States of America
| | - Rui Xiao
- Department of Biostatistics and Epidemiology, University of Pennsylvania, Philadelphia, PA, United States of America
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States of America
| | - Tiffany S. Ko
- Department of Anesthesiology and Critical Care Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, United States of America
| |
Collapse
|
5
|
Sanford EL, Akorede R, Miller I, Morriss MC, Nandy K, Raman L, Busch DR. Association Between Disrupted Cerebral Autoregulation and Radiographic Neurologic Injury for Children on Extracorporeal Membrane Oxygenation: A Prospective Pilot Study. ASAIO J 2023; 69:e315-e321. [PMID: 37172001 DOI: 10.1097/mat.0000000000001970] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023] Open
Abstract
Validation of a real-time monitoring device to evaluate the risk or occurrence of neurologic injury while on extracorporeal membrane oxygenation (ECMO) may aid clinicians in prevention and treatment. Therefore, we performed a pilot prospective cohort study of children under 18 years old on ECMO to analyze the association between cerebral blood pressure autoregulation as measured by diffuse correlation spectroscopy (DCS) and radiographic neurologic injury. DCS measurements of regional cerebral blood flow were collected on enrolled patients and correlated with mean arterial blood pressure to determine the cerebral autoregulation metric termed DCSx. The primary outcome of interest was radiographic neurologic injury on eligible computed tomography (CT) or magnetic resonance imaging (MRI) scored by a blinded pediatric neuroradiologist utilizing a previously validated scale. Higher DCSx scores, which indicate disruption of cerebral autoregulation, were associated with higher radiographic neurologic injury score (slope, 11.0; 95% confidence interval [CI], 0.29-22). Patients with clinically significant neurologic injury scores of 10 or more had higher median DCSx measures than patients with lower neurologic injury scores (0.48 vs . 0.13; p = 0.01). Our study indicates that obtaining noninvasive DCS measures for children on ECMO is feasible and disruption of cerebral autoregulation determined from DCS is associated with higher radiographic neurologic injury score.
Collapse
Affiliation(s)
- Ethan L Sanford
- From the Department of Anesthesiology and Pain Management, UT Southwestern Medical Center/Children's Medical Center, Dallas, Texas
- Division of Pediatric Critical Care Medicine, UT Southwestern Medical Center/Children's Medical Center, Dallas, Texas
| | - Rufai Akorede
- From the Department of Anesthesiology and Pain Management, UT Southwestern Medical Center/Children's Medical Center, Dallas, Texas
| | - Isabel Miller
- UT Southwestern Medical Center Medical School, Dallas, Texas
| | - Michael Craig Morriss
- Department of Radiology, UT Southwestern Medical Center/Children's Medical Center, Dallas, Texas
| | - Karabi Nandy
- Peter O'Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Lakshmi Raman
- Division of Pediatric Critical Care Medicine, UT Southwestern Medical Center/Children's Medical Center, Dallas, Texas
| | - David R Busch
- From the Department of Anesthesiology and Pain Management, UT Southwestern Medical Center/Children's Medical Center, Dallas, Texas
- Department of Neurology, UT Southwestern Medical Center, Dallas, Texas
- Department of Biomedical Engineering, UT Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
6
|
Ayaz H, Baker WB, Blaney G, Boas DA, Bortfeld H, Brady K, Brake J, Brigadoi S, Buckley EM, Carp SA, Cooper RJ, Cowdrick KR, Culver JP, Dan I, Dehghani H, Devor A, Durduran T, Eggebrecht AT, Emberson LL, Fang Q, Fantini S, Franceschini MA, Fischer JB, Gervain J, Hirsch J, Hong KS, Horstmeyer R, Kainerstorfer JM, Ko TS, Licht DJ, Liebert A, Luke R, Lynch JM, Mesquida J, Mesquita RC, Naseer N, Novi SL, Orihuela-Espina F, O’Sullivan TD, Peterka DS, Pifferi A, Pollonini L, Sassaroli A, Sato JR, Scholkmann F, Spinelli L, Srinivasan VJ, St. Lawrence K, Tachtsidis I, Tong Y, Torricelli A, Urner T, Wabnitz H, Wolf M, Wolf U, Xu S, Yang C, Yodh AG, Yücel MA, Zhou W. Optical imaging and spectroscopy for the study of the human brain: status report. NEUROPHOTONICS 2022; 9:S24001. [PMID: 36052058 PMCID: PMC9424749 DOI: 10.1117/1.nph.9.s2.s24001] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
This report is the second part of a comprehensive two-part series aimed at reviewing an extensive and diverse toolkit of novel methods to explore brain health and function. While the first report focused on neurophotonic tools mostly applicable to animal studies, here, we highlight optical spectroscopy and imaging methods relevant to noninvasive human brain studies. We outline current state-of-the-art technologies and software advances, explore the most recent impact of these technologies on neuroscience and clinical applications, identify the areas where innovation is needed, and provide an outlook for the future directions.
Collapse
Affiliation(s)
- Hasan Ayaz
- Drexel University, School of Biomedical Engineering, Science, and Health Systems, Philadelphia, Pennsylvania, United States
- Drexel University, College of Arts and Sciences, Department of Psychological and Brain Sciences, Philadelphia, Pennsylvania, United States
| | - Wesley B. Baker
- Children’s Hospital of Philadelphia, Division of Neurology, Philadelphia, Pennsylvania, United States
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Giles Blaney
- Tufts University, Department of Biomedical Engineering, Medford, Massachusetts, United States
| | - David A. Boas
- Boston University Neurophotonics Center, Boston, Massachusetts, United States
- Boston University, College of Engineering, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Heather Bortfeld
- University of California, Merced, Departments of Psychological Sciences and Cognitive and Information Sciences, Merced, California, United States
| | - Kenneth Brady
- Lurie Children’s Hospital, Northwestern University Feinberg School of Medicine, Department of Anesthesiology, Chicago, Illinois, United States
| | - Joshua Brake
- Harvey Mudd College, Department of Engineering, Claremont, California, United States
| | - Sabrina Brigadoi
- University of Padua, Department of Developmental and Social Psychology, Padua, Italy
| | - Erin M. Buckley
- Georgia Institute of Technology, Wallace H. Coulter Department of Biomedical Engineering, Atlanta, Georgia, United States
- Emory University School of Medicine, Department of Pediatrics, Atlanta, Georgia, United States
| | - Stefan A. Carp
- Massachusetts General Hospital, Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, Massachusetts, United States
| | - Robert J. Cooper
- University College London, Department of Medical Physics and Bioengineering, DOT-HUB, London, United Kingdom
| | - Kyle R. Cowdrick
- Georgia Institute of Technology, Wallace H. Coulter Department of Biomedical Engineering, Atlanta, Georgia, United States
| | - Joseph P. Culver
- Washington University School of Medicine, Department of Radiology, St. Louis, Missouri, United States
| | - Ippeita Dan
- Chuo University, Faculty of Science and Engineering, Tokyo, Japan
| | - Hamid Dehghani
- University of Birmingham, School of Computer Science, Birmingham, United Kingdom
| | - Anna Devor
- Boston University, College of Engineering, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Turgut Durduran
- ICFO – The Institute of Photonic Sciences, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, Spain
- Institució Catalana de Recerca I Estudis Avançats (ICREA), Barcelona, Spain
| | - Adam T. Eggebrecht
- Washington University in St. Louis, Mallinckrodt Institute of Radiology, St. Louis, Missouri, United States
| | - Lauren L. Emberson
- University of British Columbia, Department of Psychology, Vancouver, British Columbia, Canada
| | - Qianqian Fang
- Northeastern University, Department of Bioengineering, Boston, Massachusetts, United States
| | - Sergio Fantini
- Tufts University, Department of Biomedical Engineering, Medford, Massachusetts, United States
| | - Maria Angela Franceschini
- Massachusetts General Hospital, Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, Massachusetts, United States
| | - Jonas B. Fischer
- ICFO – The Institute of Photonic Sciences, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, Spain
| | - Judit Gervain
- University of Padua, Department of Developmental and Social Psychology, Padua, Italy
- Université Paris Cité, CNRS, Integrative Neuroscience and Cognition Center, Paris, France
| | - Joy Hirsch
- Yale School of Medicine, Department of Psychiatry, Neuroscience, and Comparative Medicine, New Haven, Connecticut, United States
- University College London, Department of Medical Physics and Biomedical Engineering, London, United Kingdom
| | - Keum-Shik Hong
- Pusan National University, School of Mechanical Engineering, Busan, Republic of Korea
- Qingdao University, School of Automation, Institute for Future, Qingdao, China
| | - Roarke Horstmeyer
- Duke University, Department of Biomedical Engineering, Durham, North Carolina, United States
- Duke University, Department of Electrical and Computer Engineering, Durham, North Carolina, United States
- Duke University, Department of Physics, Durham, North Carolina, United States
| | - Jana M. Kainerstorfer
- Carnegie Mellon University, Department of Biomedical Engineering, Pittsburgh, Pennsylvania, United States
- Carnegie Mellon University, Neuroscience Institute, Pittsburgh, Pennsylvania, United States
| | - Tiffany S. Ko
- Children’s Hospital of Philadelphia, Division of Cardiothoracic Anesthesiology, Philadelphia, Pennsylvania, United States
| | - Daniel J. Licht
- Children’s Hospital of Philadelphia, Division of Neurology, Philadelphia, Pennsylvania, United States
| | - Adam Liebert
- Polish Academy of Sciences, Nalecz Institute of Biocybernetics and Biomedical Engineering, Warsaw, Poland
| | - Robert Luke
- Macquarie University, Department of Linguistics, Sydney, New South Wales, Australia
- Macquarie University Hearing, Australia Hearing Hub, Sydney, New South Wales, Australia
| | - Jennifer M. Lynch
- Children’s Hospital of Philadelphia, Division of Cardiothoracic Anesthesiology, Philadelphia, Pennsylvania, United States
| | - Jaume Mesquida
- Parc Taulí Hospital Universitari, Critical Care Department, Sabadell, Spain
| | - Rickson C. Mesquita
- University of Campinas, Institute of Physics, Campinas, São Paulo, Brazil
- Brazilian Institute of Neuroscience and Neurotechnology, Campinas, São Paulo, Brazil
| | - Noman Naseer
- Air University, Department of Mechatronics and Biomedical Engineering, Islamabad, Pakistan
| | - Sergio L. Novi
- University of Campinas, Institute of Physics, Campinas, São Paulo, Brazil
- Western University, Department of Physiology and Pharmacology, London, Ontario, Canada
| | | | - Thomas D. O’Sullivan
- University of Notre Dame, Department of Electrical Engineering, Notre Dame, Indiana, United States
| | - Darcy S. Peterka
- Columbia University, Zuckerman Mind Brain Behaviour Institute, New York, United States
| | | | - Luca Pollonini
- University of Houston, Department of Engineering Technology, Houston, Texas, United States
| | - Angelo Sassaroli
- Tufts University, Department of Biomedical Engineering, Medford, Massachusetts, United States
| | - João Ricardo Sato
- Federal University of ABC, Center of Mathematics, Computing and Cognition, São Bernardo do Campo, São Paulo, Brazil
| | - Felix Scholkmann
- University of Bern, Institute of Complementary and Integrative Medicine, Bern, Switzerland
- University of Zurich, University Hospital Zurich, Department of Neonatology, Biomedical Optics Research Laboratory, Zürich, Switzerland
| | - Lorenzo Spinelli
- National Research Council (CNR), IFN – Institute for Photonics and Nanotechnologies, Milan, Italy
| | - Vivek J. Srinivasan
- University of California Davis, Department of Biomedical Engineering, Davis, California, United States
- NYU Langone Health, Department of Ophthalmology, New York, New York, United States
- NYU Langone Health, Department of Radiology, New York, New York, United States
| | - Keith St. Lawrence
- Lawson Health Research Institute, Imaging Program, London, Ontario, Canada
- Western University, Department of Medical Biophysics, London, Ontario, Canada
| | - Ilias Tachtsidis
- University College London, Department of Medical Physics and Biomedical Engineering, London, United Kingdom
| | - Yunjie Tong
- Purdue University, Weldon School of Biomedical Engineering, West Lafayette, Indiana, United States
| | - Alessandro Torricelli
- Politecnico di Milano, Dipartimento di Fisica, Milan, Italy
- National Research Council (CNR), IFN – Institute for Photonics and Nanotechnologies, Milan, Italy
| | - Tara Urner
- Georgia Institute of Technology, Wallace H. Coulter Department of Biomedical Engineering, Atlanta, Georgia, United States
| | - Heidrun Wabnitz
- Physikalisch-Technische Bundesanstalt (PTB), Berlin, Germany
| | - Martin Wolf
- University of Zurich, University Hospital Zurich, Department of Neonatology, Biomedical Optics Research Laboratory, Zürich, Switzerland
| | - Ursula Wolf
- University of Bern, Institute of Complementary and Integrative Medicine, Bern, Switzerland
| | - Shiqi Xu
- Duke University, Department of Biomedical Engineering, Durham, North Carolina, United States
| | - Changhuei Yang
- California Institute of Technology, Department of Electrical Engineering, Pasadena, California, United States
| | - Arjun G. Yodh
- University of Pennsylvania, Department of Physics and Astronomy, Philadelphia, Pennsylvania, United States
| | - Meryem A. Yücel
- Boston University Neurophotonics Center, Boston, Massachusetts, United States
- Boston University, College of Engineering, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Wenjun Zhou
- University of California Davis, Department of Biomedical Engineering, Davis, California, United States
- China Jiliang University, College of Optical and Electronic Technology, Hangzhou, Zhejiang, China
| |
Collapse
|
7
|
Johnson TW, Dar IA, Donohue KL, Xu YY, Santiago E, Selioutski O, Marinescu MA, Maddox RK, Wu TT, Schifitto G, Gosev I, Choe R, Khan IR. Cerebral Blood Flow Hemispheric Asymmetry in Comatose Adults Receiving Extracorporeal Membrane Oxygenation. Front Neurosci 2022; 16:858404. [PMID: 35478849 PMCID: PMC9036108 DOI: 10.3389/fnins.2022.858404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/09/2022] [Indexed: 12/03/2022] Open
Abstract
Peripheral veno-arterial extracorporeal membrane oxygenation (ECMO) artificially oxygenates and circulates blood retrograde from the femoral artery, potentially exposing the brain to asymmetric perfusion. Though ECMO patients frequently experience brain injury, neurologic exams and imaging are difficult to obtain. Diffuse correlation spectroscopy (DCS) non-invasively measures relative cerebral blood flow (rBF) at the bedside using an optical probe on each side of the forehead. In this study we observed interhemispheric rBF differences in response to mean arterial pressure (MAP) changes in adult ECMO recipients. We recruited 13 subjects aged 21–78 years (7 with cardiac arrest, 4 with acute heart failure, and 2 with acute respiratory distress syndrome). They were dichotomized via Glasgow Coma Scale Motor score (GCS-M) into comatose (GCS-M ≤ 4; n = 4) and non-comatose (GCS-M > 4; n = 9) groups. Comatose patients had greater interhemispheric rBF asymmetry (ASYMrBF) vs. non-comatose patients over a range of MAP values (29 vs. 11%, p = 0.009). ASYMrBF in comatose patients resolved near a MAP range of 70–80 mmHg, while rBF remained symmetric through a wider MAP range in non-comatose patients. Correlations between post-oxygenator pCO2 or pH vs. ASYMrBF were significantly different between comatose and non-comatose groups. Our findings indicate that comatose patients are more likely to have asymmetric cerebral perfusion.
Collapse
Affiliation(s)
- Thomas W. Johnson
- Department of Neurology, University of Rochester Medical Center, Rochester, NY, United States
| | - Irfaan A. Dar
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States
| | - Kelly L. Donohue
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Yama Y. Xu
- School of Arts and Sciences, University of Rochester, Rochester, NY, United States
| | - Esmeralda Santiago
- School of Arts and Sciences, University of Rochester, Rochester, NY, United States
| | - Olga Selioutski
- Department of Neurology, University of Rochester Medical Center, Rochester, NY, United States
| | - Mark A. Marinescu
- Department of Medicine, University of Rochester Medical Center, Rochester, NY, United States
| | - Ross K. Maddox
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY, United States
| | - Tong Tong Wu
- Department of Biostatistics and Computational Biology, University of Rochester, Rochester, NY, United States
| | - Giovanni Schifitto
- Department of Neurology, University of Rochester Medical Center, Rochester, NY, United States
| | - Igor Gosev
- Division of Cardiac Surgery, Department of Surgery, University of Rochester Medical Center, Rochester, NY, United States
| | - Regine Choe
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States
- Department of Electrical and Computer Engineering, University of Rochester, Rochester, NY, United States
| | - Imad R. Khan
- Department of Neurology, University of Rochester Medical Center, Rochester, NY, United States
- *Correspondence: Imad R. Khan,
| |
Collapse
|
8
|
Zhang H, Xu J, Yang X, Zou X, Shu H, Liu Z, Shang Y. Narrative Review of Neurologic Complications in Adults on ECMO: Prevalence, Risks, Outcomes, and Prevention Strategies. Front Med (Lausanne) 2021; 8:713333. [PMID: 34660625 PMCID: PMC8513760 DOI: 10.3389/fmed.2021.713333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 09/02/2021] [Indexed: 01/18/2023] Open
Abstract
Extracorporeal membrane oxygenation (ECMO), a life-saving technique for patients with severe respiratory and cardiac diseases, is being increasingly utilized worldwide, particularly during the coronavirus disease 2019(COVID-19) pandemic, and there has been a sharp increase in the implementation of ECMO. However, due to the presence of various complications, the survival rate of patients undergoing ECMO remains low. Among the complications, the neurologic morbidity significantly associated with venoarterial and venovenous ECMO has received increasing attention. Generally, failure to recognize neurologic injury in time is reportedly associated with poor outcomes in patients on ECMO. Currently, multimodal monitoring is increasingly utilized in patients with devastating neurologic injuries and has been advocated as an important approach for early diagnosis. Here, we highlight the prevalence and outcomes, risk factors, current monitoring technologies, prevention, and treatment of neurologic complications in adult patients on ECMO. We believe that an improved understanding of neurologic complications presumably offers promising therapeutic solutions to prevent and treat neurologic morbidity.
Collapse
Affiliation(s)
- Hongling Zhang
- Department of Intensive Care Unit, Affiliated Liu'an Hospital, Anhui Medical University, Liu'an, China
| | - Jiqian Xu
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaobo Yang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaojing Zou
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huaqing Shu
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhengdong Liu
- Department of Intensive Care Unit, Affiliated Liu'an Hospital, Anhui Medical University, Liu'an, China
| | - You Shang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|