1
|
Li J, Liu J, Das V, Le H, Aguilera N, Bower AJ, Giannini JP, Lu R, Abouassali S, Chew EY, Brooks BP, Zein WM, Huryn LA, Volkov A, Liu T, Tam J. Artificial intelligence assisted clinical fluorescence imaging achieves in vivo cellular resolution comparable to adaptive optics ophthalmoscopy. COMMUNICATIONS MEDICINE 2025; 5:105. [PMID: 40269122 PMCID: PMC12019174 DOI: 10.1038/s43856-025-00803-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 03/10/2025] [Indexed: 04/25/2025] Open
Abstract
BACKGROUND Advancements in biomedical optical imaging have enabled researchers to achieve cellular-level imaging in the living human body. However, research-grade technology is not always widely available in routine clinical practice. In this paper, we incorporated artificial intelligence (AI) with standard clinical imaging to successfully obtain images of the retinal pigment epithelial (RPE) cells in living human eyes. METHODS Following intravenous injection of indocyanine green (ICG) dye, subjects were imaged by both conventional instruments and adaptive optics (AO) ophthalmoscopy. To improve the visibility of RPE cells in conventional ICG images, we demonstrate both a hardware approach using a custom lens add-on and an AI-based approach using a stratified cycleGAN network. RESULTS We observe similar fluorescent mosaic patterns arising from labeled RPE cells on both conventional and AO images, suggesting that cellular-level imaging of RPE may be obtainable using conventional imaging, albeit at lower resolution. Results show that higher resolution ICG RPE images of both healthy and diseased eyes can be obtained from conventional images using AI with a potential 220-fold improvement in time. CONCLUSIONS The application of using AI as an add-on module for existing instrumentation is an important step towards routine screening and detection of disease at earlier stages.
Collapse
Affiliation(s)
- Joanne Li
- National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jianfei Liu
- National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Vineeta Das
- National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Hong Le
- National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Nancy Aguilera
- National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Andrew J Bower
- National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - John P Giannini
- National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Rongwen Lu
- National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Sarah Abouassali
- National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Emily Y Chew
- National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Brian P Brooks
- National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Wadih M Zein
- National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Laryssa A Huryn
- National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Andrei Volkov
- National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Tao Liu
- National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Johnny Tam
- National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
2
|
Parameswarappa DC, Kulkarni A, Sahoo NK, Padhy SK, Singh SR, Héon E, Chhablani J. From Cellular to Metabolic: Advances in Imaging of Inherited Retinal Diseases. Diagnostics (Basel) 2024; 15:28. [PMID: 39795556 PMCID: PMC11720060 DOI: 10.3390/diagnostics15010028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/19/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025] Open
Abstract
Background: Inherited retinal diseases (IRDs) are a genetically complex group of disorders, usually resulting in progressive vision loss due to retinal degeneration. Traditional imaging methods help in structural assessments, but limitations exist in early functional cellular-level detection that are crucial for guiding new therapies. Methods: This review includes a systematic search of PubMed and Google Scholar for studies on advanced imaging techniques for IRDs. Results: Key modalities covered are adaptive optics, fluorescence lifetime imaging ophthalmoscopy, polarization-sensitive optical coherence tomography, optoretinography, mitochondrial imaging, flavoprotein fluorescence imaging, and retinal oximetry. Each imaging method covers its principles, acquisition techniques, data from healthy eyes, applications in IRDs with specific examples, and current challenges and future directions. Conclusions: Emerging technologies, including adaptive optics and metabolic imaging, offer promising potential for cellular-level imaging and functional correlation in IRDs, allowing for earlier intervention and improved therapeutic targeting. Their integration into clinical practice may significantly improve IRD management and patient outcomes.
Collapse
Affiliation(s)
- Deepika C. Parameswarappa
- Ophthalmology and Vision Sciences, Hospital for Sick Children, University of Toronto, Toronto, ON M5S 1E8, Canada
| | - Ashwini Kulkarni
- Anant Bajaj Retina Institute, LV Prasad Eye Institute, Vijayawada 521134, India
| | - Niroj Kumar Sahoo
- Anant Bajaj Retina Institute, LV Prasad Eye Institute, Vijayawada 521134, India
| | - Srikanta Kumar Padhy
- Anant Bajaj Retina Institute, LV Prasad Eye Institute, Bhubaneswar 751024, India
| | | | - Elise Héon
- Ophthalmology and Vision Sciences, Hospital for Sick Children, University of Toronto, Toronto, ON M5S 1E8, Canada
- Genetics and Genome Biology, SickKids Research Institute, Toronto, ON M5G 1E8, Canada
| | - Jay Chhablani
- UPMC Eye Centre and Choroidal Analysis and Research (CAR) Lab, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
3
|
Soltanian-Zadeh S, Kovalick K, Aghayee S, Miller DT, Liu Z, Hammer DX, Farsiu S. Identifying retinal pigment epithelium cells in adaptive optics-optical coherence tomography images with partial annotations and superhuman accuracy. BIOMEDICAL OPTICS EXPRESS 2024; 15:6922-6939. [PMID: 39679394 PMCID: PMC11640571 DOI: 10.1364/boe.538473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 12/17/2024]
Abstract
Retinal pigment epithelium (RPE) cells are essential for normal retinal function. Morphological defects in these cells are associated with a number of retinal neurodegenerative diseases. Owing to the cellular resolution and depth-sectioning capabilities, individual RPE cells can be visualized in vivo with adaptive optics-optical coherence tomography (AO-OCT). Rapid, cost-efficient, and objective quantification of the RPE mosaic's structural properties necessitates the development of an automated cell segmentation algorithm. This paper presents a deep learning-based method with partial annotation training for detecting RPE cells in AO-OCT images with accuracy better than human performance. We have made the code, imaging datasets, and the manual expert labels available online.
Collapse
Affiliation(s)
- Somayyeh Soltanian-Zadeh
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
- Center for Devices and Radiological Health (CDRH), U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Katherine Kovalick
- Center for Devices and Radiological Health (CDRH), U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Samira Aghayee
- Center for Devices and Radiological Health (CDRH), U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Donald T. Miller
- School of Optometry, Indiana University, Bloomington, IN 47405, USA
| | - Zhuolin Liu
- Center for Devices and Radiological Health (CDRH), U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Daniel X. Hammer
- Center for Devices and Radiological Health (CDRH), U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Sina Farsiu
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
- Department of Ophthalmology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
4
|
Liu Z, Aghayee S, Soltanian-Zadeh S, Kovalick K, Agrawal A, Saeedi O, Cukras C, Chew EY, Farsiu S, Hammer DX. Quantification of Human Photoreceptor-Retinal Pigment Epithelium Macular Topography with Adaptive Optics-Optical Coherence Tomography. Diagnostics (Basel) 2024; 14:1518. [PMID: 39061655 PMCID: PMC11276449 DOI: 10.3390/diagnostics14141518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
Photoreceptors (PRs) and retinal pigment epithelial (RPE) cells form a functional unit called the PR-RPE complex. The PR-RPE complex plays a critical role in maintaining retinal homeostasis and function, and the quantification of its structure and topographical arrangement across the macula are important for understanding the etiology, mechanisms, and progression of many retinal diseases. However, the three-dimensional cellular morphology of the PR-RPE complex in living human eyes has not been completely described due to limitations in imaging techniques. We used the cellular resolution and depth-sectioning capabilities of a custom, high-speed Fourier domain mode-locked laser-based adaptive optics-optical coherence tomography (FDML-AO-OCT) platform to characterize human PR-RPE complex topography across the temporal macula from eleven healthy volunteers. With the aid of a deep learning algorithm, key metrics were extracted from the PR-RPE complex of averaged AO-OCT volumes including PR and RPE cell density, PR outer segment length (OSL), and PR/RPE ratio. We found a tight grouping among our cohort for PR density, with a mean (±SD) value of 53,329 (±8106) cells/mm2 at 1° decreasing to 8669 (±737) cells/mm2 at 12°. We observed a power function relationship between eccentricity and both PR density and PR/RPE ratio. We found similar variability in our RPE density measures, with a mean value of 7335 (±681) cells/mm2 at 1° decreasing to 5547 (±356) cells/mm2 at 12°, exhibiting a linear relationship with a negative slope of -123 cells/mm2 per degree. OSL monotonically decreased from 33.3 (±2.4) µm at 1° to 18.0 (±1.8) µm at 12°, following a second-order polynomial relationship. PR/RPE ratio decreased from 7.3 (±0.9) µm at 1° to 1.5 (±0.1) µm at 12°. The normative data from this investigation will help lay a foundation for future studies of retinal pathology.
Collapse
Affiliation(s)
- Zhuolin Liu
- Division of Biomedical Physics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, MD 20993, USA (S.S.-Z.); (A.A.)
| | - Samira Aghayee
- Division of Biomedical Physics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, MD 20993, USA (S.S.-Z.); (A.A.)
| | - Somayyeh Soltanian-Zadeh
- Division of Biomedical Physics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, MD 20993, USA (S.S.-Z.); (A.A.)
| | - Katherine Kovalick
- Division of Biomedical Physics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, MD 20993, USA (S.S.-Z.); (A.A.)
| | - Anant Agrawal
- Division of Biomedical Physics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, MD 20993, USA (S.S.-Z.); (A.A.)
| | - Osamah Saeedi
- Department of Ophthalmology, University of Maryland Baltimore School of Medicine, Baltimore, MD 21201, USA;
| | - Catherine Cukras
- Division of Epidemiology and Clinical Applications, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA (E.Y.C.)
| | - Emily Y. Chew
- Division of Epidemiology and Clinical Applications, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA (E.Y.C.)
| | - Sina Farsiu
- Department of Biomedical Engineering, Duke University, Durham, NC 27710, USA;
| | - Daniel X. Hammer
- Division of Biomedical Physics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, MD 20993, USA (S.S.-Z.); (A.A.)
| |
Collapse
|
5
|
Govindahari V, Dornier R, Ferdowsi S, Moser C, Mantel I, Behar-Cohen F, Kowalczuk L. High-resolution adaptive optics-trans-scleral flood illumination (AO-TFI) imaging of retinal pigment epithelium (RPE) in central serous chorioretinopathy (CSCR). Sci Rep 2024; 14:13689. [PMID: 38871803 DOI: 10.1038/s41598-024-64524-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 06/10/2024] [Indexed: 06/15/2024] Open
Abstract
This study aims to correlate adaptive optics-transscleral flood illumination (AO-TFI) images of the retinal pigment epithelium (RPE) in central serous chorioretinopathy (CSCR) with standard clinical images and compare cell morphological features with those of healthy eyes. After stitching 125 AO-TFI images acquired in CSCR eyes (including 6 active CSCR, 15 resolved CSCR, and 3 from healthy contralateral), 24 montages were correlated with blue-autofluorescence, infrared and optical coherence tomography images. All 68 AO-TFI images acquired in pathological areas exhibited significant RPE contrast changes. Among the 52 healthy areas in clinical images, AO-TFI revealed a normal RPE mosaic in 62% of the images and an altered RPE pattern in 38% of the images. Morphological features of the RPE cells were quantified in 54 AO-TFI images depicting clinically normal areas (from 12 CSCR eyes). Comparison with data from 149 AO-TFI images acquired in 33 healthy eyes revealed significantly increased morphological heterogeneity. In CSCR, AO-TFI not only enabled high-resolution imaging of outer retinal alterations, but also revealed RPE abnormalities undetectable by all other imaging modalities. Further studies are required to estimate the prognosis value of these abnormalities. Imaging of the RPE using AO-TFI holds great promise for improving our understanding of the CSCR pathogenesis.
Collapse
Affiliation(s)
- Vishal Govindahari
- Department of Retina, Pushpagiri Eye Institute, Hyderabad, 500026, India
- INSERM UMRS 1138 From Physiopathology of Ocular Diseases to Clinical Developments, Centre de Recherche des Cordeliers, Université Pierre et Marie Curie - Paris 6, 75006, Paris, France
| | - Rémy Dornier
- Laboratory of Applied Photonic Devices (LAPD), School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | | | - Christophe Moser
- Laboratory of Applied Photonic Devices (LAPD), School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Irmela Mantel
- Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, CH-1004, Lausanne, Switzerland
- Faculty of Biology and Medicine, University of Lausanne, CH-1005, Lausanne, Switzerland
| | - Francine Behar-Cohen
- INSERM UMRS 1138 From Physiopathology of Ocular Diseases to Clinical Developments, Centre de Recherche des Cordeliers, Université Pierre et Marie Curie - Paris 6, 75006, Paris, France
- Assistance Publique - Hôpitaux de Paris, Ophtalmopôle, Cochin Hospital, 75014, Paris, France
- Université Paris Cité, 75006, Paris, France
- Hôpital Foch, Suresnes, France
| | - Laura Kowalczuk
- Laboratory of Applied Photonic Devices (LAPD), School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland.
- Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, CH-1004, Lausanne, Switzerland.
- Faculty of Biology and Medicine, University of Lausanne, CH-1005, Lausanne, Switzerland.
| |
Collapse
|
6
|
Pedersen HR, Gilson SJ, Hagen LA, Holtan JP, Bragadottir R, Baraas RC. Multimodal in-vivo maps as a tool to characterize retinal structural biomarkers for progression in adult-onset Stargardt disease. FRONTIERS IN OPHTHALMOLOGY 2024; 4:1384473. [PMID: 38984108 PMCID: PMC11182093 DOI: 10.3389/fopht.2024.1384473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/04/2024] [Indexed: 07/11/2024]
Abstract
Purpose To characterize retinal structural biomarkers for progression in adult-onset Stargardt disease from multimodal retinal imaging in-vivo maps. Methods Seven adult patients (29-69 years; 3 males) with genetically-confirmed and clinically diagnosed adult-onset Stargardt disease and age-matched healthy controls were imaged with confocal and non-confocal Adaptive Optics Scanning Light Ophthalmoscopy (AOSLO), optical coherence tomography (OCT), fundus infrared (FIR), short wavelength-autofluorescence (FAF) and color fundus photography (CFP). Images from each modality were scaled for differences in lateral magnification before montages of AOSLO images were aligned with en-face FIR, FAF and OCT scans to explore changes in retinal structure across imaging modalities. Photoreceptors, retinal pigment epithelium (RPE) cells, flecks, and other retinal alterations in macular regions were identified, delineated, and correlated across imaging modalities. Retinal layer-thicknesses were extracted from segmented OCT images in areas of normal appearance on clinical imaging and intact outer retinal structure on OCT. Eccentricity dependency in cell density was compared with retinal thickness and outer retinal layer thickness, evaluated across patients, and compared with data from healthy controls. Results In patients with Stargardt disease, alterations in retinal structure were visible in different image modalities depending on layer location and structural properties. The patients had highly variable foveal structure, associated with equally variable visual acuity (-0.02 to 0.98 logMAR). Cone and rod photoreceptors, as well as RPE-like structures in some areas, could be quantified on non-confocal split-detection AOSLO images. RPE cells were also visible on dark field AOSLO images close to the foveal center. Hypo-reflective gaps of non-waveguiding cones (dark cones) were seen on confocal AOSLO in regions with clinically normal CFP, FIR, FAF and OCT appearance and an intact cone inner segment mosaic in three patients. Conclusion Dark cones were identified as a possible first sign of retinal disease progression in adult-onset Stargardt disease as these are observed in retinal locations with otherwise normal appearance and outer retinal thickness. This corroborates a previous report where dark cones were proposed as a first sign of progression in childhood-onset Stargardt disease. This also supports the hypothesis that, in Stargardt disease, photoreceptor degeneration occurs before RPE cell death.
Collapse
Affiliation(s)
- Hilde R Pedersen
- National Centre for Optics, Vision and Eye Care, Faculty of Health and Social Sciences, University of South-Eastern Norway, Kongsberg, Norway
| | - Stuart J Gilson
- National Centre for Optics, Vision and Eye Care, Faculty of Health and Social Sciences, University of South-Eastern Norway, Kongsberg, Norway
| | - Lene A Hagen
- National Centre for Optics, Vision and Eye Care, Faculty of Health and Social Sciences, University of South-Eastern Norway, Kongsberg, Norway
| | - Josephine Prener Holtan
- Department of Ophthalmology, Oslo University Hospital, Oslo, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Ragnheidur Bragadottir
- Department of Ophthalmology, Oslo University Hospital, Oslo, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Rigmor C Baraas
- National Centre for Optics, Vision and Eye Care, Faculty of Health and Social Sciences, University of South-Eastern Norway, Kongsberg, Norway
| |
Collapse
|
7
|
Das V, Zhang F, Bower AJ, Li J, Liu T, Aguilera N, Alvisio B, Liu Z, Hammer DX, Tam J. Revealing speckle obscured living human retinal cells with artificial intelligence assisted adaptive optics optical coherence tomography. COMMUNICATIONS MEDICINE 2024; 4:68. [PMID: 38600290 PMCID: PMC11006674 DOI: 10.1038/s43856-024-00483-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 03/13/2024] [Indexed: 04/12/2024] Open
Abstract
BACKGROUND In vivo imaging of the human retina using adaptive optics optical coherence tomography (AO-OCT) has transformed medical imaging by enabling visualization of 3D retinal structures at cellular-scale resolution, including the retinal pigment epithelial (RPE) cells, which are essential for maintaining visual function. However, because noise inherent to the imaging process (e.g., speckle) makes it difficult to visualize RPE cells from a single volume acquisition, a large number of 3D volumes are typically averaged to improve contrast, substantially increasing the acquisition duration and reducing the overall imaging throughput. METHODS Here, we introduce parallel discriminator generative adversarial network (P-GAN), an artificial intelligence (AI) method designed to recover speckle-obscured cellular features from a single AO-OCT volume, circumventing the need for acquiring a large number of volumes for averaging. The combination of two parallel discriminators in P-GAN provides additional feedback to the generator to more faithfully recover both local and global cellular structures. Imaging data from 8 eyes of 7 participants were used in this study. RESULTS We show that P-GAN not only improves RPE cell contrast by 3.5-fold, but also improves the end-to-end time required to visualize RPE cells by 99-fold, thereby enabling large-scale imaging of cells in the living human eye. RPE cell spacing measured across a large set of AI recovered images from 3 participants were in agreement with expected normative ranges. CONCLUSIONS The results demonstrate the potential of AI assisted imaging in overcoming a key limitation of RPE imaging and making it more accessible in a routine clinical setting.
Collapse
Affiliation(s)
- Vineeta Das
- National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Furu Zhang
- National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Andrew J Bower
- National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Joanne Li
- National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Tao Liu
- National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Nancy Aguilera
- National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Bruno Alvisio
- National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Zhuolin Liu
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Daniel X Hammer
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Johnny Tam
- National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
8
|
Gofas-Salas E, Lee DMW, Rondeau C, Grieve K, Rossi EA, Paques M, Gocho K. Comparison between Two Adaptive Optics Methods for Imaging of Individual Retinal Pigmented Epithelial Cells. Diagnostics (Basel) 2024; 14:768. [PMID: 38611681 PMCID: PMC11012195 DOI: 10.3390/diagnostics14070768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/18/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
The Retinal Pigment Epithelium (RPE) plays a prominent role in diseases such as age-related macular degeneration, but imaging individual RPE cells is challenging due to their high absorption and low autofluorescence emission. The RPE lies beneath the highly reflective photoreceptor layer (PR) and contains absorptive pigments, preventing direct backscattered light detection when the PR layer is intact. Here, we used near-infrared autofluorescence adaptive optics scanning laser ophthalmoscopy (NIRAF AOSLO) and transscleral flood imaging (TFI) in the same healthy eyes to cross-validate these approaches. Both methods revealed a consistent RPE mosaic pattern and appeared to reflect a distribution of fluorophores consistent with findings from histological studies. Interestingly, even in apparently healthy RPE, we observed dynamic changes over months, suggesting ongoing cellular activity or alterations in fluorophore distribution. These findings emphasize the value of NIRAF AOSLO and TFI in understanding RPE morphology and dynamics.
Collapse
Affiliation(s)
- Elena Gofas-Salas
- Department of Photonics, Institut de la Vision, INSERM, CNRS, Sorbonne Université, 17 rue Moreau, F-75012 Paris, France;
- CIC 1423, CHNO des Quinze-Vingts, INSERM-DGOS 28 rue de Charenton, F-75012 Paris, France; (M.P.); (K.G.)
| | - Daniel M. W. Lee
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA; (D.M.W.L.); (E.A.R.)
| | | | - Kate Grieve
- Department of Photonics, Institut de la Vision, INSERM, CNRS, Sorbonne Université, 17 rue Moreau, F-75012 Paris, France;
- CIC 1423, CHNO des Quinze-Vingts, INSERM-DGOS 28 rue de Charenton, F-75012 Paris, France; (M.P.); (K.G.)
| | - Ethan A. Rossi
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA; (D.M.W.L.); (E.A.R.)
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | - Michel Paques
- CIC 1423, CHNO des Quinze-Vingts, INSERM-DGOS 28 rue de Charenton, F-75012 Paris, France; (M.P.); (K.G.)
| | - Kiyoko Gocho
- CIC 1423, CHNO des Quinze-Vingts, INSERM-DGOS 28 rue de Charenton, F-75012 Paris, France; (M.P.); (K.G.)
| |
Collapse
|
9
|
Anderson DM, Brager DC, Kearsley AJ. Spatially-dependent model for rods and cones in the retina. J Theor Biol 2024; 579:111687. [PMID: 38103677 DOI: 10.1016/j.jtbi.2023.111687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 10/17/2023] [Accepted: 11/27/2023] [Indexed: 12/19/2023]
Abstract
We develop a mathematical model for photoreceptors in the retina. We focus on rod and cone outer segment dynamics and interactions with a nutrient source associated with the retinal pigment epithelium cells. Rod and cone densities (number per unit area of retinal surface) are known to have significant spatial dependence in the retina with cones located primarily near the fovea and the rods located primarily away from the fovea. Our model accounts for this spatial dependence of the rod and cone photoreceptor density as well as for the possibility of nutrient diffusion. We present equilibrium and dynamic solutions, discuss their relation to existing models, and estimate model parameters through comparisons with available experimental measurements of both spatial and temporal photoreceptor characteristics. Our model compares well with existing data on spatially-dependent regrowth of photoreceptor outer segments in the macular region of Rhesus Monkeys. Our predictions are also consistent with existing data on the spatial dependence of photoreceptor outer segment length near the fovea in healthy human subjects. We focus primarily on the healthy eye but our model could be the basis for future efforts designed to explore various retinal pathologies, eye-related injuries, and treatments of these conditions.
Collapse
Affiliation(s)
- Daniel M Anderson
- Applied & Computational Mathematics Division, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, 20899, MD, USA; Department of Mathematical Sciences, George Mason University, 4400 University Drive, Fairfax, 22030, VA, USA.
| | - Danielle C Brager
- Applied & Computational Mathematics Division, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, 20899, MD, USA.
| | - Anthony J Kearsley
- Applied & Computational Mathematics Division, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, 20899, MD, USA.
| |
Collapse
|
10
|
Britten-Jones AC, Thai L, Flanagan JPM, Bedggood PA, Edwards TL, Metha AB, Ayton LN. Adaptive optics imaging in inherited retinal diseases: A scoping review of the clinical literature. Surv Ophthalmol 2024; 69:51-66. [PMID: 37778667 DOI: 10.1016/j.survophthal.2023.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/03/2023]
Abstract
Adaptive optics (AO) imaging enables direct, objective assessments of retinal cells. Applications of AO show great promise in advancing our understanding of the etiology of inherited retinal disease (IRDs) and discovering new imaging biomarkers. This scoping review systematically identifies and summarizes clinical studies evaluating AO imaging in IRDs. Ovid MEDLINE and EMBASE were searched on February 6, 2023. Studies describing AO imaging in monogenic IRDs were included. Study screening and data extraction were performed by 2 reviewers independently. This review presents (1) a broad overview of the dominant areas of research; (2) a summary of IRD characteristics revealed by AO imaging; and (3) a discussion of methodological considerations relating to AO imaging in IRDs. From 140 studies with AO outcomes, including 2 following subretinal gene therapy treatments, 75% included fewer than 10 participants with AO imaging data. Of 100 studies that included participants' genetic diagnoses, the most common IRD genes with AO outcomes are CNGA3, CNGB3, CHM, USH2A, and ABCA4. Confocal reflectance AO scanning laser ophthalmoscopy was the most reported imaging modality, followed by flood-illuminated AO and split-detector AO. The most common outcome was cone density, reported quantitatively in 56% of studies. Future research areas include guidelines to reduce variability in the reporting of AO methodology and a focus on functional AO techniques to guide the development of therapeutic interventions.
Collapse
Affiliation(s)
- Alexis Ceecee Britten-Jones
- Department of Optometry and Vision Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia; Department of Surgery (Ophthalmology), Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia; Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, VIC, Australia.
| | - Lawrence Thai
- Department of Surgery (Ophthalmology), Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia; Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, VIC, Australia
| | - Jeremy P M Flanagan
- Department of Surgery (Ophthalmology), Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia; Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, VIC, Australia
| | - Phillip A Bedggood
- Department of Optometry and Vision Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Thomas L Edwards
- Department of Surgery (Ophthalmology), Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia; Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, VIC, Australia
| | - Andrew B Metha
- Department of Optometry and Vision Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Lauren N Ayton
- Department of Optometry and Vision Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia; Department of Surgery (Ophthalmology), Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia; Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, VIC, Australia
| |
Collapse
|
11
|
Ashourizadeh H, Fakhri M, Hassanpour K, Masoudi A, Jalali S, Roshandel D, Chen FK. Pearls and Pitfalls of Adaptive Optics Ophthalmoscopy in Inherited Retinal Diseases. Diagnostics (Basel) 2023; 13:2413. [PMID: 37510157 PMCID: PMC10377978 DOI: 10.3390/diagnostics13142413] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/12/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Adaptive optics (AO) retinal imaging enables individual photoreceptors to be visualized in the clinical setting. AO imaging can be a powerful clinical tool for detecting photoreceptor degeneration at a cellular level that might be overlooked through conventional structural assessments, such as spectral-domain optical coherence tomography (SD-OCT). Therefore, AO imaging has gained significant interest in the study of photoreceptor degeneration, one of the most common causes of inherited blindness. Growing evidence supports that AO imaging may be useful for diagnosing early-stage retinal dystrophy before it becomes apparent on fundus examination or conventional retinal imaging. In addition, serial AO imaging may detect structural disease progression in early-stage disease over a shorter period compared to SD-OCT. Although AO imaging is gaining popularity as a structural endpoint in clinical trials, the results should be interpreted with caution due to several pitfalls, including the lack of standardized imaging and image analysis protocols, frequent ocular comorbidities that affect image quality, and significant interindividual variation of normal values. Herein, we summarize the current state-of-the-art AO imaging and review its potential applications, limitations, and pitfalls in patients with inherited retinal diseases.
Collapse
Affiliation(s)
| | - Maryam Fakhri
- Ophthalmic Research Center, Research Institute for Ophthalmology and Vision Sciences, Shahid Beheshti University of Medical Sciences, Tehran 16666, Iran
| | - Kiana Hassanpour
- Ophthalmic Research Center, Research Institute for Ophthalmology and Vision Sciences, Shahid Beheshti University of Medical Sciences, Tehran 16666, Iran
| | - Ali Masoudi
- Stein Eye Institute, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Sattar Jalali
- Department of Physics, Central Tehran Branch, Islamic Azad University, Tehran 19558, Iran
| | - Danial Roshandel
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Nedlands, WA 6009, Australia
- Ocular Tissue Engineering Laboratory, Lions Eye Institute, Nedlands, WA 6009, Australia
| | - Fred K Chen
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Nedlands, WA 6009, Australia
- Ocular Tissue Engineering Laboratory, Lions Eye Institute, Nedlands, WA 6009, Australia
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, VIC 3002, Australia
- Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, VIC 3010, Australia
| |
Collapse
|
12
|
Abstract
The human retina is amenable to direct, noninvasive visualization using a wide array of imaging modalities. In the ∼140 years since the publication of the first image of the living human retina, there has been a continued evolution of retinal imaging technology. Advances in image acquisition and processing speed now allow real-time visualization of retinal structure, which has revolutionized the diagnosis and management of eye disease. Enormous advances have come in image resolution, with adaptive optics (AO)-based systems capable of imaging the retina with single-cell resolution. In addition, newer functional imaging techniques provide the ability to assess function with exquisite spatial and temporal resolution. These imaging advances have had an especially profound impact on the field of inherited retinal disease research. Here we will review some of the advances and applications of AO retinal imaging in patients with inherited retinal disease.
Collapse
Affiliation(s)
- Jacque L Duncan
- Department of Ophthalmology, University of California, San Francisco, California 94143-4081, USA
| | - Joseph Carroll
- Department of Ophthalmology & Visual Sciences, Medical College of Wisconsin Eye Institute, Milwaukee, Wisconsin 53226, USA
| |
Collapse
|
13
|
Lee B, Jeong S, Lee J, Kim TS, Braaf B, Vakoc BJ, Oh WY. Wide-Field Three-Dimensional Depth-Invariant Cellular-Resolution Imaging of the Human Retina. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2203357. [PMID: 36642824 PMCID: PMC10023497 DOI: 10.1002/smll.202203357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Three-dimensional (3D) cellular-resolution imaging of the living human retina over a large field of view will bring a great impact in clinical ophthalmology, potentially finding new biomarkers for early diagnosis and improving the pathophysiological understanding of ocular diseases. While hardware-based and computational adaptive optics (AO) optical coherence tomography (OCT) have been developed to achieve cellular-resolution retinal imaging, these approaches support limited 3D imaging fields, and their high cost and intrinsic hardware complexity limit their practical utility. Here, this work demonstrates 3D depth-invariant cellular-resolution imaging of the living human retina over a 3 × 3 mm field of view using the first intrinsically phase-stable multi-MHz retinal swept-source OCT and novel computational defocus and aberration correction methods. Single-acquisition imaging of photoreceptor cells, retinal nerve fiber layer, and retinal capillaries is presented across unprecedented imaging fields. By providing wide-field 3D cellular-resolution imaging in the human retina using a standard point-scan architecture routinely used in the clinic, this platform proposes a strategy for expanded utilization of high-resolution retinal imaging in both research and clinical settings.
Collapse
Affiliation(s)
- ByungKun Lee
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
- KI for Health Science and Technology, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Sunhong Jeong
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
- KI for Health Science and Technology, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Joosung Lee
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
- KI for Health Science and Technology, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Tae Shik Kim
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston 02140, USA
| | - Boy Braaf
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston 02140, USA
| | - Benjamin J. Vakoc
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston 02140, USA
| | - Wang-Yuhl Oh
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
- KI for Health Science and Technology, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| |
Collapse
|
14
|
Soltanian-Zadeh S, Liu Z, Liu Y, Lassoued A, Cukras CA, Miller DT, Hammer DX, Farsiu S. Deep learning-enabled volumetric cone photoreceptor segmentation in adaptive optics optical coherence tomography images of normal and diseased eyes. BIOMEDICAL OPTICS EXPRESS 2023; 14:815-833. [PMID: 36874491 PMCID: PMC9979662 DOI: 10.1364/boe.478693] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 06/11/2023]
Abstract
Objective quantification of photoreceptor cell morphology, such as cell diameter and outer segment length, is crucial for early, accurate, and sensitive diagnosis and prognosis of retinal neurodegenerative diseases. Adaptive optics optical coherence tomography (AO-OCT) provides three-dimensional (3-D) visualization of photoreceptor cells in the living human eye. The current gold standard for extracting cell morphology from AO-OCT images involves the tedious process of 2-D manual marking. To automate this process and extend to 3-D analysis of the volumetric data, we propose a comprehensive deep learning framework to segment individual cone cells in AO-OCT scans. Our automated method achieved human-level performance in assessing cone photoreceptors of healthy and diseased participants captured with three different AO-OCT systems representing two different types of point scanning OCT: spectral domain and swept source.
Collapse
Affiliation(s)
| | - Zhuolin Liu
- Center for Devices and Radiological Health (CDRH), U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Yan Liu
- School of Optometry, Indiana University, Bloomington, IN 47405, USA
| | - Ayoub Lassoued
- School of Optometry, Indiana University, Bloomington, IN 47405, USA
| | - Catherine A. Cukras
- National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Donald T. Miller
- School of Optometry, Indiana University, Bloomington, IN 47405, USA
| | - Daniel X. Hammer
- Center for Devices and Radiological Health (CDRH), U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Sina Farsiu
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
- Department of Ophthalmology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
15
|
Zhang P, Wahl DJ, Mocci J, Miller EB, Bonora S, Sarunic MV, Zawadzki RJ. Adaptive optics scanning laser ophthalmoscopy and optical coherence tomography (AO-SLO-OCT) system for in vivo mouse retina imaging. BIOMEDICAL OPTICS EXPRESS 2023; 14:299-314. [PMID: 36698677 PMCID: PMC9841993 DOI: 10.1364/boe.473447] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/22/2022] [Accepted: 11/22/2022] [Indexed: 05/02/2023]
Abstract
Optical coherence tomography (OCT) and scanning laser ophthalmoscopy (SLO) are imaging technologies invented in the 1980s that have revolutionized the field of in vivo retinal diagnostics and are now commonly used in ophthalmology clinics as well as in vision science research. Adaptive optics (AO) technology enables high-fidelity correction of ocular aberrations, resulting in improved resolution and sensitivity for both SLO and OCT systems. The potential of gathering multi-modal cellular-resolution information in a single instrument is of great interest to the ophthalmic imaging community. Although similar instruments have been developed for imaging the human retina, developing such a system for mice will benefit basic science research and should help with further dissemination of AO technology. Here, we present our work integrating OCT into an existing mouse retinal AO-SLO system, resulting in a multi-modal AO-enhanced imaging system of the living mouse eye. The new system allows either independent or simultaneous data acquisition of AO-SLO and AO-OCT, depending on the requirements of specific scientific experiments. The system allows a data acquisition speed of 200 kHz A-scans/pixel rate for OCT and SLO, respectively. It offers ∼6 µm axial resolution for AO-OCT and a ∼1 µm lateral resolution for AO-SLO-OCT imaging.
Collapse
Affiliation(s)
- Pengfei Zhang
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian, China
- UC Davis EyePod Small Animals Ocular Imaging Laboratory, Department of Cell Biology and Human Anatomy, University of California Davis, Davis, CA 95616, USA
| | - Daniel J. Wahl
- Engineering Science, Simon Fraser University, Burnaby BC, V5A 1S6, Canada
| | - Jacopo Mocci
- Dynamic Optics srl, Piazza Zanellato 5, 35131, Padova, Italy
| | - Eric B. Miller
- Center for Neuroscience, University of California, Davis, CA 95616, USA
| | - Stefano Bonora
- CNR-Institute for Photonics and Nanotechnology, Via Trasea 7, 35131, Padova, Italy
| | - Marinko V. Sarunic
- Engineering Science, Simon Fraser University, Burnaby BC, V5A 1S6, Canada
- Medical Physics and Biomedical Engineering, University College London, United Kingdom
- Institute of Ophthalmology, University College London, United Kingdom
| | - Robert J. Zawadzki
- UC Davis EyePod Small Animals Ocular Imaging Laboratory, Department of Cell Biology and Human Anatomy, University of California Davis, Davis, CA 95616, USA
- UC Davis Eye Center, Dept. of Ophthalmology & Vision Science, University of California Davis, 4860 Y Street, Suite 2400, Sacramento, California 95817, USA
| |
Collapse
|
16
|
Morgan JIW, Chui TYP, Grieve K. Twenty-five years of clinical applications using adaptive optics ophthalmoscopy [Invited]. BIOMEDICAL OPTICS EXPRESS 2023; 14:387-428. [PMID: 36698659 PMCID: PMC9841996 DOI: 10.1364/boe.472274] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 11/22/2022] [Accepted: 11/27/2022] [Indexed: 05/02/2023]
Abstract
Twenty-five years ago, adaptive optics (AO) was combined with fundus photography, thereby initiating a new era in the field of ophthalmic imaging. Since that time, clinical applications of AO ophthalmoscopy to investigate visual system structure and function in both health and disease abound. To date, AO ophthalmoscopy has enabled visualization of most cell types in the retina, offered insight into retinal and systemic disease pathogenesis, and been integrated into clinical trials. This article reviews clinical applications of AO ophthalmoscopy and addresses remaining challenges for AO ophthalmoscopy to become fully integrated into standard ophthalmic care.
Collapse
Affiliation(s)
- Jessica I. W. Morgan
- Scheie Eye Institute, Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Advanced Retinal and Ocular Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
- Contributed equally
| | - Toco Y. P. Chui
- Department of Ophthalmology, The New York Eye and Ear Infirmary of Mount Sinai, New York, NY 10003, USA
- Contributed equally
| | - Kate Grieve
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, and CHNO des Quinze-Vingts, INSERM-DGOS CIC 1423, 28 rue de Charenton, F-75012 Paris, France
- Contributed equally
| |
Collapse
|
17
|
Pinhas A, Migacz JV, Zhou DB, Castanos Toral MV, Otero-Marquez O, Israel S, Sun V, Gillette PN, Sredar N, Dubra A, Glassberg J, Rosen RB, Chui TY. Insights into Sickle Cell Disease through the Retinal Microvasculature: Adaptive Optics Scanning Light Ophthalmoscopy Correlates of Clinical OCT Angiography. OPHTHALMOLOGY SCIENCE 2022; 2:100196. [PMID: 36531581 PMCID: PMC9754983 DOI: 10.1016/j.xops.2022.100196] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/14/2022] [Accepted: 07/01/2022] [Indexed: 05/06/2023]
Abstract
PURPOSE Clinical OCT angiography (OCTA) of the retinal microvasculature offers a quantitative correlate to systemic disease burden and treatment efficacy in sickle cell disease (SCD). The purpose of this study was to use the higher resolution of adaptive optics scanning light ophthalmoscopy (AOSLO) to elucidate OCTA features of parafoveal microvascular compromise identified in SCD patients. DESIGN Case series of 11 SCD patients and 1 unaffected control. PARTICIPANTS A total of 11 eyes of 11 SCD patients (mean age, 33 years; range, 23-44; 8 female, 3 male) and 1 eye of a 34-year-old unaffected control. METHODS Ten sequential 3 × 3 mm parafoveal OCTA full vascular slab scans were obtained per eye using a commercial spectral domain OCT system (Avanti RTVue-XR; Optovue). These were used to identify areas of compromised perfusion near the foveal avascular zone (FAZ), designated as regions of interest (ROIs). Immediately thereafter, AOSLO imaging was performed on these ROIs to examine the cellular details of abnormal perfusion. Each participant was imaged at a single cross-sectional time point. Additionally, 2 of the SCD patients were imaged prospectively 2 months after initial imaging to study compromised capillary segments across time and with treatment. MAIN OUTCOME MEASURES Detection and characterization of parafoveal perfusion abnormalities identified using OCTA and resolved using AOSLO imaging. RESULTS We found evidence of abnormal blood flow on OCTA and AOSLO imaging among all 11 SCD patients with diverse systemic and ocular histories. Adaptive optics scanning light ophthalmoscopy imaging revealed a spectrum of phenomena, including capillaries with intermittent blood flow, blood cell stasis, and sites of thrombus formation. Adaptive optics scanning light ophthalmoscopy imaging was able to resolve single sickled red blood cells, rouleaux formations, and blood cell-vessel wall interactions. OCT angiography and AOSLO imaging were sensitive enough to document improved retinal perfusion in an SCD patient 2 months after initiation of oral hydroxyurea therapy. CONCLUSIONS Adaptive optics scanning light ophthalmoscopy imaging was able to reveal the cellular details of perfusion abnormalities detected using clinical OCTA. The synergy between these clinical and laboratory imaging modalities presents a promising avenue in the management of SCD through the development of noninvasive ocular biomarkers to prognosticate progression and measure the response to systemic treatment.
Collapse
Key Words
- ADD, airy disk diameter
- AOSLO, adaptive optics scanning light ophthalmoscopy
- Adaptive optics
- BCVA, best-corrected visual acuity
- D, diopters
- FA, fluorescein angiography
- FAZ, foveal avascular zone
- HbSC, hemoglobin SC
- HbSS, hemoglobin SS
- IOP, intraocular pressure
- OCT angiography
- OCTA, OCT angiography
- Oculomics
- RBC, red blood cell
- ROI, region of interest
- Retinal microvasculature
- SCD, sickle cell disease
- SCR, sickle cell retinopathy
- Sickle cell disease
Collapse
Affiliation(s)
- Alexander Pinhas
- Department of Ophthalmology, New York Eye and Ear Infirmary of Mount Sinai, New York, New York
| | - Justin V. Migacz
- Department of Ophthalmology, New York Eye and Ear Infirmary of Mount Sinai, New York, New York
| | - Davis B. Zhou
- Department of Ophthalmology, New York Eye and Ear Infirmary of Mount Sinai, New York, New York
- Icahn School of Medicine at Mount Sinai, New York, New York
| | - Maria V. Castanos Toral
- Department of Ophthalmology, New York Eye and Ear Infirmary of Mount Sinai, New York, New York
| | - Oscar Otero-Marquez
- Department of Ophthalmology, New York Eye and Ear Infirmary of Mount Sinai, New York, New York
| | - Sharon Israel
- Department of Ophthalmology, New York Eye and Ear Infirmary of Mount Sinai, New York, New York
- Department of Human Biology, City University of New York Hunter College, New York, New York
| | - Vincent Sun
- Department of Ophthalmology, New York Eye and Ear Infirmary of Mount Sinai, New York, New York
| | - Peter N. Gillette
- Department of Hematology, State University of New York Downstate Medical Center, Brooklyn, New York
| | - Nripun Sredar
- Department of Ophthalmology, Stanford University, Palo Alto, California
| | - Alfredo Dubra
- Department of Ophthalmology, Stanford University, Palo Alto, California
| | | | - Richard B. Rosen
- Department of Ophthalmology, New York Eye and Ear Infirmary of Mount Sinai, New York, New York
- Icahn School of Medicine at Mount Sinai, New York, New York
| | - Toco Y.P. Chui
- Department of Ophthalmology, New York Eye and Ear Infirmary of Mount Sinai, New York, New York
- Icahn School of Medicine at Mount Sinai, New York, New York
- Correspondence: Toco Y.P. Chui, PhD, New York Eye and Ear Infirmary of Mount Sinai, 310 E 14th Street, New York, NY 10003.
| |
Collapse
|
18
|
Liu Z, Zhang F, Zucca K, Agrawal A, Hammer DX. Ultrahigh-speed multimodal adaptive optics system for microscopic structural and functional imaging of the human retina. BIOMEDICAL OPTICS EXPRESS 2022; 13:5860-5878. [PMID: 36733751 PMCID: PMC9872887 DOI: 10.1364/boe.462594] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 09/16/2022] [Accepted: 09/20/2022] [Indexed: 05/02/2023]
Abstract
We describe the design and performance of a multimodal and multifunctional adaptive optics (AO) system that combines scanning laser ophthalmoscopy (SLO) and optical coherence tomography (OCT) for simultaneous retinal imaging at 13.4 Hz. The high-speed AO-OCT channel uses a 3.4 MHz Fourier-domain mode-locked (FDML) swept source. The system achieves exquisite resolution and sensitivity for pan-macular and transretinal visualization of retinal cells and structures while providing a functional assessment of the cone photoreceptors. The ultra-high speed also enables wide-field scans for clinical usability and angiography for vascular visualization. The FDA FDML-AO system is a powerful platform for studying various retinal and neurological diseases for vision science research, retina physiology investigation, and biomarker development.
Collapse
Affiliation(s)
- Zhuolin Liu
- Center for Devices and Radiological Health
(CDRH), U. S. Food and Drug Administration (FDA), Silver Spring, Maryland 20993, USA
| | - Furu Zhang
- Center for Devices and Radiological Health
(CDRH), U. S. Food and Drug Administration (FDA), Silver Spring, Maryland 20993, USA
- Co-first author
| | - Kelvy Zucca
- Center for Devices and Radiological Health
(CDRH), U. S. Food and Drug Administration (FDA), Silver Spring, Maryland 20993, USA
| | - Anant Agrawal
- Center for Devices and Radiological Health
(CDRH), U. S. Food and Drug Administration (FDA), Silver Spring, Maryland 20993, USA
| | - Daniel X. Hammer
- Center for Devices and Radiological Health
(CDRH), U. S. Food and Drug Administration (FDA), Silver Spring, Maryland 20993, USA
| |
Collapse
|
19
|
Tan LX, Li J, Germer CJ, Lakkaraju A. Analysis of mitochondrial dynamics and function in the retinal pigment epithelium by high-speed high-resolution live imaging. Front Cell Dev Biol 2022; 10:1044672. [PMID: 36393836 PMCID: PMC9651161 DOI: 10.3389/fcell.2022.1044672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/19/2022] [Indexed: 11/13/2022] Open
Abstract
Mitochondrial dysfunction is strongly implicated in neurodegenerative diseases including age-related macular degeneration (AMD), which causes irreversible blindness in over 50 million older adults worldwide. A key site of insult in AMD is the retinal pigment epithelium (RPE), a monolayer of postmitotic polarized cells that performs essential functions for photoreceptor health and vision. Recent studies from our group and others have identified several features of mitochondrial dysfunction in AMD including mitochondrial fragmentation and bioenergetic defects. While these studies provide valuable insight at fixed points in time, high-resolution, high-speed live imaging is essential for following mitochondrial injury in real time and identifying disease mechanisms. Here, we demonstrate the advantages of live imaging to investigate RPE mitochondrial dynamics in cell-based and mouse models. We show that mitochondria in the RPE form extensive networks that are destroyed by fixation and discuss important live imaging considerations that can interfere with accurate evaluation of mitochondrial integrity such as RPE differentiation status and acquisition parameters. Our data demonstrate that RPE mitochondria show localized heterogeneities in membrane potential and ATP production that could reflect focal changes in metabolism and oxidative stress. Contacts between the mitochondria and organelles such as the ER and lysosomes mediate calcium flux and mitochondrial fission. Live imaging of mouse RPE flatmounts revealed a striking loss of mitochondrial integrity in albino mouse RPE compared to pigmented mice that could have significant functional consequences for cellular metabolism. Our studies lay a framework to guide experimental design and selection of model systems for evaluating mitochondrial health and function in the RPE.
Collapse
Affiliation(s)
- Li Xuan Tan
- Department of Ophthalmology, School of Medicine, University of California, San Francisco, CA, United States
| | - Jianlong Li
- Department of Cell and Tissue Biology, School of Dentistry, University of California, San Francisco, CA, United States
| | - Colin J. Germer
- Department of Ophthalmology, School of Medicine, University of California, San Francisco, CA, United States
- Pharmaceutical Sciences and Pharmacogenomics Graduate Program, University of California, San Francisco, CA, United States
| | - Aparna Lakkaraju
- Department of Ophthalmology, School of Medicine, University of California, San Francisco, CA, United States
- Pharmaceutical Sciences and Pharmacogenomics Graduate Program, University of California, San Francisco, CA, United States
- Department of Anatomy, School of Medicine, University of California, San Francisco, CA, United States
| |
Collapse
|
20
|
Kowalczuk L, Dornier R, Kunzi M, Iskandar A, Misutkova Z, Gryczka A, Navarro A, Jeunet F, Mantel I, Behar-Cohen F, Laforest T, Moser C. In Vivo Retinal Pigment Epithelium Imaging using Transscleral Optical Imaging in Healthy Eyes. OPHTHALMOLOGY SCIENCE 2022; 3:100234. [PMID: 36545259 PMCID: PMC9762198 DOI: 10.1016/j.xops.2022.100234] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 11/05/2022]
Abstract
Objective To image healthy retinal pigment epithelial (RPE) cells in vivo using Transscleral OPtical Imaging (TOPI) and to analyze statistics of RPE cell features as a function of age, axial length (AL), and eccentricity. Design Single-center, exploratory, prospective, and descriptive clinical study. Participants Forty-nine eyes (AL: 24.03 ± 0.93 mm; range: 21.9-26.7 mm) from 29 participants aged 21 to 70 years (37.1 ± 13.3 years; 19 men, 10 women). Methods Retinal images, including fundus photography and spectral-domain OCT, AL, and refractive error measurements were collected at baseline. For each eye, 6 high-resolution RPE images were acquired using TOPI at different locations, one of them being imaged 5 times to evaluate the repeatability of the method. Follow-up ophthalmic examination was repeated 1 to 3 weeks after TOPI to assess safety. Retinal pigment epithelial images were analyzed with a custom automated software to extract cell parameters. Statistical analysis of the selected high-contrast images included calculation of coefficient of variation (CoV) for each feature at each repetition and Spearman and Mann-Whitney tests to investigate the relationship between cell features and eye and subject characteristics. Main Outcome Measures Retinal pigment epithelial cell features: density, area, center-to-center spacing, number of neighbors, circularity, elongation, solidity, and border distance CoV. Results Macular RPE cell features were extracted from TOPI images at an eccentricity of 1.6° to 16.3° from the fovea. For each feature, the mean CoV was < 4%. Spearman test showed correlation within RPE cell features. In the perifovea, the region in which images were selected for all participants, longer AL significantly correlated with decreased RPE cell density (R Spearman, Rs = -0.746; P < 0.0001) and increased cell area (Rs = 0.668; P < 0.0001), without morphologic changes. Aging was also significantly correlated with decreased RPE density (Rs = -0.391; P = 0.036) and increased cell area (Rs = 0.454; P = 0.013). Lower circular, less symmetric, more elongated, and larger cells were observed in those > 50 years. Conclusions The TOPI technology imaged RPE cells in vivo with a repeatability of < 4% for the CoV and was used to analyze the influence of physiologic factors on RPE cell morphometry in the perifovea of healthy volunteers. Financial Disclosures Proprietary or commercial disclosure may be found after the references.
Collapse
Key Words
- AF, autofluorescence
- AL, axial length
- AO, adaptive optics
- Adaptive Optics Transscleral Flood Illumination
- BCVA, best-corrected visual acuity
- CCS, center-to-center spacing
- CoV, coefficient of variation
- D, diopters
- FOV, field of view
- Healthy volunteers
- High resolution retinal imaging
- IOP, intraocular pressure
- NIR, near-infrared
- PRL, preferred retinal locus
- QC, quality criterion
- RE, refractive error
- RPE, retinal pigment epithelium
- Retinal Pigment Epithelium
- SD, standard deviation
- SLO, scanning laser ophthalmoscope
- TOPI, transscleral optical imaging
Collapse
Affiliation(s)
- Laura Kowalczuk
- Laboratory of Applied Photonic Devices, School of Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland,Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland,Jules-Gonin Eye Hospital, Fondation Asile des aveugles, Lausanne, Switzerland,Correspondence: Laura Kowalczuk, PhD, École Polytechnique Fédérale de Lausanne, School of Engineering, Institute of Electrical and Micro-engineering, Laboratory of Applied Photonics Devices, BM 4127, Station 17, CH-1015, Lausanne, Switzerland.
| | - Rémy Dornier
- Laboratory of Applied Photonic Devices, School of Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Mathieu Kunzi
- Laboratory of Applied Photonic Devices, School of Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Antonio Iskandar
- Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland,Jules-Gonin Eye Hospital, Fondation Asile des aveugles, Lausanne, Switzerland
| | - Zuzana Misutkova
- Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland,Jules-Gonin Eye Hospital, Fondation Asile des aveugles, Lausanne, Switzerland
| | - Aurélia Gryczka
- Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland,Jules-Gonin Eye Hospital, Fondation Asile des aveugles, Lausanne, Switzerland
| | - Aurélie Navarro
- Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland,Jules-Gonin Eye Hospital, Fondation Asile des aveugles, Lausanne, Switzerland
| | - Fanny Jeunet
- Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland,Jules-Gonin Eye Hospital, Fondation Asile des aveugles, Lausanne, Switzerland
| | - Irmela Mantel
- Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland,Jules-Gonin Eye Hospital, Fondation Asile des aveugles, Lausanne, Switzerland
| | - Francine Behar-Cohen
- Centre de Recherche des Cordeliers, Université Pierre et Marie Curie, Paris, France,INSERM U1138, USPC, Université de Paris-Cité, Sorbonne Université, Paris, France,Assistance Publique - Hôpitaux de Paris, Ophtalmopôle, Cochin Hospital, Paris, France,Université Paris Cité, Paris, France,Hôpital Foch, Suresnes, France
| | - Timothé Laforest
- Laboratory of Applied Photonic Devices, School of Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Christophe Moser
- Laboratory of Applied Photonic Devices, School of Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
21
|
Widespread subclinical cellular changes revealed across a neural-epithelial-vascular complex in choroideremia using adaptive optics. Commun Biol 2022; 5:893. [PMID: 36100689 PMCID: PMC9470576 DOI: 10.1038/s42003-022-03842-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 08/12/2022] [Indexed: 11/08/2022] Open
Abstract
AbstractChoroideremia is an X-linked, blinding retinal degeneration with progressive loss of photoreceptors, retinal pigment epithelial (RPE) cells, and choriocapillaris. To study the extent to which these layers are disrupted in affected males and female carriers, we performed multimodal adaptive optics imaging to better visualize the in vivo pathogenesis of choroideremia in the living human eye. We demonstrate the presence of subclinical, widespread enlarged RPE cells present in all subjects imaged. In the fovea, the last area to be affected in choroideremia, we found greater disruption to the RPE than to either the photoreceptor or choriocapillaris layers. The unexpected finding of patches of photoreceptors that were fluorescently-labeled, but structurally and functionally normal, suggests that the RPE blood barrier function may be altered in choroideremia. Finally, we introduce a strategy for detecting enlarged cells using conventional ophthalmic imaging instrumentation. These findings establish that there is subclinical polymegathism of RPE cells in choroideremia.
Collapse
|
22
|
Liu T, Aguilera N, Bower AJ, Li J, Ullah E, Dubra A, Cukras C, Brooks BP, Jeffrey BG, Hufnagel RB, Huryn LA, Zein WM, Tam J. Photoreceptor and Retinal Pigment Epithelium Relationships in Eyes With Vitelliform Macular Dystrophy Revealed by Multimodal Adaptive Optics Imaging. Invest Ophthalmol Vis Sci 2022; 63:27. [PMID: 35900727 PMCID: PMC9344216 DOI: 10.1167/iovs.63.8.27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose To assess the structure of cone photoreceptors and retinal pigment epithelial (RPE) cells in vitelliform macular dystrophy (VMD) arising from various genetic etiologies. Methods Multimodal adaptive optics (AO) imaging was performed in 11 patients with VMD using a custom-assembled instrument. Non-confocal split detection and AO-enhanced indocyanine green were used to visualize the cone photoreceptor and RPE mosaics, respectively. Cone and RPE densities were measured and compared across BEST1-, PRPH2-, IMPG1-, and IMPG2-related VMD. Results Within macular lesions associated with VMD, both cone and RPE densities were reduced below normal, to 37% of normal cone density (eccentricity 0.2 mm) and to 8.4% of normal RPE density (eccentricity 0.5 mm). Outside of lesions, cone and RPE densities were slightly reduced (both to 92% of normal values), but with high degree of variability in the individual measurements. Comparison of juxtalesional cone and RPE measurements (<1 mm from the lesion edge) revealed significant differences in RPE density across the four genes (P < 0.05). Overall, cones were affected to a greater extent than RPE in patients with IMPG1 and IMPG2 pathogenic variants, but RPE was affected more than cones in BEST1 and PRPH2 VMD. This trend was observed even in contralateral eyes from a subset of five patients who presented with macular lesions in only one eye. Conclusions Assessment of cones and RPE in retinal locations outside of the macular lesions reveals a pattern of cone and RPE disruption that appears to be gene dependent in VMD. These findings provide insight into the cellular pathogenesis of disease in VMD.
Collapse
Affiliation(s)
- Tao Liu
- National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States.,https://orcid.org/0000-0001-9864-3896
| | - Nancy Aguilera
- National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States.,https://orcid.org/0000-0003-0863-596X
| | - Andrew J Bower
- National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States.,https://orcid.org/0000-0003-1645-5950
| | - Joanne Li
- National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States.,https://orcid.org/0000-0003-2845-2490
| | - Ehsan Ullah
- National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States.,https://orcid.org/0000-0003-0107-6608
| | - Alfredo Dubra
- Department of Ophthalmology, Stanford University, Palo Alto, California, United States.,https://orcid.org/0000-0002-6506-9020
| | - Catherine Cukras
- National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Brian P Brooks
- National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States.,https://orcid.org/0000-0002-1916-7551
| | - Brett G Jeffrey
- National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States.,https://orcid.org/0000-0001-9549-0644
| | - Robert B Hufnagel
- National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States.,https://orcid.org/0000-0003-3015-3545
| | - Laryssa A Huryn
- National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States.,https://orcid.org/0000-0002-0309-9419
| | - Wadih M Zein
- National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States.,https://orcid.org/0000-0002-3771-6120
| | - Johnny Tam
- National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States.,https://orcid.org/0000-0003-2300-0567
| |
Collapse
|
23
|
Multi-modal and multi-scale clinical retinal imaging system with pupil and retinal tracking. Sci Rep 2022; 12:9577. [PMID: 35688890 PMCID: PMC9187716 DOI: 10.1038/s41598-022-13631-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 05/17/2022] [Indexed: 11/08/2022] Open
Abstract
We present a compact multi-modal and multi-scale retinal imaging instrument with an angiographic functional extension for clinical use. The system integrates scanning laser ophthalmoscopy (SLO), optical coherence tomography (OCT) and OCT angiography (OCTA) imaging modalities and provides multi-scale fields of view. For high resolution, and high lateral resolution in particular, cellular imaging correction of aberrations by adaptive optics (AO) is employed. The entire instrument has a compact design and the scanning head is mounted on motorized translation stages that enable 3D self-alignment with respect to the subject's eye by tracking the pupil position. Retinal tracking, based on the information provided by SLO, is incorporated in the instrument to compensate for retinal motion during OCT imaging. The imaging capabilities of the multi-modal and multi-scale instrument were tested by imaging healthy volunteers and patients.
Collapse
|
24
|
Sharif NA. Degeneration of retina-brain components and connections in glaucoma: Disease causation and treatment options for eyesight preservation. CURRENT RESEARCH IN NEUROBIOLOGY 2022; 3:100037. [PMID: 36685768 PMCID: PMC9846481 DOI: 10.1016/j.crneur.2022.100037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 03/30/2022] [Accepted: 04/01/2022] [Indexed: 01/25/2023] Open
Abstract
Eyesight is the most important of our sensory systems for optimal daily activities and overall survival. Patients who experience visual impairment due to elevated intraocular pressure (IOP) are often those afflicted with primary open-angle glaucoma (POAG) which slowly robs them of their vision unless treatment is administered soon after diagnosis. The hallmark features of POAG and other forms of glaucoma are damaged optic nerve, retinal ganglion cell (RGC) loss and atrophied RGC axons connecting to various brain regions associated with receipt of visual input from the eyes and eventual decoding and perception of images in the visual cortex. Even though increased IOP is the major risk factor for POAG, the disease is caused by many injurious chemicals and events that progress slowly within all components of the eye-brain visual axis. Lowering of IOP mitigates the damage to some extent with existing drugs, surgical and device implantation therapeutic interventions. However, since multifactorial degenerative processes occur during aging and with glaucomatous optic neuropathy, different forms of neuroprotective, nutraceutical and electroceutical regenerative and revitalizing agents and processes are being considered to combat these eye-brain disorders. These aspects form the basis of this short review article.
Collapse
Affiliation(s)
- Najam A. Sharif
- Duke-National University of Singapore Medical School, Singapore,Singapore Eye Research Institute (SERI), Singapore,Department of Pharmacology and Neuroscience, University of North Texas Health Sciences Center, Fort Worth, Texas, USA,Department of Pharmaceutical Sciences, Texas Southern University, Houston, TX, USA,Department of Surgery & Cancer, Imperial College of Science and Technology, St. Mary's Campus, London, UK,Department of Pharmacy Sciences, School of School of Pharmacy and Health Professions, Creighton University, Omaha, NE, USA,Ophthalmology Innovation Center, Santen Incorporated, 6401 Hollis Street (Suite #125), Emeryville, CA, 94608, USA,Ophthalmology Innovation Center, Santen Incorporated, 6401 Hollis Street (Suite #125), Emeryville, CA, 94608, USA.
| |
Collapse
|
25
|
Giannini JP, Lu R, Bower AJ, Fariss R, Tam J. Visualizing retinal cells with adaptive optics imaging modalities using a translational imaging framework. BIOMEDICAL OPTICS EXPRESS 2022; 13:3042-3055. [PMID: 35774328 PMCID: PMC9203084 DOI: 10.1364/boe.454560] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/08/2022] [Accepted: 04/08/2022] [Indexed: 05/18/2023]
Abstract
Adaptive optics reflectance-based retinal imaging has proved a valuable tool for the noninvasive visualization of cells in the living human retina. Many subcellular features that remain at or below the resolution limit of current in vivo techniques may be more easily visualized with the same modalities in an ex vivo setting. While most microscopy techniques provide significantly higher resolution, enabling the visualization of fine cellular detail in ex vivo retinal samples, they do not replicate the reflectance-based imaging modalities of in vivo retinal imaging. Here, we introduce a strategy for imaging ex vivo samples using the same imaging modalities as those used for in vivo retinal imaging, but with increased resolution. We also demonstrate the ability of this approach to perform protein-specific fluorescence imaging and reflectance imaging simultaneously, enabling the visualization of nearly transparent layers of the retina and the classification of cone photoreceptor types.
Collapse
|
26
|
Abstract
The eye, the photoreceptive organ used to perceive the external environment, is of great importance to humans. It has been proven that some diseases in humans are accompanied by fundus changes; therefore, the health status of people may be interpreted from retinal images. However, the human eye is not a perfect refractive system for the existence of ocular aberrations. These aberrations not only affect the ability of human visual discrimination and recognition, but restrict the observation of the fine structures of human eye and reduce the possibility of exploring the mechanisms of eye disease. Adaptive optics (AO) is a technique that corrects optical wavefront aberrations. Once integrated into ophthalmoscopes, AO enables retinal imaging at the cellular level. This paper illustrates the principle of AO in correcting wavefront aberrations in human eyes, and then reviews the applications and advances of AO in ophthalmology, including the adaptive optics fundus camera (AO-FC), the adaptive optics scanning laser ophthalmoscope (AO-SLO), the adaptive optics optical coherence tomography (AO-OCT), and their combined multimodal imaging technologies. The future development trend of AO in ophthalmology is also prospected.
Collapse
|
27
|
Baraas RC, Pedersen HR, Knoblauch K, Gilson SJ. Human Foveal Cone and RPE Cell Topographies and Their Correspondence With Foveal Shape. Invest Ophthalmol Vis Sci 2022; 63:8. [PMID: 35113142 PMCID: PMC8819292 DOI: 10.1167/iovs.63.2.8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Purpose To characterize the association between foveal shape and cone and retinal pigment epithelium (RPE) cell topographies in healthy humans. Methods Multimodal adaptive scanning light ophthalmoscopy and optical coherence tomography (OCT) were used to acquire images of foveal cones, RPE cells, and retinal layers in eyes of 23 healthy participants with normal foveas. Distributions of cone and RPE cell densities were fitted with nonlinear mixed-effects models. A linear mixed-effects model was used to examine the relationship between cone and RPE inter-cell distances and foveal shape as obtained from the OCT scans of retinal thickness. Results The best-fit model to the cone densities was a power function with a nasal–temporal asymmetry. There was a significant linear relationship among cone and RPE cell spacing, foveal shape, and foveal cell topography. The model predictions of the central 10° show that the contributions of both the cones and RPE cells are necessary to account for foveal shape. Conclusions The results indicate that there is a strong relationship between cone and RPE cell spacing and the shape of the human adolescent and adult fovea. This finding adds to the existing evidence of the critical role that the RPE serves in fetal foveal development and through adolescence, possibly via the imposition of constraints on the number and distribution of foveal cones.
Collapse
Affiliation(s)
- Rigmor C Baraas
- National Centre for Optics, Vision and Eye Care, Faculty of Health and Social Sciences, University of South-Eastern Norway, Kongsberg, Norway
| | - Hilde R Pedersen
- National Centre for Optics, Vision and Eye Care, Faculty of Health and Social Sciences, University of South-Eastern Norway, Kongsberg, Norway
| | - Kenneth Knoblauch
- National Centre for Optics, Vision and Eye Care, Faculty of Health and Social Sciences, University of South-Eastern Norway, Kongsberg, Norway.,Stem Cell and Brain Research Institute, INSERM U1208, Bron, France.,Université de Lyon, Lyon, France
| | - Stuart J Gilson
- National Centre for Optics, Vision and Eye Care, Faculty of Health and Social Sciences, University of South-Eastern Norway, Kongsberg, Norway
| |
Collapse
|
28
|
Gofas-Salas E, Rui Y, Mecê P, Zhang M, Snyder VC, Vienola KV, Lee DMW, Sahel JA, Grieve K, Rossi EA. Design of a radial multi-offset detection pattern for in vivo phase contrast imaging of the inner retina in humans. BIOMEDICAL OPTICS EXPRESS 2022; 13:117-132. [PMID: 35154858 PMCID: PMC8803027 DOI: 10.1364/boe.441808] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/15/2021] [Accepted: 11/21/2021] [Indexed: 05/06/2023]
Abstract
Previous work has shown that multi-offset detection in adaptive optics scanning laser ophthalmoscopy (AOSLO) can be used to image transparent cells such as retinal ganglion cells (RGCs) in monkeys and humans. Though imaging in anesthetized monkeys with high light levels produced high contrast images of RGCs, images from humans failed to reach the same contrast due to several drawbacks in the previous dual-wavelength multi-offset approach. Our aim here was to design and build a multi-offset detection pattern for humans at safe light levels that could reveal transparent cells in the retinal ganglion cell layer with a contrast and acquisition time approaching results only previously obtained in monkeys. Here, we present a new single-wavelength solution that allows for increased light power and eliminates problematic chromatic aberrations. Then, we demonstrate that a radial multi-offset detection pattern with an offset distance of 8-10 Airy Disk Diameter (ADD) is optimal to detect photons multiply scattered in all directions from weakly reflective retinal cells thereby enhancing their contrast. This new setup and image processing pipeline led to improved imaging of inner retinal cells, including the first images of microglia with multi-offset imaging in AOSLO.
Collapse
Affiliation(s)
- Elena Gofas-Salas
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh 15106, USA
- Denotes that each of these authors contributed equally to this work
| | - Yuhua Rui
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh 15106, USA
- Eye center of Xiangya Hospital, Central South University, Hunan Key Laboratory of Ophthalmology, Changsha, Hunan 401302, China
- Denotes that each of these authors contributed equally to this work
| | - Pedro Mecê
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh 15106, USA
| | - Min Zhang
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh 15106, USA
| | - Valerie C. Snyder
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh 15106, USA
| | - Kari V. Vienola
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh 15106, USA
| | - Daniel M. W. Lee
- Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh 15106, USA
| | - José-Alain Sahel
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh 15106, USA
| | | | - Ethan A. Rossi
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh 15106, USA
- Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh 15106, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh 15106, USA
| |
Collapse
|
29
|
Sharif NA. Therapeutic Drugs and Devices for Tackling Ocular Hypertension and Glaucoma, and Need for Neuroprotection and Cytoprotective Therapies. Front Pharmacol 2021; 12:729249. [PMID: 34603044 PMCID: PMC8484316 DOI: 10.3389/fphar.2021.729249] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/18/2021] [Indexed: 12/11/2022] Open
Abstract
Damage to the optic nerve and the death of associated retinal ganglion cells (RGCs) by elevated intraocular pressure (IOP), also known as glaucoma, is responsible for visual impairment and blindness in millions of people worldwide. The ocular hypertension (OHT) and the deleterious mechanical forces it exerts at the back of the eye, at the level of the optic nerve head/optic disc and lamina cribosa, is the only modifiable risk factor associated with glaucoma that can be treated. The elevated IOP occurs due to the inability of accumulated aqueous humor (AQH) to egress from the anterior chamber of the eye due to occlusion of the major outflow pathway, the trabecular meshwork (TM) and Schlemm’s canal (SC). Several different classes of pharmaceutical agents, surgical techniques and implantable devices have been developed to lower and control IOP. First-line drugs to promote AQH outflow via the uveoscleral outflow pathway include FP-receptor prostaglandin (PG) agonists (e.g., latanoprost, travoprost and tafluprost) and a novel non-PG EP2-receptor agonist (omidenepag isopropyl, Eybelis®). TM/SC outflow enhancing drugs are also effective ocular hypotensive agents (e.g., rho kinase inhibitors like ripasudil and netarsudil; and latanoprostene bunod, a conjugate of a nitric oxide donor and latanoprost). One of the most effective anterior chamber AQH microshunt devices is the Preserflo® microshunt which can lower IOP down to 10–13 mmHg. Other IOP-lowering drugs and devices on the horizon will be also discussed. Additionally, since elevated IOP is only one of many risk factors for development of glaucomatous optic neuropathy, a treatise of the role of inflammatory neurodegeneration of the optic nerve and retinal ganglion cells and appropriate neuroprotective strategies to mitigate this disease will also be reviewed and discussed.
Collapse
Affiliation(s)
- Najam A Sharif
- Global Alliances and External Research, Ophthalmology Innovation Center, Santen Inc., Emeryville, CA, United States
| |
Collapse
|