1
|
Di Gregorio E, Staelens M, Hosseinkhah N, Karimpoor M, Liburd J, Lim L, Shankar K, Tuszyński JA. Raman Spectroscopy Reveals Photobiomodulation-Induced α-Helix to β-Sheet Transition in Tubulins: Potential Implications for Alzheimer's and Other Neurodegenerative Diseases. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1093. [PMID: 38998698 PMCID: PMC11243591 DOI: 10.3390/nano14131093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/03/2024] [Accepted: 06/12/2024] [Indexed: 07/14/2024]
Abstract
In small clinical studies, the application of transcranial photobiomodulation (PBM), which typically delivers low-intensity near-infrared (NIR) to treat the brain, has led to some remarkable results in the treatment of dementia and several neurodegenerative diseases. However, despite the extensive literature detailing the mechanisms of action underlying PBM outcomes, the specific mechanisms affecting neurodegenerative diseases are not entirely clear. While large clinical trials are warranted to validate these findings, evidence of the mechanisms can explain and thus provide credible support for PBM as a potential treatment for these diseases. Tubulin and its polymerized state of microtubules have been known to play important roles in the pathology of Alzheimer's and other neurodegenerative diseases. Thus, we investigated the effects of PBM on these cellular structures in the quest for insights into the underlying therapeutic mechanisms. In this study, we employed a Raman spectroscopic analysis of the amide I band of polymerized samples of tubulin exposed to pulsed low-intensity NIR radiation (810 nm, 10 Hz, 22.5 J/cm2 dose). Peaks in the Raman fingerprint region (300-1900 cm-1)-in particular, in the amide I band (1600-1700 cm-1)-were used to quantify the percentage of protein secondary structures. Under this band, hidden signals of C=O stretching, belonging to different structures, are superimposed, producing a complex signal as a result. An accurate decomposition of the amide I band is therefore required for the reliable analysis of the conformation of proteins, which we achieved through a straightforward method employing a Voigt profile. This approach was validated through secondary structure analyses of unexposed control samples, for which comparisons with other values available in the literature could be conducted. Subsequently, using this validated method, we present novel findings of statistically significant alterations in the secondary structures of polymerized NIR-exposed tubulin, characterized by a notable decrease in α-helix content and a concurrent increase in β-sheets compared to the control samples. This PBM-induced α-helix to β-sheet transition connects to reduced microtubule stability and the introduction of dynamism to allow for the remodeling and, consequently, refreshing of microtubule structures. This newly discovered mechanism could have implications for reducing the risks associated with brain aging, including neurodegenerative diseases like Alzheimer's disease, through the introduction of an intervention following this transition.
Collapse
Affiliation(s)
- Elisabetta Di Gregorio
- Department of Physics, Faculty of Science, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Department of Mechanical and Aerospace Engineering (DIMEAS), Faculty of Biomedical Engineering, Polytechnic University of Turin, 10129 Turin, Italy
- Department of Physics, Freie Universität Berlin, 14195 Berlin, Germany
| | - Michael Staelens
- Department of Physics, Faculty of Science, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Instituto de Física Corpuscular, CSIC–Universitat de València, Carrer Catedràtic José Beltrán 2, 46980 Paterna, Spain
| | | | | | | | - Lew Lim
- Vielight Inc., Toronto, ON M4Y 2G8, Canada
| | - Karthik Shankar
- Department of Electrical and Computer Engineering, Faculty of Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Jack A. Tuszyński
- Department of Physics, Faculty of Science, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Department of Mechanical and Aerospace Engineering (DIMEAS), Faculty of Biomedical Engineering, Polytechnic University of Turin, 10129 Turin, Italy
- Department of Data Science and Engineering, Silesian University of Technology, 44-100 Gliwice, Poland
| |
Collapse
|
2
|
Paladini S, Truglia B, Shankar K, Tuszynski JA. Measurement and Characterization of the Electrical Properties of Actin Filaments. Int J Mol Sci 2024; 25:5485. [PMID: 38791524 PMCID: PMC11121962 DOI: 10.3390/ijms25105485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/10/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
Actin filaments, as key components of the cytoskeleton, have aroused great interest due to their numerous functional roles in eukaryotic cells, including intracellular electrical signaling. The aim of this research is to characterize the alternating current (AC) conduction characteristics of both globular and polymerized actin and quantitatively compare their values to those theoretically predicted earlier. Actin filaments have been demonstrated to act as conducting bionanowires, forming a signaling network capable of transmitting ionic waves in cells. We performed conductivity measurements for different concentrations of actin, considering both unpolymerized and polymerized actin to identify potential differences in their electrical properties. These measurements revealed two relevant characteristics: first, the polymerized actin, arranged in filaments, has a lower impedance than its globular counterpart; second, an increase in the actin concentration leads to higher conductivities. Furthermore, from the data collected, we developed a quantitative model to represent the electrical properties of actin in a buffer solution. We hypothesize that actin filaments can be modeled as electrical resistor-inductor-capacitor (RLC) circuits, where the resistive contribution is due to the viscous ion flows along the filaments; the inductive contribution is due to the solenoidal flows along and around the helix-shaped filament and the capacitive contribution is due to the counterion layer formed around each negatively charged filament.
Collapse
Affiliation(s)
- Serena Paladini
- Department of Mechanical and Aerospace Engineering (DIMEAS), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy; (S.P.); (B.T.)
| | - Barbara Truglia
- Department of Mechanical and Aerospace Engineering (DIMEAS), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy; (S.P.); (B.T.)
| | - Karthik Shankar
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB T6G 2R3, Canada;
| | - Jack Adam Tuszynski
- Department of Mechanical and Aerospace Engineering (DIMEAS), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy; (S.P.); (B.T.)
- Department of Physics, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Department of Data Science and Engineering, The Silesian University of Technology, 44-100 Gliwice, Poland
| |
Collapse
|
3
|
Sitnikov DS, Revkova VA, Ilina IV, Shatalova RO, Konoplyannikov MA, Kalsin VA, Baklaushev VP. Influence of High-Intensity Terahertz Radiation on the Differentiation of Human Neural Progenitor Cells. RADIOPHYSICS AND QUANTUM ELECTRONICS 2023; 66:618-628. [DOI: 10.1007/s11141-024-10321-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/19/2023] [Indexed: 03/07/2025]
|
4
|
Chakilam S, Gaidys R, Brożek J. Ultrastructure of a Mechanoreceptor of the Trichoid Sensilla of the Insect Nabis rugosus: Stimulus-Transmitting and Bio-Sensory Architecture. BIOENGINEERING (BASEL, SWITZERLAND) 2023; 10:bioengineering10010097. [PMID: 36671669 PMCID: PMC9855149 DOI: 10.3390/bioengineering10010097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 01/13/2023]
Abstract
This paper presents the ultrastructure morphology of Nabis rugosus trichoid sensilla using SEM and TEM data, along with a two-dimensional model of the trichoid sensilla developed in Amira software. The SEM images show the shape and scattering of the trichoid mechanosensilla over the N. rugosus flagellomere. The TEM images present the ultrastructural components, in which the hair rises from the socket via the joint membrane. The dendrite sheath is connected at the base of the hair shaft, surrounded by the lymph space and the socket septum. This dendrite sheath contains a tubular body with microtubules separated by the membrane (M) and granules (Gs). This study presents a model and simulation of the trichoid sensilla sensing mechanism, in which the hair deflects due to the application of external loading above it and presses the dendrite sheath attached to the hair base. The dendrite sheath is displaced by the applied force, transforming the transversal loading into a longitudinal deformation of the microtubules. Due to this longitudinal deformation, electric potential develops in the microtubule's core, and information is delivered to the brain through the axon. The sensilla's pivot point or point of rotation is presented, along with the relationship between the hair shaft length, the pivot point, and the electric potential distribution in the microtubules. This study's results can be used to develop ultra-sensitive, bioinspired sensors based on these ultrastructural components and their biomechanical studies.
Collapse
Affiliation(s)
- Shashikanth Chakilam
- Department of Mechanical Engineering, Kaunas University of Technology, LT-51424 Kaunas, Lithuania
- Correspondence:
| | - Rimvydas Gaidys
- Department of Mechanical Engineering, Kaunas University of Technology, LT-51424 Kaunas, Lithuania
| | - Jolanta Brożek
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, The University of Silesia in Katowice, Bankowa 9, 40-007 Katowice, Poland
| |
Collapse
|
5
|
Di Gregorio E, Israel S, Staelens M, Tankel G, Shankar K, Tuszyński JA. The distinguishing electrical properties of cancer cells. Phys Life Rev 2022; 43:139-188. [PMID: 36265200 DOI: 10.1016/j.plrev.2022.09.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 09/30/2022] [Indexed: 11/07/2022]
Abstract
In recent decades, medical research has been primarily focused on the inherited aspect of cancers, despite the reality that only 5-10% of tumours discovered are derived from genetic causes. Cancer is a broad term, and therefore it is inaccurate to address it as a purely genetic disease. Understanding cancer cells' behaviour is the first step in countering them. Behind the scenes, there is a complicated network of environmental factors, DNA errors, metabolic shifts, and electrostatic alterations that build over time and lead to the illness's development. This latter aspect has been analyzed in previous studies, but how the different electrical changes integrate and affect each other is rarely examined. Every cell in the human body possesses electrical properties that are essential for proper behaviour both within and outside of the cell itself. It is not yet clear whether these changes correlate with cell mutation in cancer cells, or only with their subsequent development. Either way, these aspects merit further investigation, especially with regards to their causes and consequences. Trying to block changes at various levels of occurrence or assisting in their prevention could be the key to stopping cells from becoming cancerous. Therefore, a comprehensive understanding of the current knowledge regarding the electrical landscape of cells is much needed. We review four essential electrical characteristics of cells, providing a deep understanding of the electrostatic changes in cancer cells compared to their normal counterparts. In particular, we provide an overview of intracellular and extracellular pH modifications, differences in ionic concentrations in the cytoplasm, transmembrane potential variations, and changes within mitochondria. New therapies targeting or exploiting the electrical properties of cells are developed and tested every year, such as pH-dependent carriers and tumour-treating fields. A brief section regarding the state-of-the-art of these therapies can be found at the end of this review. Finally, we highlight how these alterations integrate and potentially yield indications of cells' malignancy or metastatic index.
Collapse
Affiliation(s)
- Elisabetta Di Gregorio
- Dipartimento di Ingegneria Meccanica e Aerospaziale (DIMEAS), Politecnico di Torino, Corso Duca degli Abruzzi, 24, Torino, 10129, TO, Italy; Autem Therapeutics, 35 South Main Street, Hanover, 03755, NH, USA
| | - Simone Israel
- Dipartimento di Ingegneria Meccanica e Aerospaziale (DIMEAS), Politecnico di Torino, Corso Duca degli Abruzzi, 24, Torino, 10129, TO, Italy; Autem Therapeutics, 35 South Main Street, Hanover, 03755, NH, USA
| | - Michael Staelens
- Department of Physics, University of Alberta, 11335 Saskatchewan Drive NW, Edmonton, T6G 2E1, AB, Canada
| | - Gabriella Tankel
- Department of Mathematics & Statistics, McMaster University, 1280 Main Street West, Hamilton, L8S 4K1, ON, Canada
| | - Karthik Shankar
- Department of Electrical & Computer Engineering, University of Alberta, 9211 116 Street NW, Edmonton, T6G 1H9, AB, Canada
| | - Jack A Tuszyński
- Dipartimento di Ingegneria Meccanica e Aerospaziale (DIMEAS), Politecnico di Torino, Corso Duca degli Abruzzi, 24, Torino, 10129, TO, Italy; Department of Physics, University of Alberta, 11335 Saskatchewan Drive NW, Edmonton, T6G 2E1, AB, Canada; Department of Oncology, University of Alberta, 11560 University Avenue, Edmonton, T6G 1Z2, AB, Canada.
| |
Collapse
|
6
|
Schroer MA, Schewa S, Gruzinov AY, Rönnau C, Lahey-Rudolph JM, Blanchet CE, Zickmantel T, Song YH, Svergun DI, Roessle M. Probing the existence of non-thermal Terahertz radiation induced changes of the protein solution structure. Sci Rep 2021; 11:22311. [PMID: 34785744 PMCID: PMC8595702 DOI: 10.1038/s41598-021-01774-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/26/2021] [Indexed: 01/14/2023] Open
Abstract
During the last decades discussions were taking place on the existence of global, non-thermal structural changes in biological macromolecules induced by Terahertz (THz) radiation. Despite numerous studies, a clear experimental proof of this effect for biological particles in solution is still missing. We developed a setup combining THz-irradiation with small angle X-ray scattering (SAXS), which is a sensitive method for detecting the expected structural changes. We investigated in detail protein systems with different shape morphologies (bovine serum albumin, microtubules), which have been proposed to be susceptible to THz-radiation, under variable parameters (THz wavelength, THz power densities up to 6.8 mW/cm2, protein concentrations). None of the studied systems and conditions revealed structural changes detectable by SAXS suggesting that the expected non-thermal THz-induced effects do not lead to alterations of the overall structures, which are revealed by scattering from dissolved macromolecules. This leaves us with the conclusion that, if such effects are present, these are either local or outside of the spectrum and power range covered by the present study.
Collapse
Affiliation(s)
- Martin A. Schroer
- grid.475756.20000 0004 0444 5410European Molecular Biology Laboratory (EMBL), Hamburg Outstation C/O DESY, Notkestr. 85, 22607 Hamburg, Germany ,grid.5718.b0000 0001 2187 5445Present Address: Nanoparticle Process Technology, University of Duisburg-Essen, Lotharstr. 1, 47057 Duisburg, Germany
| | - Siawosch Schewa
- University of Applied Sciences Luebeck, Moenkhofer Weg 239, 23562 Luebeck, Germany
| | - Andrey Yu. Gruzinov
- grid.475756.20000 0004 0444 5410European Molecular Biology Laboratory (EMBL), Hamburg Outstation C/O DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Christian Rönnau
- grid.4562.50000 0001 0057 2672Institute of Physics, University of Luebeck, Ratzeburger Allee 160, 23562 Luebeck, Germany
| | | | - Clement E. Blanchet
- grid.475756.20000 0004 0444 5410European Molecular Biology Laboratory (EMBL), Hamburg Outstation C/O DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Till Zickmantel
- grid.4562.50000 0001 0057 2672Institute of Physics, University of Luebeck, Ratzeburger Allee 160, 23562 Luebeck, Germany
| | - Young-Hwa Song
- grid.4562.50000 0001 0057 2672Institute of Physics, University of Luebeck, Ratzeburger Allee 160, 23562 Luebeck, Germany
| | - Dmitri I. Svergun
- grid.475756.20000 0004 0444 5410European Molecular Biology Laboratory (EMBL), Hamburg Outstation C/O DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Manfred Roessle
- University of Applied Sciences Luebeck, Moenkhofer Weg 239, 23562 Luebeck, Germany
| |
Collapse
|