1
|
Buehler A, Brown EL, Eckstein M, Thoma O, Wachter F, Mandelbaum H, Ludwig P, Claßen M, Oraiopoulou M, Rother U, Neurath MF, Woelfle J, Waldner MJ, Friedrich O, Knieling F, Bohndiek SE, Regensburger AP. Guided Multispectral Optoacoustic Tomography for 3D Imaging of the Murine Colon. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2413434. [PMID: 39836529 PMCID: PMC11905093 DOI: 10.1002/advs.202413434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/07/2025] [Indexed: 01/23/2025]
Abstract
Multispectral optoacoustic tomography is a promising medical imaging modality that combines light and sound to provide molecular imaging information at depths of several centimeters, based on the optical absorption of endogenous chromophores, such as hemoglobin. Assessment of inflammatory bowel disease has emerged as a promising clinical application of optoacoustic tomography. In this context, preclinical studies in animal models are essential to identify novel disease-specific imaging biomarkers and understand findings from emerging clinical pilot studies, however to-date, these studies have been limited by the precise identification of the bowel wall. Herein, a transrectal-absorber guide is applied, serving as a high-contrast landmark for 3D optoacoustic tomography of the colon. This study shows that guided multispectral optoacoustic tomography is able to measure changes in blood oxygenation status over the course of acute, chemically-induced colitis in mice and correlates with standard disease activity scores. This novel approach depicts intestinal hemoglobin composition non-invasively during murine inflammation. These results underscore the potential for optoacoustic imaging in translational inflammatory bowel disease research.
Collapse
Affiliation(s)
- Adrian Buehler
- Department of Pediatrics and Adolescent MedicineUniversity Hospital ErlangenFriedrich‐Alexander‐Universität Erlangen‐Nürnberg91054ErlangenGermany
| | - Emma L. Brown
- Department of Physics and Cancer Research UK Cambridge InstituteUniversity of CambridgeCambridgeCB2 0REUK
| | - Markus Eckstein
- Institute of PathologyUniversity Hospital ErlangenFriedrich‐Alexander‐Universität Erlangen‐Nürnberg91054ErlangenGermany
| | - Oana‐Maria Thoma
- Department of Medicine 1University Hospital ErlangenFriedrich‐Alexander‐Universität Erlangen‐Nürnberg91054ErlangenGermany
- Deutsches Zentrum Immuntherapie DZI, University Hospital Erlangen91054ErlangenGermany
| | - Felix Wachter
- Department of Pediatrics and Adolescent MedicineUniversity Hospital ErlangenFriedrich‐Alexander‐Universität Erlangen‐Nürnberg91054ErlangenGermany
| | - Henriette Mandelbaum
- Department of Pediatrics and Adolescent MedicineUniversity Hospital ErlangenFriedrich‐Alexander‐Universität Erlangen‐Nürnberg91054ErlangenGermany
| | - Petra Ludwig
- Department of Pediatrics and Adolescent MedicineUniversity Hospital ErlangenFriedrich‐Alexander‐Universität Erlangen‐Nürnberg91054ErlangenGermany
| | - Merle Claßen
- Department of Pediatrics and Adolescent MedicineUniversity Hospital ErlangenFriedrich‐Alexander‐Universität Erlangen‐Nürnberg91054ErlangenGermany
| | - Mariam‐Eleni Oraiopoulou
- Department of Physics and Cancer Research UK Cambridge InstituteUniversity of CambridgeCambridgeCB2 0REUK
| | - Ulrich Rother
- Department of Vascular SurgeryUniversity Hospital ErlangenFriedrich‐Alexander‐Universität Erlangen‐Nürnberg91054ErlangenGermany
| | - Markus F. Neurath
- Department of Medicine 1University Hospital ErlangenFriedrich‐Alexander‐Universität Erlangen‐Nürnberg91054ErlangenGermany
- Deutsches Zentrum Immuntherapie DZI, University Hospital Erlangen91054ErlangenGermany
| | - Joachim Woelfle
- Department of Pediatrics and Adolescent MedicineUniversity Hospital ErlangenFriedrich‐Alexander‐Universität Erlangen‐Nürnberg91054ErlangenGermany
| | - Maximilian J. Waldner
- Department of Medicine 1University Hospital ErlangenFriedrich‐Alexander‐Universität Erlangen‐Nürnberg91054ErlangenGermany
- Deutsches Zentrum Immuntherapie DZI, University Hospital Erlangen91054ErlangenGermany
| | - Oliver Friedrich
- Institute of Medical BiotechnologyFriedrich‐Alexander‐Universität Erlangen‐Nürnberg91052ErlangenGermany
| | - Ferdinand Knieling
- Department of Pediatrics and Adolescent MedicineUniversity Hospital ErlangenFriedrich‐Alexander‐Universität Erlangen‐Nürnberg91054ErlangenGermany
| | - Sarah E. Bohndiek
- Department of Physics and Cancer Research UK Cambridge InstituteUniversity of CambridgeCambridgeCB2 0REUK
| | - Adrian P. Regensburger
- Department of Pediatrics and Adolescent MedicineUniversity Hospital ErlangenFriedrich‐Alexander‐Universität Erlangen‐Nürnberg91054ErlangenGermany
| |
Collapse
|
2
|
Li Y, Lin Y, Li B, Feng T, Li D, Li Y, Wu Y, Ta D. Enhancing Ischemic Stroke Evaluation by a Model-Based Photoacoustic Tomography Algorithm. JOURNAL OF BIOPHOTONICS 2024:e202400203. [PMID: 39438435 DOI: 10.1002/jbio.202400203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 10/02/2024] [Accepted: 10/03/2024] [Indexed: 10/25/2024]
Abstract
Ischemic stroke (IS) is characterized by the sudden interruption of blood supply to the brain, resulting in neurological impairments and even mortality. Photoacoustic computed tomography (PACT) integrates the high contrast of optical imaging and the penetration of ultrasound imaging, enabling non-invasive IS evaluation. However, the image reconstruction quality significantly affects the oxyhemoglobin saturation (sO2) estimation. This study investigates a model-based with total variation minimized by augmented Lagrangian and alternating direction (MB-TVAL3) approach and compared it with the widely used back-projection (BP) and delay-and-sum (DAS) algorithms. Both simulations and in vivo experiments are conducted to validate the performance of the MB-TVAL3 algorithm, showing a higher sO2 estimation accuracy and sensitivity in detecting infarct area compared to BP and DAS. The findings of this study emphasize the impact of acoustic inverse problem on the accuracy of sO2 estimation and the proposed approach offers valuable support for IS evaluation and cerebrovascular diagnosis.
Collapse
Affiliation(s)
- Yuanyuan Li
- Department of Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai, China
| | - Yi Lin
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Boyi Li
- Department of Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai, China
| | - Ting Feng
- Academy for Engineering and Technology, Fudan University, Shanghai, China
- Yiwu Research Institute, Fudan University, Yiwu, China
| | - Dan Li
- Department of Electronic Engineering, School of Information Science and Technology, Fudan University, Shanghai, China
| | - Ying Li
- Department of Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai, China
- Yiwu Research Institute, Fudan University, Yiwu, China
| | - Yi Wu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Dean Ta
- Department of Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai, China
- Academy for Engineering and Technology, Fudan University, Shanghai, China
- Yiwu Research Institute, Fudan University, Yiwu, China
| |
Collapse
|
3
|
Li G, Huang Z, Tian H, Wu H, Zheng J, Wang M, Mo S, Chen Z, Xu J, Dong F. Deep learning combined with attention mechanisms to assist radiologists in enhancing breast cancer diagnosis: a study on photoacoustic imaging. BIOMEDICAL OPTICS EXPRESS 2024; 15:4689-4704. [PMID: 39346992 PMCID: PMC11427196 DOI: 10.1364/boe.530249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/10/2024] [Accepted: 07/10/2024] [Indexed: 10/01/2024]
Abstract
Accurate prediction of breast cancer (BC) is essential for effective treatment planning and improving patient outcomes. This study proposes a novel deep learning (DL) approach using photoacoustic (PA) imaging to enhance BC prediction accuracy. We enrolled 334 patients with breast lesions from Shenzhen People's Hospital between January 2022 and January 2024. Our method employs a ResNet50-based model combined with attention mechanisms to analyze photoacoustic ultrasound (PA-US) images. Experiments demonstrated that the PAUS-ResAM50 model achieved superior performance, with an AUC of 0.917 (95% CI: 0.884 -0.951), sensitivity of 0.750, accuracy of 0.854, and specificity of 0.920 in the training set. In the testing set, the model maintained high performance with an AUC of 0.870 (95% CI: 0.778-0.962), sensitivity of 0.786, specificity of 0.872, and accuracy of 0.836. Our model significantly outperformed other models, including PAUS-ResNet50, BMUS-ResAM50, and BMUS-ResNet50, as validated by the DeLong test (p < 0.05 for all comparisons). Additionally, the PAUS-ResAM50 model improved radiologists' diagnostic specificity without reducing sensitivity, highlighting its potential for clinical application. In conclusion, the PAUS-ResAM50 model demonstrates substantial promise for optimizing BC diagnosis and aiding radiologists in early detection of BC.
Collapse
Affiliation(s)
- Guoqiu Li
- Department of Ultrasound, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen 518020, Guangdong, China
| | - Zhibin Huang
- Department of Ultrasound, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen 518020, Guangdong, China
| | - Hongtian Tian
- Department of Ultrasound, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen 518020, Guangdong, China
| | - Huaiyu Wu
- Department of Ultrasound, Shenzhen People's Hospital, Shenzhen 518020, Guangdong, China
| | - Jing Zheng
- Department of Ultrasound, Shenzhen People's Hospital, Shenzhen 518020, Guangdong, China
| | - Mengyun Wang
- Department of Ultrasound, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen 518020, Guangdong, China
| | - Sijie Mo
- Department of Ultrasound, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen 518020, Guangdong, China
| | - Zhijie Chen
- Ultrasound imaging system development department, Shenzhen Mindray Bio-Medical Electronics Co., Ltd. Shenzhen, Guangdong, China
| | - Jinfeng Xu
- Department of Ultrasound, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen 518020, Guangdong, China
- Department of Ultrasound, Shenzhen People's Hospital, Shenzhen 518020, Guangdong, China
| | - Fajin Dong
- Department of Ultrasound, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen 518020, Guangdong, China
- Department of Ultrasound, Shenzhen People's Hospital, Shenzhen 518020, Guangdong, China
- Department of Ultrasound, Shenzhen People's Hospital, Longhua Branch, Shenzhen 518020, Guangdong, China
| |
Collapse
|
4
|
Regensburger AP, Eckstein M, Wetzl M, Raming R, Paulus LP, Buehler A, Nedoschill E, Danko V, Jüngert J, Wagner AL, Schnell A, Rückel A, Rother U, Rompel O, Uder M, Hartmann A, Neurath MF, Woelfle J, Waldner MJ, Hoerning A, Knieling F. Multispectral optoacoustic tomography enables assessment of disease activity in paediatric inflammatory bowel disease. PHOTOACOUSTICS 2024; 35:100578. [PMID: 38144890 PMCID: PMC10746560 DOI: 10.1016/j.pacs.2023.100578] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/01/2023] [Accepted: 11/29/2023] [Indexed: 12/26/2023]
Abstract
Multispectral optoacoustic tomography (MSOT) allows non-invasive molecular disease activity assessment in adults with inflammatory bowel disease (IBD). In this prospective pilot-study, we investigated, whether increased levels of MSOT haemoglobin parameters corresponded to inflammatory activity in paediatric IBD patients, too. 23 children with suspected IBD underwent MSOT of the terminal ileum and sigmoid colon with standard validation (e.g. endoscopy). In Crohn`s disease (CD) and ulcerative colitis (UC) patients with endoscopically confirmed disease activity, MSOT total haemoglobin (HbT) signals were increased in the terminal ileum of CD (72.1 ± 13.0 a.u. vs. 32.9 ± 15.4 a.u., p = 0.0049) and in the sigmoid colon of UC patients (62.9 ± 13.8 a.u. vs. 35.1 ± 16.3 a.u., p = 0.0311) as compared to controls, respectively. Furthermore, MSOT haemoglobin parameters correlated well with standard disease activity assessment (e.g. SES-CD and MSOT HbT (rs =0.69, p = 0.0075). Summarizing, MSOT is a novel technology for non-invasive molecular disease activity assessment in paediatric patients with inflammatory bowel disease.
Collapse
Affiliation(s)
- Adrian P. Regensburger
- Department of Paediatrics and Adolescent Medicine and German Center Immunotherapy (DZI), University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
- Paediatric Experimental and Translational Imaging Laboratory (PETI-Lab), Department of Paediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Markus Eckstein
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Matthias Wetzl
- Department of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Roman Raming
- Department of Paediatrics and Adolescent Medicine and German Center Immunotherapy (DZI), University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
- Paediatric Experimental and Translational Imaging Laboratory (PETI-Lab), Department of Paediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Lars-Philip Paulus
- Department of Paediatrics and Adolescent Medicine and German Center Immunotherapy (DZI), University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
- Paediatric Experimental and Translational Imaging Laboratory (PETI-Lab), Department of Paediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Adrian Buehler
- Department of Paediatrics and Adolescent Medicine and German Center Immunotherapy (DZI), University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
- Paediatric Experimental and Translational Imaging Laboratory (PETI-Lab), Department of Paediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Emmanuel Nedoschill
- Department of Paediatrics and Adolescent Medicine and German Center Immunotherapy (DZI), University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
- Paediatric Experimental and Translational Imaging Laboratory (PETI-Lab), Department of Paediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Vera Danko
- Department of Paediatrics and Adolescent Medicine and German Center Immunotherapy (DZI), University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
- Paediatric Experimental and Translational Imaging Laboratory (PETI-Lab), Department of Paediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Jörg Jüngert
- Department of Paediatrics and Adolescent Medicine and German Center Immunotherapy (DZI), University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Alexandra L. Wagner
- Paediatric Experimental and Translational Imaging Laboratory (PETI-Lab), Department of Paediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Alexander Schnell
- Department of Paediatrics and Adolescent Medicine and German Center Immunotherapy (DZI), University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Aline Rückel
- Department of Paediatrics and Adolescent Medicine and German Center Immunotherapy (DZI), University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Ulrich Rother
- Department of Vascular Surgery, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Oliver Rompel
- Department of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Michael Uder
- Department of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Arndt Hartmann
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Markus F. Neurath
- Department of Medicine 1 and German Center Immunotherapy (DZI), University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Joachim Woelfle
- Department of Paediatrics and Adolescent Medicine and German Center Immunotherapy (DZI), University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Maximilian J. Waldner
- Department of Medicine 1 and German Center Immunotherapy (DZI), University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - André Hoerning
- Department of Paediatrics and Adolescent Medicine and German Center Immunotherapy (DZI), University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Ferdinand Knieling
- Department of Paediatrics and Adolescent Medicine and German Center Immunotherapy (DZI), University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
- Paediatric Experimental and Translational Imaging Laboratory (PETI-Lab), Department of Paediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
5
|
Liu X, Kalva SK, Lafci B, Nozdriukhin D, Deán-Ben XL, Razansky D. Full-view LED-based optoacoustic tomography. PHOTOACOUSTICS 2023; 31:100521. [PMID: 37342502 PMCID: PMC10277581 DOI: 10.1016/j.pacs.2023.100521] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/30/2023] [Accepted: 06/06/2023] [Indexed: 06/23/2023]
Abstract
Optoacoustic tomography is commonly performed with bulky and expensive short-pulsed solid-state lasers providing high per-pulse energies in the millijoule range. Light emitting diodes (LEDs) represent a cost-effective and portable alternative for optoacoustic signal excitation that can additionally provide excellent pulse-to-pulse stability. Herein, we introduce a full-view LED-based optoacoustic tomography (FLOAT) system for deep tissue in vivo imaging. It is based on a custom-made electronic unit driving a stacked array of LEDs, which attains 100 ns pulse width and highly stable (0.62 % standard deviation) total per-pulse energy of 0.48 mJ. The illumination source is integrated into a circular array of cylindrically-focused ultrasound detection elements to result in a full-view tomographic configuration, which plays a critical role in circumventing limited-view effects, enhancing the effective field-of-view and image quality for cross-sectional (2D) imaging. We characterized the FLOAT performance in terms of pulse width, power stability, excitation light distribution, signal-to-noise and penetration depth. FLOAT of the human finger revealed a comparable imaging performance to that achieved with the standard pulsed Nd:YAG laser. It is anticipated that this compact, affordable and versatile illumination technology will facilitate optoacoustic imaging developments in resource-limited settings for biological and clinical applications.
Collapse
Affiliation(s)
- Xiang Liu
- Institute of Pharmacology and Toxicology and Institute for Biomedical Engineering, Faculty of Medicine, University of Zurich, Zurich CH-8057, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich CH-8093, Switzerland
| | - Sandeep Kumar Kalva
- Institute of Pharmacology and Toxicology and Institute for Biomedical Engineering, Faculty of Medicine, University of Zurich, Zurich CH-8057, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich CH-8093, Switzerland
| | - Berkan Lafci
- Institute of Pharmacology and Toxicology and Institute for Biomedical Engineering, Faculty of Medicine, University of Zurich, Zurich CH-8057, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich CH-8093, Switzerland
| | - Daniil Nozdriukhin
- Institute of Pharmacology and Toxicology and Institute for Biomedical Engineering, Faculty of Medicine, University of Zurich, Zurich CH-8057, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich CH-8093, Switzerland
| | - Xosé Luís Deán-Ben
- Institute of Pharmacology and Toxicology and Institute for Biomedical Engineering, Faculty of Medicine, University of Zurich, Zurich CH-8057, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich CH-8093, Switzerland
| | - Daniel Razansky
- Institute of Pharmacology and Toxicology and Institute for Biomedical Engineering, Faculty of Medicine, University of Zurich, Zurich CH-8057, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich CH-8093, Switzerland
| |
Collapse
|