1
|
Hsieh MC, Chang CY, Hsu CH, Lin YR, Hsieh PY, Ching CTS, Liao LD. Improvement of clinical wound microcirculation diagnosis using an object tracking-based laser speckle contrast imaging system. APL Bioeng 2024; 8:016105. [PMID: 38292062 PMCID: PMC10827336 DOI: 10.1063/5.0172443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 12/20/2023] [Indexed: 02/01/2024] Open
Abstract
Wound monitoring is crucial for effective healing, as nonhealing wounds can lead to tissue ulceration and necrosis. Evaluating wound recovery involves observing changes in angiogenesis. Laser speckle contrast imaging (LSCI) is vital for wound assessment due to its rapid imaging, high resolution, wide coverage, and noncontact properties. When using LSCI equipment, regions of interest (ROIs) must be delineated in lesion areas in images for quantitative analysis. However, patients with serious wounds cannot maintain constant postures because the affected areas are often associated with discomfort and pain. This leads to deviations between the drawn ROI and actual wound position when using LSCI for wound assessment, affecting the reliability of relevant assessments. To address these issues, we used the channel and spatial reliability tracker object tracking algorithm to develop an automatic ROI tracking function for LSCI systems. This algorithm is used to track and correct artificial movements in blood flow images, address the ROI position offset caused by the movement of the affected body part, increase the blood flow analysis accuracy, and improve the clinical applicability of LSCI systems. ROI tracking experiments were performed by simulating wounds, and the results showed that the intraclass correlation coefficient (ICC) ranged from 0.134 to 0.976. Furthermore, the object within the ROI affected tracking performance. Clinical assessments across wound types showed ICCs ranging from 0.798 to 0.917 for acute wounds and 0.628-0.849 for chronic wounds. We also discuss factors affecting tracking performance and propose strategies to enhance implementation effectiveness.
Collapse
Affiliation(s)
| | | | - Ching-Han Hsu
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan
| | - Yan-Ren Lin
- Department of Emergency and Critical Care Medicine, Changhua Christian Hospital, Changhua, Taiwan
| | - Pei-You Hsieh
- Department of Emergency and Critical Care Medicine, Changhua Christian Hospital, Changhua, Taiwan
| | | | - Lun-De Liao
- Author to whom correspondence should be addressed:
| |
Collapse
|
2
|
Zheng S, Xiao S, Kretsge L, Cruz-Martín A, Mertz J. Depth resolution in multifocus laser speckle contrast imaging. OPTICS LETTERS 2021; 46:5059-5062. [PMID: 34598268 PMCID: PMC9801310 DOI: 10.1364/ol.436334] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/10/2021] [Indexed: 06/03/2023]
Abstract
Laser speckle contrast imaging (LSCI) can be used to evaluate blood flow based on spatial or temporal speckle statistics, but its accuracy is undermined by out-of-focus image blur. In this Letter, we show how the fraction of dynamic versus static light scattering is dependent on focus, and describe a deconvolution strategy to correct for out-of-focus blur. With the aid of a z-splitter, which enables instantaneous multifocus imaging, we demonstrate depth-resolved LSCI that can robustly extract multi-plane structural and flow-speed information simultaneously. This method is applied to in vivo imaging of blood vessels in a mouse cortex and provides improved estimates of blood flow speed throughout a depth range of 300µm.
Collapse
Affiliation(s)
- Shuqi Zheng
- Boston University, Department of Electrical and Computer Engineering, 8 St. Mary’s St., Boston, MA 02215, USA
| | - Sheng Xiao
- Boston University, Department of Biomedical Engineering, 44 Cummington Mall, Boston, MA 02215, USA
| | - Lisa Kretsge
- Boston University, Department of Biology, 5 Cummington Mall, Boston, MA 02215, USA
| | - Alberto Cruz-Martín
- Boston University, Department of Biology, 5 Cummington Mall, Boston, MA 02215, USA
| | - Jerome Mertz
- Boston University, Department of Biomedical Engineering, 44 Cummington Mall, Boston, MA 02215, USA
| |
Collapse
|
3
|
Lv W, Wang Y, Chen X, Fu X, Lu J, Li P. Enhancing vascular visualization in laser speckle contrast imaging of blood flow using multi-focus image fusion. JOURNAL OF BIOPHOTONICS 2019; 12:e201800100. [PMID: 29952071 DOI: 10.1002/jbio.201800100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 05/25/2018] [Accepted: 06/26/2018] [Indexed: 05/24/2023]
Abstract
Laser speckle contrast imaging (LSCI) is a full-field optical imaging method for monitoring blood flow and vascular morphology with high spatiotemporal resolution. However, due to the limited depth of field of optical system, it is difficult to capture a clear blood flow image with all blood vessels focused, especially for the non-planar biological tissues. In this study, a multi-focus image fusion method based on contourlet transform is introduced to reduce the misfocus effects in LSCI. The experimental results suggest that this method can provide an all-in-focus blood flow image, which is convenient to observe the blood vessels.
Collapse
Affiliation(s)
- Wenzhi Lv
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, China
- MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Wang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, China
- MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao Chen
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, China
- MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoxi Fu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, China
- MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Jinling Lu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, China
- MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Pengcheng Li
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, China
- MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
- HUST-Suzhou Institute for Brainsmatics, Suzhou, China
| |
Collapse
|
4
|
Ringuette D, Nauenberg J, Monnier PP, Carlen PL, Levi O. Data compression and improved registration for laser speckle contrast imaging of rodent brains. BIOMEDICAL OPTICS EXPRESS 2018; 9:5615-5634. [PMID: 30460150 PMCID: PMC6238931 DOI: 10.1364/boe.9.005615] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 08/30/2018] [Accepted: 09/13/2018] [Indexed: 05/16/2023]
Abstract
Single-frame blood flow maps from laser speckle contrast imaging (LSCI) contain high spatiotemporal variation that obscures high spatial-frequency vascular features, making precise image registration for signal amplification challenging. In this work, novel bivariate standardized moment filters (BSMFs) were used to provide stable measures of vessel edge location, permitting more robust LSCI registration. Relatedly, BSMFs enabled the stable reconstruction of vessel edges from sparsely distributed blood flow map outliers, which were found to retain most of the temporal dynamics. Consequently, data discarding and BSMF-based reconstruction enable efficient real-time quantitative LSCI data compression. Smaller LSCI-kernels produced log-normal blood flow distributions, enhancing sparse-to-dense inference.
Collapse
Affiliation(s)
- Dene Ringuette
- The Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario, M5S 3G9,
Canada
- Division of Fundamental Neurobiology, Toronto Western Research Institute, 60 Leonard Ave, Toronto, Ontario M5T 2S8,
Canada
| | - Jacob Nauenberg
- The Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, 10 King’s College Road, Toronto, Ontario, M5S 3G4,
Canada
| | - Philippe P. Monnier
- Division of Fundamental Neurobiology, Toronto Western Research Institute, 60 Leonard Ave, Toronto, Ontario M5T 2S8,
Canada
| | - Peter L. Carlen
- The Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario, M5S 3G9,
Canada
- Division of Fundamental Neurobiology, Toronto Western Research Institute, 60 Leonard Ave, Toronto, Ontario M5T 2S8,
Canada
| | - Ofer Levi
- The Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario, M5S 3G9,
Canada
- The Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, 10 King’s College Road, Toronto, Ontario, M5S 3G4,
Canada
| |
Collapse
|
5
|
Abdurashitov A, Bragina O, Sindeeva O, Sergey S, Semyachkina-Glushkovskaya OV, Tuchin VV. Off-axis holographic laser speckle contrast imaging of blood vessels in tissues. JOURNAL OF BIOMEDICAL OPTICS 2017; 22:91514. [PMID: 28444152 DOI: 10.1117/1.jbo.22.9.091514] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Accepted: 03/27/2017] [Indexed: 06/07/2023]
Abstract
Laser speckle contrast imaging (LSCI) has become one of the most common tools for functional imaging in tissues. Incomplete theoretical description and sophisticated interpretation of measurement results are completely sidelined by a low-cost and simple hardware, fastness, consistent results, and repeatability. In addition to the relatively low measuring volume with around 700 ?? ? m of the probing depth for the visible spectral range of illumination, there is no depth selectivity in conventional LSCI configuration; furthermore, in a case of high NA objective, the actual penetration depth of light in tissues is greater than depth of field (DOF) of an imaging system. Thus, the information about these out-of-focus regions persists in the recorded frames but cannot be retrieved due to intensity-based registration method. We propose a simple modification of LSCI system based on the off-axis holography to introduce after-registration refocusing ability to overcome both depth-selectivity and DOF problems as well as to get the potential possibility of producing a cross-section view of the specimen.
Collapse
Affiliation(s)
- Arkady Abdurashitov
- Saratov National Research State University, Research-Educational Institute of Optics and Biophotonics, Saratov, Russia
| | - Olga Bragina
- Saratov National Research State University, Department of Human and Animal Physiology, Saratov, RussiacUniversity of New Mexico School of Medicine, Department of Neurosurgery, Albuquerque, New Mexico, United States
| | - Olga Sindeeva
- Saratov National Research State University, Department of Human and Animal Physiology, Saratov, RussiadQueen Mary University of London, School of Engineering and Materials Science, London, United KingdomeSaratov National Research State University, Remote Controlled Theranostic Systems Laboratory, Saratov, Russia
| | - Sindeev Sergey
- Saratov National Research State University, Department of Human and Animal Physiology, Saratov, Russia
| | | | - Valery V Tuchin
- Saratov National Research State University, Research-Educational Institute of Optics and Biophotonics, Saratov, RussiafInstitute of Precision Mechanics and Control RAS, Laboratory of Laser Diagnostics of Technical and Living Systems, Saratov, RussiagNational Research Tomsk State University, Interdisciplinary Laboratory of Biophotonics, Tomsk, Russia
| |
Collapse
|
6
|
Di Battista D, Zacharakis G, Leonetti M. Enhanced adaptive focusing through semi-transparent media. Sci Rep 2015; 5:17406. [PMID: 26620906 PMCID: PMC4664999 DOI: 10.1038/srep17406] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 10/29/2015] [Indexed: 11/18/2022] Open
Abstract
Adaptive optics can focus light through opaque media by compensating the random phase delay acquired while crossing a scattering curtain. The technique is commonly exploited in many fields, including astrophysics, microscopy, biomedicine and biology. A turbid lens has the capability of producing foci with a resolution higher than conventional optics, however it has a fundamental limit: to obtain a sharp focus one has to introduce a strongly scattering medium in the optical path. Indeed a tight focusing needs strong scattering and, as a consequence, high resolution focusing is obtained only for weakly transmitting samples. Here we describe a novel method allowing to obtain highly concentrated optical spots even by introducing a minimum amount of scattering in the beam path with semi-transparent materials. By filtering the pseudo-ballistic components of the transmitted beam we are able to experimentally overcome the limits of the adaptive focus resolution, gathering light on a spot with a diameter which is one third of the original speckle correlation function.
Collapse
Affiliation(s)
- Diego Di Battista
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, N. Plastira 100, Vasilika Vouton, 70013, Heraklion, Crete, Greece
| | - Giannis Zacharakis
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, N. Plastira 100, Vasilika Vouton, 70013, Heraklion, Crete, Greece
| | - Marco Leonetti
- Center for Life Nano Science@Sapienza, Instituto Italiano di Tecnologia, Viale Regina Elena, 291 00161 Rome, Italy
| |
Collapse
|
7
|
Kofman I, Abookasis D. Dual-wavelength laser speckle imaging for monitoring brain metabolic and hemodynamic response to closed head traumatic brain injury in mice. JOURNAL OF BIOMEDICAL OPTICS 2015; 20:106009. [PMID: 26502232 DOI: 10.1117/1.jbo.20.10.106009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Accepted: 09/11/2015] [Indexed: 05/24/2023]
Abstract
Abstract. The measurement of dynamic changes in brain hemodynamic and metabolism events following head trauma could be valuable for injury prognosis and for planning of optimal medical treatment. Specifically, variations in blood flow and oxygenation levels serve as important biomarkers of numerous pathophysiological processes. We employed the dual-wavelength laser speckle imaging (DW-LSI) technique for simultaneous monitoring of changes in brain hemodynamics and cerebral blood flow (CBF) at early stages of head trauma in a mouse model of intact head injury (n=10). For induction of head injury, we used a weight-drop device involving a metal mass (∼50 g ) striking the mouse’s head in a regulated manner from a height of ∼90 cm. In comparison to baseline measurements, noticeable dynamic variations were revealed immediately and up to 1 h postinjury, which indicate the severity of brain damage and highlight the ability of the DW-LSI arrangement to track brain pathophysiology induced by injury. To validate the monitoring of CBF by DW-LSI, measurements with laser Doppler flowmetry (LDF) were also performed (n=5), which confirmed reduction in CBF following injury. A secondary focus of the study was to investigate the effectiveness of hypertonic saline as a neuroprotective agent, inhibiting the development of complications after brain injury in a subgroup of injured mice (n=5), further demonstrating the ability of DW-LSI to monitor the effects upon brain dynamics of drug treatment. Overall, our findings further support the use of DW-LSI as a noninvasive, cost-effective tool to assess changes in hemodynamics under a variety of pathological conditions, suggesting its potential contribution to the biomedical field. To the best of our knowledge, this work is the first to make use of the DW-LSI modality in a small animal model to (1) investigate brain function during the critical first hour of closed head injury trauma, (2) correlate between injury parameters of LDF measurements, and (3) monitor brain hemodynamic and metabolic response to neuroprotective drug treatment.
Collapse
|
8
|
Shi R, Chen M, Tuchin VV, Zhu D. Accessing to arteriovenous blood flow dynamics response using combined laser speckle contrast imaging and skin optical clearing. BIOMEDICAL OPTICS EXPRESS 2015; 6:1977-89. [PMID: 26114023 PMCID: PMC4473738 DOI: 10.1364/boe.6.001977] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 04/24/2015] [Accepted: 04/28/2015] [Indexed: 05/18/2023]
Abstract
Laser speckle contrast imaging (LSCI) shows a great potential for monitoring blood flow, but the spatial resolution suffers from the scattering of tissue. Here, we demonstrate the capability of a combination method of LSCI and skin optical clearing to describe in detail the dynamic response of cutaneous vasculature to vasoactive noradrenaline injection. Moreover, the superior resolution, contrast and sensitivity make it possible to rebuild arteries-veins separation and quantitatively assess the blood flow dynamical changes in terms of flow velocity and vascular diameter at single artery or vein level.
Collapse
Affiliation(s)
- Rui Shi
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
- MoE Key Laboratory of Biomedical Photonics, Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
- These authors contributed equally to this work
| | - Min Chen
- Affiliated Hospital, Huazhong University of Science and Technology, Wuhan 430074, China
- These authors contributed equally to this work
| | - Valery V. Tuchin
- Research-Educational Institute of Optics and Biophotonics, Saratov State University, Saratov 410012, Russia
- Institute of Precise Mechanics and Control RAS, Saratov 410028, Russia
| | - Dan Zhu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
- MoE Key Laboratory of Biomedical Photonics, Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|